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Resumen

En la Industria de Proceso, como en otros ambitos, la toma de decisiones se basa
en la valoracion ddas consecuencias de dichas decisiones a través de modelos
(implicitos o explicitos). La escala y complejidad de los modelos necesarios dependen
de la complejidad del proceso, del nivel jerarquico al que se toman las decisiones (p.
ej.: gestion de la cada de suministro, planificacion de proceso, programacion de
operaciones, control,é) vy del horizonte
basados en principios basicos (First Principle Motéi®M) habitualmente permite
predecir con precision el compamiento de un sistema y llevar asi a decisiones
fundamentadas y explicables. Sin embargo, su uso se ve obstaculizado por problemas
practicos, dado que en ocasiones requiere célculos iterativos aun sin tener garantizada
su convergencia a una solucion fakdi Estos problemas son mas frecuentes a medida
gue se desciende en la jerarquia de toma de decisiones (p. ej.: control supervisor),
especialmente si la resolucidén (optimizacion) del sistema implica muchos calculos de
simulacion utilizando un FPM complejp. ej.: altamente no lineal, involucrando
variables enteras, etc.). Una forma de superar estas dificultades consiste en aplicar
t ®cni cas basadas en fAimodel os subrogadoso
recopilados del proceso real, de datav@mente simulados (utilizando un FPM), o
de una combinacion de ambos. Aunque estos modelos se utilizan en muchas areas, en
el &mbito de la ingenieria quimica habitualmente se emplean solo para el disefio de

procesos y en sistemas de optimizacion de eststdgionario.

Esta tesis presenta un marco para el uso eficaz y eficiente de modelos
subrogados, construidos mediante técnicas de aprendizaje automatico, en la toma de
decisiones en diferentes fases de la operacion, el control y la optimizacion de un
proeso. En este contexto, el Capitulo 3 presenta una metodologia para la optimizacion
de la operacién en estado estacionario de procesos no lineales. El Capitulo 4 propone
la utilizacion de metodologias basadas en el aprendizaje automatico en problemas de
optimizacion de operaciones sujetas a incertidumbre (optimizacion multiparamétrica).
El Capitulo 5 extiende este planteamiento a la construccion de sistemas de control
predictivo (MPC) explicito de procesos no lineales. ElI Capitulo 6 propone una
metodologia pra la construccion sistematica de modelos subrogados en sistemas

dinamicos ndineales multivariable, metodologia que se aplica en el capitulo 7 a la
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de optimizacion de procesos dindmicos (control 6ptimo de sistemas no lineales en
estado no estacionariolesta misma metodologia se integra en el Capitulo 8 con
técnicas de clasificacion para su aplicacion a la deteccion y diagnosis de fallos (Fault
Detection and Diagnosts=DD) de sistemas dinamicos multivariable. Finalmente, en

el Capitulo 9 se presentdplicacion de estas metodologias para el entrenamiento de
sensores vsehsalese) (fisebitaplicaci-n a pr
gue trabajan con condiciones iniciales cambiantes. Cada una de estas aplicaciones, y
los prototipos resultaes, se han plateado después de una cuidadosa revision de las
aportaciones mas recientes en estos campos, que ha permitido identificar las
dificultades para la implementacion de las técnicas existentes en sistemas practicos de
soporte a la toma de decisieng la forma de superar estas dificultades mediante la

utilizacién de modelos alternativos, que se resumen en el Capitulo 1.

La eficacia de las metodologias desarrolladas se ilustra a través del andlisis de
su aplicacion a diferentes casos, tanto propsest esta Tesis como de referencia en
los diferentes dmbitos de aplicacion. Estos resultados han merecido su publicacion en
diferentes revistas cientificas de primer nivel, asi como su difusiébn a través de

congresos internacionales, incluidas dos conteasrde invitadas.
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Abstract

In the chemical process industry, the decisimaking hierarchy is inherently
modetbased. The scale and complexity of the considered models (e.g., enterprise,
plant or unit model) depend on the decisinaking level (e.g., suppighain
management, planngn scheduling, operation) and the allowable time slot (weeks,
hours, seconds) within which model simulation runs must be performed and their
output isanalyzedto support the decision making. The use of Higklity models,
which include detailed physidsased description of the process, is attracting wide
interests of the process engineers. Since, these First Principle Model (FPMs) are able
to accurately predict the rebkehaviorof the process, leading to realistic optimal
decisions. However, their use ihindered by practical challenges as the high
computational time required for their simulation and the unguaranteed reliability of
their consistent convergence. The challenges become prohibitive at lower levels of the
decisionmaking hierarchy (i.e., opation), where decisions are required online within
time slots of minutes or seconds entailing lots of simulation runs using such complex
and highly nonlinear FPMs. Surrogate modelling techniques are potential solution for
these challenges, which relies daveloping simplified, but accurate, datdaven or
machine leming models using data generated by FPM simulations, or collected from
a real process. Although, there are progressive developments of sulragade
methods in the chemical engineering atlkay are concentrated in process design and

steadystate optimization areas.

This Thesis presents a framework for the proper and effective use of surrogate
models and machine learning techniques in different phases of the process operation.
The objectivas to provide efficient methodologies, each supports the decision making
in a specific phase of the process operation, namely; sttatty operation
optimization, Model Predictive Control (MPC), multivariate system identification and
multistepahead predtions, dynamic optimization, Fault Detection and Diagnosis
(FDD) and softsensing. Each developed methodology is designated according to
careful StateOf-Art (SOA) review that identifies the gaps and missing requirements
to be covered. The SOA, identifigdps and the contributions of each methodology
are summarized in Chapter 1 and detailed in the introduction of each of the following

chapters.
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In this context, Chapter 3 presents a surrefated methodology for steady
state operation optimization of mplex nonlinear chemical processes modelled by
black-box functions. Chapter 4 proposes machine learbasgd methodologies for
multiparametric solution of complex operation optimization problems subjected to
uncertainty. Chapter 5 presents a d@aed mliiparametric MPC methodology that
enables simple implementations of explicit MPC for nonlinear chemical processes.
Chapter 6 proposes a dataven methodology for multivariate dynamiwodellingof
nonlinear chemical processes and for multistepad preidtion. Chapter 7 suggests
a dynamic optimization methodology for solving optimal control problems of complex
nonlinear processes based on dhtaen dynamic models. Chapter 8 shows a hybrid
methodology to improve FDD of chemical processes run undervamang inputs
based on multivariate dathiven dynamic models and classification techniques.
Chapter 9 presents dataven softsensing methodologies for batch processes
operated under changeable initial conditions. The effectiveness of the developed
methodologies is proved by comparing their performances to those of classical
solution procedures existing in the SOA, via their applications to different benchmark
examples and case studies. The promising results and their sound analysis allowed to
publishmany papers in tepanked journals and proceedings, and to present them at

several togranked international conferences including Keynote presentations.
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Chapter 1: Introduction

Within the framework of Chemical Process Operations, comjmateed simulation and
optimization tools have become estal suppors for any decisiormaking procedure. In
many cases, these tools are based on First Principle Models (FPMs) of the process, which are
used at the different operational levels to perform different functions. In order to address some
of the main challenges ththe use of these FPMmsed toolss currently facing, this thesis
proposes alternative/complementary strategies based on the use of surrogate models and

machine learning tools.

This first chapter presents the context of the thesis (Setti)nand the specific
challenges that have been addressed (Setinthen, it summies the stabf-art available
solutions for addressing these challenges in ordigfetatify the gaps and the missing needs
that will be covered by the thesis work (SectibB). After that, the chapter highlights the
thesis objectives (Sectioh.4.]) and contributions (Sectiofh.4.2, as well as the thesis

structure (Sectiod.5).

1.1 CONTEXT: CHEMICAL PR OCESS OPERATION OPTIMIZATION, ITS
MAIN MODULES AND THE IR FUNCTIONS

Process operation optimization is an important layer in the general detiaking
hierarchy of chemial plants management. It receives, as inputs, the outcomes and decisions
coming from higher level layer@.e., supply chain optimization, planning and scheduling)
(Marchetti, et al., 2014heseoutcomes and decisionsostlyinclude forecasts of prices and
demands, production rate targets over long time periods (weeks/days), assignment of resources
to activities (raw material allocation, tasks to units allocation, maintenance interventions,
staffing), sequencing of activitiemnd determination of starting and ending times for the
execution over short periods of tinjEluller, et al., 2017; Seborg, et al., 2018&hen, the
process operation optimization layer provides as ouiptiie realtime optimal values of the
process variables (i.e., pressures, flow rates, cooling temperatures, etc.) at the which the plant
and its units must operate to achieve the required performance, considering cajaditity,
safety and environmental restrictioand requirements and, more importantly, reacting to
sudden and unexpected variations of the process or external parameters (e.g., equipment
efficiencies, raw material characteristics, demand eif.jletailed and timely orders to the
basic equipment ctiol systems to implement actions to maintain the plant units functioning

at these segpoints (or reference trajectories) against expected disturbances (e.g., small
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fluctuation in the feed temperature) and iii) timely information about the process futityion
state, i.e., if it is functioning under normal or abnormal conations, and about the possible type

of fault that impatsthe process leading to these abnormal conditions.

Figurel.1 shows a schematic representation of the main modules/activities required for
such a task, their usual activation sequence and the scales of the prodelssconsidereit
each module, wherach module and its associated model scale are highlighted with the same
color. The following parts in this section discuss these main modules and the functions
performed by each of them.
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1.1.1 Steadystate optimization anduncertainty handling

The first moduleto be consideredn the usual process operatiodecisionmaking
sequences the steadstate optimization, which aims at obtaining the optimal values of the
process variables (temperatures, pressures, feed compositions, flowrates, valve opening, etc.)
at which the plant and its units must operate in order to maximize cegtfomrpance criteria
(e.g., efficiency, profit and/or operational cost) and to satisfy all the constraints (demand,
resources availability, equipment capacities, environmental restriction, etc.) and requirements
(product quality, production yields, safeggc.)(Vaccari & Pannocchia, 2017; Biegler, 2010)

This goal is achieved by solving, in real time, an optimization problem based on a detailed and
rigorous steadgtate model of the proce¢Shaq et al., 2019) Depending on the model
characteristics, such as its structure, transparency (e.g., white, greyhaachvailability of
derivative information, and on the formulations of the objective(s) and constraints of the
optimization probém, different algorithms can be used, like derivafree algorithms (e.g.,
Genetic Algorithms), where the explicit values of the objective(s) function are used to direct
the optimization search, derivatibased algorithms (e.qg., interior point algorig)imwhere

the optimization search is directed based on the derivatives of the objective(s) with respect to
the decision variablg$alback, 2004; Caballero & Grossmann, 20@8).

