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Abstract 

The degradation of structures and their component materials is irreversible due to many factors, 

such as the change of temperature, humidity, corroding agents, the effect of wind, and accidental 

collision. Thus, the concern of structure health has increased for the occurrence of some 

engineering accidents, and structural health monitoring (SHM) has become a powerful tool to 

help decision making during the structure’s life cycle. Structure system identification (SSI) is a 

key component of SHM, whose aim is to identify the integrity and the state of the structure using 

non-destructive techniques.  

SSI can be classified as static and dynamic depending on the type of excitation. SSI by 

Observability Method (OM) using static tests was proposed and analyzed to address the 

observability of the estimated parameters. This mathematical approach has been used in other 

fields such as hydraulics, electrical, and power networks or transportation. Usually, the structural 

behavior of engineering structures can be identified according to dynamic characteristics such as 

mode shapes, natural frequencies, and damping ratios. However, the analysis of SSI by dynamic 

Observability Method using dynamic information is lacking.  

This Ph.D. thesis developed the dynamic Observability Method using masses, modal frequencies, 

modal deflections based on the static OM to obtain the geometrical and mechanical parameters 

of the structure. This thesis mainly contains three aspects of work. 

Firstly, in Chapter 3, the development, for the first time, of constrained observability techniques 

(COM) for parametric estimation of structures using dynamic information such as frequencies 

and mode-shapes was proposed. New algorithms are introduced based on the dynamic 

eigenvalue equation. Two step by step examples are used to illustrate the functioning of these. 

Parametric expressions for the observed variables are successfully obtained，which will allow 

the study of the sensitivity of each of the variables in the problem and the error distribution, 

which is an advantage with respect to non-parametric SSI techniques. A large structure is used to 

validate this new application, whose structural properties can be obtained satisfactorily in either 

the whole or local analysis, and the results show that the required measurement set is smaller 

than the required for a static analysis. Chapters 4 and 5 are the applications of COM to fill the 

shortcomings of current research, such as the optimal SHM+SSI strategy and uncertainty 

quantification. 

Secondly, in Chapter 4, the role of the SHM strategy and the SSI analysis based on the 

Constrained Observability Method (COM), which aims at reducing the estimation error, is 

discussed. A machine learning decision tool to help building the best-combined strategy of SHM 

and SSI that can result in the most accurate estimations of the structural properties is proposed, 

and the combination of COM and decision tree algorithm is used for the first time. The machine 
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learning algorithm is based on the theory of Decision Trees. Decision trees are firstly presented 

to investigate the influence of the variables (layout of bridge, span length, measurement set, and 

weight factor in the objective function of the COM) involved in the SHM+SSI process on the 

error estimation in a general structure.  The verification of the method with a real bridge with 

different levels of damage shows that the method is robust even for a high damage level, 

showing the SHM+SSI strategy that yields the most accurate estimation. 

Finally, an analysis of uncertainty quantification (UQ) is necessary to assess the effect of 

uncertainties on the estimated parameters and to provide a way to evaluate these uncertainties. 

This work is carried out in Chapter 5. There are a large number of UQ approaches in science and 

engineering. It is identified that the proposed dynamic Constrained Observability Method (COM) 

can make up for some of the shortcomings of existing methods. After that, the COM is used to 

analyze a real bridge. A result is compared with a method based on a Bayesian approach 

demonstrating its applicability and correct performance through the analysis of a reinforced 

concrete beam. In addition, during the bridge system identification by COM, it is found that the 

best measurement set will depend whether the epistemic uncertainty (model error) is involved or 

not. As the epistemic uncertainty can be  decreased  as the knowledge of the structure´s 

performance increases  it is concluded that the optimum sensor placement will be  achieved 

considering not only the sensors  accuracy, but also the location of unknown parameters. 

Keywords: structure system identification, dynamic Observability Method, decision trees, 

uncertainty analysis, sensors 
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Resumen de la Tesis 

La degradación de las estructura y de las propiedades de sus materiales es irreversible debido a 

muchos factores, como el cambio de temperatura, el efecto del viento, agentes externos y la 

colisión accidental. Por lo tanto, la preocupación por el estado de conservación  de las estructuras 

ha aumentado debido también a  la ocurrencia de algunos accidentes. La monitorización de la 

salud estructural (SHM) se ha convertido en una herramienta poderosa para ayudar a la toma de 

decisiones durante el ciclo de vida de la estructura. La identificación del sistema estructural (SSI) 

es un componente clave de SHM, cuyo objetivo es identificar la integridad y el estado de la 

estructura utilizando técnicas no destructivas. 

SSI puede clasificarse como  estático y dinámico según el tipo de excitación. Recientemente, se 

ha propuesto y analizado  SSI mediante  el Método de Observabilidad (OM) utilizando medidas 

experimentales de pruebas estáticas para abordar la observabilidad de los parámetros estimados. 

Este enfoque matemático se ha utilizado en otros campos como la hidráulica, la electricidad y las 

redes de energía o  transporte. Por lo general, el comportamiento  de las estructuras de ingeniería 

se puede identificar de acuerdo con características dinámicas como formas modales, frecuencias 

naturales y  amortiguamiento. Sin embargo, hasta la fecha, no se han propuesto  análisis de SSI 

por el método de observabilidad utilizando información dinámica. 

Esta tesis desarrolla el Método de Observabilidad Dinámico usando masas, frecuencias propias y 

modos de vibración  para identificar  los parámetros mecánicos de los elementos de una 

estructura. A tal fin, se desarrollan tres líneas  de trabajo. 

En primer lugar, se propone la primera aplicación de técnicas de observabilidad restringida para 

la estimación paramétrica de estructuras utilizando información dinámica como frecuencias y 

modos de vibración. Se introducen nuevos algoritmos basados en la ecuación dinámica de 

valores propios. Se utilizan dos ejemplos paso a paso para ilustrar su l funcionamiento. Se 

obtienen con éxito expresiones paramétricas para las variables observadas, lo que permite 

estudiar la sensibilidad de cada una de las variables en el problema y la distribución del error, lo 

cual es una ventaja respecto a las técnicas SSI no paramétricas. Para la validación de esta nueva 

aplicación se utiliza una estructura compleja, cuyas propiedades estructurales se pueden obtener 

satisfactoriamente en el análisis total o local, y los resultados muestran que el conjunto de 

medidas requerido es menor que en el caso del análisis estático. Los capítulos 4 y 5 son las 

aplicaciones de COM para subsanar las deficiencias de la investigación actual, como la estrategia 

óptima de SHM + SSI y la cuantificación de la incertidumbre. 

En segundo lugar, se discute el papel que juega la estrategia SHM y el análisis SSI basado en el 

Método de Observabilidad Restringido (COM), con el  objetivo reducir el error de estimación. Se 

propone una herramienta de decisión de aprendizaje automático para ayudar a construir la mejor 

estrategia combinada de SHM y SSI que puede resultar en  estimaciones más precisas de las 
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propiedades estructurales. Para ello,  se utiliza la combinación de algoritmo COM dinámico y el 

método de los árboles de decisión  por primera vez. Los árboles de decisión se presentan, en 

primer lugar, como una herramienta útil para investigar la influencia de las variables (tipología 

estructural  del puente, longitud del vano, conjunto de medidas experimentales y  pesos en la 

función objetivo) involucradas en el proceso SHM + SSI con el objetivo de minimizar el error en 

la identificación  de la estructura . La verificación del método con un puente real con diferentes 

niveles de daño muestra que el método es robusto incluso para un nivel de daño importante , 

resultando en  la estrategia SHM + SSI que arroja la estimación más precisa. 

Por último, es necesario un análisis de cuantificación de la incertidumbre (UQ) para evaluar el 

efecto de las incertidumbres sobre los parámetros estimados y proporcionar una forma de evaluar 

las incertidumbres en los parámetros identificados. Hay una gran cantidad de enfoques de UQ en 

ciencia e ingeniería. En primer lugar, se identifica que el Método de Observabilidad Restringido 

(COM) dinámico propuesto puede compensar algunas de las deficiencias de los métodos 

existentes. Posteriormente,  el COM se utiliza para analizar un puente real. Se compara el 

resultado con un método existente basado, demostrando su aplicabilidad y correcto desempeño 

mediante la aplicación a una viga de hormigón armado. Además,  se obtiene como resultado  que 

el mejor conjunto de puntos de medición experimental dependerá de la incertidumbre epistémica 

incorporada en el modelo. Dado que la incertidumbre epistémica se puede eliminar  a medida 

que aumenta el conocimiento de la estructura, la ubicación óptima de los sensores  debe lograrse 

considerando no sólo la precisión de los mismos, sino también los modos de vibración de la 

estructura.  

Palabras clave: identificación de sistemas estructurales,  observabilidad dinámica, árboles de 

decisión, análisis de incertidumbre, , sensores 
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Chapter 1: Introduction 

1.1. Motivation 

With the rapid development of the construction industry in the past few decades, many buildings, 

bridges, and infrastructure are used in our daily life, which gives us a lot of convenience in 

transportation, experience, and other aspects. These permanent structures or building facilities 

are designed for a service life in between 50 to 120 years, depending on the country and the built 

asset.   

However, existing structures are inevitably exposed to the natural environment (wind, 

earthquake, temperature, or even some extreme climate) and human operation (traffic, impact, 

daily degradation by use). Thus, the material properties are degraded, such as bending stiffness, 

axial stiffness, and mass. In this case, the durability of the structures may be affected, leading 

them into a dangerous condition instead of the initially safe state. 

According to US data, there are over 600,000 bridges that ensure network continuity across all 

50 states. According to the American Society of Civil Engineers (ASCE), one out of every nine 

bridges in the United States has a structural flaw (ASCE, 2013, Ghonima, O. et al. 2018). The 

average lifespan of a structurally deficient bridge is less than 75 years. The average age of 

structurally defective bridges in the US National Bridge Inventory is 69 for concrete bridges, 67 

for steel bridges, 48 for pre-stressed concrete bridges, and 65 for all bridges (Farhey, D et al. 

2018). According to the Federal Highway Administration (FHWA, 2018), two billion dollars 

were spent annually on concrete bridge deck upkeep and capital costs (ASCE, 2013). 
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Figure 1-1. Some examples of bridge collapse 

 

 

Figure 1-2. Damage cost contribution (Proske, D. 2020) 

 

Some cases of extreme damage in bridges are shown in Figure 1-1, which will make a significant 

impact on the regional economy or even public safety. Figure 1-2 shows the allocation of various 

damage costs (relative to the damage of the bridge), such as damage to the bridge itself, to other 

property, traffic restrictions, additional accidents, damage to life and limb (Fat.), damage to the 

environment (Envir.), impairment of business activities, and negative effects on the public for 

bridge collapses and damages based on the work of Saydam, D (2013) and Al-Wazeer, A (2007). 

The possibility of decreasing the risks associated with structural damage is based on the 

feasibility of assessing the actual performance. This can be achieved by visual inspection or non-

destructive testing. A continuous monitoring is the optimal strategy, as presented by the 

Structural Health Monitoring (SHM). Thus, structural health monitoring (SHM) and structural 

system identification (SSI) become powerful tools to help engineer decision making during the 

life cycle of civil and infrastructure systems in order to decrease the failure risk. In most cases, 

the actual characteristics of the structures are unknown due to damage and uncertainties in the 
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construction methods or stress state. Actually, to derive the actual value of the unknown property 

is the target of SSI. 

1.2. Objectives 

The global objective of this work is to propose an SSI method based on the constrained 

observability method, using the measured natural frequencies and mode shapes of the structure 

as input, and to deal with the error propagation in the identification process taking into account 

the errors/uncertainties in the measurement input. To serve this purpose, the detailed objectives 

of this thesis can be presented as follows. 

Objective 1: To obtain a method based on the observability method and to deal with the effect of 

measurement error in the vibration data. 

Objective 2：To apply the proposed COM method into several examples and a large frame, 

which verifies the feasibility of COM. 

Objective 3: To propose the combination of COM and CART algorithm to define the best 

strategy combining SHM and SSI, as well as to investigate the influence of the variables 

(structural layout of the bridge, span length, measurement set, and weight factor in the objective 

function). 

Objective 4: To enhance a quantitative recognition of how the uncertainty inherent to model 

parameters and measured variables propagates across dynamic COM and to analyze the obtained 

uncertainty in the identified parameters.  

1.3. Methodology 

To achieve the proposed objectives, the following works were organized to be done. 

Step 1: Literature review on SSI methods and understanding the state of the static and dynamic 

SSI. 

Step 2: Learning the method of static OM, static COM, static NOM (numerical observability 

method), static EMOM (error-minizing observability method) and their corresponding codes, 

deepen the understanding of observability method. 
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Step 3: Based on results from step 2, developing the dynamic COM, using the measured 

frequencies and mode shapes as input, and application to several examples to check its feasibility 

and reliability. 

Step 4: Learning the skill of decision tree (DT) techniques and the relative knowledge of 

Machine Learning and exploring the combination of COM and DT. Application to the bridge 

Hollandse Brug, building the FEM model, considering different impact factors and model 

parameters,  

Step 5: Application of the uncertainty analysis to the Hollandse Brug. 

1.4. Thesis organization 

Based on the proposed objectives and the corresponding methodology, this thesis is organized 

into six chapters.  Each chapter is thought to deal with particular topics: state of the art, the 

development of Dynamic Constrained Observability Method (D-COM), the combination of D-

COM and DT, the uncertainty analysis. The summary content of each chapter is as follows. 

Chapter 2 is the state of the art. Firstly, the state of structural health monitoring and structure 

system identification is gathered. Secondly, the static SSI by observability method is summarized, 

and the main idea of static observability method is illustrated. Lastly, three gaps are detected 

according to the relate literature review. 

Chapters 3 proposes the first application of constrained observability techniques for parametric 

estimation of structures using dynamic information such as frequencies and mode shapes. After 

that, the step by step process and the merit of COM are illustrated by an academic example. To 

verify the feasibility of this method, two examples using experimental data are used as a proof of 

concept, whose estimated results are compared with other SSI methods. Aftermost a large 

structure is identified  to reveal the  potential applicability of the dynamic COM method. 

Chapter 4 analyzes the combination of COM with a machine learning decision tool. The aim is to 

help building the best-combined strategy of SHM and SSI, resulting in the most accurate 

estimations of the structural properties. In this chapter, the variables (the layout, measurement set, 

and frequency-related weighting factor) are studied to analyze their effect when applying the 
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observability method with COM. The verification of this method with a real bridge with different 

levels of damage shows that the combination is robust even for a high damage degree. 

In Chapter 5 the uncertainty analysis to a real bridge is analyzed using the COM method. This 

part aims at understanding how the uncertainty regarding epistemic and aleatory uncertainties 

affects the uncertainty of the output variables (how the uncertainty propagates). Through the 

uncertainty analysis, the robustness of COM can be verified  

Finally, in Chapter 6, the conclusions are given based on the above chapter analysis. In addition, 

the major contributions of this thesis and possible future research works are presented. 

1.5. Activities 

To develop this work, the following activities have been carried out:  

1. Literature review )in the first year). 

2. Learn the knowledge of the static OM (in the first year  ( . 

3. Learn the basic principle of dynamic OM )in the first year(. 

4. Program Matlab code using dynamic OM )in the first and the second years(. 

5. Update COM to enable SSI achieve fully observability )in the second and the second years(. 

6. International stay )in the third year(. 

7. Use COM to work with SHM+SSI strategy )in the third years(. 

8. Use COM to do the uncertainty quantitative analysis )in the fourth year(. 

9. Conclusions )in the fourth year(. 

10. Writing conference and SCI papers )in the third and fourth years(. 

 

 

 

 

 

 



Introduction | Tian Peng 

6 

 

 

 

 



State of the art | Tian Peng 

7 

Chapter 2: State of the art  

2.1 Structural system identification 

The up-dated knowledge of the integrity of in-service structures through its lifetime is a very 

important objective for owners, end-users and both, construction and maintenance teams, to 

whom this information might help in decision making (Castillo, E. et al 2006, Castillo, E. et al 

2013, Pimentel, M. et al 2017 & Xiong, H.B. et al 2019), as mentioned in Chapter 1.1. For this 

reason, SSI has attracted research’s massive interest in recent years.  

Simplified Finite Element Models (FEMs) are often used to simulate the response of civil 

structures (Bentz, E.C. et al 2017). When this structural response is modeled through computer 

simulations, mechanical and geometrical properties of the structural elements, such as the 

Young’s modulus and the cross-section area are assumed to be known. Nevertheless, in most of 

the cases, the actual characteristics are unknown due to damage and uncertainties in the 

construction methods or stress state. System identification is the process of developing or 

improving a mathematical model of a physical system using experimental data to describe the 

input, output or response, and noise relationship (Juang, J. et al 1994). The range of possible uses 

of system identification is wide. When performed in order to model a structural system, system 

identification allows the identification of structural parameters, such as stiffness, mass or stress 

and strain (Li, S.  et al 2013 & Maes, K. et al 2013). 

