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Resumen 

En la Industria de Proceso, como en otros ámbitos, la toma de decisiones se basa 

en la valoración de las consecuencias de dichas decisiones a través de modelos 

(implícitos o explícitos).  La escala y complejidad de los modelos necesarios dependen 

de la complejidad del proceso, del nivel jerárquico al que se toman las decisiones (p. 

ej.: gestión de la cadena de suministro, planificación de proceso, programación de 

operaciones, control,é) y del horizonte de tiempo considerado. El uso de modelos 

basados en principios básicos (First Principle Models ï FPM) habitualmente permite 

predecir con precisión el comportamiento de un sistema y llevar así a decisiones 

fundamentadas y explicables. Sin embargo, su uso se ve obstaculizado por problemas 

prácticos, dado que en ocasiones requiere cálculos iterativos aún sin tener garantizada 

su convergencia a una solución factible. Estos problemas son más frecuentes a medida 

que se desciende en la jerarquía de toma de decisiones (p. ej.: control supervisor), 

especialmente si la resolución (optimización) del sistema implica muchos cálculos de 

simulación utilizando un FPM complejo (p. ej.: altamente no lineal, involucrando 

variables enteras, etc.). Una forma de superar estas dificultades consiste en aplicar 

t®cnicas basadas en ñmodelos subrogadosò o sustitutos, construidos a partir de datos 

recopilados del proceso real, de datos previamente simulados (utilizando un FPM), o 

de una combinación de ambos. Aunque estos modelos se utilizan en muchas áreas, en 

el ámbito de la ingeniería química habitualmente se emplean solo para el diseño de 

procesos y en sistemas de optimización de estado estacionario. 

Esta tesis presenta un marco para el uso eficaz y eficiente de modelos 

subrogados, construidos mediante técnicas de aprendizaje automático, en la toma de 

decisiones en diferentes fases de la operación, el control y la optimización de un 

proceso. En este contexto, el Capítulo 3 presenta una metodología para la optimización 

de la operación en estado estacionario de procesos no lineales. El Capítulo 4 propone 

la utilización de metodologías basadas en el aprendizaje automático en problemas de 

optimización de operaciones sujetas a incertidumbre (optimización multiparamétrica). 

El Capítulo 5 extiende este planteamiento a la construcción de sistemas de control 

predictivo (MPC) explícito de procesos no lineales. El Capítulo 6 propone una 

metodología para la construcción sistemática de modelos subrogados en sistemas 

dinámicos no-lineales multi-variable, metodología que se aplica en el capítulo 7 a la 
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de optimización de procesos dinámicos (control óptimo de sistemas no lineales en 

estado no estacionario). Esta misma metodología se integra en el Capítulo 8 con 

técnicas de clasificación para su aplicación a la detección y diagnosis de fallos (Fault 

Detection and Diagnosis - FDD) de sistemas dinámicos multivariable. Finalmente, en 

el Capítulo 9 se presenta la aplicación de estas metodologías para el entrenamiento de 

sensores virtuales (ñsoft-sensorsò) y su aplicaci·n a procesos de producci·n por lotes 

que trabajan con condiciones iniciales cambiantes. Cada una de estas aplicaciones, y 

los prototipos resultantes, se han plateado después de una cuidadosa revisión de las 

aportaciones más recientes en estos campos, que ha permitido identificar las 

dificultades para la implementación de las técnicas existentes en sistemas prácticos de 

soporte a la toma de decisiones, y la forma de superar estas dificultades mediante la 

utilización de modelos alternativos, que se resumen en el Capítulo 1. 

La eficacia de las metodologías desarrolladas se ilustra a través del análisis de 

su aplicación a diferentes casos, tanto propuestos en esta Tesis como de referencia en 

los diferentes ámbitos de aplicación. Estos resultados han merecido su publicación en 

diferentes revistas científicas de primer nivel, así como su difusión a través de 

congresos internacionales, incluidas dos conferencias de invitadas.  
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Abstract 

In the chemical process industry, the decision-making hierarchy is inherently 

model-based. The scale and complexity of the considered models (e.g., enterprise, 

plant or unit model) depend on the decision-making level (e.g., supply-chain 

management, planning, scheduling, operation) and the allowable time slot (weeks, 

hours, seconds) within which model simulation runs must be performed and their 

output is analyzed to support the decision making. The use of high-fidelity models, 

which include detailed physics-based description of the process, is attracting wide 

interests of the process engineers. Since, these First Principle Model (FPMs) are able 

to accurately predict the real behavior of the process, leading to realistic optimal 

decisions. However, their use is hindered by practical challenges as the high 

computational time required for their simulation and the unguaranteed reliability of 

their consistent convergence. The challenges become prohibitive at lower levels of the 

decision-making hierarchy (i.e., operation), where decisions are required online within 

time slots of minutes or seconds entailing lots of simulation runs using such complex 

and highly nonlinear FPMs. Surrogate modelling techniques are potential solution for 

these challenges, which relies on developing simplified, but accurate, data-driven or 

machine learning models using data generated by FPM simulations, or collected from 

a real process. Although, there are progressive developments of surrogate-based 

methods in the chemical engineering area, they are concentrated in process design and 

steady-state optimization areas. 

This Thesis presents a framework for the proper and effective use of surrogate 

models and machine learning techniques in different phases of the process operation. 

The objective is to provide efficient methodologies, each supports the decision making 

in a specific phase of the process operation, namely; steady-state operation 

optimization, Model Predictive Control (MPC), multivariate system identification and 

multistep-ahead predictions, dynamic optimization, Fault Detection and Diagnosis 

(FDD) and soft-sensing. Each developed methodology is designated according to 

careful State-Of-Art (SOA) review that identifies the gaps and missing requirements 

to be covered. The SOA, identified gaps and the contributions of each methodology 

are summarized in Chapter 1 and detailed in the introduction of each of the following 

chapters. 
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 In this context, Chapter 3 presents a surrogate-based methodology for steady-

state operation optimization of complex nonlinear chemical processes modelled by 

black-box functions. Chapter 4 proposes machine learning-based methodologies for 

multiparametric solution of complex operation optimization problems subjected to 

uncertainty. Chapter 5 presents a data-based multiparametric MPC methodology that 

enables simple implementations of explicit MPC for nonlinear chemical processes. 

Chapter 6 proposes a data-driven methodology for multivariate dynamic modelling of 

nonlinear chemical processes and for multistep-ahead prediction. Chapter 7 suggests 

a dynamic optimization methodology for solving optimal control problems of complex 

nonlinear processes based on data-driven dynamic models. Chapter 8 shows a hybrid 

methodology to improve FDD of chemical processes run under time-varying inputs 

based on multivariate data-driven dynamic models and classification techniques. 

Chapter 9 presents data-driven soft-sensing methodologies for batch processes 

operated under changeable initial conditions. The effectiveness of the developed 

methodologies is proved by comparing their performances to those of classical 

solution procedures existing in the SOA, via their applications to different benchmark 

examples and case studies. The promising results and their sound analysis allowed to 

publish many papers in top-ranked journals and proceedings, and to present them at 

several top-ranked international conferences including two Keynote presentations. 
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Chapter 1: Introduction 1 

Chapter 1: Introduction 

Within the framework of Chemical Process Operations, computer-based simulation and 

optimization tools have become essential supports for any decision-making procedure. In 

many cases, these tools are based on First Principle Models (FPMs) of the process, which are 

used at the different operational levels to perform different functions. In order to address some 

of the main challenges that the use of these FPMs-based tools is currently facing, this thesis 

proposes alternative/complementary strategies based on the use of surrogate models and 

machine learning tools. 

This first chapter presents the context of the thesis (Section 1.1) and the specific 

challenges that have been addressed (Section 1.2); then, it summaries the stat-of-art available 

solutions for addressing these challenges in order to identify the gaps and the missing needs 

that will be covered by the thesis work (Section 1.3). After that, the chapter highlights the 

thesis objectives (Section 1.4.1) and contributions (Section 1.4.2), as well as the thesis 

structure (Section 1.5). 