On another hand, the preseméaincertainty sources in the system at different levels is
unavoidable(Acevedo & Pistikopoulos, 1997; Li, 2010; Jiao, et al., 20iJuding model
inherent uncertainty, related to the lack of knowledgritithe exact values of model physical
parameters (e.g., kinetic rates, heat transfer coefficiéfieshming, et al., 2007; Norbert, et
al., 2017; Diangelakis, et al., 201 processnherent uncertainty, agsiated to fluctuations of
the operating practices (e.g., feed stream concentrations, temperatures, pressures, recipes,
processing time, equipment availability, equipment efficien¢lgsfin & Shuhaimi, 2010;
Papathanasig et al., 2019)as well as external uncertainty (e.g.: resources characteristics,

prices and demands).

The first type of uncertainty (i.e., modeherent) usually occurs in a slow and
continuous/evolving manner, leading to the increase of tlsenatch between the model
predictions and the real process behavior along the time. To minimize the pramis
mismatch, thevaluesof the model parametsrmust be updated in a systematic manner at
prescheduled periods of time (typically hour(s)) usiacpnciled estimates of the measured
steadystate data of the plant variablésadda, 2017; Biegler, 2010Yhese reconciled
estimates are obtained by applying data reconciliation and gross error detection techniques to

the real data collected by the sensors in order to reduce, respectively, the effect of random

4 Chapter 1introduction



errors and sensor faults (bias, drifting, miscalibratiotal failure, etc.JChaudhary, 2009)
Other technologies allow to directly estimate the new values of the model parameters within

the data reconciliation and gross error detection té€keudhary2009)

In contrast, the latter two types of uncertainty sources (i.e., prodement and
external uncertainty) may occur in a sudden and unexpected way. Hence, many methods have
been developed for handling these two types of uncertainty in a@ption problems, most of
them can be categorized into two main approaches: proactive and r@detiieaGonzalez,
et al.,, 2020) The proactive approach aims at providing conservative optimal decisions
minimizing the consequers of the uncertainty and variability on the performance measure(s)
of the system (i.e., objective function(g)ao, et al., 2012)Stochastic programming and
robust optimization are among the most populaethodsin the practive approach
(Grossmann, et al., 2018n stochastic programming methods, the uncertain parameters are
dealt as st oc hapmioridoknows prababdity distrilsutiow furictfons,indose
parameters are estimatedrh historical data. In this context, the goal becomes to identify the
optimal decision variables that maximize/minimize the expected value of the objective
function(s) and achieve feasibility over the distribution of the uncertain parartigt@10)

Robust optimization methods deal with unknown but bounded uncertain parameters and aim
at findingthe optimal solution that ensures the feasibility over the entire range of realizations

of the uncertain parametgidorbert, et al., 2017)

Onthe other handhe reactive approach is considered when it is necessary to, promptly,
provide online update of the optimal values of the decision variables in responsetitneeal
changes of thaincertainparametersvalue, which can bédentified once unveiledSince
reactive approaches require providing the optimal solution for each specific realization of the
uncertain parameters, they are preferred for the application in dynamic or online operation

environmentgPistikopoulos, et al., 2007)

Among the reactive methods, MuRiarametric Programming (MPP) offers outstanding
capabilities(Pistikopoulos, 2008)i) its solution provides simple mathercal expressions
mapping the optimal decisions (variables and objective) over the entire space of the uncertain
parametersiji) once the uncertainty is unveiled, the optimal decisions can be easily and
immediately calculated by these simple functions aagithuge computational cost required
by repetitive optimization procedure aiiig MPP is not only able to handle the uncertainty
related to the process conditions, but also to the optimization problem parameters (e.g., relative
weights or importance of fierent objectives). Therefore, MPP very well fits to the
requirements of dynamic production and operations environment (i.e., the thesis context)
(Pistikopoulos, et al., 2007)

Chapter 1introduction 5



1.1.2 Dynamic optimization

Transient statecan be exgrienced by continuous processes in situations likegbatt
shutdowns or transiti@between different operational conditions that may be caused by many
reasons. In these cases, as well as in batch processes, dgptimization (which is also
called @entloop optimal control) is, instead, carried out, considering a dynamic model of the
procesgBanga, et al., 2005; Wang, et al., 2Q10¥ynamic optimization techniques alldhe
identification in a fast and accurate waf,the optimal timeprofiles of the process control
variables that must be applied over a specific period of time (period of transition of a
continuous process or period of a batch process) in order to drive the procesztmitiee
state at the end of this time peri@legler, 2007) In case of continuous processes transitions,
the required state is a steastate, while in case of batch processes, it is typically the optimal
batch performancat the end of batch time (e.qg., to increase the production yield or to ensure
product quality).

1.1.3Model predictive control

After obtaining the optimal sgtoints of the plant, they are sent to the supervisory
control module and, subsequently, to the distatdicontrol module which are responsible of
implementing them and holding the plant units operating at thegpmist$ against expected
process fluctuations, such as feed stream concentrations, temperatures and [pkéssfines
& Shuhaimi, 2010; Papathanasiou, et al., 2019)the case of batch processes/units or
continuous processes in transient state, the optimglogets become optimal reference
trajectories, which the control system should track alongspeeifed time horizons (i.e.,
batch time, transition timeModel Predictive Control (MPC) technologies are, nowadays, the
backbone othe supervisory control modusein the chemicaindustries(Kouramas, et al.,

2011; Katz, etal., 2020) because they offer very efficient capabilities in front of other
technologies, such as proportional integral derivative controllers or linearized quadratic
regulators. MPC is capable of efficiently handimultivariable control problem$at involve
complicated interactions and relations between the process variables and treating constraints,
e.g., bounds on the maximum and/or minimum values of the control inputs or output variables
(Chaudhary, 2009) Additiondly, MPC allows to incorporate economical and even
environmental terms in the objective function of the involved optimization problem, such as
the cost associated to the profiles of the control inputs to be apphedidhay, 2009; Katz,

et al., 2020) In other words, the objective function considered in the MPC numerical
optimization problem is not just the error between the current state of the process and the

required state (the optimal s@bints or reference trageories).
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1.1.4 Fault detection and diagnosis

Additional to the different sources of process/model uncertainties and fluctuations,
whose undesired effects can be diminished by periodical parameter updating, repetitive steady
stead optimization and control schesn the process can be also affected by faults or
malfunctiongVenkatasubramanian, et al., 2003a; Venkatasubramanian, et al., . 200}
is an unexpected change of the process behavior with respect to itedxpmatal conditions,
which hampers the process normal operation causing unacceptable deterioration of its
performance that may even lead to dangerous operating condiatisn, et al., 1995;
Calado, et al., 2001)aults can be classified into three tyg¥®nkatasubramanian, et al.,
2003a; Park, et al., 2020)) sensor faults, which are, by terminology, related to the
malfunction or failure of the sensors, such as driftingcadibration, biases, and freeziig,
actuator faults that are associated to their inability to correctly interpret and convert the control
signals, received from the controller, into appropriate forces (e.g., motor torque) needed to
derive the systemush as control valve stuakpen and stucklosed, andii) process faults,
related to malfunctions in the process/units, such tank leakage, equipment damage, sever

unknown changes in feed streams characteristics, etc.

The Fault Detection and Diagnosis ([BP module plays an essential role in
guaranteeing safety and reliability of industrial processes operation, due to its ability of early
detecting faults occurrence and discovering their root céBaek, et al., 2020)This
cortributes to avert sudden shutdowns, breakdowns or even catastrophic events, and
eventually to avoid large economic losses due to production stop and/or replacement of spare
parts(Amozeghar & Khorasani, 20L6A FDD systermperforms two main functions: first,
detecting the occurrence of fault, as opposite to the process normal behavior and, second,

diagnosing the fault type or characteris{ieatton, et al., 1995; Narasimhan, et al., 2008)

1.1.5Soft-sensing

In order to perform the numerical analysis in most of the previously mentioned modules
of the process operations (e.g., MPC, FDD) and to obtain realistically effective/optimal
decisions, the availability of continuous and +i@e measumments of the process variables
(control/input and state/output) is a must. These-tree measurements are used to
continuously feed the model (e.g., values of the initial conditions of the real process state
variables are requideat each time step fahe solution of the MPC problem, real time values
of the process variables required to, continuously, feed the FDD system). But, for an important
class of process variables, which are called Quality Indicator Variables (QIV), online and
continuous measurants are not always attainable due to technological and/or economic
limitations (Kadlec, et al., 2009; Lin, et al., 2000n the contrary, in many cases QIV values

are obtained through expensive and tecoesuming offine sampling and laboratory analysis
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(Zamprogna, et al., 2005; Desai, et al., 20@8) a result, large laboratory delay and human
errors in the procedure may prevent reliable optimization, control, monitoring angisigrer

of the process (Liu et al., 2012).

Soft-sensing techniques have been proposed as a promising solution that has proven its
effectiveness in these situatiofKadlec, et al., 2009)Softsensors are computational
techniqus t hat provide online and continuous festim
exploiting the measurements of other variables of the process that are reliably and
continuously recorded online with minimum cost by means of the physical sensors network

(e.g, temperature, pressure, flowragepskins & Himmelblau, 1988)

1.2 IMPORTANCE AND CHALL ENGES OF THE USE OFPROCESS

FPMSIN CHEMICAL PROCESS OPERATION

This section explores the importance of the process models in the previemsigmad
process operation support modules, and highlights the challenges that frequently face and/or
hinders their usage.