Structural System Identification (SSI) methods can be classified according to the relationship 

between inputs and outputs used to calibrate the model. On the one hand, non-parametric 

methods link outputs and inputs creating a mathematical model to characterize the system. Hence, 

the established relationship has no explicit physical meaning. Examples of non-parametric SSI 

methods might be found in references (Abdeljaber, O. et al 2017, Stutz, L.T. et al 2015 & Torres 

Cedillo, S. et al 2016). On the other hand, parametric methods relate inputs to outputs on the 

basis of an actual physical meaning; due to this physical basis, this type of methods drive to a 

better understanding of the problem and of the sensitivity to certain parameters. Examples of 

these methods might be found in references (Spiridonakos, M. et al 2009 & Viola, E. et al 2013). 
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Besides the non-parametric/parametric classification, SSI might be classified depending on the 

nature of the excitation test used for the calibration; this is, dynamic and static ones, according to 

whether or not they engage inertial effects. Examples of different techniques involving static 

identification can be found in references (Hajela, P. et al 1990, Hjelmstad, K.D. et al 1997). On 

the other hand, examples of dynamic identification methods can be found in references (Kijewski, 

T. et al 2003, Huang, C.S. et al 2005, Tarinejad, R. et al 2014 & Zhou, Z. et al 2003). There have 

also been attempts to combine dynamic and static data in the SSI (Hajela, P. et al 1990, Perera, R. 

et al 2013 & Sanayei, M. et al 2001). 

2.2 Observability method   

The observability Method (OM) has recently been implemented as a SSI method in the static 

scenario (Maes, K. et al 2013). The basis of the observability analysis lies on the problem of 

identifying if a set of available measurements is sufficient to uniquely estimate the state of a 

system or of a part of it. The application of this technique has the advantage of providing, for the 

first time in the literature, symbolic equations of the estimates.  

The OM has demonstrated its efficiency in the structural engineering field in a number of 

structural typologies (such as trusses, columns, frame systems, and cable-stayed bridges) (see e.g. 

Lozano-Galant, J.A. et al 2014, Nogal, M. et al 2015, Castillo, E. et al 2008, Castillo, E. et al 

2015, Lozano-Galant, J.A. et al 2015, Lei, J. et al 2016, Lei, J. et al 2017, Lei, J. et al 2019). 

Table 2.1 summarizes the various works in the literature that deal with the application of  

observability techniques to SSI. The following characteristics are described in this table: (1) Test: 

A kind of test used on-site to track structural reaction. S is for static. (2) Computation: This is a 

kind of analysis that is used to solve a system of equations. Symbolic: P, or Numerical, N, (3) 

Numerical optimization tool: If a numerical optimization tool was used to describe the parameter 

values, and (4) Shear: Whether or not the shear deformations are taken into account in the 

scheme of equations. 

The analysis of Table 2.1 shows that up to now, all studies in the literature are based on the 

monitored response on static tests. This table also evidences an evolution in the analysis methods. 

In fact, to enable the application of the OM to real structures the parametric simulation 

introduced into the first applications has been successively changed to a numerical one. To deal 
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with the numerical errors in the system of equations, most of the latter studies use the 

optimization tool named Constrained Observality Method, COM introduced by Lei, J. et al. 

(2017). A more detailed explanation of this method is presented in Section 2.3. 

Table 2-1: Characteristics of the observability methods presented in the literature: P: Symbolic, 

and N: Numerical. 

 Test Analysis Optimization Shear 

Lozano-Galant et, J.A. et  al (2013) S P   

Lozano-Galant et, J.A. et  al (2014) S P   

Castillo, E. et al (2015) S P   

Nogal, M. et al (2015) S P   

Castillo, E. et al (2016) S N   

Lei, J. et al (2016) S N   

Lei, J. et al (2017) S P+N   

Tomás, D. et al (2018) S P+N   

Emadi, E. et al (2019) S N   

Lei, J. et al (2019) S N   

 

However, there are researchers (Lozano-Galant, J.A. et al 2013) that argue that from a practical 

point of view, estimation of parameters from static response is less appealing than doing it from 

modal or dynamic response. This is so because it is much easier to dynamically excite a large 

structure than statically, especially in large scale structures. Moreover, it is easier to measure 

accelerations than displacements because of the simplicity of establishing an inertial reference 

frame for measuring accelerations (Hjelmstad, K. et al 1995). Hence, within the framework of 

observability, the problem of dynamic identification from vibration modes and frequencies can 

be also addressed, with a mathematical approach similar to the problem of static identification 

(Lozano-Galant, J.A. 2013).  

As indicated this method is blank to deal with dynamic SSI. To fill this gap, a first paper (Peng, 

T. et al 2020) was published proposing a new methodology on how to use vibration data in 

system identification by observability techniques. The method is based on the idea of static COM. 

A detailed review of this work is presented in Chapter 3.  
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2.3 Static SSI by COM 

It is said that a subset of variables is observable when the system of equations derived from a set 

of experimental measurements implies a unique solution for this subset, even though the 

remaining variables remain undetermined. When the system is observable, it might be relevant to 

identify critical measurements; this is, those measurements that, if unknown, render the state of 

the system unobservable. Conversely, if the system is unobservable, it is relevant to identify 

observable islands; this is, those areas of the system whose respective states can be estimated. It 

is also important to identify the minimum set of additional measurements that renders the whole 

system observable. Therefore, observability analysis is the previous step to the identification of 

the system. It addresses the question of stating whether enough measurements to estimate the 

state of a system are available. The static approach of the SSI by OM is based on the stiffness 

matrix method. It will be briefly introduced as it may be interesting to the reader for the sake of 

comparison with the dynamic observability, which is the basis of the present doctoral thesis. 

The equations corresponding to this method when static measurements are used, are written in 

terms of nodal forces and displacements. For a certain structure, the following matrix equation 

can be written: 

                                                                            

where     stands for the stiffness matrix,     for the vector of displacements and     for the 

vector of forces; the sizes of the matrices are indicated by its superscripts, in which    denotes 

the number of nodes. To solve this system of equations, where unknowns appear in   (bending 

and axial stiffnesses);   (displacements) and   (reactions); once the boundary conditions and 

applied forces at nodes are introduced in Eq. (2.1), the terms of   and   can be rearranged as 

shown in Eq. (2.2),  by extracting the unknown bending or axial sfiffness from     to     and 

removing the measured variables from     , in such a way that    is a matrix of known 

coefficients and    is a vector of knowns and unknowns, either bending or axial stiffness, 

unknown displacements or a product of both.  

The subset   
 of    and the subset   

  of    are known, and the remaining subsets   
  of    and a 

subset   
  of    are not. 
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the partitioned vectors of      and      respectively. The dimensions of each of the elements are 

given by their superscripts. 

In order to apply the OM, it is necessary to join together all the known variables in one side to 

form a vector     of known parameters and all the unknowns to the other side, forming a vector 

    of unknown parameters; this is done by rearranging the system in an equivalent form, which 

in this case yields into: 

        *
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   -  ,

  
   

    
   

  
   

    
   

  
   

-                            

In (2.3), taking the product of unknowns in z as a new single variable, then            is a 

system of linear equations and its general solution can be written in terms of the particular 

solution    , and the homogeneous one,     , which will correspond to the case         . 

Therefore,         will also be a solution of the system of equations. This general solution is 

given by: 

    ,
   

   

   
   -                                                        

where ,
   

   

   
   - is the particular solution of the system and        is the homogeneous one and 

represents a generic vector in the null space. In this vector,     is a basis of the space and     are 

arbitrary real values that represent the coefficients of all possible linear combinations. For the 

system of equations to have a unique solution vector,     has to either be null or have some null 

rows. However, even if the system of equations does not have a unique solution, any unknown 

associated with a null row in the null space     is observable. In this case, the general solution 

equals the particular one and it can be computed by calculating the pseudo inverse of matrix [B]. 

If there are observed parameters, the input is updated by incorporating observed variables and 

the previous procedure repeated until no new variables are observable. If some variables remain 

non-observed, the equation of the last recursive step is recorded as the form           . 
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However, it should be noted that in static SSI by OM, the vector { } in Eq. (2.3) might contain 

two types of unknowns: (a) monomials of degree one, for example, axial and flexural stiffness, 

horizontal and vertical displacements, and the rotations, {    ,                  }, and (b) 

monomials of degree two, for example,{                      } and they are all regarded as 

simple variables in { }. In fact, there is a relation between some monomials of degree one 

{   ,                  } and monomials of degree two {                      }, that is, 

              ,               ,                . As these constrains cannot be 

imposed in SSI by OM because it is a linear method, the variables may not be successfully 

detected in some cases (i.e., it might happen that full observability is not achieved). Constrained 

Observability Method (COM) (Lei, J. et al 2018) is proposed to overcome the drawback of OM 

to continue the identification of unknown parameters by defining the residual values: 

                                                            (2.5) 

The unknown variables in     are identified by minimizing the squared sum of the residual. 

2.4 Gaps detected and solutions proposed 

Based on the previous state of the art, where the problems detected in the parametric SSI and the 

available observability techniques using static data are emphasized, this thesis elaborates a 

framework for their solution as presented in the following chapters. 

2.4.1 Dynamic OM  

1) Gaps: a fully observability by dynamic OM 

Sections 2.2 and Table 2.1 show the evolution in static SSI by OM. However, the 

dynamic data (frequencies and mode-shapes) is easier to obtain compared with the data 

for the static OM analysis. The dynamic observability method (OM) (Josa, I. 2017) has 

great limitations for complex structure and might not be able to detect any parameter. 

Even for a simple structure, a fully observability is hard to achieve by a dynamic OM. 

2) Strategies in this thesis: dynamic COM  

The dynamic COM (Chapter 3) is proposed to achieve a fully observability, which is 

evolved based on the static COM (Section 2.3). 
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The aim of Chapter 3 is to propose a new constrained dynamic SSI methodology; namely, 

a technique that allows the identification of a subset of characteristics of a structure, such 

as axial or flexural stiffnesses that might be uniquely defined when a subset of natural 

frequencies and modal shapes is obtained from an experimental modal analysis. Two 

examples (Lam, HF. 1998 & Haralampidis, Y. 2010 Simoent, E. et al 2015) are used as a 

proof of concept of the dynamic COM proposed in Chapter 3. A fully observability can 

be obtained, as well as the successful application to a  complex structure. 

2.4.2 SHM+SSI strategy   

1) Gaps: Current SHM+SSI strategy  

The dynamic COM in Chapter 3  addresses the nonlinearity of the SSI methods by using 

subsets of natural frequencies and/or modal shapes. Obtaining natural frequencies and 

mode shapes is limited to the case when no traffic is present on the bridge (Li, H. 2020), 

and the effect of environmental changes (mainly temperature) in the recorded sensor data 

can be easily processed and removed by a Principal Component Analysis (PCA) (Nie, Z. 

2020)  or similar, before the application of the method. The dynamic COM combines the 

unknown parameters including the theoretical frequencies and mode shapes into an 

optimization process that minimizes the objective function obtained as the squared sum 

of the frequencies- and mode shape-related errors. 

The selection of the objective function to minimize in the optimization process has a 

profound impact on the problem output. It does not only affect the interpretation of the 

best correlation between the unknown parameters but also influences the performance of 

the selected optimization algorithm. Normally, eigenvalue residual and consideration of 

the modal assurance criterion MAC related function are used, as well as the residual 

vector of the deviation from the orthogonality of the experimental mode shapes to the 

analytical ones (Teughels, A. et al. 2001). Most of the sensitivity-based approaches 

reported for FE updating of real case studies have considered only the eigenvalue or 

frequency residual (Brownjohn, J. M. W. et al. 2000 & Zhao, J. et al 2002). Additionally, 

some papers are concentrated on the multi-objective identification method by dividing 

the frequencies or eigenvalue residual (Christodoulou, K. & Papadimitriou, C. 2007) and 

https://www.sciencedirect.com/science/article/pii/S0888327014004130#!
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mode shape-related residual as two parts to estimate the structural parameters (Farhat, C. 

et al 1993 &Mares, C. et al 2002). On the other hand, some researchers establish 

weighted multi-objective functions considering frequency residual, mode shape-related 

residual, and modal flexibility residual together (Jaishi, B. & Ren, W., 2005), the 

majority of them giving equal weights to each residual (Zarate, B., & Caicedo, J. 2008). 

The dynamic SSI in this thesis is using the optimization process of dynamic COM, thus 

defining an objective function of eigenvalue residual and MAC related residual. In order 

to get a better accuracy, different values of weighting factors affecting the eigenvalue and 

MAC residual are proposed. However, a clear methodology on the selection of the 

optimum weight factors to consider is not fully available in the existing literature.  

A major goal of conducting SHM and the subsequent SSI is to derive conclusions about 

the real state of a given structure (Hasni, H. et al 2019 & Park, H. et al 2018). Whereas 

the SHM focuses on collecting the structural system response, SSI aims at determining 

the actual mechanical properties of the structure based on the observed response. Both the 

monitoring strategy and SSI analysis play an essential role in the uncertainty level of the 

estimated features. However, this combined approach is not common in the literature. For 

instance, Guo, Y. et al. (2016), Brimacombe, J. et al. (2008) and Han, L. et al (2014) 

show how the sensors’ accuracy, the optimal placement of sensors, and how they are 

combined highly influence the quality of the estimation. However, these analyses do not 

consider both the monitoring setting and the characteristics of the method used for SSI as 

design variables at the same time. Improving one of the sides, i.e., either the conditions of 

monitoring or the definition of the model used for SSI, does not guarantee the most 

accurate estimation, which can be obtained if both of them are combined.  

2) Strategies in this thesis: an optimal SHM+SSI strategy 

An adequate combination of the monitoring strategy and SSI analysis can yield an 

accurate estimation of the structural parameters. Making the right decisions when 

designing a strategy that combines both SHM and SSI can result in significant time and 

cost savings, avoiding estimations that cannot be trusted due to their large uncertainty. 

With this aim, an optimal SHM+SSI strategy is proposed in Chapter 4. This strategy is 

the combination of COM and decision tree (DT) analysis, considering several factors that 
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may influence the final result as the  structural layout (boundary conditions), geometrical 

dimensions (for instance the span length in case of bridges), the measurement set 

(optimal sensor deployment). Also the weighting factors to be used in the objective 

function are considered. 

The approach is based on decision tree analysis. Decision tree algorithms are one of the 

most common techniques of inductive learning, especially in the field of Machine 

Learning (ML) (Chandra, B. & Varghese, P. P, 2008 and Salzberg, S. 1995). The 

decision tree algorithm can be used for solving regression and classification problems. 

For its powerful capability to combine numerical with categorical data, its application in 

the area of civil engineering is gaining relevance (Salazar, F. et al 2007). A fuzzy group 

decision making (FGDM) approach offered a flexible, practical, and effective way of 

modeling bridge risks (Wang, Y., & Elhag, T., 2007). A decision support system for 

bridge maintenance was developed by extensive literature review, interviews with bridge 

maintenance experts, and a national survey (Yehia, S. et al, 2008). The decision tree 

algorithm is used to analyze the deterioration of the health index of a set of concrete 

bridge decks (Melhem, H. G. et al 2003). A decision tree learning algorithm is adopted to 

train the model of a full-scale long-span suspension bridge using six recent years’ 

database (Li, S. et al 2018). However, the analysis of the decision tree algorithm on the 

most critical factors to reduce the error of the estimated parameters is still insufficient. 

Decision trees dealing with the selection of the optimal measurement sets or model 

parameters do not appear in the literature. In Chapter 4, the new application of decision 

trees combined with SHM+SSI provides a new insight into the problem of structural 

identification and damage detection.  

Chapter 4 represents an optimal SHM+SSI strategy that helps:  

i) To select an adequate combined SHM+SSI strategy that minimizes the 

uncertainty of the estimations;  

ii) To determine to which extent the decisions on the SHM process influence the 

final error in the estimation;  

iii) To assess the contribution of the SSI-COM in this final error.  
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2.4.3 Uncertainty quantification (UQ)   

1) Background of UQ analysis 

Most research works focus on the deterministic SSI and probabilistic approach (Raich, 

A.et al 2011, Eskew, E. et al 2016, & Jang, J. et al 2017), which aims to find the 

structural parameters of a numerical model that guarantees the best possible fit between 

the model output and the observed data. Nevertheless, considering the uncertainties 

related to the structure model and observed data, uncertainty quantification (UQ) is 

necessary for assessing the effect of uncertainty, as well as the estimated accuracy 

(Simoen, E. et al 2015).  