1.1 CONTEXT: CHEMICAL PR OCESS OPERATION OPTIMIZATION, ITS 

MAIN MODULES AND THE IR FUNCTIONS 

Process operation optimization is an important layer in the general decision-making 

hierarchy of chemical plants management. It receives, as inputs, the outcomes and decisions 

coming from higher level layers (i.e., supply chain optimization, planning and scheduling) 

(Marchetti, et al., 2014). These outcomes and decisions mostly include forecasts of prices and 

demands, production rate targets over long time periods (weeks/days), assignment of resources 

to activities (raw material allocation, tasks to units allocation, maintenance interventions, 

staffing), sequencing of activities and determination of starting and ending times for the 

execution over short periods of time (Muller, et al., 2017; Seborg, et al., 2016). Then, the 

process operation optimization layer provides as output: i) the real-time optimal values of the 

process variables (i.e., pressures, flow rates, cooling temperatures, etc.) at the which the plant 

and its units must operate to achieve the required performance, considering quality, capacity, 

safety and environmental restrictions and requirements and, more importantly, reacting to 

sudden and unexpected variations of the process or external parameters (e.g., equipment 

efficiencies, raw material characteristics, demand etc.), ii ) detailed and timely orders to the 

basic equipment control systems to implement actions to maintain the plant units functioning 

at these set-points (or reference trajectories) against expected disturbances (e.g., small 
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fluctuation in the feed temperature) and iii) timely information about the process functionality 

state, i.e., if it is functioning under normal or abnormal conations, and about the possible type 

of fault that impacts the process leading to these abnormal  conditions.   

Figure 1.1 shows a schematic representation of the main modules/activities required for 

such a task, their usual activation sequence and the scales of the process models considered in 

each module, where each module and its associated model scale are highlighted with the same 

color. The following parts in this section discuss these main modules and the functions 

performed by each of them. 
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Figure 1.1. Process operation modules (right) and associated process model scales 

(left)). 
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1.1.1 Steady-state optimization and uncertainty handling 

The first module to be considered in the usual process operation decision-making 

sequence is the steady-state optimization, which aims at obtaining the optimal values of the 

process variables (temperatures, pressures, feed compositions, flowrates, valve opening, etc.) 

at which the plant and its units must operate in order to maximize certain performance criteria 

(e.g., efficiency, profit and/or operational cost) and to satisfy all the constraints (demand, 

resources availability, equipment capacities, environmental restriction, etc.) and requirements 

(product quality, production yields, safety, etc.) (Vaccari & Pannocchia, 2017; Biegler, 2010). 

This goal is achieved by solving, in real time, an optimization problem based on a detailed and 

rigorous steady-state model of the process (Shao, et al., 2019). Depending on the model 

characteristics, such as its structure, transparency (e.g., white, grey, black-box), availability of 

derivative information, and on the  formulations of the objective(s) and constraints of the 

optimization problem, different algorithms can be used, like derivative-free algorithms (e.g., 

Genetic Algorithms), where the explicit values of the objective(s) function are used to direct 

the optimization search, derivative-based algorithms (e.g., interior point algorithms), where 

the optimization search is directed based on the derivatives of the objective(s) with respect to 

the decision variables (Salback, 2004; Caballero & Grossmann, 2008), etc.  

On another hand, the presence of uncertainty sources in the system at different levels is 

unavoidable  (Acevedo & Pistikopoulos, 1997; Li, 2010; Jiao, et al., 2012), including model-

inherent uncertainty, related to the lack of knowledge about the exact values of  model physical 

parameters (e.g., kinetic rates, heat transfer coefficients) (Flemming, et al., 2007; Norbert, et 

al., 2017; Diangelakis, et al., 2017), process-inherent uncertainty, associated to fluctuations of 

the operating practices (e.g., feed stream concentrations, temperatures, pressures, recipes, 

processing time, equipment availability, equipment efficiencies) (Mesfin & Shuhaimi, 2010; 

Papathanasiou, et al., 2019), as well as  external  uncertainty (e.g.: resources characteristics, 

prices and demands).  

The first type of uncertainty (i.e., model-inherent) usually occurs in a slow and 

continuous/evolving manner, leading to the increase of the mismatch between the model 

predictions and the real process behavior along the time. To minimize the process-model 

mismatch, the values of the model parameters must be updated in a systematic manner at 

prescheduled periods of time (typically hour(s)) using reconciled estimates of the measured 

steady-state data of the plant variables (Fadda, 2017; Biegler, 2010). These reconciled 

estimates are obtained by applying data reconciliation and gross error detection techniques to 

the real data collected by the sensors in order to reduce, respectively, the effect of random 
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errors and sensor faults (bias, drifting, miscalibration, total failure, etc.) (Chaudhary, 2009). 

Other technologies allow to directly estimate the new values of the model parameters within 

the data reconciliation and gross error detection tasks  (Chaudhary, 2009).  

In contrast, the latter two types of uncertainty sources (i.e., process-inherent and 

external uncertainty) may occur in a sudden and unexpected way. Hence, many methods have 

been developed for handling these two types of uncertainty in optimization problems, most of 

them can be categorized into two main approaches: proactive and reactive (Medina-González, 

et al., 2020). The proactive approach aims at providing conservative optimal decisions 

minimizing the consequences of the uncertainty and variability on the performance measure(s) 

of the system (i.e., objective function(s)) (Jiao, et al., 2012). Stochastic programming and 

robust optimization are among the most popular methods in the proactive approach 

(Grossmann, et al., 2016). In stochastic programming methods, the uncertain parameters are 

dealt as stochastic variables with ña-prioriò known probability distribution functions, whose 

parameters are estimated from historical data. In this context, the goal becomes to identify the 

optimal decision variables that maximize/minimize the expected value of the objective 

function(s) and achieve feasibility over the distribution of the uncertain parameters (Li, 2010). 

Robust optimization methods deal with unknown but bounded uncertain parameters and aim 

at finding the optimal solution that ensures the feasibility over the entire range of realizations 

of the uncertain parameters (Norbert, et al., 2017) 

On the other hand, the reactive approach is considered when it is necessary to, promptly, 

provide online update of the optimal values of the decision variables in response to real-time 

changes of the uncertain parameters value, which can be identified once unveiled. Since 

reactive approaches require providing the optimal solution for each specific realization of the 

uncertain parameters, they are preferred for the application in dynamic or online operation 

environments (Pistikopoulos, et al., 2007).  

Among the reactive methods, Multi-Parametric Programming (MPP) offers outstanding 

capabilities (Pistikopoulos, 2008): i) its solution provides simple mathematical expressions 

mapping the optimal decisions (variables and objective) over the entire space of the uncertain 

parameters, ii ) once the uncertainty is unveiled, the optimal decisions can be easily and 

immediately calculated by these simple functions avoiding huge computational cost required 

by repetitive optimization procedure and iii ) MPP is not only able to handle the uncertainty 

related to the process conditions, but also to the optimization problem parameters (e.g., relative 

weights or importance of different objectives). Therefore, MPP very well fits to the 

requirements of dynamic production and operations environment (i.e., the thesis context) 

(Pistikopoulos, et al., 2007).  
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1.1.2 Dynamic optimization 

Transient states can be experienced by continuous processes in situations like start-ups, 

shutdowns or transitions between different operational conditions that may be caused by many 

reasons. In these cases, as well as in batch processes, dynamic optimization (which is also 

called open-loop optimal control) is, instead, carried out, considering a dynamic model of the 

process (Banga, et al., 2005; Wang, et al., 2017). Dynamic optimization techniques allow the 

identification, in a fast and accurate way, of the optimal time-profiles of the process control 

variables that must be applied over a specific period of time (period of transition of a 

continuous process or period of a batch process) in order to drive the process to the required 

state at the end of this time period (Biegler, 2007). In case of continuous processes transitions, 

the required state is a steady-state, while in case of batch processes, it is typically the optimal 

batch performance at the end of batch time (e.g., to increase the production yield or to ensure 

product quality). 