1.2.1 Steady-state optimization and uncertainty handling

Regarding the steaeltate optimization module, there is a growing trend of using
detailed and highh i del i ty mat hemati cal model s of the pro
(FPMs)(Kajero, et al., 2017)However, the developmeaf such analytical models for most
chemical, petrochemical and pharmaceutical processes is a challenging task due to the required
deep knowledge, effort and time. As a result, specialized simulation software tools have been
developed to model and simulatech complex processes, most of them appearing in black
box modular style, e.g., Aspen and gPRQ@siirante, et al., 2018 heir ease of usage for
modeling comes with many practical drawbacks and computational obstaclesheheme
used for optimization, especially for largeale systemgNorbert, et al.,, 2017; Kelly &
Zyngier, 2017) For example, the optimization of a fsitale petrochemical plant (crude oil
and gas treatment facilityefinery, etc.) based on its FPM could demand several hours to
converge and, in many cases, it does not converge to an optimal s¢&diback, 2004;

Kajero, et al., 2017)The aforementioned drawbacks and obstanidade:

i) high nonlinearity due to the sophisticated phenomena typically involved in the FPM

(thermodynamics, reactions kinetics, heat and mass transfer, etc.),

i) expensive computational cost required for their simulation due to the complexity of
thesolution procedurée.g., iterative schemes and/or integration techniqueed to

converge thenm(Garud, et al.,, 2017)and also to the huge number of equations
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contained, e.g., a fuicale refinery model could contain mill®of equationgHenao
& Maravelias, 2011)

iii) complex architectures, since most of them appear to the user in modular black box
style involving intricate connections and recycles among the different units and, also,
with no accesso the embedded first principle equatid@aballero & Grossmann,
2008) and

iv) noisy calculations, which are introduced by these simulators (e.g., caused by the
termination criteria) and hinders the efficient use of \d¢ive-based optimizers,
because of the bad estimates of the derivatives and, consequently, the poor
optimization result¢Quirante, et al., 2018)

These obstacles and challenges can be easily magnified when optimization under
uncertainty must be addressed in order to handle prodesient and/or external uncertainty
sources. In more detail, gtochastic programming or robust optimization (i.e., a proactive
approach, see Sectidnl.l) are considered, additional challenges will inclidéhe large
computational cost associated to the analysidafgenumber of uncertainty scenarios, which
significantly grows withthe number of uncedin parametersii) the need of complete
knowledge of the characteristics of the uncertain parameters to identify their types and
probability distributions, which is unrealistic especially in dynamic environments and iii) the
limitation that the providedadution becomes suboptimal for most of the realizations of
uncertainties during the operation/product{@n 2010; Pistikopoulos, 2008n the other
hand,the application of the most flexible and reliable reactiverag@ch (i.e., MPP, which is
preferred in dynamic or online operation environments as the ones targeted by this Thesis, see
Sectionl.1.]) requires a weltontracted whitdbox model of the proces§Pistikopoulos, et
al., 2007) So, it cannot be applied when considering complex stsity FPMs characterized
by the aforementioned challenging attributes (highlinearity, black boxes, large number of

equations, noisy, etc.).

1.2.2 Model predictive control

In the MPC scheme, an online dynamic optimization problem (i.e., open loop optimal
control) is solved at each sampling period, based on a dynamic model of thes prostly,
the dynamic model is fed/updated by the current real measurements of the state/output
variables collected from the process, which represent the initial conditions of the model at this
sampling periodPistikopoulos, 2008 Secondly, the dynamic optimization problem is solved
to find the optimal profile of the control input variables over the entire prediction horizon (an
order of magnitude of sampling periodRivotti, et al., 2012) Then, only the values of the

calculated optimal control profile corresponding to the first sampling period are implemented
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in the plant, and at its end, the state/output variables are measured and their values are used to
set up the next open loop optimal tmh problem, and so ofirenny & Rawlings, 2004)
However, MPC technology faces a major challenge associated to the high computational effort
required to repeatedly solve the online open loop control problem at each samgldg pe

And the solution of an open loop control problem requires the repetitive evaluation of the
process dynamic model, which may become computationally unafforiadtie et al., 2020)

The situation becomes more challengiviten a complex and highly nonlinear dynamic FPM

of the process is to be considered, due to the complexity of the solution protedure
iterative schemes and/or integration techniguesguired to solve such FPM®avis &
lergpetritou, 2008)

Discretization techniques that transform dynamic FPMs from contiriroes(e.g.,
differential equationdased FPMs) to discretene representations and linearization
techniques that linearize the nonlinear behavior, are used toerd¢ioke complexity of such
differential models allowing their smooth usage in M@Nagy, 2007) Even with the use of
these auxiliary simplification methods (which typically implies additional effort, time and also
deep matematical knowledge and, also, leads to a decrease in the resulting model prediction
accuracy in favor of its simplicity), the application of MPC to such linearized discrete stat
space FPMs can fail when dealing with lasgale and/or fast dynamic proses(Katz, et al.,

2018)

1.2.3 Dynamic optimization

As previously mentioned, dynamic optimization techniques, waiellso referred to
as open loop optimal control techniques, must be performed when dealing with continuous
processes in transient state or batch proced3iedl, et al., 2006; Wang, et al., 2017)
Addressing a dynamicptimization problem requires an accurate dynamic Fé&fivthe
process/units, typically in the form of differential equations, which is able to predict the
evolution of the proceed output or state variables in response to any givegraiiite of the
control input variablegBanga, et al., 2005)The problem typically involves a multifaceted
objective, which is usually based on the final state of the system, but also on its evolution.
Two types of methods are considered in theesihthe-art for solving dynamic optimization
problems (Carrasco & Banga, 1997; Banga, et al., 200%)irect methods use the analytical
necessary conditions from the calculus of variations to formulate a boundaeypvablem,
which is usually very difficult to solve and requires a deep a priori knowledge of the nature of
the problem (initialization, constraints structure, etc.), so they are usually inapplicable to the
industrial practice(Srinivasana, et al., 2003Alternatively, directmethods discretiz¢he
considered time domain, so as to transform the original infinite continuous optimal control

problem into a finite constrained NonLinear Programming (NLP) problem, which is then
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solved by appropriate numerical nonlinear optimization tools (e.g., Sequential Quadratic
Programming (SQP), trust region sear(®anga, et al., 2005)n spite of their efficiency,
practicality and popularity, direct methods can be hindered by the complexity of a dynamic
FPM of the process, due to the demanding numerical techniques required for its solution (e.g.,

integration techniquegBiegler, 2007)

1.2.4Fault detection and diagnosis

Modelbased FDD approael have been widely used for chemical processes
supervisior(Venkatasubramanian, et al., 20Q3aithin which many FDD methodsavebeen
built on the basis of the dynamic statpace FPM of the process. Modheised FDD methods
rely on what i s n a me(Battof, atnah, 11994; iQm,a2b12hroaghu n d a n c
monitoring the extent of matchingetween the actual process measured features (e.g.
state/outputs variables, coefficients or parameters) and the corresponding features calculated
by means of a dynamic analytical model of the process, representing the normakoedault
features. This mults in error or residual signals between the medt@imated features and the
actual procesmeasured featurg®atan & Parisini, 2005; Isermann, 200%he values of
these errors indicate the extent of the procesin@ioning and, thus, they are used to detect
and diagnose faults, by comparing them to threshold values for the errors, or using a more
elaborated statistical analygRatton, et al., 1995; Narasimha al., 2008; Caccavale, et al.,
2010; Elhsoumi, et al., 2011Amongstmodetbased methodsbserveibased, parity space
based and parameter estimatitased methods are the most common. Mbdskd methods
show great advantages when dealing withealyic processes, where the monitored inputs and
outputs variables are fed into a processa@.,(diagnostic observer) that represents the
knowledge about the process dynamics in order to generate a fault indicator /(&sttoal,
et al., 1994; Elhsoumi, et al., 201However, they are associated with many shortcomings
that complicate their implementatigi'enkatasubramanian, et al., 20Q3&irst of all, the
difficulties to create an aacate dynamic FPMf the process should be considef@&dtakani,
et al., 2016a; Ardakani, et al., 2016c; Banu & Umab, 20%&fond, most of these methods
are based on linear stegpace models, whose ettivenesss reduced when applied to highly
nonlinear complex processes, because they result in poor linear approxdmation
(Venkatasubramanian, et al., 2003a; Serdio, et al., 2FFidally, applications addressing
large-scale processes would result in a high number of observers, which end up with solutions
requiring an unaffordable computational effort if they must be usedinen

(Venkatasubramanian, et al., 2003a)
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1.2.5 Soft-sensing

Finally, the early and traditional approach for seéinsing in chemical procesyely
on the use of dynamic FPMs that includes a detailed process description based on
phenomenological knowledgéLin, et al., 2007; Jin, et al2014) These FPMs are used to
predict/monitor the process behavior, either solely or using the information provided by
physical sensors (e.g., for continuously adjusting their parameters). However, as previously
mentioned, accurate and reliable FPMs chemical processes are often unobtainable,
especially for complex highly nonlinear ones because of the required deep knowledge about
the process behavi@iain, et al., 2007; Jin, et al., 2015)

Furthermore, the avable dynamic FPMs of the process/units are often developed
under the assumption of favorable (i.e., ideal) working conditions, which are typically not
encountered at industrial scale, which is characterized by uncontrolled disturbances, different
operatirg conditions, continuously varying parameters (e.g. heat transfer coefficients) and,
possibly, different units/reactors geometries, @in, 2012; Kajero, et al., 2017Also, since
the dynamic FPMs of the process/units typically do not consider the physical characteristics
of mechanical and electrical components, connections and piping, which remarkably influence
the real process, the accuracy of the FPlslsed sofsersors predictions are reducg¢adlec,
et al., 2009; Jin, et al., 2014; Ali, et al., 2015)

1.3 CHALLENGES TREATMENT METHODS, AND EXISTING GAPS

This Section summarizes the St&BArt (SOA) methods and techniquesed to
minimize the drawbacks and challenges of the use of complex FPMs in each of the
aforementioned process operation modules. Also, the sed#atifiessome ofthe existing
gaps with respect to the yet unresolved challenges of using complex FEUM& impplications
or regarding other cases in which process real measurements are available without having a
reliable FPM. Driven by these gaps, this Section also highlights the potential contributions of

the thesis.

1.3.1 Steady-state optimization and uncertanty handling

In order to tackle the challenges associated to the use of complex FPMs in chemical
processes operation optimization, the use of Surrogate Based Optimization (SBO) approaches
have been proposed and received a big deal of attef@onante, et al., 2018Roughly
speaking, the basic idea of SBO is to use the original complex FPM for generatingLitpuut
data points (Acomputer experimentso) 1+ hat are us¢

running, datadrive n model s (fAsurrogate model so), which are
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in optimization problemOchoaEstopier & Jobson, 2015)Jn mostof the SBO methods
proposed in thehemical procesengineering areawo surrogate modi¢ypes have been
common choices, which ardne Artificial Neural Networks(ANNs) and kriging moded
(Kajero, et al., 2017)ANNSs offer universal and powerful approximation capabilities due to
their flexible structure that can be adapted to capture complex nonlinear behaviors. On the
other hand, krigings able toprovide high prediction accuracy with relatively smaller number

of training data points, besides outstandingcapability ofestimaing an error or variance,

which representtheuncertainty about the kriging model prediction. Nevertheless, in the SBO
literature(Jones, eal., 1998; Jones, 2001; Zuhal, et al., 20i%as been demonstrated that
nonrinterpolating surrogate models (i.e., regression models, such as ANN) are unreliable in
optimization, because they do not appropriately capture the shape of the functen
approximated, and it is usually better to use surfaces that interpolate the data with linear

combinations of basic functions (e.g., kriging).