As described in Section 2.2, the Observability Method (OM) has been used in many 

fields. However, OM identification needs to be robust in terms of variations of systematic 

modeling uncertainty introduced when modeling complex systems and measurement 

uncertainty caused by the quality of test equipment and the accuracy of the sensors (Zhou, 

S. et al 2017). The uncertainty analysis is necessary to conduct OM efficiently and with 

required reliability. 

UQ analysis seems to be highly probability-independent from optimal sensor placement. 

In contrast, the sensors need to be installed on the most informative position, that is, the 

location that provides the least uncertainty in the bridge parameter evaluations (Liu, W. et 

al. 2008). One of the most known and commonly adopted approaches for optimal sensor 

placement was developed by Kammer (Kammer, D. 1991). Since then, several variants of 

this approach have been suggested to resolve the positioning of SSI sensors (Song, J. et al. 

2021, Lei, J. et al. 2019, Liu, W et al. 2008 & Meo, M. et al. 2005). However, no research 

works have noticed that the choice in the best position of the sensors might change when 

different sources of uncertainty are considered in the uncertainty analysis.  

The uncertainty could be divided into two types: epistemic uncertainty and aleatory 

uncertainty.  Epistemic uncertainty refers to the type of uncertainty caused by the lack of 

knowledge, thus, with more data acquisition, this type of uncertainty can be reduced. On 

the other hand, the aleatory uncertainty refers to the intrinsic uncertainty that depends on 

the random nature of the observed property or variable, thus it cannot be removed no 
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matter the amount of data is used (Der Kiureghian, A. et al 2009) as the noise of 

measurement sensors always exist. 

From the practical point of view, determining the level of uncertainty of the estimated 

parameters through the dynamic observability method is of interest to determine the 

accuracy and robustness of the method. Moreover, an informed decision-making process 

requires not only of a punctual estimation of the variables, but also the level of 

confidence of the estimation. The knowledge of the uncertainty level of the identified 

structural parameters will allow a more accurate reliability analysis of the structure. It is 

also essential to compare the advantages and disadvantages of the dynamic COM  with 

the existing methods regarding the error propagation in order to show the applicability of 

COM. 

2) Gaps: drawback of existing UQ method 

The ill-posedness of the inverse SSI problem occurs frequently and is extremely 

susceptible to errors, or, in more general terminology, to uncertainties. Uncertainty 

quantification is a tool to explore and improve the robustness of the SSI methods. In 

general, methods for quantifying uncertainty can be divided into two major categories: 

probabilistic and non-probabilistic approaches. Probabilistic approaches reflect the 

traditional approach to modeling uncertainty, set on the firm foundations of probability 

theory, where uncertainty is modeled by appointing unknown quantities to probability 

density functions (PDFs); these PDFs are then propagated to probabilistic output 

descriptions. Non-probabilistic methods use random matrix theory to construct an 

uncertain output of the prediction model operator (Soize, C. 2000 & Simoen, E. et al., 

2015). 

Non-probabilistic approaches, such as interval methods (Moens, D.et al 2011, Wang, C. 

et al. 2017, García, O. et al. 2008), fuzzy theory (Jena, S. et al. 2020) and convex model 

theory (Cao, L. 2021), and probabilistic methods, such as maximum likelihood estimation 

method (Sankararaman, S. et al 2011), Bayesian method (Zhang, F. et al 2016 & Cao, J. 

et al. 2020), stochastic inverse method (Choi, C. et al 2016), non-parametric minimum 

power method (Chee, C. 2017) and probabilistic neural networks (Cao, M. et al. 2015) 

have been presented in the existing literature.  
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In the management of uncertainty, probabilistic Bayesian theory is an attractive 

framework. It has been widely applied, such as in the identification of material 

parameters in a cable-stayed bridge (Ni, Y. et al. 2021), plate structures (Huang, T. et al. 

2021) and steel tower (Lam, H. et al. 2015). Although the probabilistic method is 

commonly seen as the most rigorous methodology for dealing with uncertainties 

effectively and is exceptionally robust to sensors errors (Lei, J. 2019),  it is not especially 

suitable for epistemic uncertainty modeling (Möller, B. et al. 2008,  Oberkampf, W. et al. 

2002, & Baudrit, C. et al. 2008). The argumentation behind this relates to the definition 

of the (joint) PDFs explaining the unknown quantities: it is argued that adequate 

qualitative knowledge for constituting a truthful and representative probabilistic model is 

hardly available. However, model uncertainty has a major effect on estimating structural 

reliability (Hu, Z. et al., 2017).  

To respond to some obvious disadvantages/limitations of the probabilistic approach 

related to the construction of PDFs and the modeling of epistemic uncertainty, the last 

few decades have seen an increase in non-probabilistic techniques for uncertainty 

modeling. It was developed by Soize (Soize, C. 2000, 2003, 2005 & 2009), based on the 

principle of maximum entropy. Most non-probabilistic methods are generated based on 

interval analysis. Interval methods are useful to consider the crisp bounds on the non-

deterministic values (Moens, D.et al 2011). The non-probabilistic fuzzy approach, an 

extension of the interval method, was introduced in 1965 by Zadeh (Zadeh, L.A. 1965), 

aiming to evaluate the response membership function with different confidence degrees 

(Hanss M, 2005 & Haag, T. 2012). Ben-Haim developed the convex model method for 

evaluating the model usability based on the robustness to uncertainties (Ben-Haim, Y. et 

al. 1998). Interval approaches, however, are not capable of distinguishing dependency 

between various model responses by themselves, which may make them severely over-

conservative with regard to the real complexity in the responses to the model. Most of the 

non-probabilistic methods are somehow based on a hypercubic approximation of the 

result of the interval numerical model, and therefore neglect possible dependence 

between the output parameters (Legault, J. et al. 2012，& Faes, M. et al. 2019). 

3) Strategies in this thesis: UQ analysis by COM 
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A probabilistic UQ approach is proposed in Chapter 5 to analyze the error propagation 

through the SSI by the dynamic Constrained Observability Method, by considering both 

the epistemic  and aleatory uncertainty.  To overcome some of the drawbacks mentioned 

above (the need for a definition of the (joint) PDFs; the neglect of possible dependence 

between the output parameters), different modal orders are considered separately, after 

that, all involved mode orders are put together to estimate the output parameters in an 

objective function. The method of simultaneous evaluation can appropriately take into 

account the dependence between various parameters.  
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Chapter 3 Dynamic constrained observability techniques 

3.1 Introduction 

According to the state of the art analysis of dynamic OM in Chapter 2.4.1., the previous research 

of dynamic OM has great limitations for complex structure and might not be able to identify 

actual structural parameters. Thus a new constrained dynamic SSI methodology which can 

achieve the fully observability is needed.   

The application of the OM to dynamic analysis proposed in this chapter is based on the dynamic 

equation of motion of a system with no damping and no external applied forces (Josa, I. 2017). 

The equation can be expressed for a two-dimensional structure with    nodes,    boundary 

conditions and   vibration modes as: 

                      
                

                     
                 

                            

where   and    stand for the stiffness matrix and the mass matrix, respectively. Besides,     

represents the vector of modal displacements, for a 2D model with beam elements, this vector 

includes the deformation in the x-direction (   ), y-direction (   ) and rotation (   ) at each 

node   for each vibration mode i. And     stand for the squared frequency for     vibration mode. 

As done with the static approach (Lei, J. et al 2017 & 2018, Lozano-Galant, J.A. et al 2014), the 

previous Eq. (3.1) might be written in terms of its known and unknown parameters in modal 

vector, these being indicated by subscripts 1 and 0, respectively. These operations generate the 

modified stiffness and mass matrices   
 and   

  and the modified modal shapes    
  and    

  as 

shown in Eq. (3.2).  

  
    

   [    
            

    
            ] ,

     
     

     
     -

 [    
            

    
            ] ,

     
     

     
     -    
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Note that now the squared frequencies are included in the right-hand side of the equation   
  and 

from this step on product variables might be obtained from coupling the target unknowns with 

other unknowns. Examples of these product variables are          ,          ,       ,        

and       on the left-hand side of the equation, in        
      , and          ,           

and           on the right-hand side, in      
     , where   represents the     element and   

represents     node.      
      might content the simple variables    ,    ,     once the value of 

     is known. 

As a consequence of these product variables, nonlinear parameters appear and the system of 

equations becomes a non-linear one. Due to the fact that the observability technique requires 

linear equations in order to properly determine the observed parameters, this is solved by treating 

product variables as single linear variables, which linearizes the system. 

The final step is to rearrange all the system in order to have all the unknowns of the system in 

one column vector. By doing so, it is possible to obtain the system of equations in the form Eq. 

(3.3) 

     [    
            

     
            ] ,

     
     

     
     -

 {    
            

     
          

            
     

     }        

                               

When multiple modal frequencies are considered together, the equation will be built by 

combining information of several models. For example, the first   modal information is given by 

     shown as follows: 

   [

     
     
    
     

]{

  

  

 
  

}  [

     
     
    
     

]                           

Expression in which   is a matrix of constant coefficients,   is a fully known vector and    

contains the full set of unknown variables. This system can be solved obtaining the solution of 

the coupled variables as presented in Eq. (2.4). Thus, the identified coupled variables 

(e.g.,       ) are referred as observed variables. In other to uncouple the observed variables, e.g., 
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      =        , the dynamic COM is here proposed based in a similar way as in the static 

case. However, in this case, the objective function is defined as: 

    ∑(
   

  ̃

)

  

   

   ∑        
  

 

   

                                         

     (       
̃ ) =

[   
    ̃]

 

    
         ̃

 
   ̃ 

                                      (3.6) 

The modal assurance criterion (    ) (Simoen, E. et al 2015) is used in Eq. (3.5), which 

consists of computing the so-called MAC values as a measure for the correspondence between 

the calculated mode shape    , obtained from the inverse analysis using the estimated stiffnesses 

and areas and the measured shape    
̃  as shown in Eq. (3.6). Besides,     are the differences 

between the measured,   ̃ , and the estimated.    and    represent the weighting factors of 

frequencies and mode-shapes respectively. In this study,    and    are assumed to be equal 

(Boris Zárate, A. et al 2008).  

The solution is obtained by minimizing Eq. (3.5) with the imposed constraints of the 

form:               ,               ,                 present in Eq. (3.4). 

The proposed approach addresses the possibility of ill-conditioning by means of two actions. 

First, the unknowns are normalized by the a-priori best estimate, such as designer parameters 

(see Section 3.4.1), which can make the condition number of coefficient matrix smaller. Second, 

the range of some normalized unknowns is given when the optimization process is conducted 

according to Eq. (3.5) to capture the fact that they have a physical meaning and their values 

cannot be either negative or extremely high (see Section 3.5), which helps to accelerate 

optimization and limit value range. These two actions reduce the effect of a potential ill-

conditioned equation. If the result does not make sense, then the process will be repeated with a 

new initial guess. 

The functioning of COM will be explained step by step in the next section with a simple 

numerical example, which, additionally, fully demonstrates the excellence of COM compared to 

OM in the dynamic case. 

https://www.sciencedirect.com/science/article/pii/S0888327014004130#!
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3.2  The dynamic COM method 

3.2.1 Algorithm of dynamic COM 

The proposed algorithm takes as inputs the topology of the structure, node connectivity and the 

subset of measured variables, which are the mode shapes (fully or partially known) and natural 

frequencies obtained from the modal analysis. On the other hand, the outputs obtained from the 

known data are the subset of observable variables along with their estimations.  

The algorithm for the structure system identification by COM is depicted in Figure 3-1 and 

detailed as follows: 

Step 1. Build stiffness and mass matrices of the structure, K and M. 

The stiffness matrix K and the mass matrix M are built based on the 2D analysis using beam 

elements. Every single mode inverse analysis will use the same K and M matrix since the 

structure itself will not change.  

Step 2. Modify stiffness and mass matrices K and M in order to have matrices made out 

of monomial terms. 

Those terms in the matrices that are made up of summands are separated and arranged in 

different columns. Modal displacements vectors     and     are transformed accordingly. 

Step 3. Generate the list of product variables. 

The list of product variables is obtained by moving all the unknown variables from the matrices 

to its corresponding vectors of modal displacements. After this step, the terms of matrices K and 

M are known values. 

Step 4. Remove measured variables from vectors and update vectors and matrices. 

The columns of matrices associated with measured values are multiplied by their corresponding 

values. Non-null factors are removed from the vectors of modal displacements and introduced in 

the matrices. As a consequence of this, duplicated unknowns might appear in the rows of the 

vectors. 

Step 5. Eliminate duplicated variables. 
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The duplicated unknowns in the vectors are identified and combined together in the same row 

and the matrices are modified accordingly. At the end of this step the matrices are made out of 

coefficients   
  and   

  and the vectors are made out of unrepeated unknowns    
  and    

 . 

Step 6. Build      equation. 

Matrix    is assembled using matrices   
  and   

  and vector    is formed by joining all the 

unknown information of the system as presented in Equation (3.3). Matrix    and vector    are 

built up by the completely known terms. The overall equation is established by combining 

several single modal information, like Eq. (3.4). If there are repeated product variables in  , they 

are identified and grouped together by summing up the corresponding columns of  . 

Step 7. Obtain null space of matrix  . 

In order to obtain the set of observable variables the null space     of matrix   is obtained, 

which can be done by using internal functions of programming codes such as the backslash in 

Matlab. 

 

Figure 3-1. The flow-chart of COM 



Dynamic Constrained Observability Techniques | Tian Peng 

26 

Step 8. Identify observable variables. 

The observable variables are identified by examining the null rows of the null space     of 

matrix  . The associated product variables with these rows are the observable ones. 

Step 9. Recursive processes. 

For the measured variables available, it is possible that no all the parameters can be observed. In 

these cases, the output of the problem can be incorporated to the original input, so that the range 

of final observed parameters for a given data set is increased. Therefore, if new parameters are 

observed in the previous step, the process is repeated from step 3 onwards again. 

Step 10. Check whether the full observability is achieved or not. 

If full observability is achieved at the end of step 9, there is no need to perform following steps. 

Otherwise, go to step 11 by using the constrained condition. 

Step 11. Updated     . 

Extract the updated system of equations             from step 9, obtain the unknown 

variables  . 

Step 12. Identify whether there are hidden unknowns in   or not. 

Divide     into two sets: (a) single variables    , for example,    ,                 , and (b) 

coupled variables   , for example,                      . Split the coupled variables of      into 

single ones, and those which are not in     yet (let the subset of new identified singles variable 

be      have to be added to                                   For instance, under a specific 

given set obtained                           , then                                 

            . 

Step 13. Form the new matrix    

In order to link vector     with      a new matrix    is required. Matrix      should be 

transformed into    adding the null matrix, which can be shown in Eq. (3.7). 

           {
   

   
}                                           (3.7) 

Step 14. Identify the constraints and optimization. 
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Establish the nonlinear constraints between     ,      and     , then, chooses the initial values of 

    and set upper and lower bounds for the solution (inertia and area). In this step, the nonlinear 

constraints are imposed to ensure the equality between the coupled known     and the single 

unknowns     and    . The optimization function, Eq. (3.5), is used to minimize the square sum 

of the residual vector of frequencies and MAC with the considered constraints. 

The algorithm for the structure system identification by COM is also depicted in Table 3-1.For 

the sake of illustration, Section 3.3 shows its application to an academic example. 

Table 3-1. Algorithm of Constrained Observability Method 

 

Input: Geometric information (Geom), boundary conditions (Bound), measured 

partial mode shapes and frequecies (       and      , known structural 

parameters (EIj,1, EAj,1 and     ) and number of modes to consider (R). 

Output: Observable variables {         }    

 

1:         BuildStiffnessMatrix (Geom, Bound) 

          BuildMassMatrix (Geom) 

3:    
    

     
     

 )  RearrangeMatrices (         ) 

4:                   ObservabilityEquation (  
    

     
     

 ,             EIj,1, 

EAj,1) 

5:        CombineModalFreq (        , R)   

6:            }  1 

7: While              is not empty 

8：         ObtainNullSpace ( ) 

9:                   IdentifyObservableVariables (   ) 

10:     If              is not empty 

11:                        GetParticularSolution (     ,            ) 

12:    (     )  UpdateEquation (     ,            ,                   ) 

13:    {Estimated}  Collect (            ) 
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14      end if 

15: end while   %OM end 

16:                  ExtractEquations (     ) 

17:                      

18:         GetHiddenUnknowns (   ) 

19:              )DefineEquations (                 ) 

20:    Constraints  GetNonlinearConstraints (  ) 

21:        Optimization (         , Constraints) 

22: end      %COM end 

23: {         }  Findresult ({Estimated},   ) 

Note: Known and unknown are being indicated by subscripts 1 and 0. 