1.1.3 Model predictive control 

After obtaining the optimal set-points of the plant, they are sent to the supervisory 

control module and, subsequently, to the distributed control module which are responsible of 

implementing them and holding the plant units operating at these set-points against expected 

process fluctuations, such as feed stream concentrations, temperatures and pressures (Mesfin 

& Shuhaimi, 2010; Papathanasiou, et al., 2019). In the case of batch processes/units or 

continuous processes in transient state, the optimal set-points become optimal reference 

trajectories, which the control system should track along pre-specified time horizons (i.e., 

batch time, transition time). Model Predictive Control (MPC) technologies are, nowadays, the 

backbone of the supervisory control modules in the chemical industries (Kouramas, et al., 

2011; Katz, et al., 2020), because they offer very efficient capabilities in front of other 

technologies, such as proportional integral derivative controllers or linearized quadratic 

regulators. MPC is capable of efficiently handling multivariable control problems that involve 

complicated interactions and relations between the process variables and treating constraints, 

e.g., bounds on the maximum and/or minimum values of the control inputs or output variables 

(Chaudhary, 2009). Additionally, MPC allows to incorporate economical and even 

environmental terms in the objective function of the involved optimization problem, such as 

the cost associated to the profiles of the control inputs to be applied (Chaudhary, 2009; Katz, 

et al., 2020). In other words, the objective function considered in the MPC numerical 

optimization problem is not just the error between the current state of the process and the 

required state (the optimal set-points or reference trajectories).  
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1.1.4 Fault detection and diagnosis 

Additional to the different sources of process/model uncertainties and fluctuations, 

whose undesired effects can be diminished by periodical parameter updating, repetitive steady-

stead optimization and control schemes, the process can be also affected by faults or 

malfunctions (Venkatasubramanian, et al., 2003a; Venkatasubramanian, et al., 2003b). A fault 

is an unexpected change of the process behavior with respect to its expected normal conditions, 

which hampers the process normal operation causing unacceptable deterioration of its 

performance that may even lead to dangerous operating conditions (Patton, et al., 1995; 

Calado, et al., 2001). Faults can be classified into three types (Venkatasubramanian, et al., 

2003a; Park, et al., 2020): i) sensor faults, which are, by terminology, related to the 

malfunction or failure of the sensors, such as drifting, miscalibration, biases, and freezing, ii ) 

actuator faults that are associated to their inability to correctly interpret and convert the control 

signals, received from the controller, into appropriate forces (e.g., motor torque) needed to 

derive the system, such as control valve stuck-open and stuck-closed, and iii ) process faults, 

related to malfunctions in the process/units, such tank leakage, equipment damage, sever 

unknown changes in feed streams characteristics, etc.  

The Fault Detection and Diagnosis (FDD) module plays an essential role in 

guaranteeing safety and reliability of industrial processes operation, due to its ability of early 

detecting faults occurrence and discovering their root cause (Park, et al., 2020). This 

contributes to avert sudden shutdowns, breakdowns or even catastrophic events, and 

eventually to avoid large economic losses due to production stop and/or replacement of spare 

parts (Amozeghar & Khorasani, 2016). A FDD system performs two main functions: first, 

detecting the occurrence of fault, as opposite to the process normal behavior and, second, 

diagnosing the fault type or characteristics (Patton, et al., 1995; Narasimhan, et al., 2008).  

1.1.5 Soft-sensing 

In order to perform the numerical analysis in most of the previously mentioned modules 

of the process operations (e.g., MPC, FDD) and to obtain realistically effective/optimal 

decisions, the availability of continuous and real-time measurements of the process variables 

(control/input and state/output) is a must.  These real-time measurements are used to 

continuously feed the model (e.g., values of the initial conditions of the real process state 

variables are required at each time step for the solution of the MPC problem, real time values 

of the process variables required to, continuously, feed the FDD system). But, for an important 

class of process variables, which are called Quality Indicator Variables (QIV), online and 

continuous measurements are not always attainable due to technological and/or economic 

limitations (Kadlec, et al., 2009; Lin, et al., 2007). On the contrary, in many cases QIV values 

are obtained through expensive and time-consuming offline sampling and laboratory analysis 
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(Zamprogna, et al., 2005; Desai, et al., 2006). As a result, large laboratory delay and human 

errors in the procedure may prevent reliable optimization, control, monitoring and supervision 

of the process (Liu et al., 2012).  

Soft-sensing techniques have been proposed as a promising solution that has proven its 

effectiveness in these situations (Kadlec, et al., 2009). Soft-sensors are computational 

techniques that provide online and continuous ñestimationsò of the process QIV values by 

exploiting the measurements of other variables of the process that are reliably and 

continuously recorded online with minimum cost by means of the physical sensors network 

(e.g., temperature, pressure, flowrate) (Hoskins & Himmelblau, 1988).  

1.2 IMPORTANCE AND CHALL ENGES OF THE USE OF PROCESS 

FPMS IN CHEMICAL PROCESS  OPERATION  

This section explores the importance of the process models in the previously mentioned 

process operation support modules, and highlights the challenges that frequently face and/or 

hinders their usage. 

1.2.1 Steady-state optimization and uncertainty handling 

Regarding the steady-state optimization module, there is a growing trend of using 

detailed and high-fidelity mathematical models of the process based on ñfirst principlesò 

(FPMs) (Kajero, et al., 2017). However, the development of such analytical models for most 

chemical, petrochemical and pharmaceutical processes is a challenging task due to the required 

deep knowledge, effort and time. As a result, specialized simulation software tools have been 

developed to model and simulate such complex processes, most of them appearing in black 

box modular style, e.g., Aspen and gPROMs (Quirante, et al., 2018). Their ease of usage for 

modeling comes with many practical drawbacks and computational obstacles when they are 

used for optimization, especially for large-scale systems (Norbert, et al., 2017; Kelly & 

Zyngier, 2017). For example, the optimization of a full-scale petrochemical plant (crude oil 

and gas treatment facility, refinery, etc.) based on its FPM could demand several hours to 

converge and, in many cases, it does not converge to an optimal solution (Salback, 2004; 

Kajero, et al., 2017). The aforementioned drawbacks and obstacles include: 

i) high nonlinearity due to the sophisticated phenomena typically involved in the FPM 

(thermodynamics, reactions kinetics, heat and mass transfer, etc.), 

ii)  expensive computational cost required for their simulation due to the complexity of 

the solution procedure ïe.g., iterative schemes and/or integration techniques- used to 

converge them (Garud, et al., 2017), and also to the huge number of equations 
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contained, e.g., a full-scale refinery model could contain millions of equations (Henao 

& Maravelias, 2011), 

iii)  complex architectures, since most of them appear to the user in modular black box 

style involving intricate connections and recycles among the different units and, also, 

with no access to the embedded first principle equations (Caballero & Grossmann, 

2008), and  

iv) noisy calculations, which are introduced by these simulators (e.g., caused by the 

termination criteria) and hinders the efficient use of derivative-based optimizers, 

because of the bad estimates of the derivatives and, consequently, the poor 

optimization results (Quirante, et al., 2018).  

These obstacles and challenges can be easily magnified when optimization under 

uncertainty must be addressed in order to handle process-inherent and/or external uncertainty 

sources. In more detail, if stochastic programming or robust optimization (i.e., a proactive 

approach, see Section 1.1.1) are considered, additional challenges will include i) the large 

computational cost associated to the analysis of a large number of uncertainty scenarios, which 

significantly grows with the number of uncertain parameters, ii ) the need of complete 

knowledge of the characteristics of the uncertain parameters to identify their types and 

probability distributions, which is unrealistic especially in dynamic environments and iii) the 

limitation that the provided solution becomes suboptimal for most of the realizations of 

uncertainties during the operation/production (Li, 2010; Pistikopoulos, 2008). On the other 

hand, the application of the most flexible and reliable reactive approach (i.e., MPP, which is 

preferred in dynamic or online operation environments as the ones targeted by this Thesis, see 

Section 1.1.1) requires a well-contracted white-box model of the process  (Pistikopoulos, et 

al., 2007). So, it cannot be applied when considering complex steady-state FPMs characterized 

by the aforementioned challenging attributes (high nonlinearity, black boxes, large number of 

equations, noisy, etc.). 