In the chemical process engineering area, two main classes of SBO methods can be
identified. The first clasis based on partitioning the simulation model into different units or
subgroups of units, for each of which a surrogate model is developed. The different surrogates
are aggregated/linked to constitute the final approximate model of the process, hakaghon
different optimization schemes have been design@galback, 2004; Henao & Maravelias,
2011; Quirante & Caballero, 2016; Quirante, et al., 20b8nost of thee caseghe surrogate
modebk must be retrained in each iteration with completely new datasets genetrtiieEmRi
simulation This isbecause of the continuous modification of the surrogate models input
domains during the optimization search as a consequence of shrinking theaseayeach
iteration, around the current/candidate optimal solution (i.e., refining the optimization search),
in order to guarantee the accordance between the output domain of each surrogate model and
the input domain of the subsequent/connected surrofiadeadvantages of this class of SBO
methods includé) the capability of handling larggcale systems by splitting them into small
units/sections (i.e., surrogate models) @pthe possibility to construct hybrid process models,
which combines units osections of the plant based on their simple and fast FPMs (e.q.,
splitters, pumps) with surrogate models of other complex units or sections (e.g., distillation
columns, reactors). Whereas their limitations are that they iteratively discard the previous
training datasets and generate new sets for fitting new surrogate models, which can be
computationally prohibitive in an online environment. Also, they do not consider the surrogate
models uncertainty during the optimization seaesigevenwhen krigingsurogate models

are usegthey do not exploit the potential capabilities provided by their estimated variance.

On the contrary, the second class of SBO metkigdkner & Realef, 2002; Kempf, et
al., 2012; Chia, et al., 2012; OchB&atopier & Jobson, 2015; Och&astopier, et al., 20183
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based on the development of a global surrogate model approximating the entire modular
simulator or the flowsheet of the process. In more details, the iamak output variables of
these global surrogate models are selected over the entire proceshdkvas the variables

of interest for the optimization problem formulation (i.e., variables representing the
optimization decisions (input) and variables diingng the objectives and constraints
(outputs)). During the optimization iterations, these global surrogate models are retrained with
an updated dataset that includes the original training dataset and, in addition, very few points
that represent infornti@an about the optimal solution obtained in the previous iteration. The
advantages of this class of SBO methods iartiey take into account the surrogate models
prediction uncertainty (i.e., the predictors error), which is an essential need itJSBE3,

2001; Zhang, et al., 2018)) they add efficient global exploration capabilities to the search
mechanism by not only directing it to the minimum value of the objective predictor, but also
to its maximumpredction error (Zuhal, et al., 2019)iii) the eventually obtained global
surrogate model of the entire process/plant can be further exploited and used for different
analysis(Kempf, et al., 2012andiv) relatively few simulation runs of the original FPM are
required for updating the surrogate models during the optimization €archster & Keane,

2009) which makes this SBO class more suitable for online apigitaNevertheless, this

class has some drawbackschas the difficulty to construct global surrogate models that
accurately capture the behavior of lasgale processes and, more importantly, the difficulty

of handling constraints.

In the SBO literatur¢Jones, et al., 1998; Jones, 2001; Zuhal, et al., 2a18s been
shown that even if an interpolating surrogate model is used (e.g., kriging), exploring the
surrogate with an arbitrary optimizer cail &ven to find local optima, because the surrogate
model prediction uncertainty is not considered by the traditional optim{Zeeng, et al.,

2018; Zuhal, et al., 2019 onsequently, there is a need for SBO metlugdes that do not
only consider the surrogate model prediction, but also consider the uncertainty about this

prediction.

On another side, the previously discussed sudden and uncertain variations of some
process parameters poses more challenges toetidystate operation optimization, and can
harm the effectiveness of such SBO methods, bet¢hase surrogate models are trained by
data generated from a FPM whose parameters are set at predefined specific values that lead to
the best proceawnodel matchSo, any sudden change in the process parameters values makes
the surrogate modelre no longer valid and, consequently, the obtained optimal solution

based on their analysis.

Finally, up to the authérE nowl edge, t he | it eraopdsalsroe , yet , do

studies for reducing the challenges that face the applications of MPP approaches for handling
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uncertainty in the operation optimization of steatiyte processes for which the available

model is complex, highly nonlinear and/or black box.

1.3.2Model predictive control

In order to overcome the limitations and challenges of the high computational burden
required for solving the MPC problem when an expensive dynamic FPM of the process is
considered, explicit MPC methods (also called MultiParam#tiR€ (MP-MPC)) have been
proposedPistikopoulos, 2008; Tian, et al., 2020)

Explicit MPC aims at avoiding the online computations, by solving the MPC problem
offline by means of a MPP formulation, which provides the smiti the form of very simple
and Aexplicitd mat hemati cal expressions abl e
inputs the should be applied the next sampling step, as a function of the current values of the
process state variabléRistikopoulos, 2008)The obtained explicit functions take, in most
cases, piecewise affine form, and act as explicit control laws that are employed online to
calculate in a very simple and computationally cheap way, the optimal valube abntrol

inputs.

However, again, further to the complex mathematical knowledge required to develop
the MPP analysi@Rivotti, et al., 2012)the availability of a dynamic discretiene linear state
space model of the proggis usually a necessity for the practical application of the explicit
MPC (Pistikopoulos, et al., 2002; Kouramas, et al., 20Th)s, again, may hinder the MP
MPC usage in cases where the available process dynamvicid=Righly nonlinear, high
dimensional, with a complicated structure (e.g., sequential simulation models) and/or black
box (Rivotti, et al., 2012; Medin&onzalez, et al., 2020Model approximation and order
reduction techniques have been proposgRivotti, et al., 2012) however, this may
oversimplify the processes behavior and, consequently, degrade the controller performance.

Additionally, the effort dedicated to this model simplificatistep should be also considered.

1.3.3Data-driven dynamic modeling for supporting control applications

In most control, monitoring and supervision systems (e.g., MPC, dynamic optimization,
FDD, etc.), a reliable and accurate dynamic model of the proceswableidly predict the
future values of the process outputs is a niNstles, 2001; Ali, et al., 2015As mentioned
before (Sectionl.2.2), discretization and linearization techniques may help to reduce the
complexity of dynamic FPMs and to obtain simpler disctiebe statespace FPM, however,
this may not resolve the computational challenges in cases ofskaigeand/or fast dynamic

processeéNelles, 2001; Boukouvala, et al., 201l) other cases, reliable dynamic FPMs for
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complex processes are not available, due to the limited knowledge about the sophisticated
behaviors and complex phenomena characterizing these processes (reaction kinetics, thermo
dynamic, etc.), while only real data collected from the process is availBbdelford, et al.,

2018; Ali, et al., 2015)

In both cases, system identification or ddtaven dynamic modeling methods can be
used to construct empirical dynamic models for predicting the future values of tlessgproc
outputs(Nelles, 2001; Baraldi, et al., 2013)he data used to build these empirical models can
be either generated from complex FPM simulations or measured from the real (i{afess
etal., 2017)

Many methods have been developed for linear dynamic system identification, but their
application to nonlinear processes provides unsatisfactory redugigy, 2007) As a
consequence, advanced ddtavennonlinear modelling techniques, such as ANNs (and their
derivatives, e.g., radial bast\Ns, recurrer’ANNS) and recently Gaussian Process (GP)
models(Zhou, et al., 2015; Mattosa, et al., 201fiave been widely ppmsed to capture

nonlinear dynamic relations between the nonlinear process inputs and outputs.

ANNs have become a popular choice due to their universal approximation abilities
(Himmelblau, 2000; Poznyak, et al., 2018)significant number of successful applications of
ANNs to dynamic modelling are reported over a wide spectrum of f{Ndes, 2001,
Masters, 1993; Himmelblau, 2000specially in the chemical process imegring area,
ANNSs have been extensively used as Nonlinear AutoRegressive eXogenous (NARX) models
for dynamic modelling and system identification of both univariate (single outidaty,

2007; Sadeghassadit al., 2018; Poznyak, et al., 20180d multivariate (multbutput)

systems(Adebiyi & Corripio, 2003; Caccavale, et al., 2010; Li & Li, 2015; Lee, et al., 2018)

But their usage has two mabnactical drawbacks) the large effort required to select a good

network structuréKajero, et al., 2017)ndii) the curse of dimensionalfyAg man & Koci j an,
2011)

Recently, GP models have showromising performance in dynamic modelling and
system identification in terms of high prediction accuracy and ease of their parameters tuning,
besides, their abilities to reduce the previously mentioned limitations of ADsenroth, et
al ., 20009; A § ma iThis&s diedoctheir ronparam@2tficinatgre: they do not
approximate the system by fitting the parameters of a selected structure or functional shape
but, instead, they search for relationships amdmgmeasured data through a correlation
function/model (Boukouvala, et al., 2011)Therefore, the number of the metamodel
parameters to be identifiad significantly low compared to other parametric models (e.g.,

ANNs models) and, consequently, the size of the required set of training data is significantly

16 Chapter 1introduction



reduced( Ag ma n & Ko cBepides) GP mdidsl offer highntog flexibility
(Boukouvala, et al., 2011; Rasmussen & Williams, 2006)

In most of the literature studies, GP models have been proposed for univariate dynamic
modeling of nonlinear chemical proceséeA g man & Koci j an, 2wetel; Zho
they are employed as NARX models to predict the future vabwer one stejahead of an
output of interest as a function of the process current inputs and output values. Togedieve
model is, then, used to perform multisegpead prediction via recursive calculation, where the
predicted output at the current time is-featk to the model as a part of its input for the next
time step prediction. Very few works have extended tlie &ad kriging capabilities to
multivariate dynamic modeling of chemical processes: Hernandez and QRIVED)
Boukouvala, et al(2011)and Bradford, et al2018) However, these works share common
limitations: i) they have been validated considering processes characterized by very
smooth/steady dynamics, without any influencing control/external infhigsnandez &
Grover, 2010)or with very simple changes in the(@oukouvala, et al., 2011)i) they
provided simple Markovian statpace models and they have not illustrated the ability of their
methodologies to develop dynamic models with delayed/laggeds,iii ) they presumed that
a FPM is always available, which is combined viidsign Of Computer Experimen8QCE)
methods to optimally select the training datasetsj\grile robustness of their methodologies
to handle different case studies, angittfiexibility to integrate different metamodel types are

not explored.