3.2.2 An example by dynamic COM 

In this part, the academic example presented in Figure 3-2 is analyzed symbolically step by step 

with the objective of achieving a better understanding of the proposed methodology. The 

structure is composed of 2 elements and 3 nodes. One single mode of vibration is studied, 

although the technique can be applied to multiple vibration modes. Therefore, the size of the 

matrix of coefficients of the system of equations is                  . The structure 

has the vertical and horizontal displacements restrained at nodes 1 and 3, that is,      . In this 

structure, the consistent mass matrix formulation has been used. Then, for each structural 

element j the mass matrix depends on the total mass of the element  mj and on its length  Lj.  

 

Figure 3-2. Frame studied in Example 1 and degrees of freedom with positive value 
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For the problem in Figure 3-2, the axial and flexural stiffness of elements 1,    ,    , the 

squared value of the first natural frequency,   , the length of the elements,   =    , and their 

masses per unit length,    and   , are assumed to be known. Besides, to show the application, 

three known parameters are introduced: the first natural frequency and the horizontal 

displacement and rotation at node 2 of the first mode shape (       ). The known and unknowns 

properties are shown in the Figure 3-2. Thus， the input includes geometric information, 

boundary conditions, measured partial mode shapes and squared frequency (        and   ), 

known structural parameters (   ,     and   ,   ) and number of modes to consider (   ). 

The goal output of this analysis is     and    . 

If the example was experimentally analysed, the modal frequency and the components of the 

vibration mode would be obtained by performing a modal analysis of measured vibrations of the 

real structure. In order to identify the observable variables (namely, set of variables that can be 

estimated on the basis of the mentioned measured data) the following steps are considered 

according to Table 3-1. 

Step 1. First, the characteristic equation of the system is written by building the stiffness K 

matrix of the structure, its mass matrix M and the modal displacements vector (line 1 and line 2 

in Table 3-1). This is shown in Figure 3-3. 

Steps 2 and 3. To generate the modified stiffness and mass matrices, those parameters made up 

of several summands are separated and all the possible unknown parameters are moved to the 

column vectors as shown in Figure 3-4 (line 3 in Table 3-1). With this, new variables appear as a 

result of having stiffnesses (   ,    ) coupled with modal displacements (           ). 

Step 4 and 5. The stiffness and mass matrices are updated by introducing the known variables 

(line 4 in Table 3-1). This is done by multiplying the columns associated with known variables 

by its corresponding values and by removing the associated factors from the vectors. Note that a 

new column vector appears after carrying out this step; this is a vector of independent terms, 

which is built by all those terms that become fully known after introducing measured variables. 

Since there are terms in the modified vectors of modal displacements that appear more than once, 

these are joined by adding together their corresponding columns resulting in   
  and   

 . Besides, 

if there are null columns in the matrices, they can be removed together with their corresponding 
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variable giving us vectors    
   and    

 . The resulting system of equations can be seen in Figure 

3-5. Matrix    is assembled using matrices   
  and   

  and vector    is formed by joining all the 

unknown information of the system as presented in Eq. (3.3) as shown in Figure 3-6. 
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Figure 3-3. Example 1. Characteristic equation of the structure in Figure 3-2. 
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Figure 3-4. Example 1. Modified stiffness and mass matrices from Figure 3-3. 
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Figure 3-5. Example 1. Modified stiffness and mass matrices of the structure in Figure 3-4 after 

upating them with measured variables and summing up the columns with common terms. 
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Figure 3-6. Example 1. System of equations in the form of Eq. (3.4) for structure in Figure 3-2. 

 

Step 6. When multiple modal frequencies are considered together, the equation will be built by 

combining information of several models         (line 5 in Table 3-1). In this example,    , 

thus       is same as Figure 3-6. 

Steps 7 and 8. Afterwards, the null space [V] of matrix   is obtained (line 8 in Table 3-1). This 

allows the identification of the null rows of the null space, which corresponds to the observable 

parameters.  

From the expression of   , the      and     can be uniquely specified (line 9 in Table 3-1) and 

observable as the associated rows in     are null and their values will not be affected by     ,      

(line 11 in Table 3-1). Because it is a parametric method, the proposed technique allows the 

parametric expressions of the variables in this case. However, because of the complexity of these 

expressions they are not shown here due to space limitations.  

Step 9. New variables are obtained in step 8. The unknowns obtained here in previous step, 

    and     are merged into the initial inputs by OM. Therefore, the new set of variables, that is, 
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{      ,        and    } are considered as known for the next iteration to renew the      

(line 12 in Table 3-1).  
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Figure 3-7. Example 1. Solution given by the particular and the homogeneous solution.   
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Figure 3-8. Example 1. System of equations in the form of Eq. (3.4) for structure in Figure 3-2. 
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    and     are collected into the list of estimated item (line 13 in Table 3-1). Given that some 

variables were identified in the previous iteration, a next iteration starts. The null space,     and 

the general solution of Figure 3-8 (line 8 in Table 3-1), are given as: 
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Figure 3-9. Example 1. Solution given by the particular and the homogeneous solution. 

 

Step 10. It is obvious that no new variable is observable as no null row exists in the null space 

of      (line 9 in Table 3-1). Therefore, no new yielded variable can be identified through the 

OM (line 10 in Table 3-1), thus, the iterative process of line 7 stops (line 14 in Table 3-1).  

Steps 11-13. Extract the equation             from OM, Figure 3-8 (line 16 in Table 3-1). 

Only partial observability is achieved and still 3 unknowns remain, especially the stiffness    . 

Hence, the full observability is not achieved, triggering the execution of COM (from line 17 in 

Table 3-1).  and check if hidden unknowns exist or not (line 18 in Table 3-1). First split the 

complex variables    {             } into single ones {            }, which are included in 

single variables    {             }. Thus                                  },       

            (line 19 in Table 3-1). 

Steps 14. Identify the nonlinear constraints in      (line 20 in Table 3-1). Establish the 

constraints                 ,                .Then an optimization routine, is used to 

achieve the fully exploitation of the information in measurements with the acquired nonlinear 

constraints and all the parameters observed (line 21 in Table 3-1). In the optimization process, 
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the nonlinear constraints are imposed by ensuring the equality between the coupled unknowns 

and the product of corresponding single unknowns. Thus, all the unknowns are obtained 

successfully.  

As shown, just using OM (step 1 to step 10) to solve the problem, the structural parameter,    , 

cannot be identified, and  the recursive process will end at step 10. Although      and     in 

Figure 3-9 play the essential role to make the establishment of constraints               , 

               and to make sure the identification of       ,                    , the 

value of      and      cannot be uniquely determined by OM. Hence, the main idea of COM is to 

introduce the nonlinear constraint relationship between the coupled unknowns and single 

unknowns of OM. After that, the optimization is performed to achieve fully observability by the 

objective function in Eq. (3.5). 
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Figure 3-10. Frequency of the occurrence of fully observability by OM and COM in the first 

mode 

Figure 3-10 shows the comparison of fully observability obtained by OM and by COM for this 

simple structure. It can be seen that COM, as an extended version of OM, enhances the 

performance of OM. Especially, the frequency of fully observability soars from 0 to 100% when 

the number of measured components of the first mode shape is equal to 2. The larger the number 

of measured components, the larger the likelihood of fully observability, nevertheless, the 

restriction of the feasible number of sensors in real structures should be considered. Because the 

values of the mode-shapes are normalized by a reference value, considering just one single 

measure of each vibration mode does not provide meaningful information, therefore single 
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measures can be ignored. Hence, COM has demonstrated great superiority when compared to 

OM even in this simple case with numerical and non-experimental values. Therefore, COM 

should be strongly recommended in the following examples where real experimental data is used. 

3.3 The verification of dynamic COM  

In the previous chapter the good performance of the dynamic COM was demonstrated in a 

numerical example. The next step is to check the performance when real experimental data is 

used. 

3.3.1 Two dof  by dynamic COM 

In this example, taken from reference (Haralampidis, Y et al, 2010), the reliability of the 

proposed dynamic COM method is checked when experimental data is considered. Whereas a 

simple academic example was used in the previous section for the sake of illustration, this 

example allows the comparison of the method with existing results. 

               

a)                                            b) 

Figure 3-11. a) Two DOF lumped mass model;  b) experimental modal frequencies and mode-

shapes 

The dynamic COM is applied to identify the stiffness properties of two floors. For this, the 

structure is modeled by a two-DOF linear lumped mass shear building model as schematically 

shown in Figure 3-11 a). In the modelling, the masses are treated as deterministic, while the 

model parameters are chosen to be the two interstory stiffness of the two-story building. 

According to Reference (Haralampidis, Y et al, 2010), the model masses were estimated from 
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the structural drawings to be   =3.9562 kg and    =4.4482 kg. The a priori best estimate of the 

interstory stiffness calculated from the structural drawings is the same for both stories and equal 

to                   . The following parameterization of the two- DOF model shown in 

Figure 3-11 is used:              , which can avoid the ill-posed problems since the 

unknowns    were normalized by the a-priori best estimate and it can reduce the morbidity of the 

matrix. The purpose of the identification is to update the values of the stiffness parameters    

and    using the measured modal data reported in Figure 3-11 b). 

Through the COM analysis, the results are displayed in the Table 3-2, and compared with the 

two reference results (Haralampidis, Y et al, 2010). Here, the measured data in Figure 3-11 b) are 

assumed as true values. 

Table 3-2. Observed properties in Figure 3-11 

Method Fully 

Observability 

x=[      ]    (%)    (%) MAC(     
̅̅̅)     

COM YES                0.32 -0.42 [
           
          

]  

Reference results 1 YES               1.384 -3.174 [
          
          

]   

Reference results 2 YES                0.025 -0.057 [
           
          

]  

 

From Table 3-2, the results of frequencies from COM are between Reference results 1 and 2. The 

total errors of frequencies and MAC of the results are calculated by the sum of squares of the 

difference between the obtained and the theoretical values obtaining,                  , 

                    and                   ,                   . Reference 

results 2, x =[            ], fit very well the frequency properties to values as low as        

           at the expense of deteriorating significantly the fit of modal properties to the 

values as high                    compared with the COM results. This could suggest 

that if the tiny sacrifice in the fit of frequencies is not of concern in the identification to preserve 

the accuracy of modal information, the results of COM x =[              ] are the most 

representative of this structure. 

 



Dynamic Constrained Observability Techniques | Tian Peng 

38 

3.3.2 Reinforced concrete beam by dynamic COM 

The dynamic COM is applied to the damage assessment of a reinforced concrete beam with a 

length of 6 m and dimensions as shown in Figure 3-12 (Simoen， E et al 2014).  The transverse 

mode shape displacements are observed at 31 point equidistant locations along the beam, and the 

resulting mode shape measurements are shown with their corresponding natural frequencies in 

Figure 3-13. Initially, all bending stiffness parameters are assumed to be equal             

        . The beam is divided into 10 substructures with a uniform stiffness value or Young’s 

modulus in Figure 3-12 a). The following parameterization of the 10 bending stiffness model 

shown in Figure 3-12 is used:                     The purpose of the identification is to 

update the values of the stiffness parameters   ~    using the measured modal data reported in 

Figure 3-13. 

The estimated yielded by COM analysis are                                          3       

      . Here, the measured data in Figure 3-13 are assumed as true values, which come from the 

original data shown in Reference (Simoen, E et al 2014). This result gives the engineer the best 

approximation, as justified below, and determines the location of damage; the most serious 

damage is located in substructure 6 and 7. The comparison of frequencies and MAC are shown 

in Table 3-3 where these are provided with high precision. All the errors between the estimated 

frequencies and the experimental ones are lower than 5%. This value is the maximum precision 

that can be expected according to the results presented in Reference (Murat, G et al, 2018) for a 

reinforced concrete structure. In addition, MAC is very close to 1, that is to say, the estimated 

mode shapes fit well with the data from Figure 3-13. Regarding the comparison between these 

estimated stiffnesses and the values from Reference (Murat, G et al, 2018) and from Figure 3-14, 

it is to highlight that the largest difference between two outcomes is 1.2%. 

 

a)                                                   b) 

Figure 3-12. a) set-up of static loading; b) image of vibration testing (E Simoen. Et al 2014) 

https://www.sciencedirect.com/science/article/pii/S0888327014004130#!
https://www.sciencedirect.com/science/article/pii/S0888327014004130#!
https://www.sciencedirect.com/science/article/pii/S0888327014004130#!
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Figure 3-13. The first four experimental bending mode and the corresponding frequencies 

 

Table 3-3. Observed properties in Figure 3-12 

Method Fully Observability x=[  ~   ] Mode   (%) MAC(     ̅) 

 

COM 

 

YES 

                   

                  

                  

       

1 -1.05 0.996 

2 -0.76 0.999 

3 -0.04 0.999 

4 1.68 0.999 
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Figure 3-14. Bending stiffness of COM method and Reference results (G. Murat. et al, 2018) 
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3.4 Potential application 

In order to show the possible applications and potential of the proposed methodology to real 

world structures, a more complex structure is presented in this example. The 13-story building 

shown in Figure 3-15 is taken under study. This structure was already considered in Reference 

(Lei, J et al 2018).   

This frame is modelled using a total of 226 nodes and 273 elements and it is composed of a set of 

8 different sections described in Figure 3-15 and Table 3-4. Therefore, the size of the system of 

equations is         . In this study, all these 16 mechanical parameters are perturbed by 

random numbers in order to simulate measurement errors. To illustrate the robustness of the 

dynamic COM, four sets of the 16 mechanical parameters are synthesized by the product of the 

intact values and random numbers evenly distributed in the interval [0.8, 1.2], referred as 

perturbation factors later. The first mode shape of this frame calculated by SAP200 using these 

four parameter sets and shown in Figure 3-15 c) is used as the input of dynamic SSI by COM.  

 

 

a)                                       b) 



Dynamic Constrained Observability Techniques | Tian Peng 

41 

 

c) 

Figure 3-15. Illustration of the 13-floor frame studied in Example 3.  a) The members with 

different characteristics are represented with different colours;  b) Sets of measurements used in 

the global analysis;  c) First mode shape. 

 

Performing a global study is of interest whenever it might be necessary to know the state of the 

whole structure or when the damage location is unknown. One study is carried out in order to 

check the effectiveness of the method, considering a set of known measurements. These sets of 

known measurements are measured at nodes 5, 9, 14, 19, 23, 28, 33, 37, 42, 47, 51, 56, 61, 65, 

70 consisting on the vertical and horizontal displacements in the first mode at each of the 

mentioned nodes as seen in Figure 3-15 b) and Figure 3-15 c). The unknown parameters are 

bending stiffness,     of elements I to VIII and the displacements of the nodes that are not 

measured. The areas of elements are assumed to take the theoretical values. For this purpose, the 

estimated values of the structural parameters in four different sets affected by random perturbed 

factors of mechanical parameters are provided in Figure 3-16. The values of flexural stiffness are 

bounded as they have a physical meaning; their values cannot be neither negative or extremely 

high. Hence, the range for estimated normalized values should be in the range [0, 1.5]. From the 

observed ratio between the estimate and the true value, the error is within 8%, which is 

acceptable. It should be noted that no inertia (bending stiffness) can be identified by OM, while 

all these parameters are yielded by COM using only the first-mode information. 

Table 3-4. Properties of the frame shown in Figure 3-16. 
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Figure 3-16. Estimated bending stiffnesses in four random perturbation factors sets 

 

3.5 Conclusions 

This chapter proposes, for the first time, the application of constrained observability techniques 

for parametric estimation of structures using dynamic information such as frequencies and mode-

shapes.  

The nonlinearity of the system obtained when observability is applied, can be properly treated to 

identify the unknown variables by rearranging the matrix expression and moving the parameters 

to the modified vectors of mode-shapes and by considering the coupled variables as single 

variables. After that, the nonlinear constraints between the unknowns are added to tackle the 

issue of partial observability, as can be seen in Section 3.3.1 and the example in Section 3.3.2. 