1.2.2 Model predictive control 

In the MPC scheme, an online dynamic optimization problem (i.e., open loop optimal 

control) is solved at each sampling period, based on a dynamic model of the process. Firstly, 

the dynamic model is fed/updated by the current real measurements of the state/output 

variables collected from the process, which represent the initial conditions of the model at this 

sampling period (Pistikopoulos, 2008). Secondly, the dynamic optimization problem is solved 

to find the optimal profile of the control input variables over the entire prediction horizon (an 

order of magnitude of sampling periods) (Rivotti, et al., 2012). Then, only the values of the 

calculated optimal control profile corresponding to the first sampling period are implemented 
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in the plant, and at its end, the state/output variables are measured and their values are used to 

set up the next open loop optimal control problem, and so on (Tenny & Rawlings, 2004). 

However, MPC technology faces a major challenge associated to the high computational effort 

required to repeatedly solve the online open loop control problem at each sampling period. 

And the solution of an open loop control problem requires the repetitive evaluation of the 

process dynamic model, which may become computationally unaffordable (Katz, et al., 2020). 

The situation becomes more challenging when a complex and highly nonlinear dynamic FPM 

of the process is to be considered, due to the complexity of the solution procedure ïe.g., 

iterative schemes and/or integration techniques- required to solve such FPMs (Davis & 

Ierapetritou, 2008). 

Discretization techniques that transform dynamic FPMs from continuous-time (e.g., 

differential equations-based FPMs) to discrete-time representations and linearization 

techniques that linearize the nonlinear behavior, are used to reduce the complexity of such 

differential models allowing their smooth usage in MPC (Nagy, 2007). Even with the use of 

these auxiliary simplification methods (which typically implies additional effort, time and also 

deep mathematical knowledge and, also, leads to a decrease in the resulting model prediction 

accuracy in favor of its simplicity), the application of MPC to such linearized discrete state-

space FPMs can fail when dealing with large-scale and/or fast dynamic processes (Katz, et al., 

2018 ).  

1.2.3 Dynamic optimization 

As previously mentioned, dynamic optimization techniques, which are also referred to 

as open loop optimal control techniques, must be performed when dealing with continuous 

processes in transient state or batch processes (Diehl, et al., 2006; Wang, et al., 2017). 

Addressing a dynamic optimization problem requires an accurate dynamic FPM of the 

process/units, typically in the form of differential equations, which is able to predict the 

evolution of the proceed output or state variables in response to any given time-profile of the 

control input variables (Banga, et al., 2005). The problem typically involves a multifaceted 

objective, which is usually based on the final state of the system, but also on its evolution. 

Two types of methods are considered in the state-of-the-art for solving dynamic optimization 

problems  (Carrasco & Banga, 1997; Banga, et al., 2005). Indirect methods use the analytical 

necessary conditions from the calculus of variations to formulate a boundary value problem, 

which is usually very difficult to solve and requires a deep a priori knowledge of the nature of 

the problem (initialization, constraints structure, etc.), so they are usually inapplicable to the 

industrial practice (Srinivasana, et al., 2003). Alternatively, direct methods discretize the 

considered time domain, so as to transform the original infinite continuous optimal control 

problem into a finite constrained NonLinear Programming (NLP) problem, which is then 
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solved by appropriate numerical nonlinear optimization tools (e.g., Sequential Quadratic 

Programming (SQP), trust region search) (Banga, et al., 2005). In spite of their efficiency, 

practicality and popularity, direct methods can be hindered by the complexity of a dynamic 

FPM of the process, due to the demanding numerical techniques required for its solution (e.g., 

integration techniques) (Biegler, 2007).   

1.2.4 Fault detection and diagnosis 

Model-based FDD approaches have been widely used for chemical processes 

supervision (Venkatasubramanian, et al., 2003a), within which many FDD methods have been 

built on the basis of the dynamic state-space FPM of the process. Model-based FDD methods 

rely on what is named ñanalytical redundancyò (Patton, et al., 1994; Qin, 2012), through 

monitoring the extent of matching between the actual process measured features (e.g. 

state/outputs variables, coefficients or parameters) and the corresponding features calculated 

by means of a dynamic analytical model of the process, representing the normal or fault-free 

features. This results in error or residual signals between the model-estimated features and the 

actual process-measured features (Patan & Parisini, 2005; Isermann, 2005). The values of 

these errors indicate the extent of the process malfunctioning and, thus, they are used to detect 

and diagnose faults, by comparing them to threshold values for the errors, or using a more 

elaborated statistical analysis (Patton, et al., 1995; Narasimhan, et al., 2008; Caccavale, et al., 

2010; Elhsoumi, et al., 2011). Amongst model-based methods, observer-based, parity space-

based and parameter estimation-based methods are the most common. Model-based methods 

show great advantages when dealing with dynamic processes, where the monitored inputs and 

outputs variables are fed into a processor (i.e., diagnostic observer) that represents the 

knowledge about the process dynamics in order to generate a fault indicator /residual (Patton, 

et al., 1994; Elhsoumi, et al., 2011). However, they are associated with many shortcomings 

that complicate their implementation (Venkatasubramanian, et al., 2003a). First of all, the 

difficulties to create an accurate dynamic FPM of the process should be considered (Ardakani, 

et al., 2016a; Ardakani, et al., 2016c; Banu & Umab, 2011). Second, most of these methods 

are based on linear state-space models, whose effectiveness is reduced when applied to highly 

nonlinear complex processes, because they result in poor linear approximations 

(Venkatasubramanian, et al., 2003a; Serdio, et al., 2014). Finally, applications addressing 

large-scale processes would result in a high number of observers, which end up with solutions 

requiring an unaffordable computational effort if they must be used on-line 

(Venkatasubramanian, et al., 2003a).  
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1.2.5 Soft-sensing 

Finally, the early and traditional approach for soft-sensing in chemical processes rely 

on the use of dynamic FPMs that includes a detailed process description based on 

phenomenological knowledge  (Lin, et al., 2007; Jin, et al., 2014). These FPMs are used to 

predict/monitor the process behavior, either solely or using the information provided by 

physical sensors (e.g., for continuously adjusting their parameters). However, as previously 

mentioned, accurate and reliable FPMs of chemical processes are often unobtainable, 

especially for complex highly nonlinear ones because of the required deep knowledge about 

the process behavior (Jain, et al., 2007; Jin, et al., 2015).  

Furthermore, the available dynamic FPMs of the process/units are often developed 

under the assumption of favorable (i.e., ideal) working conditions, which are typically not 

encountered at industrial scale, which is characterized by uncontrolled disturbances, different 

operating conditions, continuously varying parameters (e.g. heat transfer coefficients) and, 

possibly, different  units/reactors geometries, etc. (Qin, 2012; Kajero, et al., 2017). Also, since 

the dynamic FPMs of the process/units typically do not consider the physical characteristics 

of mechanical and electrical components, connections and piping, which remarkably influence 

the real process, the accuracy of the FPMs-based soft-sensors predictions are reduced (Kadlec, 

et al., 2009; Jin, et al., 2014; Ali, et al., 2015).  

1.3 CHALLENGES TREATMENT  METHODS, AND EXISTING GAPS 

This Section summarizes the State-Of-Art (SOA) methods and techniques used to 

minimize the drawbacks and challenges of the use of complex FPMs in each of the 

aforementioned process operation modules. Also, the section identifies some of the existing 

gaps with respect to the yet unresolved challenges of using complex FPMs in such applications 

or regarding other cases in which process real measurements are available without having a 

reliable FPM. Driven by these gaps, this Section also highlights the potential contributions of 

the thesis. 