An efficient dynamic modelling methodology should be able to handle the challenges
usually encountered in real processes, whichiathe existence of many external inputs that
control or influence the process causing significant changes in its outputs behavlo,
possibility of incorporating lags in the model inputs in order to capture possible delayed
behavior of the process itself, and/or to compensate for missing m@gréSspinosa &
Vandewalle, 1998a; Espinosa & Vandewalle, 1998b) handling practical situations, in
which real data collected from the process is the only source of information available (i.e., no
FPM).

1.3.4Dynamic optimization

As previously mentioned in Sectidn2.3 direct methods are, in practice, the most
common techniques for solving dynamic optimization probl@mect methods are classified
according to the variables to be discretigdthng, et al., 2017)Sequential approaches (also
known as Control Vector Parameterization (CVP)) discretize only the control variables in the
form of piecewise low order polynomials, and then a NLP optimization problem is carried out

in the space of the discretized control variables, which requires the successive evaluation
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(simulation runs) of the dynamic FPM of the process during its solution. On the contrary,
simultaneous approaches discretize both control and state variables by apjmgsxtimean by

a family of polynomials on finite elementgDiehl, et al., 2006)so they avoid the inner
evaluation of the differential FPM, although they result in a NLP problem of a verydeatg

(due to the presence of wavariables together with the control variables as optimization
decisions (Banga, et al., 2005; Carrasco & Banga, 199Besides, they require the
introduction of extra constraints to enforce the continuity of therelized state variables
(Diehl, et al., 2006)

The sequential strategy is straightforward and relatively easy to construct and to apply,
and results in a NLP optimization problem of a much reducedGeasco & Banga, 1997;
Banga, et al., 2005; Diehl, et al., 2006; Biegler, 20BiBwever, a major challenge that faces
the sequential approach is the huge computational effort associated to a large number of
evaluations bthe nonlinear process modé&ince each evaluation implies the integration of
this differential model using expensive integration techniqashl, et al., 2006; Biegler,
2007) This challenge is amplified in caselsoomplex, largescale and/or highly nonlinear
problems(Srinivasana, et al., 2003nd the computational cost may become unaffordable if
a fast identification of the process control profiles is required, which is the caseanin
industrial applications (transitions between desired operating conditions, response to sudden

disturbances or unexpected events, model based contro{(Nztgy), 2007)

With respect to the simultaneous strategig, iitot facing direct complications regarding
the default/classical use of FPMs (i.e., simulations and the required computational time),
because they discretize both the control and the state variables. However, they face obstacles
associated to the vergrigescale of the NLP problem resulting from this discretization, which
includes a large number of equality and inequalities constraints and a potentially large number

of degrees of freedofBiegler, 2007)

Finally, it is wort highlighting that, in the chemical engineering area, the use of data
driven techniques has been rarely proposed in the literature to support dynamic optimization

tasks.

1.3.5Fault detection and diagnosis

In order to cope with the challenges associate to the use of FPMs for FDD of chemical
processes (Sectiofh.2.4, knowledgebased and datdased FDD approael have leen
proposed and, also, widely used as powerful alternati¢@alado, et al., 2001;

Venkatasubramanian, et al., 2003b)
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Knowledgebased approaches rely on the development of some diagnostic rules and the
establishmendf rule-based expert systepwhich necessitate a deep knowledge about process
structure and components under the normal (faedt) and the different possible faulty
situations and scenari¢€alado, et al., 2001However, kowledge acquisition is generally a

challenging taskCalado, et al., 2001)

The databased FDD approaches rely on using dhiiteen Classification Techniques
(CTs), e.g., Support Vector Machines (SVMs), Gaussian Naive Bayssifiels (GNBS),
Decision Tree (DT), ANNs, etc. These approaches have shown a great flexibility and
robustness for the FDD of nonlinear chemical processes without requiring any mathematical
model of the proces¢Askarian, ¢al., 2016; Ardakani, et al., 2016d)hese CTs are trained
based on pattern recognition principles from process historical data, including information
about normal and different faulty situatioff®atton, et al., 1994Yhen, the trained CT can be
used for the process supervision in order to detect and diagnose possible faults from the process

output measurements.

However, these CTs also suffer from serious limitations. The first one is that the
classification of faultss based only on the measurements of the process outputs, disregarding
any knowledge about the system dynami¢accavale, et al., 2010As a result, they are
mostly used for FDD of steaebtate processes, where the processpected to operate under
constant conditions/contro{fatton, et al., 1994; Amozeghar & Khorasani, 2008jile it is
usually considered that, in dynamic systems, €dsld easily produce false alarms by
diagnosing th changes in the processes outputs as faults. This is due to the lack of information
about the dynamics governing the relation between the process inputs and outputs. The second
limitation is the sensitivity of the CTs to the measurement noise, which riakesrors that
very often contaminate the measurements to create false diagnosis and alarms. These usual
errors may be random (e.g., sensors white noise) or not (e.g., outliers / biases due to
instruments malfunctioning, migslibration or poor samplingPatton, et al., 1994; Ardakani,
et al., 2016h)

Therefore, some works have proposed the use ofdiaten dynamic observer
(mostly, based on ANNSs) to mimic the system dynamic behavior, identifying the underlying
dynamic mapping between the system inputs and ouploisggui, et al., 2014; Smarsly &
Petryna, 2014; Seial et al., 2014; Tayaraf. & Khorasani, 2015; Amozeghar & Khorasani,
2016) These approaches generate a residual vector between thdrivitta observer
estimated outputand the process measured outputs which are then used to detect and isolate
faults using a threshold value for each residual component or applying some statistical

analysis.
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Few workgAmozeghar & Khorasani, 2018ave combined these ddiased predictors
(and the generated residuals) with @dautomate and improve the FDD task. However, in
most of these works, CTage trained to isolate each fault type when the residual component
of a specific output exceeds a specific threshold value. This approach neglects the basic and
most important charaaistic of any CT, which is its ability to identify a certain pattern in the
features (i.e., residuals), regardless of the specific values of the pattern. Furthermore, the
identification of a specific threshold value for each residual component as antheditor is
not a trivial task, as it requires a prior knowledge about the process nominal behavior besides
its behavior under the effects of the fault, and may be even infeasible if scenarios with time
varying inputs are considered.

1.3.6 Soft-sensing

Datadriven softsensing methods have been proposetfo, to alleviate the
complications encountered when using FPMs forseffising in chemical processes. They
gaining wide interest in the process industry, because of their practicability, robustness and
flexibility to be developed and applied to a wide range of processes, in addition to their
independence from the need to a process mathematical fRlod&ins & Himmelblau, 1988)

They are based on the construction of a-dateenmodel able to accurately approximate the
relation between the QIV and other online varialfBenne & Jorgensen, 2004; Facco, et al.,
2009)

In the literature, datdriven softsensors have been vastly applied toticwous
processes, in order to predict the process stetdg behavior, although they have shown
limitations dealing with the transient states of the process (e.g-uptamd shutlown)
(Facco, et al., 2009; Wang, @t, 2016) Comparatively, the development and application of
databased sofsensors to batch processes, which are always in transient state, have been

found to be relatively more complicat¢Bonne & Jorgensen, 280Liu, et al., 2012)

In this scope, the combination of principal component regression and partial least
squares techniques is the most common method for buildindpdsg¢al sofsensors for linear

processeglin, etal., 2014; Zamprogna, et al., 2005)

With respect to nonlinear processes, ANNsed approachdMasters, 1993have
been often adopted, due to their universal approximation and efficient generalization
performance(Yan, et al.,, 2004; Kadlec, et al., 2009everal types of ANNs have been
efficiently applied for sofsensing, as feedforward ANNSs, radial basis ANNs and fuzzy ANNs
(Nelles, 20Q; Nagy, 2007)These applications, however, reported the ANNs problems such

as the required laborious effort for selecting the network structure and configuration (e.g.,
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number of layers, number neurons in each layer, transfer function type, traiathgd)
(Azman & Kocijan, 2007; Davis & lerapetritou, 2007)

The Support Vector Regressions (SVR) model has been also proposed-$ensofy
in batch processeran, et al, 2004; Desai, et al., 2006; Kadlec, et al., 208¥R techniques
have very good generalization properties and quickness of tuning (associated to the
optimization problem solution time for the support vectors selec(dai)n, et al., 2007;
Kadlec, et al., 2009However, the effort and the time required to select the parameters of the
SVR modeli prior to the optimization as the penalty cost, the error margin and the variance
become a major limitatiofForrester, et al., 2008)

Recently, GP models are attracting huge attention in thessoéing of batch processes
area, and have been applied either to continfo@r bi | , et a&l, 2016;4i0,13; Wa
et al., 2016)r to batch processeflin, et al., 2015)offering high prediction accuracy and
tuning flexibility while requiring a relatively small set of the training data. But the
computational effortad capabilities required for the GP model parameters tuning could be a
serious shortage, especially for high dimensional cases and/or large training datasets. The
kriging modek (Krige, 1951; Kleijnen, 2017) which are considered as specific
forms/applications of the GP moddisvenever been introduced to the area of the seffising

of batch chemical processes yet.

Most datadriven softsensing approaches for batch processes proposed in the literature
have not conslered the initial conditions of the batches in their designtethey have been
tailored for batch processes operated under fixed initial condifidrese approaches have
addressed the battbrbatch data variabilitydue to a very slight change in theitial
condition from the uncertainty and noise perspectives: wmuiput training data from
different batch runs are assumed to have random errors due to undesired disturbances, which
are expected to be representative of a population of batchestkataaming around the mean
behavior of the process or what i s(Kaded, | ed t h
et al., 2009) Then, the correct underlying process behavior can be identified, thanks to the
regularizaion abilities of the employed machine learning techniques, which enable them to

learn from this uncertain and perturbed data, and to filter out the assumed noise.

1.4 OBJECTIVES AND CONTR IBUTIONS

This Section states the general objectives of the Thesiddiéct.1) and delineates
the specific contributions (Sectidn4.?) that the thesis presents in order to realize/constitute

these objectives.
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1.4.1Objectives

Directed by the challenges and criticalities facing the use of FPMs in chemical processes

optimization, supervision and control (Sectidr?) and the defined gaps in the SOA

methodologies for treating these challenges (Sedti8) this secthn delineates the main

objectives of the thesis.

i

i

i

i

i

Objective 1: the implementation of different stabé-art techniguefor DOCE and
sequential sampling, dataiven models (also referred to atepending on the usage
context machine leming models, metanutels or surrogate models) and model validation

and assessment procedures.