Besides, the merit of the dynamic COM is demonstrated as a good solution to the fully 

observability which OM cannot achieve. In order to verify the feasibility of this method, two 
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examples using experimental data are used as a proof of concept. In both examples, the dynamic 

COM shows acceptable errors of frequencies and MAC, providing similar or sometimes higher 

accuracy compared to the reference data. The identified frequencies are approved with less than 

2 % error with respect to the experimental ones. At the same time, the errors in the MAC values 

are less than 3% in the first example and 0.5% in the second example. However, a main 

advantage is obtained by using dynamic COM compared to other SSI methods. This is the 

possibility to identify if a set of available measurements is sufficient or not to uniquely estimate 

the state of the structure or a part of it.  

To test the performance of the proposed method in real world scenarios, a large structure is used 

whose real mechanical parameters are perturbed by random numbers in order to simulate 

measurement errors. It can be seen that the flexural stiffness of all elements can be estimated 

within acceptable errors. These may allow the application by choosing the most adequate sets of 

measurements according to the supposed particular condition of the structure.  
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CHAPTER 4 Combined SHM+SSI strategy by COM 

4.1 Introduction 

This chapter aims to discuss the role that the SHM strategy and further SSI analysis have in 

reducing the estimation error, in response to the gap identified in Section 2.4.2. The objective is 

to define the optimal strategy of parameter estimation by the intelligent combination of SHM 

plus SSI by dynamic COM. A decision support tool based on machine learning is proposed to 

help engineers to establish the best SHM+COM strategy yielding the most accurate estimations, 

and then to determine to which extent the decisions on the SHM process influence the final error 

in the estimation, and to assess the contribution of the SSI-COM in this final error.  

4.2  Methodology 

4.2.1 Constrained observability method 

The methodology followed to obtain the optimum sensor locations (the SHM that provides the 

lowest estimation error) and the best choice of the weighting factors in the objective function is 

the combination of COM and decision tree (DT) analysis. 

The dynamic SSI by COM is explained in previous chapter, highlighting the differences with the 

OM. Dynamic SSI by COM (Peng, T. et al, 2020) is used by imposing constraints on variables 

when no more parameters can be observed using SSI by OM (Josa, I. 2017).   

The new approach from the previous chapter is that the influence of the weighting factor 

(      in Eq. (3.5)) on the accuracy of the identified parameters will be considered, always 

keeping their relation as illustrated in Eq. (4.1). 

                                                                                  

In the following analysis, the weighting factor for the frequency error part is the value of   ,  

and the corresponding value for mode-shapes is equal to 1-  . The displacements and rotations 

mentioned in this COM method refer to the mode shape displacements and rotations. This means 

that displacements and rotations are not directly measured, but obtained from the mode shape. 
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In order to compare the evaluation effect of all parameters, an error index     associated with the 

final estimation by Eq. (4.2) is proposed. The error index is calculated as the mean squared error 

of the n estimated parameters  ̃, that is, 

 

                        
√∑  ̃ 

  
   

 
                                                                  

 

4.2.2 Decision tree algorithm 

The complex interactions between several factors involved in the SSI (structural layout, length, 

measurement set and weight factor) make the identification of the best SHM+SSI strategy 

challenging. In order to tackle that problem, decision trees are proposed (Quinlan, J. 1986).  

A decision tree learning algorithm is employed in this study to establish a regression model to 

assess the effect of each input factor on the error-index     of the estimation. The algorithm starts 

from a root node, and then many child nodes gradually grow, forming a tree structure. The merits 

of decision trees are that they are computationally cheap to use, the learned results are easy to 

understand, the results can be obta ined even if some values are missing, and they can deal with 

irrelevant features (Harrington, P. et al 2012).  

To build a decision tree successfully, the decision about which factor is used to split the data 

should be made based on an established splitting criterion. To make sure which factors are 

adequate, every factor needs to be considered and its effect on the splitting results measured. 

Then, the best factor is chosen. A binary decision tree is proposed in this chapter, thus, at each 

node, the data is split into two subsets. If the data of the subset on the branches are of the same 

class, there is no need of continuing to split the data, stopping the branch at this point. Otherwise, 

the splitting process on this subset should continue. Some stopping criteria can be imposed to 

stop the splitting process, such as a minimum number of data points belonging to a subset and a 

maximum depth of the tree. 

The process uses the CART (classification and regression tree) algorithm (Bel, L. et al, 2009), 

which is an effective method of decision tree learning algorithm. The CART algorithm builds 
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binary trees and can handle discrete as well as continuous split values. Given that the response 

variable is the error-index   , regression trees are used, and the splitting criterion is the variance 

reduction. The variance reduction of a node is defined as the total reduction of the variance of the 

response variable   due to the split at this node (Breiman, L et al, 1984), which is calculated as 

follows: 

 

   
 

| | 
∑∑

 

 
      

(     )
 
                                         

 .
 

|  |
 
∑ ∑

 

 
        

(     )
 
 

 

|  |
 ∑ ∑

 

 
        

(     )
 
/                                           

 

where  ,    and    are the set of sample indices before splitting, set of sample indices for which 

the split test is true, and set of sample indices for which the split test is false, respectively. Note 

that the concept of variance underlies in each summand of Eq. (4.3). 

4.2.3 Method of optimal SHM+SSI 

In a general case, the application of the DT in combination with the COM method to plan an 

optimal SHM+SSI is summarized as follows; (1) the undamaged structure is considered, 

assuming the design layout and the original mechanical properties. Its dynamic behavior is 

obtained (direct analysis), that is, the displacement in the x- and y- direction and rotation at each 

node for each considered vibration mode and their corresponding frequencies; (2) different 

measurement sets (i.e., number, type, and location of sensors) are defined along with the 

accuracy of the devices. The sensors should be located aiming at determining the unknown 

(target) parameters; (3) measured records given by the SHM are simulated by considering, for 

each combination of measurement devices, the theoretical (undamaged) values of deformation 

and rotation distorted by a random error consistent with the corresponding sensor accuracy. In 

this way, the dynamic behavior of an undamaged structure recorded by inaccurate devices is 

simulated. The number of simulations related to each measurement set should be large enough to 

capture the stochastic nature of the process; (4) the observability-based SSI using the COM is 

conducted (inverse analysis) to obtain the unknown (target) parameters for each simulated 
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measurement record. Different values of the weighting factor    are used to conduct this 

analysis; (5) the error-index    is obtained by comparing the values of the target parameters 

obtained through the direct and inverse analyses; (6) the decision tree is built using the 

measurement sets and values of the weighting factors as explanatory variables, and the error-

index as the response variable; (7) The information provided by the decision tree will support the 

decision on the best measurement set and the weighting factors to be used in further system 

identification processes aimed to identify damage. 

For the sake of illustration, Figure 4-1 shows a roadmap of the steps to follow. 

 

 

Figure 4-1. Roadmap for the application of SHM+SSI decision tool for a general case 
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4.3 Example of application: single-span bridge 

This section provides a theoretical framework to clarify the method and illustrates the utility of 

this technique regarding structural behavior by performing an initial descriptive analysis of the 

most important variables influencing the estimation accuracy of a SHM+SSI strategy. 

4.3.1 Bridge configurations 

In this part, an academic example with different factors (layout or boundary conditions, span 

length, measurement sets, and weighting factors) is introduced in detail under the COM 

framework with the objective of (i) achieving a better understanding of the influence of these 

factors on the output uncertainty and (ii) showing the need for more sophisticated tools able to 

capture the joint effect of these factors and (iii) defining the best SHM strategy. Four bridge 

layouts are assumed according to different boundary conditions: 1|Pinned-pinned, 2|Pinned-

clamped, 3|Clamped-pinned, 4|Clamped-clamped, which are shown in Figure 4-2. The FEMs of 

the four bridge types are defined by 7 nodes and 6 beam elements. Three types of sections are 

considered：①, ②, ③. The bending stiffness     and     indicated in Figure 4-2 are assumed 

to be unknown. For these layouts, the mass information        ,   , the length of each element 

   , and the bending stiffness of Section 1    , are assumed as known. Considering that the 

horizontal displacement of the bridge is small, the influence of the horizontal direction can be 

ignored. The first two vibration modes are used in this study. The monitored points are studied 

for three scenarios that differ in the measurement sets considered, as shown in Figure 4-3. These 

three measurement sets include the vertical and rotational modal displacement at nodes (4, 5, 7), 

(4-7) and (1-7), respectively. The nodes are given in Figure 4-2. The reason for choosing these 

three sets is representative (obtain fully observability by OM) for illustrate the theoretical 

analysis of the proposed method.  

A variable span length is also considered, that is, 50m, 55m, 60m, and five cases of weighting 

factors   , that is, 0.5, 0.6, 0.7, 0.8, 0.9. The collection of all scenarios is illustrated in Table 4-1. 

The reason for choosing        is that the frequencies are more sensitive to small changes of 

stiffnesses compared to mode-shape (Simoen. E et al 2015). Besides, for each scenario 

combining layout, measurement set, span length, and weighting factor, the frequencies, vertical 

displacement, and rotational modal coordinates are introduced with a given error level. The error 
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is assumed to follow a uniform distribution between 1~3%, 2%~6% and 10%~30%, respectively. 

The frequency error range was chosen checking the frequency accuracy of several dynamic tests 

(Li, Z et al 2016, Hou, R. et al 2019, Chen, J.G. et al 2015) where different analytical methods 

were used for identification. The vertical displacement error range were chosen from reference 

(Li, Z et al 2016), who identifies the vertical displacement with accuracies of about 2%- 6%. As 

accuracy of rotation is lower than the accuracy of vertical displacement (Mares, C. et al, 2002), a 

range of 10-30% was chosen for that purpose. In experiments or field measurements under 

free/ambient vibration, modal analysis was originally used for Experimental Modal Analysis 

(EMA).While for the drawback of EMA which needs the input forces, some Operational Modal 

Analysis (OMA) method were developed (Brincker, R. et al 2015), including Peak-Picking 

method, the Auto Regressive-Moving Average Vector model, the Natural Excitation Technique, 

the Random Decrement Technique, the Frequency Domain Decomposition and the Stochastic 

Subspace Identification. The Frequency Domain Decomposition (translational frequency 

response function (Ewins, D. et al 2001) and rotational frequency response function (Hosoya, N. 

et al 2019)) is verified to yield the value of vertical and rotational mode displacements with 

acceptable accuracy. 

A total of 1000 samples are used to analyze each measurement set. In one sample there is one 

model response of frequencies and mode-shape displacement. For both, clamped and pinned 

supports, their vertical displacements are set to 0. For the clamped supports, the rotations of the 

corresponding nodes are set equal to 0. The total combination of influence factors is presented in 

Table 4-1. 

 

Table 4-1. Combination of influence factors 

Factors  Cases Number 

Layout 1|Pinned-pinned,  2|Pinned-clamped, 

3|Clamped-pinned, 4|Clamped-Clamped 

4 

Measurement Set Set 1, Set 2, Set 3 3 

Span Length 50m, 55m, 60m  3 

Weighting factor,    0.5, 0.6, 0.7, 0.8, 0.9 5 

Total scenarios  180 
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Figure 4-2. Layout of four bridge types (The numbers in circles indicate the cross-section type) 

 

   

Figure 4-3. Measurement sets 
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4.3.2 Results 

The error index   calculated by Eq. (4.2) results in the following expression when applied to the 

analyzed case 
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where    ̃        ̃ are the estimated stiffnesses normalized by the actual value, i.e., a value of 1 

denotes a perfect estimation of the parameter. The larger the value of    , the lower the overall 

accuracy of the estimated parameters. 

For each of the 180 scenarios, an average value of the stiffnesses is obtained from the 1000 

samples assuming different random errors in the measurements. The results are depicted in 

Figures 4-4, 4-5, and 4-6. From these figures, it can be seen that the span length has a minor 

contribution to the error-index    , whereas the bridge layout presents the larger influence. It is 

also noted that the results obtained for the pinned-clamped and clamped-pinned layouts are 

sensibly similar. The influence of the weighting factor   , varies with the measurement set, that 

is, its influence is very small for Set 1, especially for the layouts of pinned-clamped and 

clamped-pinned; for Set 2, the weighting factor displays the largest influence, which is exhibited 

in the case of pinned-pinned support conditions; and for Set 3, the larger influence of the 

weighting factor occurs with the pinned-clamped and clamped-pinned layouts.  

The worst results are given in the case of clamped-clamped support conditions and measurement 

Set 1, with values of the error-index     close to 12%, whereas the best results (error index 

around 1.8%) correspond to the same support conditions, clamped-clamped, and measurement 

Set 3. These values are acceptable for SSI. These two results highlight the complexity of 

designing an optimal SHM+SSI strategy, given the joint influence of the involved variables on 

the quality of the estimation. 

To facilitate the understanding of these interactions, the following section presents the decision 

trees that will allow the organization of the scenarios according to the resulting error-indices    . 
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Figure 4-4. Set 1 under different weighting factors. PP, PC, CP, and CC denote pinned-pinned, 

pinned-clamped, clamped-pinned and clamped-clamped, respectively. 

 

Figure 4-5. Set 2 under different weighting factors. PP, PC, CP, and CC denote pinned-pinned, 

pinned-clamped, clamped-pinned and clamped-clamped, respectively. 
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Figure 4-6. Set 3 under different weighting factors. PP, PC, CP, and CC denote pinned-pinned, 

pinned-clamped, clamped-pinned and clamped-clamped, respectively. 

 

4.3.3 Identification of impact factor by decision tree learning algorithm 

The CART is applied to the 180 scenarios, obtaining the decision tree model shown in Figure 4-7 

whose node characteristics are indicated in Table 4-2. Therefore, the decision tree considers four 

explanatory variables: layout, span length, measurement set, and weighting factor,   . Although 

the decision tree can be pruned to remove those branches that provide little classification power, 

the entire decision tree has been presented to allow the interpretation of the results and the 

explanation of the tree itself. The response variable (error-index    ) of the 180 total cases has 

value of 3.97% for the mean and 2.59% for the standard deviation (see Node 1). 

From Figure 4-7, it is clear that the structural layout is the first factor to draw the tree at the first 

level, which means the influence of the layout on the error-index     is essential compared to the 

other three explanatory variables. The layouts of 2|pinned-clamped and 3|clamped-pinned belong 

to the left branch, and 1|pinned-pinned and 4|clamped-clamped belong to the right branch. 

Besides, it seems that the error-index is smaller when the boundary conditions of the bridge are 

asymmetric (left branch). This may be because asymmetric conditions can decompose by 

symmetric and anti-symmetric conditions. The two conditions exhibit some offsetting behaviors 

in the parameter evaluation process. That is why the values of PP60 and CC60 in Figure 4-4 are 

larger than the other two. After this, the next important factor is the selection of the measurement 

set as indicated by the second level of the tree. The values of measurement Set 1 are classified 
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separately from the ones of measurement Sets 2 and 3. The selection of both pinned-clamped or 

clamped-pinned support conditions and measurement Set 1 yields a mean value of the error-

index   of 1.93% with 0.12% of standard deviation (see Node 4 in Table 4-2), whereas selecting 

measurement Sets 2 and 3 for these types of support almost doubles the error, with 3.17% of 

mean (see Node 5 in Table 4-2).  

For the cases of Layout 2|pinned-clamped and 3|clamped-pinned and measurement Set 1, either 

the weighting factor,   , or the span length does not pose a big influence, as shown by the small 

value of the coefficient of variation at Node 4 (0.12/1.93=0.06). However, in other cases, such as 

the case of Nodes 11 (Layout 2| pinned-clamped or 3| clamped-pinned and measurement Set 3) 

and 14 (Layout 1|pinned-pinned and measurement Set 2), the adequate selection of the weighting 

factor (        for the first and         for the second) can almost double the accuracy of 

the results.  

It is noted that the effect of the span length does not appear in the right side of the tree (Layouts 

1|pinned-pinned and 4|clamped-clamped), and only appears at Node 8 (cv=0.08/1.88=0.04), 

meaning that the span length has a residual influence on the results, at least in the studied range 

(50 to 60 m). This is consistent with the outcome of Section 4.3.2.  