1.3.1 Steady-state optimization and uncertainty handling 

In order to tackle the challenges associated to the use of complex FPMs in chemical 

processes operation optimization, the use of Surrogate Based Optimization (SBO) approaches 

have been proposed and received a big deal of attention (Quirante, et al., 2018). Roughly 

speaking, the basic idea of SBO is to use the original complex FPM for generating input-output 

data points (ñcomputer experimentsò) that are used to develop accurate, but simple and fast-

running, data-driven models (ñsurrogate modelsò), which are used instead of the complex FPM 
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in optimization problem (Ochoa-Estopier & Jobson, 2015). In most of the SBO methods 

proposed in the chemical process engineering area, two surrogate model types have been 

common choices, which are the Artificial Neural Networks (ANNs) and kriging models 

(Kajero, et al., 2017). ANNs offer universal and powerful approximation capabilities due to 

their flexible structure that can be adapted to capture complex nonlinear behaviors. On the 

other hand, kriging is able to provide high prediction accuracy with relatively smaller number 

of training data points, beside its outstanding capability of estimating an error or variance, 

which represents the uncertainty about the kriging model prediction. Nevertheless, in the SBO 

literature (Jones, et al., 1998; Jones, 2001; Zuhal, et al., 2019), it has been demonstrated that 

non-interpolating surrogate models (i.e., regression models, such as ANN) are unreliable in 

optimization, because they do not appropriately capture the shape of the function to be 

approximated, and it is usually better to use surfaces that interpolate the data with linear 

combinations of basic functions (e.g., kriging). 

In the chemical process engineering area, two main classes of SBO methods can be 

identified. The first class is based on partitioning the simulation model into different units or 

subgroups of units, for each of which a surrogate model is developed. The different surrogates 

are aggregated/linked to constitute the final approximate model of the process, based on which 

different optimization schemes have been designated  (Salback, 2004; Henao & Maravelias, 

2011; Quirante & Caballero, 2016; Quirante, et al., 2018). In most of these cases, the surrogate 

models must be retrained in each iteration with completely new datasets generated by the FPM 

simulation. This is because of the continuous modification of the surrogate models input 

domains during the optimization search as a consequence of shrinking the search area, each 

iteration, around the current/candidate optimal solution (i.e., refining the optimization search), 

in order to guarantee the accordance between the output domain of each surrogate model and 

the input domain of the subsequent/connected surrogate. The advantages of this class of SBO 

methods include i) the capability of handling large-scale systems by splitting them into small 

units/sections (i.e., surrogate models) and ii ) the possibility to construct hybrid process models, 

which combines units or sections of the plant based on their simple and fast FPMs (e.g., 

splitters, pumps) with surrogate models of other complex units or sections (e.g., distillation 

columns, reactors).  Whereas their limitations are that they iteratively discard the previous 

training datasets and generate new sets for fitting new surrogate models, which can be 

computationally prohibitive in an online environment. Also, they do not consider the surrogate 

models uncertainty during the optimization search, and even when kriging surrogate models 

are used, they do not exploit the potential capabilities provided by their estimated variance.  

On the contrary, the second class of SBO methods (Palmer & Realef, 2002; Kempf, et 

al., 2012; Chia, et al., 2012; Ochoa-Estopier & Jobson, 2015; Ochoa-Estopier, et al., 2018) is 
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based on the development of a global surrogate model approximating the entire modular 

simulator or the flow-sheet of the process. In more details, the input and output variables of 

these global surrogate models are selected over the entire process flow-sheet as the variables 

of interest for the optimization problem formulation (i.e., variables representing the 

optimization decisions (input) and variables constituting the objectives and constraints 

(outputs)). During the optimization iterations, these global surrogate models are retrained with 

an updated dataset that includes the original training dataset and, in addition, very few points 

that represent information about the optimal solution obtained in the previous iteration. The 

advantages of this class of SBO methods are: i) they take into account the surrogate models 

prediction uncertainty (i.e., the predictors error), which is an essential need in SBO (Jones, 

2001; Zhang, et al., 2018), ii ) they add efficient global exploration capabilities to the search 

mechanism by not only directing it to the minimum value of the objective predictor, but also 

to its maximum prediction error (Zuhal, et al., 2019), iii ) the eventually obtained global 

surrogate model of the entire process/plant can be further exploited and used for different 

analysis (Kempf, et al., 2012) and iv) relatively few simulation runs of the original FPM are 

required for updating the surrogate models during the optimization search (Forrester & Keane, 

2009), which makes this SBO class more suitable for online application. Nevertheless, this 

class has some drawbacks such as the difficulty to construct global surrogate models that 

accurately capture the behavior of large-scale processes and, more importantly, the difficulty 

of handling constraints. 

In the SBO literature (Jones, et al., 1998; Jones, 2001; Zuhal, et al., 2019), it has been 

shown that even if an interpolating surrogate model is used (e.g., kriging), exploring the 

surrogate with an arbitrary optimizer can fail even to find local optima, because the surrogate 

model prediction uncertainty is not considered by the traditional optimizers (Zhang, et al., 

2018; Zuhal, et al., 2019). Consequently, there is a need for SBO methodologies that do not 

only consider the surrogate model prediction, but also consider the uncertainty about this 

prediction.   

On another side, the previously discussed sudden and uncertain variations of some 

process parameters poses more challenges to the steady-state operation optimization, and can 

harm the effectiveness of such SBO methods, because these surrogate models are trained by 

data generated from a FPM whose parameters are set at predefined specific values that lead to 

the best process-model match. So, any sudden change in the process parameters values makes 

the surrogate models are no longer valid and, consequently, the obtained optimal solution 

based on their analysis.  

Finally, up to the authorôs knowledge, the literature, yet, doesnôt include proposals or 

studies for reducing the challenges that face the applications of MPP approaches for handling 
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uncertainty in the operation optimization of steady-state processes for which the available 

model is complex, highly nonlinear and/or black box. 

1.3.2 Model predictive control 

In order to overcome the limitations and challenges of the high computational burden 

required for solving the MPC problem when an expensive dynamic FPM of the process is 

considered, explicit MPC methods (also called MultiParametric-MPC (MP-MPC)) have been 

proposed (Pistikopoulos, 2008; Tian, et al., 2020).  

Explicit MPC aims at avoiding the online computations, by solving the MPC problem 

offline by means of a MPP formulation, which provides the solution in the form of very simple 

and ñexplicitò mathematical expressions able of calculating the optimal values of the control 

inputs the should be applied the next sampling step, as a function of the current values of the 

process state variables (Pistikopoulos, 2008). The obtained explicit functions take, in most 

cases, piecewise affine form, and act as explicit control laws that are employed online to 

calculate, in a very simple and computationally cheap way, the optimal values of the control 

inputs.  

However, again, further to the complex mathematical knowledge required to develop 

the MPP analysis (Rivotti, et al., 2012), the availability of a dynamic discrete-time linear state-

space model of the process is usually a necessity for the practical application of the explicit 

MPC (Pistikopoulos, et al., 2002; Kouramas, et al., 2011). This, again, may hinder the MP-

MPC usage in cases where the available process dynamic FPM is highly nonlinear, high 

dimensional, with a complicated structure (e.g., sequential simulation models) and/or black 

box (Rivotti, et al., 2012; Medina-González, et al., 2020). Model approximation and order 

reduction techniques have been proposed (Rivotti, et al., 2012); however, this may 

oversimplify the processes behavior and, consequently, degrade the controller performance. 

Additionally, the effort dedicated to this model simplification step should be also considered.  

1.3.3 Data-driven dynamic modeling for supporting control applications 

In most control, monitoring and supervision systems (e.g., MPC, dynamic optimization, 

FDD, etc.), a reliable and accurate dynamic model of the process able to rapidly predict the 

future values of the process outputs is a must (Nelles, 2001; Ali, et al., 2015). As mentioned 

before (Section 1.2.2), discretization and linearization techniques may help to reduce the 

complexity of dynamic FPMs and to obtain simpler discrete-time state-space FPM, however, 

this may not resolve the computational challenges in cases of large-scale and/or fast dynamic 

processes (Nelles, 2001; Boukouvala, et al., 2011). In other cases, reliable dynamic FPMs for 
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complex processes are not available, due to the limited knowledge about the sophisticated 

behaviors and complex phenomena characterizing these processes (reaction kinetics, thermo-

dynamic, etc.), while only real data collected from the process is available  (Bradford, et al., 

2018; Ali, et al., 2015).  

In both cases, system identification or data-driven dynamic modeling methods can be 

used to construct empirical dynamic models for predicting the future values of the process 

outputs (Nelles, 2001; Baraldi, et al., 2013). The data used to build these empirical models can 

be either generated from complex FPM simulations or measured from the real process (Kajero, 

et al., 2017). 