Objective 2: the development of a framework for déiased modeling of steadyate
processes, which integrates the previously implemented techniques and methods (in
Objective 1). his framework is aimed at the flexible and robust construction of accurate
machine learning or surrogate models of different types, and also the comparison between

them, to select the best surrogate model typthfecase stugto be addressed.

Objective 3: the development of new methods for steathte operation optimization of
processes based on surrogate models, which enable the optimization of complex chemical
processes that are difficult to be optimized through existing/classical optimization
methods These difficulties can be due to the complexity and high nonlinearly of the
process model and/or the existence of uncertainty in some of the process model

parameters.

Objective 4: the development ofraefficient and generic framework for dataiven
dynamic modelling and emulation of multiinpuultioutput, complex and nonlinear
chemical processes. The framewshould beaimed at providing dynamic models able to
accurately and speedily predict the future behasidhe process outputs over large time

horizons.

Objective 5: the integration of these datlniven dynamic models in efficient
methodologies for the enhancement of the process monitoring (e.g.,-serssifig
methodology), control (e.g., a dynamic optzation methodology) and supervision (e.g.,

a FDD methodology).

1.4.2 Thesis contributions

This section defines the specific contributions that this thesis presents in order to cover

the gaps and missing requirements highlighted in Sett®®lso, the relatioabetween each

contribution and the previously stated objectives are outlined.

22
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Figure 1.2 illustrates the locations of each contribution with respect to the process

operation modules and associated process model scales.
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Figure 1.2. Localization of the thesis contributions (red arrows) withindlazess

operation modules and associated process modes scales.

1 Contribution I: development of a SBO methodology for the constrained

optimization of complex, nonlinear steastate processes, in which the

objective function and/or the constraints are represented by {laxknodels.
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The methodology expands the capabilities of tieersd class of SBO methods

by efficiently handling constraints, aisiaimed to assist in the hotw-hour or
dayto-day operation optimization of complex chemical processes
guaranteeing the reliability of the computations and the quick convergence to

the optimal solution. This contribution is related@bjectivesl, 2 and 3.

Contribution _1I: a novel, easwpplicable and generic datdriven

methodology for the multiparametric solution of continuous and mixed integer
optimization of chemical processes opera, influenced by traceable
uncertainty sources, has been developed. The methodology is aimed at
providing very accurate and fastnning databased model¢referred to as
MultiParametric Metamodel§MPMs)) that approximate the multiparametric
behavior of the optimal solution over the uncertain parameters space. The
purpose is to overcome the obstacles that face classical MPP when applied to
process operation optimization problems, where complex, highlyineanl
and/or blackbox models are used. This contribution is also related to
Objectivedl, 2 and3.

Contribution 1ll:_ it consists in the development of a novel BRtesed
MultiParametric -Model Predictive Control (DBMMMPC) methodology,
which enables sini@ implementations of explicit MPC in situations when the

available dynamic FPM model of the process is complex, highly nonlinear
and/or blackbox, and/or when the deep mathematical knowledge required to
develop traditional MPAMPC techniques is not obtaibke. This contribution is
related toObjectivesl, 2 and5.

Contribution IV: development of a dat@riven methodology for multivariate

dynamic modeling and multistgnead prediction of nonlinear chemical
processes using machine learning models. The mieittercomeghe main
limitations currently attributed to the existing approaches in terms of a) the
ability to provide accurate datdriven dynamic models for general muilti
input/multiroutput processes that may involve complex dynamic behaviors
(complex catrol input profiles, delayed behaviors, etc.), b) the ability to
simulate the process future outputs over large time horizons, c¢) the capability
to accommodate different types of data modeling techniques and d) the ability
of handling different situationgither when a limited set of inpatitput data
signals are available, or when the training data can be optimally generated
using a FPM and DOCE techniques. The methodology also introduces the use

of the kriging model for the multivariate dynamic modelimghe chemical
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process field in a robust and flexible manner. Finally, the methodology provides
a novel DOCE procedure for dynamic modeling, considering the purpose of the
simplification and complexity reduction of expensive dynamic FPMs. This

contribution is related tdbjectivesl, 2 and4.

1 Contribution V: development of a datdriven CVP methodology based on

multivariate dynamic datdriven modelsdontribution 1V) and a sequential
dynamic optimization strategy. The methodology is aimed at enhancing the
solution of operoop optimal control problems in situations where a complex
FPMs of the process is to be used and also to assist in situations where a
reliable dyramic FPM of the process is not available. This contribution is
related toObjectivesl, 2 and5.

1 Contribution VI: involves the development ofa novel hybrid FDD

methodology that combines a dynamic observer based on-ddeaém
multivariate dynamic modelgontribution IV) and CTs The purpose is to
improve the datalriven FDD of nonlinear chemical processes operated under
timevarying inputs and, subjected to different types, severities and styles
(abrupt and incipient) of faults his contribution is releed toObjectivesl, 2,

4 and5.

1 Contribution VII: includes, first, the development of a w=#hsing

methodology for a special type of batch processes that is rarely explored in the
area of softsensing: those batch processes that show a characterized
variability in their initial settings or conditions (processes aiming to manage
raw materials whose specifications or properties differ from one batch to
another, or when different product qualities/quantities are to be generated).
Hence, the objective is tievelop a sofsensor able to estimate the QIVs along
the batch run under any set of initial conditions in the expected operating range.
Second, development of an efficient-seftsor for a real batch pilot plant for
waste water treatment, which invohasAdvancedOxidation Process (AOPS)
based on the photeenton reaction. Due to the complexity and high
nonlinearity of these processes, the best way to address their analytical or
phenomenological modeling is still under debate in the scientific androtsea
community; while many dataased modelling studies of these processes have
been accomplished from the point of view of experimental design in laboratory
scale, their monitoring and control have been never addressed from-a soft
sensing perspective, i.at industrial or pilot plant scale. Third, exploring the

advantages of the kriging techniquas a kind of GP metamodelf®r soft
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sensing in the chemical engineering area. This contribution is related to
Objectives 1, 2, 4 and 5.

1.5 THESIS STRUCTURE

This section outlines the thesis structure, which is composed by additional nine

Chapters. Excluding Chapter 2 (tools and techniques) and ChaptamblLgionsand future

works), each of the remaining Chapters (from 3 to 9) addresses one of the contributions

previously delineated in Sectidm.2 Thaefore,theThesis structure is as follows:

1

Chapter 2 overviews the general basics of the tools and techniques usesl in thi
thesis for building and developing the novel methodologies. These techniques
include DOCE, machine leding models for regression (i.e., surrogate model),
machine leming models for pattern recognition (i.e., classifiers), clustering

methods and optim&ion algorithms.

Chapter 3 (Contribution 1) reviews in detail the literature of SBO of chemical

processes and presents a new SBO methodology for the-stadelpperation
optimization of complex nonlinear chemical processes, in which the objective
function and/or the constraints are represented by #iagkfunctions. The
proposed approach consists in replacing the complex, nonlinear;daack
model of the processes hubbased on first principles with global kriging
surrogate models. Then, an active optimization strategy involving a sequential
sampling procedure, based on the Expected Improvement (EI) (for
unconstrained optimization) or the Constrained Expected Improve(@&H)

(for constrained optimization) techniques, is used to explore the search space of
the decision variables and to adapt, accordingly, the surrogate models, so as to
reach a global solution for problem. The methodology is tested and compared
with classical optimization procedures based on sequential quadratic
programming. Both have been applied to three benchmark mathematical
examples and to two case studies of operation optimization of chemical

processes modeled by modular biack simulators.

Chapter 4 (Contribution 11) presents a general overview on the existing

methods for process operation optimization under uncertainty, and presents two
novel machine learningased methodologies for the multiparametric solution

of such problems. The first methoaddresses continuous optimization
problems, and aims at developing global MultiParametric Metamodels
(MPMs), which are trained using inpotitput data (uncertain parameters

optimal variables and objective), to approximate the multiparametric behavior
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of the optimal solutions over the entire space of the uncertain parameters. The
second method targets general Mbtateger optimization problems. The
method models the multiparametric behavior of the continuous variables by
using clustering techniques in orderisolate or highlight those potential local
regions of the uncertain parameters space over which the optimal solution
behaves significantly different. Then individual MPMs are trained to
approximate the optimal solution behavior of each continuousidlesiariable

over each of the identified local regions. For integer decision variables, the
method harnesses classification techniques to predict the optimal values of
these integer variables also as a function of the uncertain parameters. In both
methodsthe inputoutput data are generated through running the optimization
problem based on the original process FPM using-efedet optimizers several
times and considering different values of the uncertain parameters that are
selected by DOCE techniqueshd effectiveness and capabilities of the
proposed methods have been proven through their applications to different
benchmark examples from the MPP literature and to three cases studies of

process and unit operations optimization

1 Chapter 5 (Contribution Il 1) presents a DatBased MultiParametriModel

Predictive Control methodology. The proposed methodology is based on the
use of machine learning models which are trained offline using-owyput

data (initial state variablegptimal control variables) tabtain surrogate
models, acting as control laws that approximate the values of the optimal
control variables that must be applied along the future sampling period as a
function of the current state variables values. Then, during the online
application, theoptimal control is calculated through simple interpolations
using these surrogate models. The iapuiput training data are generated
offline by solving the open loop optimal control problem several times, each
using different combination of the initigtate variables values selected by a
DOCE technique. The method is tested with benchmark problems used in the
MultiParametrieModel Predictive Control literature, involving a simple

discrete statspace model and a differential FPM of a stirred tank reacto

T Chapter 6 (Contribution 1V) reviews in detail the SOA of dathiven

dynamic modelling in the chemical engineering area, and presents a novel

methodology for datdriven multivariate dynamic modelling and multistep
ahead prediction of nonlinear chemigaocesses using dathiven models.

The proposed methodology utilizes machine learning techniques for building a
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group of NARX models, each of them able to predict the evolution of one
process output as a function of the other inputs and outputs afitesp, over

a suitable time lag. The set of multivariate dynamic models are, then, used to
forecast the process outputs along larger time intervals (muitibiegd
prediction), through a recursive and inteordinated prediction scheme. The
methodologyalso offers a new procedure for training data selection for dynamic
modelling, based on the DOCE technique when a FPM of the process is
available. The capabilities of the kriging technique are compared with those of
one of the most popular techniques (i.ANNs). The application of the
proposed methodology is illustrated through its application to threestizdies

of nonlinear dynamic processes selected from the process industry presented in
the literature, including a bioreactor, thyiegerconnectedanks and an oil

shale pyrolysis batch reactor.