 

Table 4-2. Node characteristics of the decision tree shown in Figure 4-7 

Node Explanatory Variables Left Right Mean (%) St. Dev (%) 

1 Layout   [2 3 ] [ 1  4 ] 3.97 2.59 

2 M. Set   [ 1 ] [ 2  3 ] 2.76 0.80 

3 M. Set   [ 1 ] [ 2  3 ] 5.2 3.14 

4 W     <0.85  0.85 1.93 0.12 

5 M. Set   [ 2 ] [ 3 ] 3.17 0.66 

6 Layout   [ 1 ] [ 4 ] 9.00 1.44 

7 Layout   [ 1 ] [ 4 ] 3.29 1.67 

8 L. span     <52.50  52.50 1.88 0.08 

9 end node         2.13 0.07 

10 W     <0.75  0.75 3.58 0.40 

11 W     <0.85  .85 2.76 0.62 
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12 W     <0.65  0.65 7.76 0.67 

13 W     <0.75  0.75 10.26 0.70 

14 W     <0.65  0.65 4.74 1.11 

15 M. Set   [ 2 ] [ 3 ] 1.84 0.36 

16 end node    1.79 0.04 

17 end node      1.93 0.02 

18 end node      3.78 0.39 

19 end node      3.29 0.19 

20 end node    3.03 0.29 

21 end node    1.65 0.16 

22 end node    7.08 0.42 

23 end node    8.20 0.31 

24 end node    9.79 0.41 

25 end node    10.95 0.41 

26 M. Set   [ 2 ] [ 3 ] 5.59 1.08 

27 M. Set   [ 2 ] [ 3 ] 4.17 0.71 

28 end node         2.19 0.06 

29 end node         1.49 0.04 

30 end node         6.50 0.75 

31 end node         4.66 0.06 

32 end node         3.67 0.70 

33 end node           4.66 0.13 

 

The performance of an SHM+SSI strategy for the structural Layout 1|pinned-pinned or 

4|clamped-clamped using the measurement Set 1 is really poor due to the high values of the 

error-index    compared to the other cases. In the case of structural Layout 4|clamped-clamped, it 

is recommended to choose the measurement Set 3 if possible (yielding a mean error-index   of 

1.49%, Node 29), or measurement Set 2 otherwise, resulting in a very acceptable mean value of 

the error-index    of 2.19% (Node 28).  

From this decision tree, the best decisions are obtained by comparing the classifications. Some 

best choices can be drawn. Firstly, measurement Set 1 is the best choice for Layouts 2|pinned-

clamped and 3|clamped-pinned. In this case, the role that the weighting factor,   , has on the 
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accuracy of the estimated    ̃ and    ̃ is negligible. Secondly, a weighting factor of 0.9 is the 

best choice for Layouts 2|pinned-clamped or 3|clamped-pinned and measurement Set 3. In this 

case, the weighting factor plays a relevant role in improving the accuracy of the estimation. 

Thirdly, the optimal measurement choices for the Layout 4|clamped-clamped are Sets 2 and 3. 

Finally, the combination of the Layout 1|pinned-pinned or 4|clamped-clamped and measurement 

Set 1 should be avoided due to the resulting large error-index   , no matter the assumed value of 

the weighting factor,   . 

It is noted that these values correspond to the training set, so different values can be observed in 

real practice.  

4.3.4 Discussion on the optimal SHM+SSI strategy 

This part is to investigate the sensitivity of the outcomes to the effects encompassed by each 

scenario. Using the analysis result in Section 4.3.3, the influence of each factor is found by the 

control variable method. After removal of one of the four variables (Table 4-1), DT is used to 

analyze the remaining three ones. Table 4-3 demonstrates the corresponding optimal SHM+SSI 

strategy when considering the remaining three factors. 

 

Table 4-3. Sensitivity analysis: Strategy comparison when considering three factors 

Remove Variables Optimal SHM+SSI Strategy 

Layout Set 2 and 3 &        ; 

Measurement Set Layout 2| and 3|  &       ; 

Span Length Layout 2| and 3| & Set 1; 

Layout 4| & Set 2 and 3; 

Weighting factor Layout 4| & Set3; 

Layout 2| and 3| & Set1; 

 

From the result of Table 4-3, the optimal SHM+SSI strategy corresponds to the choice in Section 

4.3.3. For this particular structural analysis, it is clear that the span length of the bridge is not a  
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relevant variable to consider in any optimal strategy, at least in the studied range for the reason 

that no strategy about the span length appears in Table 4-3. This is a sound result that validates 

the rationality of the method. Regarding the other studied variables, the layout, measurement set 

and error frequency-related weighting factor, are the more complex cases when applying the 

observability method with COM. Although the structural layout is not a decision variable as it 

cannot be selected, it is the most important input when deciding the optimal SHM+SSI strategy 

which can be seen in the last three rows of Table 4-3. Besides, the second important decision is 

the selection of the measurement set. Thirdly, the selection of an adequate value of the weighting 

factor can significantly increase the quality of the estimation in some cases when ignoring the 

influence of layout and measurement. Whether low or high values of the weighting factor 

perform better will depend on the specific case. Decision trees can be used to derive this value. It 

is highlighted that these results are case-specific but the process of choosing a strategy can be 

followed in a similar way. 

The next section analyses to which extent the information provided by the decision trees based 

on the assumption of undamaged structure can be useful to support decisions on the optimal 

SHM+SSI strategy for damage detection in a real case. 

4.4 Applicability to best SHM+SSI methodology for damage detection 

4.4.1 Bridge description 

The Hollandse Brug (Figure 4-8), located in the center part of the Netherlands, belongs to one of 

the main highway connections between Amsterdam and the Northeast of the Netherlands. The 

bridge is a pre-stressed concrete bridge composed of precast beams and an upper concrete slab 

poured in situ and was opened for traffic in 1969. The bridge has seven spans of 50.55 meters. A 

dilatation joint was placed between each span, which causes that the bending moments cannot be 

transferred from one span to another. Thus, each span can be considered separately. To extend its 

service life renovations and strengthening were conducted in 2008.  

SHM data collection was conducted to understand the service-life assessment of this renovation 

bridge by the Infra-Watch research project. The SHM system consists of sensors positioned on 

three cross-sections of the first span (Figure 4-9 a)).  
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Figure 4-8. Overview of Hollandse Brug 

 

 

         a)                                                           b） 

Figure 4-9. a) Locations of the sensors (Miao. S.f. 2014);  b) The first two mode shape of 

Hollandse Brug 

 

Based on the vibration data gathered with accelerometers (geo-phones), located at various 

intervals along and across the bridge, detailed information about the mode shapes (Figure 4-9 b)) 

and natural frequencies (                      ) could be obtained (Miao, S.f. et al 2013 

& 2014, Veerman, R. 2017) by Peak-Picking method and Stochastic Subspace Identification. It 

is worth mentioning that the previous studies on this bridge focus on the data collection, 

processing, and the comparison of the FEM model results instead of the identification of 

structural health. The next analysis can fill this gap. 

4.4.2 Decision tree for the Hollandse Brug (original bridge un-damaged) 

The goal is to define the best SHM+SSI strategy to assess the unknown parameters     and     

according to Figure 4-2. The layout of each span of the bridge can be assumed as pinned-pinned 
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due to the dilatation joint. Through the model calibration, based on the two natural frequencies, 

the simplified model could be identified as corresponding to Figure 4-2, Layout 1. The 

parameters of each element are shown in Table 4-4.  

 

Table 4-4. Parameter of each element of Hollandse Brug 

 

Section Types 

Mode value 

Length ( m/each)           Mass       

①, ②, ③ 8.425                

 

The errors of the measured frequencies, vertical displacement, and rotation are assumed to 

follow uniform distributions bounded between 1%~3%, 2%~6%, and 10%~30%, respectively. A 

total number of 1000 samples are analysed by dynamic COM under 6 different measurement sets. 

The six sets are shown in Figure 4-10. 

 

 

Figure 4-10. Six measurement sets of Hollandse Brug 
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Figure 4-11. Decision tree model for the SHM+SSI of Hollandse Brug 

 

An initial decision tree with no information on the level of damage of the structure (undamaged 

bridge with all cross-sections with properties as presented in Table 4-4) can be drawn according 

to Section 4.2.2, see Figure 4-11. From this decision tree, it is clear that the best decision is to 

select Set 4 (see Node 4). The results of Set 2, 5, and 6 are significantly better than the ones of 

Set 1 and 3. This clear difference cannot be easily foreseen without the decision tree, showing 

that the obtained results are not trivial at all. When considering the effect of the weighting factor, 

  , the performance of lower weighting factors (       ) is better than the case of higher 

weighting factors (       ), being a relevant aspect to consider to reduce the error-index   in 

most of the cases (compare Nodes 8 and 9). The detailed information of each node is shown in 

Table 4-4. In the last column of the table, the coefficient of variation, i.e., standard deviation 

normalized by the mean, exhibits a maximum value of 0.41 for an end node, which shows the 

robustness of the tree.  

 

Table 4-5. Node characteristics of decision tree shown in Figure 4-11 

Node  Explan. Vble  Left   Right   Mean (%) St. Dev (%) St. Dev/ Mean 

1 M. Set   [2 4 5 6] [1 3] 7.28 5.48 0.75 

2 M. Set [4] [2 5 6] 4.31 3.09 0.72 

3                13.2 4.26 0.32 

1 

2 3 

4 5 6 7 

8 9 
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4 end node   0.71 0.26 0.37 

5                5.51 2.60 0.47 

6 end node   11.2 2.30 0.21 

7 end node   16.1 5.15 0.32 

8 end node   3.87 1.60 0.41 

9 end node   7.98 1.64 0.21 

 

4.4.3 Damaged bridge 

Once the theoretical decision tree is obtained for the undamaged bridge, two damage scenarios 

are analyzed in this section. The bridge mid-span is assumed to be damaged considering 5% and 

30% of reduction of    , as shown in Figure 4-12. The damage patterns have been assumed to 

create the scenarios needed to validate the approach. Nevertheless, this knowledge is not 

introduced as an input of the model. Therefore, knowing the damage patterns is not required for 

its application. 

 

 

Figure 4-12. 5% and 30% of stiffness reduction at mid-span of Hollandse Brug 

 

The COM is used to obtain the estimated     ̃ and     ̃, with the parameters in Table 4-4 and the 

two damage levels. The errors of frequencies and vertical displacements are the ones indicated in 

Section 4.4.2. To account for the measurement error, the average value of 1000 simulations has 

been considered. Finally, the parameters have been estimated for   = 0.5, 0.6, 0.7, 0.8 and 0.9.  

Table 4-6 summarizes the error-index    comparison between the values given by the decision 

tree (undamaged structure) and the estimation of the damaged structure. According to the 

analysis in Section 4.4.2, the largest estimation error occurs with measurement Sets 1 and 3 
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(Nodes 6 and 7), whereas the best estimation is obtained with measurement Set 4 (Node 4). 

These two scenarios are used to validate the decision tree.  

Table 4-6. Error-index comparison between the original (undamaged) and damaged values. DT 

stands for decision tree 

 Case    Mean (%) St. Dev (%) 

DT: Node 6 Undamaged <0.75 11.20 2.30 

DT: Node 7 Undamaged  0.75 16.10 5.15 

 

Obtained values: 

Sets 1 and 3 

5% damaged <0.75 12.70 7.34 

5% damaged  0.75 17.22 3.92 

30% damaged <0.75 11.73 6.50 

30% damaged  0.75 18.39 

 

3.96 

 

DT: Node 4 Undamaged  0.71 0.26 

Obtained values: 

Set 4 

5% damaged  0.59 0.01 

30% damaged  2.38 0.01 

 

When comparing the values yielded by Nodes 6 and 7 to the obtained ones in case of damage is 

present, the results are fully consistent for both damage levels. Note that the influence of    

indicated by the decision tree remains in the damaged bridge, showing a larger standard 

deviation for         in the case of the damaged bridge.  

Regarding the values given by Node 4, they are consistent with the results of 5% of damage, 

however, a larger mean of error-index    is found for the case of 30% of damage. This can be 

related to the small value of the error-index    obtained in the case of the undamaged structure 

(0.71%). Nonetheless, the values of the error-index    obtained for the measurement Set 4 are 

clearly better than the ones of Set 1 and 3. The small value of the standard deviation obtained for 

the damaged bridge denotes the low influence of the weighting factor, which is consistent with 

the left branch of the decision tree (the weighting factor is not included in this branch). 

Based on these results, for the Hollandse Brug, the optimal measurement set is Set 4, the second 

choice is Set 2, 5, and 6, the worst set is Set 1 and Set 3 no matter the bridge is undamaged or not. 

It could be seen that decision trees in combination with the COM method seem to be a useful 
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tool to plan the best strategy of SHM+SSI, providing information that is not trivial and highly 

reliable. 

4.4.4 Discussion 

This section is used to verify the efficiency of the combined method of COM and decision tree. 

The effective independence method (EIF), as one of the most reliable methods for optimal sensor 

placement of engineering structures, could provide efficient solutions (Sunca, F. et al. 2020). 

This method aims to maximize of the linear independence of target modes. But this method is 

only used to choose the optimal sensor placement and cannot work on SHM+SSI strategies (such 

as choosing a layout, weighting factors) and the worse optimal sensor placement. But it can be 

used to verify node 4 in Figure 4-11.  

The effective independence method was proposed by Kammer (1991). It attempts to maximize 

the linear independence between the   target mode shapes through the following Equation (4.5): 

 

   =       
         ∑      

      
  
                       (4.5) 

Where        is a matrix containing the eigenvector,    is the total number of measurement 

point and   is the number of mode shapes of interest that are used for the analysis,      

[             ] is a row vector of vibration shade shapes corresponding to the  th DOF. 

   is using to represent the effective independence distribution vector of the candidate sensor set. 

The DOF corresponding to the largest element of    is the DOF that contributes most to the rank 

of EIF. And thus that DOF should be retained.    can be expressed as Equation (4.6), 

 

        
    

    
                                                  (4.6) 

By repeating the process of removing the DOF with the smallest contribution to the rank of EIF 

until the desired number of sensor is achieved, the sensor locations are determined. 

For the case in Section 4.4.1, the optimal sensor placement for 5 mode-shapes as input by EIF is 

Set 4, which is consistent with the conclusion in Section 4.4.3. However, this EIF method cannot 

obtain the worse set. What is more, if more variables are considered, such as weight factor, the 
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optimal SHM+SSI Strategy, such as the one in Table 4-3, will not be able to yield. This is to say, 

compared with the traditional optical sensor placement (OSP), the merit of the proposed method 

is efficient to consider all the parameters (including all SHM parameters and SSI parameters). 

4.5 Conclusions 

This chapter proposes a machine learning decision tool to help building the best combined 

strategy of SHM (proposal of a measurement set) and SSI (proposal of weighing factors in the 

objective function of dynamic COM) that can result in the most accurate estimations of the 

structural properties. To this end, the combination of COM method and CART algorithm is used 

for the first time.  

The main concept of the optimal SHM+SSI strategy is given, as shown in roadmap (Figure 4.1). 

Decision trees (DT) are firstly presented to investigate the influence of the variables involved in 

the SHM+SSI process on the error estimation in a general structure, including structural layout, 

measurement set, span length and weighting factor based on the estimated parameters from COM. 

Through the sensitivity analysis of the COM and DT, the ranking of the four variables are as 

follows: layout, measurement set, parameters of the COM (weighting factor) and span-length. 

The analysis of different variables provides a theoretical framework to clarify this method and 

illustrate the utility of this technique. 

Later, the same concept is applied to a specific structure, the Hollande Brug. The decision tree is 

used as a tool to plan the optimal SHM+SSI strategy, with no initial knowledge of the actual 

structural state, and the robustness of the results is given for two levels of damage. For this 

specific bridge, the optimal measurement set is Set 4, and Set 1 and Set 3 should be avoided. 

This real application shows the merit of this strategy in proposing the best sensor deployment 

and its potential application in the field of damage identification  

It is worth mentioning that the verification of the method with a real bridge with different levels 

of damage (5% damage and 30% damage) is conducted, which shows that the method is robust 

even for a high damage degree, showing the SHM+SSI strategy that yields the most accurate 

estimation. Thus in analyzing other structures, the roadmap in Figure 4.1 can be used as a guide 

for action. 
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The application of this work allows making better use of existing sensor devices and SSI 

methodologies. Also, it can be useful to identify the main sources of inaccuracy or uncertainty of 

the results, and thus, helping to put the focus on the aspects to be improved within the SHM+SSI 

strategy. For instance, the role of the weighting factor in the total accuracy of the results has been 

identified, thus it can be concluded that it is worthy to further investigate this parameter. By 

using this tool beforehand, erroneous decisions can be avoided. 

The approach does not consider the modeling error, such as the error introduced when making 

wrong assumptions on the support conditions. In some cases these errors can bring large 

uncertainty regarding the results and they should be addressed before translating the proposed 

approach into practice. The proposed approach can be extended towards this direction. Also, the 

decision tree can be extended by adding different SSI methods to select the ones providing the 

most accurate results in each case. Moreover, the development of the SHM+SSI strategy for 

more slender structures will be conducted in the future. In addition, the operational effects due to 

traffic in the bridge on the final results were not considered in the present example and are a 

future line to be explored. 
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CHAPTER 5  Uncertainty quantification (UQ) with the 

dynamic constrained observability method 

5.1 Introduction 

This chapter aims at understanding how the uncertainty in the model parameters and measured 

variables affects the uncertainty of the output variables, that is, how the uncertainty propagates in 

the SSI process by dynamic COM. Moreover, by dividing the source of uncertainty into aleatory 

and epistemic, important insights can be obtained regarding the extent of uncertainty that can be 

potentially removed. With this procedure, the gap of uncertainty quantification identified in 

section 2.4.3 can be filled by the dynamic COM.  