Many methods have been developed for linear dynamic system identification, but their 

application to nonlinear processes provides unsatisfactory results (Nagy, 2007). As a 

consequence, advanced data-driven nonlinear modelling techniques, such as ANNs (and their 

derivatives, e.g., radial basis-ANNs, recurrent-ANNs) and recently Gaussian Process (GP) 

models (Zhou, et al., 2015; Mattosa, et al., 2017), have been widely proposed to capture 

nonlinear dynamic relations between the nonlinear process inputs and outputs.  

ANNs have become a popular choice due to their universal approximation abilities 

(Himmelblau, 2000; Poznyak, et al., 2019). A significant number of successful applications of 

ANNs to dynamic modelling are reported over a wide spectrum of fields (Nelles, 2001; 

Masters, 1993; Himmelblau, 2000). Especially in the chemical process engineering area, 

ANNs have been extensively used as Nonlinear AutoRegressive eXogenous (NARX) models 

for dynamic modelling and system identification of both univariate (single output) (Nagy, 

2007; Sadeghassadi, et al., 2018; Poznyak, et al., 2019) and multivariate (multi-output) 

systems  (Adebiyi & Corripio, 2003; Caccavale, et al., 2010; Li & Li, 2015; Lee, et al., 2018). 

But their usage has two main practical drawbacks: i) the large effort required to select a good 

network structure (Kajero, et al., 2017), and ii ) the curse of dimensionality (Aģman & Kocijan, 

2011).  

Recently, GP models have shown promising performance in dynamic modelling and 

system identification in terms of high prediction accuracy and ease of their parameters tuning, 

besides, their abilities to reduce the previously mentioned limitations of ANNs (Deisenroth, et 

al., 2009; Aģman & Kocijan, 2011). This is due to their nonparametric nature: they do not 

approximate the system by fitting the parameters of a selected structure or functional shape 

but, instead, they search for relationships among the measured data through a correlation 

function/model (Boukouvala, et al., 2011). Therefore, the number of the metamodel 

parameters to be identified is significantly low compared to other parametric models (e.g., 

ANNs models) and, consequently, the size of the required set of training data is significantly 
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reduced (Aģman & Kocijan, 2011). Besides, GP models offer high tuning flexibility 

(Boukouvala, et al., 2011; Rasmussen & Williams, 2006).  

In most of the literature studies, GP models have been proposed for univariate dynamic 

modeling of nonlinear chemical processes (Aģman & Kocijan, 2011; Zhou, et al., 2015), where 

they are employed as NARX models to predict the future value - over one step-ahead - of an 

output of interest as a function of the process current inputs and output values. The developed 

model is, then, used to perform multistep-ahead prediction via recursive calculation, where the 

predicted output at the current time is fed-back to the model as a part of its input for the next 

time step prediction. Very few works have extended the GP and kriging capabilities to 

multivariate dynamic modeling of chemical processes: Hernandez and Grover (2010) 

Boukouvala, et al. (2011) and Bradford, et al. (2018). However, these works share common 

limitations: i) they have been validated considering processes characterized by very 

smooth/steady dynamics, without any influencing control/external inputs (Hernandez & 

Grover, 2010) or with very simple changes in them (Boukouvala, et al., 2011), ii ) they 

provided simple Markovian state-space models and they have not illustrated the ability of their 

methodologies to develop dynamic models with delayed/lagged inputs, iii ) they presumed that 

a FPM is always available, which is combined with Design Of Computer Experiments (DOCE) 

methods to optimally select the training datasets, and iv) the robustness of their methodologies 

to handle different case studies, and their flexibility to integrate different metamodel types are 

not explored.  

An efficient dynamic modelling methodology should be able to handle the challenges 

usually encountered in real processes, which are : i) the existence of  many external inputs that 

control or influence the process causing significant changes in its outputs behavior, ii ) the 

possibility of incorporating lags in the model inputs in order to capture possible delayed 

behavior of the process itself, and/or to compensate for missing repressors (Espinosa & 

Vandewalle, 1998a; Espinosa & Vandewalle, 1998b), iii ) handling practical situations, in 

which real data collected from the process is the only source of information available (i.e., no 

FPM).  

1.3.4 Dynamic optimization 

As previously mentioned in Section 1.2.3, direct methods are, in practice, the most 

common techniques for solving dynamic optimization problems. Direct methods are classified 

according to the variables to be discretized (Wang, et al., 2017). Sequential approaches (also 

known as Control Vector Parameterization (CVP)) discretize only the control variables in the 

form of piecewise low order polynomials, and then a NLP optimization problem is carried out 

in the space of the discretized control variables, which requires the successive evaluation 
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(simulation runs) of the dynamic FPM of the process during its solution. On the contrary, 

simultaneous approaches discretize both control and state variables by approximating them by 

a family of polynomials on finite elements  (Diehl, et al., 2006), so they avoid the inner 

evaluation of the differential FPM, although they result in a NLP problem of a very large-scale 

(due to the presence of state variables together with the control variables as optimization 

decisions (Banga, et al., 2005; Carrasco & Banga, 1997)). Besides, they require the 

introduction of extra constraints to enforce the continuity of the discretized state variables 

(Diehl, et al., 2006).   

The sequential strategy is straightforward and relatively easy to construct and to apply, 

and results in a NLP optimization problem of a much reduced size (Carrasco & Banga, 1997; 

Banga, et al., 2005; Diehl, et al., 2006; Biegler, 2007). However, a major challenge that faces 

the sequential approach is the huge computational effort associated to a large number of 

evaluations of the nonlinear process model. Since each evaluation implies the integration of 

this differential model using expensive integration techniques (Diehl, et al., 2006; Biegler, 

2007). This challenge is amplified in cases of complex, large-scale and/or highly nonlinear 

problems (Srinivasana, et al., 2003), and the computational cost may become unaffordable if 

a fast identification of the process control profiles is required, which is the case in many 

industrial applications (transitions between desired operating conditions, response to sudden 

disturbances or unexpected events, model based control, etc.) (Nagy, 2007).  

With respect to the simultaneous strategy, it is not facing direct complications regarding 

the default/classical use of FPMs (i.e., simulations and the required computational time), 

because they discretize both the control and the state variables. However, they face obstacles 

associated to the very large-scale of the NLP problem resulting from this discretization, which 

includes a large number of equality and inequalities constraints and a potentially large number 

of degrees of freedom (Biegler, 2007).  

Finally, it is worth highlighting that, in the chemical engineering area, the use of data-

driven techniques has been rarely proposed in the literature to support dynamic optimization 

tasks. 

1.3.5 Fault detection and diagnosis 

In order to cope with the challenges associate to the use of FPMs for FDD of chemical 

processes (Section 1.2.4), knowledge-based and data-based FDD approaches have been 

proposed and, also, widely used as powerful alternatives (Calado, et al., 2001; 

Venkatasubramanian, et al., 2003b).  
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Knowledge-based approaches rely on the development of some diagnostic rules and the 

establishment of rule-based expert systems, which necessitate a deep knowledge about process 

structure and components under the normal (fault-free) and the different possible faulty 

situations and scenarios (Calado, et al., 2001). However, knowledge acquisition is generally a 

challenging task (Calado, et al., 2001).  

The data-based FDD approaches rely on using data-driven Classification Techniques 

(CTs), e.g., Support Vector Machines (SVMs), Gaussian Naïve Bayes classifiers (GNBs), 

Decision Tree (DT), ANNs, etc. These approaches have shown a great flexibility and 

robustness for the FDD of nonlinear chemical processes without requiring any mathematical 

model of the process  (Askarian, et al., 2016; Ardakani, et al., 2016c). These CTs are trained 

based on pattern recognition principles from process historical data, including information 

about normal and different faulty situations (Patton, et al., 1994). Then, the trained CT can be 

used for the process supervision in order to detect and diagnose possible faults from the process 

output measurements.  