Chapter 7 (Contribution V) reviews the current methodologies and techniques
for the dynamic optimization of chemical processes based on dynamic FPMs.
First, it introduces a novel datadriven methodology for theequential dynamic
optimization applicable to solve the open loop optimal control problem of
complex highly nonlinear processes. The method is based on the construction
of a set of multivariate dynamic surrogate mod€lsapter 6), which are able

to accuately and rapidly predict the process output behavior corresponding to
any timeprofile of the process control inputs. Second, a sequential dynamic
optimization procedure is tuned to integrate this set of dynamic surrogate
models representing a complex pess FPM. The methodology is applied to
three wellknown problems from the process systems engineering area,

including a plugflow reactor, batch reactor, and a parallel reaction problem.

Chapter 8 (Contribution VI) presents a detailed literature review the

different approaches and methods for FDD in the chemical engineering area
and, then, proposes a novel hybrid dagaed methodology for FDD. The main
modules of the novel methodology are also described, which) arelynamic
observer based on muléikiate dynamic surrogate mode@h@pter 6) capable

to estimate the expected normal outputs of the proidesgtic kriging models
smoothing the real measurements of the process outputs to reduce the noise
effects andiii) databased classification tenlgues, which are trained with
patterns of residuals created from the comparison between the estimated outputs
by the observer and the smoothed real outputs of the process. Different

classification techniques such as ANN, SVM, GNB and DT, have been
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develomd and compared. The performance of the method is illustrated through
its application to the weknown threetank benchmark case study, considering
different dynamic operating conditions and faulty situations, including

scenarios with modified fault sevies and fault styles.

1 Chapter 9(Contribution VII) presents a new sesensing methodology based

on machine learning models for the online prediction of QIV of batch processes
operated under changeable initial conditions. The chapter reviews in detail th
stateof-art of softsensing in the chemical process engineering area and,
consequently, claims the contributed novelties. The chapter also compares,
within the proposed methodology, the performance of the kriging technique to
the most common datzasedmodelling techniques used for ssfinsing as

SVR and ANN, in order to assess its capabilities. The effectiveness and the
capabilities of the proposed method is proved by its application to two
simulation benchmark castudies, including a simple batctaotor and a fed

batch fermenter for Penicillin Production. The application is also extended to a
real photochemical pilot plant castudy built to investigate water treatment
processes based on the phB@mton reaction, working in a batch mode and

consicering paracetamol as reference contaminant.

1 Chapter 10 concludes the Thesis contributions and presents possible future

research lines that can be built on the basis of the Thesis.
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Chapter 2: Tools and Techniques

This chapter overviews the basics and general characteristics of the different tools and
techniques used to build and develop the methodologiesignTkiesis These tools and
techniques includelesignof computerexperiment methods, machine learningpdelsfor
regression (surrogate models or metamodels), machine leanudglsfor classification
clustering techniques and optimization algorithms.

2.1 DESIGN OF COMPUTER EXPERIMENTS

In the area of physical expmentations and laboratetyased investigations, Design Of
Experiments (DOE) techniqudsave beenestablished(Fisher, 1971; Fisher, 198@nd
extensively used to select specific combinations of input values (indapeatebign variables)
at which experiments must be run to obtain an optimal quantification of the effect of these
input variables on the behavior of a certain observed output (dependent) variable. In this sense,
different methods have been developed, bifdatorial, fractionaffactorial designs for fitting
linear regression models, central composite andBehnken designs for fitting polynomial
regression modelgFang, et al., 2005)The DOE -considers three basic principles:
randomization, blocking and replication, in order to avoid prediction bias, obtain homogenous

response, anb minimize the experimentahndom error, respective(frang, et al., 2005)

The rapid growth of computecapabilities has motivatettuge interests of the
engineering research community to study/analyze products and processes using high fidelity
and detailed simulation models describithgse products or processétowever, serious
obstacles hinder the smootlse of such higfidelity simulation models, such as their
complexity, high nonlinearity, sophisticated structure and/or the computational burden
required for their convergen¢Eang, et al., 2005; Ibrahim, et al., 201Bhe rise of advanced
machine leming techniques (e.gArtificial Neural Networks ANNS), kriging) has inspired
the construction of simplified datiriven models trained using inpotitput data generated by
the simulation of the complex FP\Garud, et al., 2017)Then, these simplified dataiven
modek (metamoded or surrogate mods) take the place of the complex FPM in the tagdet
application (e.g., optimization, sensitivity analysis, uncertainty quantifications, etc.),
providing accurate predictions with simple usage and much lower computational cost.
Consequently, this has induced the development oDémgn Of Computer Experiment
(DOCE) techniquegJurecka, 2007)which aim at selectindné best combinations of the input

variables valueswithin specific domain or boundghat can be used for the simulation of the
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complex FPM providing the most representative information/knowledge about the output
behavior(Garud, ¢al., 2017) The set of combinations of the input variables values is called

a fsampl nfg N prl, aheré,is the number of sample points or instances@nd

is the number of input dimensions. The main objective is to collect as much information as
possible about the output behavior over all the localregtons of the input space, assuming
that most computer simulation models are deterministic. As a ré30IGE techniques
consider samples selection criteria differfroin those of the DOE, which are, mainly, the
spacefillingness and stratification of the sampling plan. While the sffilteness criterion

aims at spreading the sampling plan points ovemthele input domain, the stratification
ensures that the sampling plan points projection onto each input variable axis is uniform
(Garud, et al., 2017; Forrester, et al., 20th criteria ensure high uniformity ohe
sampling plan and better covering of all the locatsdions of the input domain.

Many DOCE techniques have been developed for static surrogate modeling. The most
common techniques include Latin hypercube sampliRgrrester, £ al., 2008) low
discrepancy sequences as the Hammersley techfiimabim, et al., 2019nd spac4illing
designs as mamin techniques an8pactfilling Latin Hypercube Sampling (SLHS)esign
(Joseph, 2016)Alternatively, sequential or adaptive sampling are special type of DOCE
techniques that armommonlyrelated to the use of kriging/GP modétsajero, et al., 2017)

In these sequential techniques, the totahber of training points are not selected at once, but:

the surrogate model is, initially, fitted with a relatively small number of training points, and it

is, iteratively, adapted by adding new training points of interest (infill or update points) to the
initial training dataset and, then, the surrogate model is refitted so as to enhance a desired
criterion or index of its performance. This criterion is highly dependent on the eventual use of
the surrogate model (for global approximation, surrofatedoptimization, reliability
analysis, etc.). The iterative procedure stops when the surrogate model performance index
reaches a desired level. For example, when the surrogate model is to be used just for global
approximation, the most common performancesdon is the maximization of the surrogate
model global accuracy, which implies the selection of infill points that maximize the estimated
prediction error of the kriging/GP modglurecka, 2007; Forrester, et al., 2008tice that

t he t er m B8tgthegmlzalityowith respeet to the entire input domain.

Most of these DOCE techniques show both desired and limiting characteristics in terms
of the uniformity of the generated sampling plan and the required catigmat cost. For
example, Latin hypercube and low discrepancy sequence designs provide sampling plans of
good uniformity with very low computational cq#ttrahim, et al., 20195 pacHfilling designs
are able to provide sanipy plans with very high uniformity, although the associated

computational cost is relatively highoseph, 2016; Caballero & Grossmann, 20B8tause,
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these techniques usually encompass a complex optimization problem, in which the locations
of the input combinations (i.e., instances) within Teimensional input space of the model

(i.e., the decision variables) are manipulated to maximize a certaiafding criterion (i.e.,
objective function)Forrester, et al., 2008jor instance, in the maxin spacdilling designs,

the objective function is to maximize the minimum distance between the sample points. The
former citerion tends to distribute the sampling points uniformly across -tienknsional

input domain(Fang, et al., 2005)Sequential sampling designs have also shown very high
uniformity and high efficiency, since they take maximadvantages of each point in the
sampling plan, but the computational cost of such techniques is extremely high, since each
iteration involves an optimization problem seeking for the point that optimally enhances the
surrogate model accuracy, in additiorthie subsequent fitting of the surrogate model with the
updated training setJones, et al., 1998For the previous reasons, the iterative DOCE
procedures are favorable when dealing with very expensive ERM domputationafluid
dynamic models) where the cost of one simulation run using the FPM is much higher than one
iteration of the sequential sampling procedure. A more detailed analysis about the different
DOCE techniques can be found (@arud, et al., 2017; Fang, et al., 2005; Jurecka, 2007;
Garud, et al., 2017)

After designing an efficient sampling plam ho ™ 'Y , a computer experiment or a
simulation run using the complex FPM is carried out at each pbilecsampling plan, to

obtain the response or output variable valges jw N Y.

In general, most of thEhesischapters/methodologies consider the Hammersley design
technique, due to its ability to provide sampling plans of good uniformitystratification
properties with very low computational cq§&arud, et al., 2017; Ibrahim, et al., 201B)
particular, Chapter 3 employees sequential sampling techniques for building SBO methods.

On another hand, nurabof sample points{ required to train the surrogate model in
order to capture the output behavior with satisfactory accisa@sedependent. Because the
selection of depends on the input dimensionality of the surrogate m&eihe volume of
the input space and, also, on the intricacy and nonlinearity of the considerechebigior.

In general, ast increases, the effort (time/cost) required not only for executing the
experiments, but also for the surrogate model fitting increases. Themaddeler should
carefully balance the trad#fs between the required surrogate model accuracy, the

computational cost and the eventual application benefits of the surrogate model.

Chapter 2Tools and Techniques 33



2.2 MACHINE LEARNING FOR REGRESSION (SURROGATE MODELS)

In the Thesisdifferent machine learning models for regression have been considered.
The main objective is not the detailed comparison of the machine learning models
performance, but to assess the robustness, applicability and flexibility of the proposed
methodologiesifi which these machine learning models are employed, as well as other tools)

by handling different datbased modelling techniques and software.