A probabilistic UQ approach is proposed to analyze the SSI through the dynamic Constrained 

Observability Method, by considering both the epistemic uncertainty modeling and the aleatory 

uncertainty. To overcome some of the drawbacks mentioned above, different modal orders are 

considered separately, after that, all involved mode orders are put together to estimate the output 

parameters in an objective function. The method of simultaneous evaluation can appropriately 

take into account the dependence between various parameters.  

The objective of this chapter is to check the possibility of having some insight in the uncertainty 

quantification and error propagation before the actual monitoring of a structure. The Dutch 

bridge known as ‘Hollandse Brug’ is used as an example. The background of ‘Hollandse Brug’ is 

described in Section 4.4.1. This bridge was monitored without a previous evaluation and after its 

monitoring, the conclusion was that uncertainty was too big to make any conclusive assessment. 

The dynamic SSI by COM is explained in Chapter 3. The effect of weighting factor is ignored in 

the present analysis so            (Boris Zárate, A. et al 2008, Brownjohn, J. et al 2000)  

in Eq. (3.5). 
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5.2 Model calibration 

The unidimensional model of the span of Hollandse Brug is divided into 6 elements, as shown in 

Figure 5-1 a). The background of Hollandse Brug is described in Section 4.4.1. According to the 

parameters estimated in refences (Miao. s.f. et al 2013 & 2014, Veerman, R. 2017) and model 

calibration, the simplified model uses the following parameters (Table 5-1), obtaining 

estimations of the frequencies and mode shapes (Figure 5-1 b)) close to the experimental data 

(                      ). The first and second frequencies match the experimental data 

correctly with -0.1% and -0.5% errors respectively.  

 

   a)                                                                  b） 

Figure 5-1. a) First span of Hollandse Brug;  b) First and second mode shape 

Table 5-1. Parameter of each element  

 

Element Number 

Mode value 

Length ( m/each)           Mass       

1-3 8.425                

 

Thus, this model is considered as the exact representation of the real bridge. The estimated 

values obtained through the SSI will be compared against the parameters of this model, which 

are referred as the real values. The measure of an error free deflection or rotation refers to the 

deflection or rotation of this model. Thus, The bridge's stiffness can be derived through modal 

analysis (Drygala, Izabela J. et al 2020). 

5.3 UQ analysis 

The goal of this section is to assess the uncertainty regarding the estimation of     and     of the 

Hollandse Brug when     and m are known with some degree of uncertainty.   
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To assess the uncertainty associated with the output of the structural system identification, the 

epistemic uncertainty involved in the assumption of the input-parameters (error incurred during 

the modelling process) and the aleatory uncertainty involved in the measurement error 

(inaccuracy of sensors) are independently considered. In that way, insights into the contribution 

of each type of error to the total uncertainty can be obtained. Then, the combined effect is 

analysed to determine the total uncertainty of each estimated parameter.  

5.3.1 Epistemic uncertainty: input-parameter errors  

The contribution of the errors in the input parameters of the structural model, sometimes, 

referred as model errors are first analyzed. Here, the effect of boundary conditions are not 

considered as it is assumed that they have been perfectly determined through the model 

calibration carried out in Section 5.3. In fact, the calibration using the first 2 modal frequencies 

has identified that a pin connection is the correct assumption. In addition, the shear deformation 

is ignored based on the low value of the ratio cross-section depth to span length.  

Table 5-2 shows the input parameters considered in this analysis, namely, the mass of the bridge, 

m, assumed as constant for the entire bridge, the Young modulus of element type 1,    and its 

flexural inertia,    (see Figure 5-1 a)). The probabilistic distributions assumed to introduce the 

uncertainty regarding those parameters are also indicated.  

 

Table 5-2. Statistical definition of input variables 

List of Variables (Units) Sampling 

Size 

Probabilistic 

Distribution  

95% Confidence 

Interval 

                   

10
3
 

 

                                  

   (    )                               

   ( 
 )                                 

 

They are assumed to follow a normal distribution       , where   is the mean corresponding to 

the expected value of the variable. The standard deviation,    has been chosen to guarantee that 

the 95% of the distributions falls over the interval                                           , 

respectively. The variability in the Young modulus was chosen according to the reference 
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(Bungey, H.B. et al 1995). All the input parameters are assumed to be statistically independent. It 

is noted that the uncertainty of the three input parameters of the model can be reduced by 

conducting non-destructive tests in the bridge. 

In order to propagate the uncertainty, Monte Carlo simulation (MCS) is used. MCS requires an 

input sample made of combinations of realizations of each parameter upon which a model will 

be evaluated to obtain a sample of the model response. However, this approach may be very 

time-consuming and for large dimensional problems and some reliability problems, the selected 

combinations might not yield a response sample that can be considered as a good representation 

of the population. In other words, relevant information can be dismissed if the input sample is 

not large enough or not adequately selected. To overcome this issue, several sampling methods 

have been developed. In this research, the Fast Optimal Latin Hypercube (FOLH) sampling is 

preferred for its sampling strategy, which can achieve higher sampling accuracy with a smaller 

sampling scale (Viana, F. et al 2009).  

The FOLH, as the common Latin hypercube method, requires of the selection of the individual 

realizations of the input parameters according to their probability distribution. To do that, the 

Cumulative Distribution Function (CDF) of each input parameter is equally divided into the 

number of required realizations, and then, the corresponding percentile is obtained. By doing so, 

the set of selected realizations will follow the required probability distribution. The main 

contribution of FOLH with respect to LH is the way that the realizations are combined (pairing 

process). To illustrate this process, Figure 5-2 shows an example considering only two random 

variables, for instance   and   . Figure 5-2 a) depicts the equal division of the CDFs to obtain 

10
3
 realizations of each variable. Then the realizations are paired into 10

3
 combinations. Figure 

5-2 b) shows the resulting sample points. In the case of the variables shown in Table 5-2, 

combinations of the three variables should be generated. In this case, a total of 10
3
 sampling 

points are selected to statistically represent the 3-dimensional space. It is noted that the benefit of 

the FOLH method is not so obvious in this case, as only 3 variables are combined. Nevertheless, 

in the following sections, the number of the involved variables is significantly larger, thus, the 

FOLH method is required to reduce the computational time without a loss of representation of 

the input space. 
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           a）                                  b） 

Figure 5-2. a) Division of the CDFs equally and pairing process; b) Resulting sample points  

 

The sample points are studied for three scenarios that differ in the considered measurement sets. 

It is noted that in this stage the measurements are assumed error free. The three measurement 

sets are shown in Figure 5-3.     and     denote the vertical and rotation mode-shapes of the 

    node in the    mode. Thus, measurement Set A mainly focuses on the estimation of element 

type 2, the distribution of measurement Set B aims at both element types, 2 and 3, and 

measurement Set C includes all the possible measures as it is expected to improve the estimation 

accuracy of     and    . Given that the corresponding raw row of     to     and     is equal to 

0 under these three sets,     and     can be directly identified by Eq. (2.4), with no need of 

conducting the optimization step. 

   
Figure 5-3. Three measurement sets 
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The results corresponding to the three measurement sets are depicted by their empirical 

cumulative distribution functions (ECDF) to avoid making any assumption on the probability 

distribution of the results. The obtained values, shown in Figure 5-4, are normalized with respect 

to the real values. In all the cases, the distributions are almost unbiased and symmetric, which is 

reflected in the mean and probability of overestimated rows in Table 5-3. 

More precisely, for the measurement Set A, the expected values of the estimated parameters (   , 

   ) have 0.0% and 0.3% skewness with respect to the real values, respectively. The 5% and 95% 

percentages of the normalized values of     and     are [0.684,1.312] and [0.608, 1.383], 

respectively. In absolute terms,     will be in the range of [5.57, 10.68]      and     in [4.96, 

11.27]      within 95% confidence interval. It can be seen that the output variable     exhibits 

less uncertainty. This can be explained by the amount of information provided per unit length, 

which in the case of     is bigger than in the case of     (see Figure 5-4). 

For the case of the measurement Set B, the skewness and 90% confidence intervals of the 

normalized     and     are -0.1%, -0.1% and [0.879, 1.117], [0.884, 1.113], respectively. In this 

case, both estimations exhibit the same level of uncertainty. For the measurement Set C, the 90% 

confidence intervals of the normalized     and     are [0.770, 1.228] and [0.782, 1.217], which 

are surprisingly wider than in the case of the Set B even though the Set C contains more 

information than Set B. This is because of the introduction of redundant information that may 

derive in some lack of consistency between the mechanical properties of Section ① and the 

observed displacement and rotation in this part of the structure. In fact, the model is assuming the 

same mass per unit length all along the span, but not for the stiffness. As no error is assumed in 

the measurements and those are obtained assuming both mass and stiffness uniformly distributed 

along the span, this produces an inconsistency with the introduction of additional information in 

Set C.  

Therefore, it seems that the best measurement set is B. Table 4 summarizes the discussed results. 

It is noted that the observed errors can also be affected by the unavoidable computational 

inaccuracies. As seen in Table 4, the probability of over/underestimation is similar and roughly 

about 50 % in all the cases. 
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Figure 5-4. ECDF of estimated under different sets considering epistemic uncertainty. The 

vertical dotted line represents the correct value, and the 5 and 95 percentiles are indicated with 

horizontal dotted lines. 

Table 5-3. Statistical data of the estimated     and     under different measurement sets 

(normalized) 

         

Measurement Set A B C A B C 

p5 0.684 0.879 0.77 0.608 0.884 0.782 

p95 1.312 1.117 1.228 1.383 1.113 1.217 

p50 1.000 0.999 0.999 1.003 0.999 0.999 

Range 0.628 0.238 0.458 0.775 0.229 0.435 

Skewness 0.000 -0.001 -0.001 0.003 -0.001 -0.001 

Mean (Bias) 0.999 0.999 1.000 0.999 0.999 1.000 

Standard Deviation 0.257 0.096 0.185 0.319 0.092 0.176 

Probability of Overestimated 49.8% 49.8% 49.8% 49.9% 49.6% 49.8% 

 

5.3.2 Aleatory uncertainty: measurement errors from sensors 

This part considers the error caused by the accuracy of measurement devices, although the effect 

of other factors, such as the computational error and the accuracy of the data-extraction method 

are implicitly included as part of the data processing.  

The error assumed for the analysis of this section adopts the values indicated in Table 5-4. 

Following the same method as the previous section,     samples are generated for each set with 
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a frequency error level of 3%, a vertical displacement error level of 6% and a rotation 

displacement error level of 30%. Normally, the frequency error is small according to the relevant 

literature (Li, Z. 2016, Hou, R. 2018 & Chen, J. 2015), the vertical displacement error range was 

chosen following Li, Z. (2016), who identifies the first vertical displacement with accuracies of 

about 3%. Given that the accuracy of rotations is lower than the accuracy of vertical 

displacements (Mares, C. et al, 2002), 30% was chosen for this purpose. 

Table 5-4. Measurement input variables 

 List of variables Sampling 

size 

Probabilistic 

Distribution  

95% Confidence 

Interval 

 

Main 

bridge 

Frequencies (          )  

10
4
 

                             

Vertical displacements (   )                              

Rotation displacements (   )                              

 

The choice of the sampling size is because the number of actual optimization parameters in Eq. 

(3.5) is 4 when the information of two mode-shapes is used, two frequencies and two    . To 

further check the rationale of this sample size, the       and       are analyzed under different 

sample sizes and measurement sets. Figure 5-5 shows an example of the corresponding ECDF 

under different sample sizes. It shows how the quality of the ECDF for different sample sizes 

significantly improves till the case of 10
4
 . After this, there is not a significant improvement. See 

how the sample size of 10
4
 is extremely close to the ECDF of 10

5
 in Figure 5-5.  

 

   Figure 5-5. ECDF of      under Set C and different sample sizes 
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Figure 5-6 shows the ECDF of the estimated     and     under the three measurement sets 

considering the aleatory uncertainty of the sensor measurements. Table 5-5 shows 5%, 95% 

percentages, the bias, standard deviation and skewness of the estimated data. Here, again, the 

obtained results show that Set B is the best among the three original sets because it presents the 

smallest confidence interval, which is un-skewed in the case of     and slightly skewed in the 

case     towards conservative values (i.e., underestimate the structural stiffness). Sets A and C 

exhibit comparable results in terms of confidence intervals. However, the results yielded by Set 

A are clearly skewed;     towards conservative values compensated by    , which tends to be 

overestimated under this measurement set. It is recalled that, similarly, Set B presented the most 

reliable results in terms of epistemic uncertainty, whereas Set A presented the worst estimation. 

As in the case of epistemic uncertainty, it seems illogical that Set C, which provides more 

measured data into the system than Set B, provides worse results than Set B.  

In Set C, more measurements corresponding to the left part of the beam are introduced. Error 

level of the measurements taken from the left and right part of the beam is the same. However, 

the measurement errors from the left part of the beam have a worse effect on the observed values 

(corresponding to parameters from the right part of the beam) than the measurement errors from 

the right part of the beam. In this sense, on the one hand, adding more information should 

improve the results but on the other hand the errors of this new information are impacting much 

more the variability and values of the targeted parameters, in such a way that the overall result is 

worse. This is an interesting and non-intuitive result, as it can be thought that, with the same 

error level the more measurements, the better and it is not always the case. It is always 

interesting to add more measurement points, but in the vicinity of the structural part whose 

mechanical properties are to be identified. This aligns with the fact that where new information 

without error is introduced (Set D, Figure 5-7) results from Set B are improved. The most 

important conclusion of this example is that when the model error is supposed to be low, to 

decide the sensor locations and, therefore, where to obtain information, it should be taken into 

account not only the measurement number, but also the structural part whose properties need to 

be identified. Only in this way, the optimum sensor deployment will be achieved in order to get 

the maximum of information (not being redundant) with the minimum uncertainty. 
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     Figure 5-6.  ECDF of estimated under different set considering aleatory uncertainty. The 

vertical dotted line represents the correct value, and the 5 and 95 percentiles are indicated with 

horizontal dotted lines.  

  

Figure 5-7. Measurement Set D 

 

Table 5-5. Statistical data of the estimated     and     under different measurement sets 

         

Measurement Set A B C D A B C D 

p5 0.788 0.865 0.728 0.936 0.666 0.827 0.670 0.857 

p95 1.313 1.092 1.292 1.060 1.336 1.169 1.352 1.165 

p50 1.006 1.000 0.997 0.998 0.968 0.995 1.000 0.999 

Range 0.525 0.227 0.564 0.124 0.67 0.342 0.682 0.308 

Skewness 0.006 0.000 0.003 0.002 -0.032 -0.005 0.000 0.001 

Mean (Bias) 1.032 1.003 0.980 0.998 0.997 1.000 1.007 0.997 

Standard Deviation 0.144 0.064 0.195 0.053 0.152 0.099 0.191 0.087 

Probability of Overestimated 56.8% 50.1% 49.8% 50.2% 45.7% 49.8% 49.5% 51.2% 
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5.3.3 Combination of epistemic uncertainty and aleatory uncertainty 

The combination of the two types of errors, i.e., input-parameter error and measurement error, 

are considered, as well as the three measurement sets shown in Figure 5-3. The total calculation 

sample is 10
4
 for each set by the fast optimal Latin hypercube (FOLH) sampling to produce the 

independent and representative samples and ensure the accuracy of    . The ECDF under this 

combination is shown in Figure 5-8, and the related numerical information is illustrated in Table 

5-6. 

When both aleatory and epistemic uncertainties are considered, the best measurement set in 

terms of the uncertainty range is Set C, which includes all the measurement information, instead 

of Set B that was identified as the best measurement set when considered the uncertainties 

individually. However, the results from Set C produce some skewness compared with the 

corresponding value in Tables 5-3 and 5-5, especially for    , where a overestimation probability 

of 81.6% is observed. While in terms of structural safety, compared with the huge overestimation 

estimated of Set C, the results by Set A and Set B tend to be safer with lower percentage of 

overestimated, the former one performs better on the range and the latter one  on the standard 

deviation. Set B results in the least skewed estimation when compared to the other two sets, 

while the values of the 5% and 95% percentiles are worse than the ones under Set C. Compared 

to Figures 5-4 and 5-6, the best measurement set in terms of accuracy is Set C rather than Set B, 

which highlights the importance of understanding the error source when trying to improve the 

quality of the estimation. When both model and measurement errors play an important role in the 

identification process, introducing as many measurements as possible is the best strategy because 

the information provided by them is not redundant in this case to improve the estimated accuracy. 