However, these CTs also suffer from serious limitations. The first one is that the 

classification of faults is based only on the measurements of the process outputs, disregarding 

any knowledge about the system dynamics  (Caccavale, et al., 2010). As a result, they are 

mostly used for FDD of steady-state processes, where the process is expected to operate under 

constant conditions/controls (Patton, et al., 1994; Amozeghar & Khorasani, 2016), while it is 

usually considered that, in dynamic systems, CTs could easily produce false alarms by 

diagnosing the changes in the processes outputs as faults. This is due to the lack of information 

about the dynamics governing the relation between the process inputs and outputs. The second 

limitation is the sensitivity of the CTs to the measurement noise, which makes the errors that 

very often contaminate the measurements to create false diagnosis and alarms. These usual 

errors may be random (e.g., sensors white noise) or not (e.g., outliers / biases due to 

instruments malfunctioning, miss-calibration or poor sampling) (Patton, et al., 1994; Ardakani, 

et al., 2016b).  

Therefore, some works have proposed the use of data-driven dynamic observers 

(mostly, based on ANNs) to mimic the system dynamic behavior, identifying the underlying 

dynamic mapping between the system inputs and outputs (Honggui, et al., 2014; Smarsly & 

Petryna, 2014; Serdio, et al., 2014; Tayarani-B. & Khorasani, 2015; Amozeghar & Khorasani, 

2016). These approaches generate a residual vector between the data-driven observer 

estimated outputs and the process measured outputs which are then used to detect and isolate 

faults using a threshold value for each residual component or applying some statistical 

analysis.  
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Few works (Amozeghar & Khorasani, 2016) have combined these data-based predictors 

(and the generated residuals) with CTs to automate and improve the FDD task. However, in 

most of these works, CTs are trained to isolate each fault type when the residual component 

of a specific output exceeds a specific threshold value. This approach neglects the basic and 

most important characteristic of any CT, which is its ability to identify a certain pattern in the 

features (i.e., residuals), regardless of the specific values of the pattern. Furthermore, the 

identification of a specific threshold value for each residual component as a fault indicator is 

not a trivial task, as it requires a prior knowledge about the process nominal behavior besides 

its behavior under the effects of the fault, and may be even infeasible if scenarios with time-

varying inputs are considered. 

1.3.6 Soft-sensing 

Data-driven soft-sensing methods have been proposed, also, to alleviate the 

complications encountered when using FPMs for soft-sensing in chemical processes. They are 

gaining wide interest in the process industry, because of their practicability, robustness and 

flexibility to be developed and applied to a wide range of processes, in addition to their 

independence from the need to a process mathematical model (Hoskins & Himmelblau, 1988). 

They are based on the construction of a data-driven model able to accurately approximate the 

relation between the QIV and other online variables  (Bonne & Jorgensen, 2004; Facco, et al., 

2009).  

In the literature, data-driven soft-sensors have been vastly applied to continuous 

processes, in order to predict the process steady-state behavior, although they have shown 

limitations dealing with the transient states of the process (e.g., start-up and shut-down)  

(Facco, et al., 2009; Wang, et al., 2016). Comparatively, the development and application of 

data-based soft-sensors to batch processes, which are always in transient state, have been 

found to be relatively more complicated  (Bonne & Jorgensen, 2004; Liu, et al., 2012).  

In this scope, the combination of principal component regression and partial least-

squares techniques is the most common method for building data-based soft-sensors for linear 

processes (Jin, et al., 2014; Zamprogna, et al., 2005).  

With respect to nonlinear processes, ANNs-based approaches (Masters, 1993) have 

been often adopted, due to their universal approximation and efficient generalization 

performance (Yan, et al., 2004; Kadlec, et al., 2009). Several types of ANNs have been 

efficiently applied for soft-sensing, as feedforward ANNs, radial basis ANNs and fuzzy ANNs  

(Nelles, 2001; Nagy, 2007). These applications, however, reported the ANNs problems such 

as the required laborious effort for selecting the network structure and configuration (e.g., 
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number of layers, number neurons in each layer, transfer function type, training method) 

(Azman & Kocijan, 2007; Davis & Ierapetritou, 2007).  

The Support Vector Regressions (SVR) model has been also proposed for soft-sensing 

in batch processes  (Yan, et al., 2004; Desai, et al., 2006; Kadlec, et al., 2009). SVR techniques 

have very good generalization properties and quickness of tuning (associated to the 

optimization problem solution time for the support vectors selection) (Jain, et al., 2007; 

Kadlec, et al., 2009). However, the effort and the time required to select the parameters of the 

SVR model ïprior to the optimization-, as the penalty cost, the error margin and the variance 

become a major limitation (Forrester, et al., 2008).  

Recently, GP models are attracting huge attention in the soft-sensing of batch processes 

area, and have been applied either to continuous  (Grbiĺ, et al., 2013; Wang, et al., 2016; Liu, 

et al., 2016) or to batch processes  (Jin, et al., 2015), offering high prediction accuracy and 

tuning flexibility while requiring a relatively small set of the training data. But the 

computational effort and capabilities required for the GP model parameters tuning could be a 

serious shortage, especially for high dimensional cases and/or large training datasets. The 

kriging models (Krige, 1951; Kleijnen, 2017), which are considered as specific 

forms/applications of the GP models, have never been introduced to the area of the soft-sensing 

of batch chemical processes yet.  

Most data-driven soft-sensing approaches for batch processes proposed in the literature 

have not considered the initial conditions of the batches in their design, since they have been 

tailored for batch processes operated under fixed initial conditions. These approaches have 

addressed the batch-to-batch data variability -due to a very slight change in the initial 

condition- from the uncertainty and noise perspectives: input-output training data from 

different batch runs are assumed to have random errors due to undesired disturbances, which 

are expected to be representative of a population of batches that are swarming around the mean 

behavior of the process or what is called the ñreference batchò or the ñgolden batchò (Kadlec, 

et al., 2009). Then, the correct underlying process behavior can be identified, thanks to the 

regularization abilities of the employed machine learning techniques, which enable them to 

learn from this uncertain and perturbed data, and to filter out the assumed noise.  

1.4 OBJECTIVES AND CONTR IBUTIONS  

This Section states the general objectives of the Thesis (Section 1.4.1 ) and delineates 

the specific contributions (Section 1.4.2) that the thesis presents in order to realize/constitute 

these objectives. 
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1.4.1 Objectives 

Directed by the challenges and criticalities facing the use of FPMs in chemical processes 

optimization, supervision and control (Section 1.2) and the defined gaps in the SOA 

methodologies for treating these challenges (Section 1.3), this section delineates the main 

objectives of the thesis. 

ü Objective 1: the implementation of different state-of-art techniques for DOCE and 

sequential sampling, data-driven models (also referred to as -depending on the usage 

context- machine learning models, metamodels or surrogate models) and model validation 

and assessment procedures.  

ü Objective 2: the development of a framework for data-based modeling of steady-state 

processes, which integrates the previously implemented techniques and methods (in 

Objective 1). This framework is aimed at the flexible and robust construction of accurate 

machine learning or surrogate models of different types, and also the comparison between 

them, to select the best surrogate model type for the case study to be addressed. 

ü Objective 3: the development of new methods for steady-state operation optimization of 

processes based on surrogate models, which enable the optimization of complex chemical 

processes that are difficult to be optimized through existing/classical optimization 

methods. These difficulties can be due to the complexity and high nonlinearly of the 

process model and/or the existence of uncertainty in some of the process model 

parameters. 

ü Objective 4: the development of an efficient and generic framework for data-driven 

dynamic modelling and emulation of multiinput-multioutput, complex and nonlinear 

chemical processes. The framework should be aimed at providing dynamic models able to 

accurately and speedily predict the future behavior of the process outputs over large time 

horizons. 

ü Objective 5: the integration of these data-driven dynamic models in efficient 

methodologies for the enhancement of the process monitoring (e.g., a soft-sensing 

methodology), control (e.g., a dynamic optimization methodology) and supervision (e.g., 

a FDD methodology). 

1.4.2 Thesis contributions  

This section defines the specific contributions that this thesis presents in order to cover 

the gaps and missing requirements highlighted in Section 1.3. Also, the relations between each 

contribution and the previously stated objectives are outlined.  
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Figure 1.2 illustrates the locations of each contribution with respect to the process 

operation modules and associated process model scales. 