2.2.10rdinary kriging

The Ordinary Kriging (OK) model has emerged in the field of-giabistics(Krige,
1951; Cressi, 1993and after the pioneer work of Sacks, e{@acks, et al., 198@nd Jones
(Jones, 2001)0OK became popular for modeling and optimization of complex highly nonlinear
static systems in various engineering aréasOK is a nonparametric datiiven model that
has shown potential capabilities to approximate highly nonlinear, multimodal amdexom
systemgFang, et al., 2005; Queipo, et al., 200Bhese capabilities stem from the ability of
the OK to combine global modeling through estimating a general trend of the system to be
approximated, and local mode through a spatial correlation function. Besides, this model
is able to estimate a prediction variance or error, which represents an uncertainty measure
about its predictiofForrester, et al., 2008)

Given a set of input-output training datawfo fo M 'Y , 0 N Y, 'Q pRisE, , the
OK assumes the predictarw  ° ® w, where the constant term represents the
main trend of the system to be approximated,canal is a deviation/residual from that trend,
which accounts for detailed complex behavior of the system that could not be captured via the
main trend . The residuadd @ is modeled as a stochastic Gaussian process with expected
value of O @ w T, and a covariance between two residwaks @ ¢ ftd ¢  that only

depends on their corresponding inputs locatiostsy. Thus, it can be calculated as:
wé o fhew =, 'Ywhd,being, the process variance, aidwfw a correlation

function calculated a% whd  Qwn/ B , ®f f 1 _hwhere, ix pBQ
are the model hypgrarameters) are smoothing parameters, is the Kronecker delta and
_is a regularization constant that enables the kriging predictor to regress noi&zmada

& Kocijan, 2007) The value of the parameter represents a measure of the degree of

correlation among the data along theinput dimension.

The maximization of the likelihood function (E8.1)) of the observed datao
yields the closed form mathematical expressionthioptimal values ¢f and, thatare

shown in Eq2.2) and Eq(2.3), respectively, wherei is the matrix of training inputs,
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@ is the corresponding vector of the training outpu¥s, is the correlation matrix
between the training inpugnd is the identity vectorit is highlighted with bold foh

to differentiate it from the normal number 1 in the equati@@aballero & Grossmann, 2008)

500 KD
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The substitution of the optimal values'of and, in the likelihood function leads to
the maximization of the concentrated-ilgelihood function, which is given by E@.4).

¢
boon  cad, ga Vs (2.4)

The kriging predictor (E(2.5)) and its estimated error (EB.6)) are obtained by
deriving the augmented likelihood function of the original training data set and a new
interpolating point s iy . In Eq.(2.5), i is the vector of correlations between the point
to be predicteds and the original training data points, and calculate® adhss (Jones et
al., 1998; Caballero & Grossmann, 2008; Forrester et al., 2008).

ww Yy o (2.5)
il , p _ 1Y i p Y i jY (2.6)
The fitting of an OK model is achieved by obtaining the optimal parameters
, ) h_ through the maximization of the concentrated-ligglihood function. In practice,
this optimization problem is computationally challenging, because of the high computational
cost associated to the repetitive calculation of the inverse of the correlatdnix
Y during the optimization iterations. This effort quickly grows with the size of the
training data set and/or the model input dimensionality. Besides, the nature of the concentrated
log-likelihood function itself is quite complicated, besauit is flat near the optimufFang,
et al., 2005) More details about these computational challenges and the numerical methods

and optimization techniques to overcome or reduce these obstacles can be (Borma ster,
et al., 2008)

This Thesisconsiders the OK implementation developed by Forrester, €2G08)
because of its high effici encymincgoalgogthnal i t vy
included in the Matlab optimization toolbox is used for the maximization (nonlinear
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optimization) of the concentrated likelihood function (Bdt)), considering different values
of the initial solution, so as to avoid the entrapmentliocal optimum(Matlab, 2018) The
Cholesky factorization has been used to find the inverséYof matrix to avoid ilt
condtioning, and the smoothness parameterre often kept to the value of 2, which provide

smooth infinitely differentiable correlation functions (Forrester et al., 2008).

TheThesisalso considers (isomechapters) another different software implementation
for the GP model, whichisthe@Pe gr essi on ( GPR) al gofirgpbphm based o
included in the Matlab statisi@and machine learnirigolbox(Matlab, 2018)

2.2.2 Artificial neural networks

Artificial Neural Networksarea very welkknown and widelyused efficient technique
for nonlinear datalriven modelling. The technique is inspired from the biological neural
networks of the brain nervous systéufasters, 1993; Himmelblau, 200@n ANN is a lattice
of nodes, termed as neurons, which are placed in this lattice through a certain ayrdfer,
layersN-f1  plefes 4, and are interlinked together to be capable of the nonlinear processing
of the information.Figure 2.1 shows a schematic representation of-bitlelen hyer ANN.

The weight valué v is assigned to the link connecting tke neuron in the layefl,
to the"Q neuron in the successive lay®s, ; additionally, a biasp+., is considered as an

independent input to th€ neuon in each layer]y Considering ondidden layer ANN

(Figure2.1), the outputd+ of théQ neuron in the hidden layer is computed as thelted

sum of its inputs received from the neurons in the previous layer plus the bias,(2€8,Eq.
whered" and0” are the numbers of neuronstire input and hidden layers, respectively.
The computed value is, then, processed by a transfer fungtiom is sent to the output layer
(Masters, 1993; Nagy, 200#at calculates the ANN outpub, as inEq(2.8). Notice that the

formulations for the multiayer ANN is straightforward.

The training of an ANN is accomplished relying on a set of hgodput training
patterns whd o N 'Y 0N 'Y, 'Q plkfeE, and through the solution of monlinear
optimization problem, in which an objectiw lossfunction is minimized by tuning the
optimization variables values represented in the weight$ the biases of the neurons
(Masters, 1993; Nagy, 20QA&)Vith respect tANNs modek for regression, thimssbbjective
function of the trainingtaskis related to the sum of errors between the predicted oubguts
the networkw, and the target outputs, being the Mean SquateError (MSE) (given by

Eq.(2.9)) the most common loganction.
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Figure2.1. Schematic illustration of a feedforward ANN structure: an input layer, at
least one hidden layer and an output layer.

A A Y W " h Q [.)|’V¢l;|:EHT)A1 h Q pﬁ;F&f)ﬂ 2.7
0 N O W1 " Q plghed” (2.8)
U YO z w (2.9)

Amongst various kinds of ANNs, the feéarward multilayer perceptron is considered
asthe most popular kind used in engineering practielsmelblau, 2000)as it offers high
efficiency, accuray and straightforward applicabilifrang, et al., 2005; Nagy, 2007)

T h deediorwardnegi f uncti on of the Mat | 8HesisSAONN t oo
build multilayer ANNSs for regressiafMatlab, 2018) A trial and error procedure is employed
for selecting the suitable number of layers, number of neurons and the training algorithm
achieving a compromise between the structure simplicity and the predictioncyccine
training algorithms have been considered infthesis depending on the different application
cases, which are the Levenbdfgrquardt backpropagation based on the Matlab function

fitrainimdb and the Bayesian r egul athée Malabifunaionb ac k pr

fitrainboro . The | atter minimizes a combination of
to very good generalization prept i e s . Tsilgmoidd etf raaud g f @ir f uncti on
layers; , a n dinearo i transfer f unct itpatn layer, n t h

N, are maintained.

2.2.3 Support vector regression

Given a set of inpdbutput training data®hn FoON 'Y , 0N 'Y, Q pkheE, a
Support Vector Regressio8VYR) model(Vapnik, 1995)maps the input data original
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space into a highdimensional feature space, often through a basis or kernel function
B o that maybepresengd bydifferent styles as linear, polynomial, Gaussian, etc. Then,
the modeling problem becomes the deteations of the optimal (flattest) surfagen

@ B 0B whw in this feature space, which fits the data, whre* s a base or

bias (Forrester & Keane, 2009This can be done through th@nimization of the weights
vector normg) s O N 'Y . In order to ensure better generalization performance, SVR allows
specifying margins or a tube around the training data with a radiusithin which prediction
errors in the training data are acceptedolerable (constraints of the optimization problem).
Additionally, to tolerate outliers, the data that presents a prediction error bigger-than
penalized using the sm a | Fsensitivdlloss functiofForrester, et al., ZB). Then the model

fitting problem can be expressed as:

s 0fys o (2.10)
c%’s é ) ) .
0w ¢ 0w - |
sT. * b6 & - (2.11)
’ n1 Tt

Where, 1, are the slack variables that describe the size of the positive and negative
violation or excess than the tube radiufor each training data sample, and Tlis a
penalty factor that controls the tradff between the model complexity (the flatnessipfand
the degree to which errors larger thaare toleratedForrester & Keane, 2009\ schematic

representation of theroblem is illustrated ifrigure2.2.

Loss

error

e Vectors
,/ @ Support vectors s .

e Outlier vectors

Figure 2.2. Representation of the SVR model.
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The constrained optimization problem can be reformulated into a dual problem form by
introducingLagrange multipliers h- h h  to the constraints in E@.11), in order to

combine them with the objective forming at the end the Lagrangian function:

0 0Qezxs —B , B | - ,
‘ b B | - w bw B -, (212
The resulting objectivé is then minimized with respect toh' and the primal

variables , and also it is maximized withrespect to the dual variables,|
where— | 1. For the active constraints (| ) T the correspondingo will
become the support vectors, while for inactive constraints | = 0, the corresponding

« will be excluded from the predictio(Forrester & Keane, 2009)

The values of these Lagrange multipliersh  are determined by solving the dual
optimization problem. The training vectors (samples) with-zeno Lagrange multliers are
called support vectors, which represent/construct the margins or the borders of the tube.
Finally, the optimal weighte and the constant bias can be calculated from the relations
in Eq(2.13) and Eq(2.14), and the final predictor is expressed by(Eg5).

0 | | B w (213
AN A | B o (2.14)
YO I | B &ho (2.15)

A drawbackof the SVR is the huge time and effort required to select the kernel function

type and the values of its parametexg, the value of the parameger , in a Gaussian kernel

B oo Qon o, ), which are case dependent. The detailed mathematical

description and derivations can be foun@Mapnik, 1995; Forrester, et al., 2008; Forrester &
Keane, 2009)This Thesisuses theSsVR algorithmba e d on t Higsvnbu m aitcil e e fl

in the Matlab statisteand machine learnirigolbox (Matlab, 2018)

2.3 MACHINE LEARNING FOR CLASSIFICATION

ClassificationTechniquegCTs) are supervised machine taag models thaperform
pattern recognition task&/apnik, 1995; Zhang, 2000)Given a set of inpubutput data
ohd hov'Y,Q pltlEhoN a MR , £1 1 &, a classifier is trained to
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