The result for Set C is slightly more biased (compared with the normalized value 1), however, 

with less uncertainty, as clearly shown by the rows of standard deviation and probability of 

overestimation in Table 5-6.  

As a summary it can be concluded that both error sources, epistemic and measurement, interacts 

in a non-linear way due to the dynamic effects, in such a way that from the results of their 

individual effects it cannot be concluded what will happen when both sources act in a combined 

way. Hence, to study this, it is necessary to tackle both effects jointly and not in a disaggregate 

manner. 
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Figure 5-8. ECDF of estimated under different set considering aleatory and epistemic 

uncertainties. The vertical dotted line represents the correct value, and the 5 and 95 percentiles 

are indicated with horizontal dotted lines. 

Table 5-6. Statistical data of the estimated     and     under different measurement sets 

         

Measurement Set A B C A B C 

p5 0.663 0.754 0.860 0.709 0.742 0.911 

p95 1.250 1.320 1.080 1.295 1.304 1.094 

p50 0.906 1.000 1.013 0.9691 0.9946 1.050 

Range 0.587 0.566 0.222 0.586 0.562 0.183 

Skewness -0.094 0.000 0.013 -0.031 -0.005 0.050 

Mean (Bias) 0.915 1.032 1.006 0.979 1.003 1.042 

Standard Deviation 0.168 0.158 0.079 0.172 0.152 0.072 

Probability of Overestimated 26.6% 49.9% 67.8% 42.8% 42.8% 81.6% 

 

5.4 Discussion 

Hollandse bridge was studied in InfraWatch project (Miao. s.f. et al 2013 & 2014, Veerman, R. 

2017). After much effort in collecting and analysing data, no conclusive results were obtained in 

the structural identification process due to the large level of uncertainty. This fact has motivated 

the present work, because it is important to know in advance if the uncertainty related to a given 

SSI approach when applied to a specific structural setup is acceptable or not in real practice. 
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With proper sensor placement, the 90% confidence interval range of the estimated stiffness is 

found as small as 0.222 for     and 0.183 for     when considering both sources of uncertainty 

(Table 5-6). This means that the estimated stiffness presents around 10% of uncertainty to each 

direction given that the range is sensibly unbiased. This uncertainty range seems very reasonable 

if we consider the high level of uncertainty of the input variables (e.g., 50% in the case of the 

Young modulus or 30% in the rotation displacements).  

To assess to which extent the dynamic COM provides acceptable results in terms of uncertainty 

when compared with other SSI methods in the literature, the example proposed by Simoen, E. et 

al. 2015, and further investigated in Peng, T. et al., 2020 and presented in Chapter 3.3.2 is used 

(see Figure 3-12). This is a reinforced concrete beam with a length of 6m divided into 10 

substructures with a uniform stiffness value, as shown in Figure 3-13. The measured transverse 

mode shape displacements are observed at equidistant positions along the beam at 31 points. The 

resulting mode shape measurements are shown in Figure 3-13 with their corresponding natural 

frequencies. The stiffness of these 10 elements given in Reference (Simoen, E. et al. 2015), are 

taken as the real values for this beam. The considered measurement set includes the frequencies 

and vertical displacement at the 31 points given by the same reference. Regarding the errors 

considered, to introduce the epistemic uncertainty, given that it is a free-free vibration beam with 

unknown stiffness, only the input parameter,   is considered. It takes the common density of 

reinforced concrete             (probabilistic distribution            , the same as in 

Table 5-2). The aleatory uncertainty has been calculated through the difference between the 

experimental bending modes and frequencies and the corresponding theoretical data at each of 

these 31 points. The average values of the obtained uncertainty are given in Table 5-7. 

Table 5-7. Measurement input variables (averaged values for the 31 measured points) 

 List of variables  Probabilistic 

Distribution  

95% Confidence 

Interval 

Structure in 

Figure 3-12 

Frequencies (          )                              

Vertical displacements (   )                              

 

Considering the epistemic and aleatory uncertainty together, the sample size is determined based 

on the ECDF of     , as shown in Figure 5-9. The      distributions obtained for sample sizes 

of 10
3
 and 10

4 
are very close to each other, which implies that a sample size of 10

3
 is enough to 
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guarantee the accuracy of      . Figure 5-10 shows the estimated unknown stiffnesses       

    , as well as their standard deviation. The COM tends to slightly underestimate the mean 

values of the stiffness when all mode-shape information is used. The stiffness range associated 

with the 99% confidence interval obtained by COM is shown in red colour in Figure 5-11, in 

comparison with the results reported by Simoen when using a Bayesian approach for the SSI 

(grey shadow). The real values are indicated with a thick black line. For all the elements, COM 

provides less uncertain estimations. All in all, this figure shows how the UQ associated with 

COM provides reasonable and acceptable results, and slightly better than the Bayesian approach. 

Figure 5-12 depicts the distribution of Young's moduli    and    by UQ analysis of COM (red 

line) and the distributions obtained by the Bayesian approach (grey line). It is shown that the 

proposed approach does not require a prior joint PDF to obtain an accurate stiffness probability 

distribution. 

 
 

Figure 5-9. ECDF of       under different 

sample sizes of RC beam 

Figure 5-10. Uncertainty of            

given by the mean value and the standard 

deviation 

Even when the obtained uncertainty is acceptable, it is always desirable to minimise such an 

uncertainty. The analysis of the two sources of uncertainty takes relevance in this context. For 

instance, it is appreciated that there is no bias and skewness in Table 5-3 (epistemic uncertainty), 

whereas obvious bias and skewness is presented in Tables 5-5 and 5-6, which mean these are 

caused by the sensor error. Thus, increasing the sensor accuracy might reduce the bias and 

skewness effects. Besides, compared to the estimated data of Sets A, B and C in Tables5-3, 5-5, 

and 5-6, the optimal sensor set shifts from Set B under a single source of uncertainty to Set C 

when considering both uncertainties. This means that selecting the optimal placement of the 

sensor sets is also an effective method to lower uncertainty of the output in addition to increase 
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the sensor accuracy. However, because the aleatory uncertainty is hard to remove, efforts must 

be made in minimizing the epistemic uncertainty involved in the problem. The more information 

about the structural setup, the closer the UQ of the SSI will be to the analysis of Section 5.4.2.  

  
Figure 5-11. The stiffness range associated 

with the 99% confidence interval along the 

beam (the grey shadow represents the result 

by Bayesian analysis given in [4], the red 

line represents the range obtained by COM) 

Figure 5-12. Uncertainty distribution of 

Young's modulus    and   , prior and 

posterior PDF (grey line) of element Young's 

modulus according to [4], the red PDF by 

COM UQ analysis 

 

5.5 Conclusions 

The UQ analysis of the proposed dynamic COM method is carried out in this chapter. Two 

sources of uncertainty, that is, epistemic and aleatory, are studied separately and also together to 

better understand the role of modelling error and measurement error when dynamic COM is used. 

The following conclusions can be drawn: 

The analysis of the error propagation in the case of the Hollandse bridge has made evident that 

when the epistemic uncertainty is low (i.e., when very accurate models are used in the 

identification process), the sensor deployment should take into account not only the 

measurement accuracy but also the location of unknown structural part. Only in this way, the 

optimum sensor placement will be achieved in order to get the maximum of information (not 

being redundant) with the minimum uncertainty. Feeding the model with redundant information 

(if, for instance the location of sensors is not conveniently chosen) can produce worse results, 

although more measurement points (more sensors) are deployed. 
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When both epistemic and aleatory uncertainties are relevant, the error propagation decreases 

with the increase of the measurement points. In this case, the results show that Set B, which 

includes 2 additional sensors, is biased to the overestimation side when compared to Set A. If the 

objective of the identification process is to detect damage, as damage will produce a reduction of 

the stiffness (due to cracking, for instance), it will be a better solution the use of fewer sensors, 

as the trend to the overestimation of the stiffness in the identified elements could hide the 

existence of damage. This appears as a contradictory conclusion, where the use of an increasing 

number of sensors derives on decreasing the potentiality of damage detection. However, this 

result is well in line with the result obtained in the case when only aleatory uncertainty is 

considered and stated in the previous paragraph, where the addition of more data measurements 

(Set C compared to Set B) resulted in a worse identification due to the redundancy in the 

information and the increase in the global measurement error introduced by the additional 

measurements. 

The analysis of Hollandse bridge shows that the best measurement set will change from Set B to 

Set C in terms of range depending whether the epistemic uncertainty is involved or not. 

Therefore, before the field test execution, when deciding the optimal sensor deployment, it is 

important to consider the effect of epistemic uncertainty in the sense of trying to gather 

information from the test that is compatible and non-contradictory with the proposed model. The 

calculated mode shapes can help on this objective.  

The correct performance of the UQ analysis by COM is verified by an example where the results 

from the Bayesian method are compared. The performance of the proposed approach is better 

despite the modelling error in the mass of the structure is considered. The results show the 

robustness of the method in terms of propagated uncertainty.  
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CHAPTER 6 Conclusions and future research 

6.1 Conclusions 

The major contributions of this work might be summarised as follows: 

1) The first application of constrained observability techniques for parametric estimation of 

structures using dynamic information such as frequencies and mode-shapes is proposed.  

2) A new algorithm is introduced based on the dynamic eigenvalue equation. One step by step 

example is used to illustrate the functioning of constrained observability techniques. In addition, 

the merit of the dynamic constrained observability analysis is demonstrated as a good solution to 

the fully observability which OM cannot achieve.  

3) Two examples using experimental data are used as a proof of concept to verify the feasibility 

and accuracy of the proposed COM method.  

4) A large frame structure is used to show the potential of this new application, whose structural 

properties can be obtain satisfactorily even if the real mechanical parameters are perturbed by 

random numbers in order to simulate measurement errors. The results show that the flexural 

stiffness of all elements can be estimated with errors smaller than 8%. 

5) A machine learning decision tool, based on Decision Trees, to help building the best-

combined strategy of SHM and SSI that can result in the most accurate estimations of the 

structural properties is proposed, and a combination of COM and CART algorithm is used for the 

first time.  

6) Decision trees are firstly applied to investigate the influence of several variables (bridge 

layout, span length, measurement set, and weight factor) involved in the SHM+SSI process on 

the error estimation of the parameters in a general structure. This helps in the identification of the 

best sensor deployment and weight factors to be used in the objective function 
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7) The verification of the method with a real bridge with different levels of damage shows that 

the method is robust even in the case of identification of the structure with a high damage level, 

showing the SHM+SSI strategy that yields the most accurate parameter estimation. 

8) In order to get the minimum uncertainty in the identified parameters, the sensor deployment 

should take into account the measurement accuracy and the location of the unknown structural 

parts to get the maximum of information with minimum uncertainty from the input parameters, 

thus avoiding redundant information from the measurement set, what in some cases can derive in 

more uncertain results. 

9) The best measurement set is not a stable set and it depends on whether the epistemic 

uncertainty is involved or not.  The effect of epistemic uncertainty in the objective  of trying to 

gather maximum information from the test cannot be ignored when defining the experimental 

campaign 

10) The UQ analysis by COM is verified by a reinforced concrete beam and compared with the 

Bayesian method. The COM approach is better than the Bayesian method,  even considering that 

the epistemic uncertainty is involved. 

6.2 Future research 

The future research lines are summarized as follows. 

1. The approach of COM (Constrained Observability Method) as formulated in this thesis does 

not consider the modeling error, such as the error introduced when making wrong assumptions 

on the support conditions. The future research can be extended towards this direction.  

2. The decision tree algorithm proposed in Chapter 4 can be extended by adding different SSI 

methods to select the ones providing the most accurate results in each case. In addition, the 

operational effects due to traffic in the bridge on the final results were not considered in the 

present example and are a future line to be explored. The development of the SHM+SSI strategy 

for more slender structures is also worth of further investigation.  

3. The implementation of the observability technique to the dynamic eigenvalue equation may 

not provide enough accurate results when dealing with real structures, either because of the 
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existence of damping or torsion, which have not been considered in this work. To do so, the 

general dynamic equation should be used and its applicability studied. 

4. The identification of the structures presented in this work is based on measurements obtained 

numerically with a Matlab program. However, to further check the reliability of the proposed 

method in real structures, more cases using dynamic measurements taken on site should be 

analysed.  

5. The sensor optimal placement based on the dynamic Constrained Observability Method (COM) 

needs to develop further based on some sensor placement guidance in this thesis.  

6.3 Related works and publications  
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Appendix 1. List of symbols and notation 

Symbol Significance 

 
  
   

     
   
  
   

    
       
    

    

  ̃ 

  
  
   
   

   
Lj 
   

  
  

  
   
   
    
  
    
    
    
   
   
  
   
    
    
   

    
   
     
     
  
   
  
   

 

Total coefficient matrix 

Coefficient matrix of     mode 

Coefficient matrix from the last recursive step by OM 

Coefficient matrix from the last recursive step by COM 

Total constant vector  

Constant vector of     mode 

Constant vector from the last recursive step by OM 

Error level in the measurement 

Axial stiffness of     element 

Flexural stiffness of     element 

Hypothetical measurement frequencies 

Vector of forces 

Stiffness matrix 

Modified stiffness matrices of static analysis 

Modified stiffness matrices of     mode 

Length of     element 

Mass density of     element 

Mass matrix 

Modified mass matrices of     mode 

Number of boundary condition 

Number of nodes 

Null space of B 

Total number of modes considered 

Horizontal displacement of     point and     mode 

Vertical displacement of     point and     mode 

Rotation of     point under     mode 

Weighting factors of squared frequencies 

Weighting factors of mode-shapes 

Total vector of OM unknowns  

Vector of unknowns of     mode 

Vector of homogeneous solution 

Vector of unknowns from the last recursive step by OM 

Particular solution 

Total vector of COM unknowns 

Coupled variables unknowns 

Subset of new identified singles variable 

Single variables unknowns 

Vector of displacements 

Vector of knowns and unknowns of static analysis 

Squared sum of the residual 

Mode-shape vector under     mode 
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Measured mode-shape vector under     mode 

Estimated mode-shape vector under     mode corresponded to measured 

nodes 

 

Modified modal shapes for the part of stiffness and     mode 

Modified modal shapes for the part of mass and     mode 

Theoretical circular frequency under     mode 

Measured frequencies,  ̃ 

Differences between the measured,   ̃, and the estimated 

Arbitrary real values that represent the coefficients of all possible linear 

combinations 

Hypothetical measurement 

Theoretical values (frequencies/mode shape)    

A random number following a normal distribution 

 

Error-index 

Response variable 

Set of sample indices before splitting 

Set of sample indices for which the split test is true 

Set of sample indices for which the split test is false 

Estimated parameters 

A matrix containing the eigenvector 

Total number of measurement point 

Number of mode shapes of interest that are used for the analysis 

Effective independence distribution vector of the candidate sensor set 

 

 

A normal distribution,   is the mean,   is standard deviation 

Density  
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Appendix 2. Code of decision tree drawn 

function DecisionTress_v1 

%decision tress serves for both, (a) classification (fit) and (b) prediction 

(regression) 

clc 

close all 

clear  

 

 

%% Generate data 

var_lab={'Layout','M_Set','L_span','W'}; %%%%%%% 

lay={'pin-pin','pin-fix','fix-pin','fix-fix'}; %%%%%%% 

mset={'A','B','C'}; 

span=[50, 55, 60]; %(m) 

weigF=0.5:0.1:0.9; 

categ=[1,2]; %categorical variables 

 

% Load data 

load('data.mat','data') 

 

 

%% Fittig Decision tree 

DT_fit(data,var_lab,categ,16) 

 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function DT_fit(data,var_lab,categ,nsplits) 

%% Create regression tree (binary type) 

%categ is a vector indicating the position of the categoric variables 

  

tree = fitrtree(data(:,1:end-1),data(:,end)/2,... 

    'PredictorNames',var_lab,... 

    'CategoricalPredictors',categ,... % indicate which are categorical    
    'MaxNumSplits',nsplits) % limit the number of branches 

Default=10. 

view(tree) % text description 

view(tree,'Mode','graph') 

tr=view(t) 

inspect(tr) 

allHandles=findall(tr,'Type','text')  

set(allHandles,'FontSize',16) 

end 
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Appendix 3. Publication 

 

 