 

Figure 1.2. Localization of the thesis contributions (red arrows) within the process 

operation modules and associated process modes scales. 

 

¶ Contribution I:   development of a SBO methodology for the constrained 

optimization of complex, nonlinear steady-state processes, in which the 

objective function and/or the constraints are represented by black-box models. 
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The methodology expands the capabilities of the second class of SBO methods 

by efficiently handling constraints, and is aimed to assist in the hour-to-hour or 

day-to-day operation optimization of complex chemical processes, 

guaranteeing the reliability of the computations and the quick convergence to 

the optimal solution. This contribution is related to Objectives 1, 2 and 3. 

¶ Contribution II:  a novel, easy-applicable and generic data-driven 

methodology for the multiparametric solution of continuous and mixed integer 

optimization of chemical processes operation, influenced by traceable 

uncertainty sources, has been developed. The methodology is aimed at 

providing very accurate and fast-running data-based models (referred to as 

MultiParametric Metamodels (MPMs)) that approximate the multiparametric 

behavior of the optimal solution over the uncertain parameters space. The 

purpose is to overcome the obstacles that face classical MPP when applied to 

process operation optimization problems, where complex, highly nonlinear 

and/or black-box models are used.  This contribution is also related to 

Objectives 1, 2 and 3. 

¶ Contribution III:  it consists in the development of a novel Data-Based 

MultiParametric -Model Predictive Control (DBMP-MPC) methodology, 

which enables simple implementations of explicit MPC in situations when the 

available dynamic FPM model of the process is complex, highly nonlinear 

and/or black-box, and/or when the deep mathematical knowledge required to 

develop traditional MP-MPC techniques is not obtainable. This contribution is 

related to Objectives 1, 2 and 5. 

¶ Contribution IV:   development of a data-driven methodology for multivariate 

dynamic modeling and multistep-ahead prediction of nonlinear chemical 

processes using machine learning models. The method overcomes the main 

limitations currently attributed to the existing approaches in terms of a) the 

ability to provide accurate data-driven dynamic models for general multi-

input/multi-output processes that may involve complex dynamic behaviors 

(complex control input profiles, delayed behaviors, etc.), b) the ability to 

simulate the process future outputs over large time horizons, c) the capability 

to accommodate different types of data modeling techniques and d) the ability 

of handling different situations, either when a limited set of input-output data 

signals are available, or when the training data can be optimally generated 

using a FPM and DOCE techniques. The methodology also introduces the use 

of the kriging model for the multivariate dynamic modeling in the chemical 
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process field in a robust and flexible manner. Finally, the methodology provides 

a novel DOCE procedure for dynamic modeling, considering the purpose of the 

simplification and complexity reduction of expensive dynamic FPMs. This 

contribution is related to Objectives 1, 2 and 4. 

¶ Contribution V: development of a data-driven CVP methodology based on 

multivariate dynamic data-driven models (contribution IV) and a sequential 

dynamic optimization strategy. The methodology is aimed at enhancing the 

solution of open-loop optimal control problems in situations where a complex 

FPMs of the process is to be used and also to assist in situations where a 

reliable dynamic FPM of the process is not available. This contribution is 

related to Objectives 1, 2 and 5. 

¶ Contribution VI :  involves the development of a novel hybrid FDD 

methodology that combines a dynamic observer based on data-driven 

multivariate dynamic models (contribution IV) and CTs. The purpose is to 

improve the data-driven FDD of nonlinear chemical processes operated under 

time-varying inputs and, subjected to different types, severities and styles 

(abrupt and incipient) of faults. This contribution is related to Objectives 1, 2, 

4 and 5. 

¶ Contribution VII:  includes, first, the development of a soft-sensing 

methodology for a special type of batch processes that is rarely explored in the 

area of soft-sensing: those batch processes that show a characterized 

variability in their initial settings or conditions (processes aiming to manage 

raw materials whose specifications or properties differ from one batch to 

another, or when different product qualities/quantities are to be generated). 

Hence, the objective is to develop a soft-sensor able to estimate the QIVs along 

the batch run under any set of initial conditions in the expected operating range. 

Second, development of an efficient soft-sensor for a real batch pilot plant for 

waste water treatment, which involves an Advanced Oxidation Process (AOPs) 

based on the photo-Fenton reaction. Due to the complexity and high 

nonlinearity of these processes, the best way to address their analytical or 

phenomenological modeling is still under debate in the scientific and research 

community; while many data-based modelling studies of these processes have 

been accomplished from the point of view of experimental design in laboratory 

scale, their monitoring and control have been never addressed from a soft-

sensing perspective, i.e. at industrial or pilot plant scale. Third, exploring the 

advantages of the kriging technique ïas a kind of GP metamodels- for soft-
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sensing in the chemical engineering area. This contribution is related to 

Objectives 1, 2, 4 and 5. 

1.5 THESIS STRUCTURE 

This section outlines the thesis structure, which is composed by additional nine 

Chapters. Excluding Chapter 2 (tools and techniques) and Chapter 10 (conclusions and future 

works), each of the remaining Chapters (from 3 to 9) addresses one of the contributions 

previously delineated in Section 1.4.2. Therefore, the Thesis structure is as follows: 

¶ Chapter 2 overviews the general basics of the tools and techniques used in this 

thesis for building and developing the novel methodologies. These techniques 

include DOCE, machine learning models for regression (i.e., surrogate model), 

machine learning models for pattern recognition (i.e., classifiers), clustering 

methods and optimization algorithms. 

¶ Chapter 3 (Contribution I)  reviews in detail the literature of SBO of chemical 

processes and presents a new SBO methodology for the steady-state operation 

optimization of complex nonlinear chemical processes, in which the objective 

function and/or the constraints are represented by black-box functions. The 

proposed approach consists in replacing the complex, nonlinear, black-box 

model of the processes built based on first principles with global kriging 

surrogate models. Then, an active optimization strategy involving a sequential 

sampling procedure, based on the Expected Improvement (EI) (for 

unconstrained optimization) or the Constrained Expected Improvement (CEI) 

(for constrained optimization) techniques, is used to explore the search space of 

the decision variables and to adapt, accordingly, the surrogate models, so as to 

reach a global solution for problem. The methodology is tested and compared 

with classical optimization procedures based on sequential quadratic 

programming. Both have been applied to three benchmark mathematical 

examples and to two case studies of operation optimization of chemical 

processes modeled by modular black-box simulators. 

¶ Chapter 4 (Contribution II)  presents a general overview on the existing 

methods for process operation optimization under uncertainty, and presents two 

novel machine learning-based methodologies for the multiparametric solution 

of such problems. The first method addresses continuous optimization 

problems, and aims at developing global MultiParametric Metamodels 

(MPMs), which are trained using input-output data (uncertain parameters-

optimal variables and objective), to approximate the multiparametric behavior 
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of the optimal solutions over the entire space of the uncertain parameters. The 

second method targets general Mixed-Integer optimization problems. The 

method models the multiparametric behavior of the continuous variables by 

using clustering techniques in order to isolate or highlight those potential local 

regions of the uncertain parameters space over which the optimal solution 

behaves significantly different. Then individual MPMs are trained to 

approximate the optimal solution behavior of each continuous decision variable 

over each of the identified local regions. For integer decision variables, the 

method harnesses classification techniques to predict the optimal values of 

these integer variables also as a function of the uncertain parameters. In both 

methods, the input-output data are generated through running the optimization 

problem based on the original process FPM using state-of-art optimizers several 

times and considering different values of the uncertain parameters that are 

selected by DOCE techniques. The effectiveness and capabilities of the 

proposed methods have been proven through their applications to different 

benchmark examples from the MPP literature and to three cases studies of 

process and unit operations optimization. 

¶ Chapter 5 (Contribution II I)  presents a Data-Based MultiParametric-Model 

Predictive Control methodology. The proposed methodology is based on the 

use of machine learning models which are trained offline using input-output 

data (initial state variables-optimal control variables) to obtain surrogate 

models, acting as control laws that approximate the values of the optimal 

control variables that must be applied along the future sampling period as a 

function of the current state variables values. Then, during the online 

application, the optimal control is calculated through simple interpolations 

using these surrogate models. The input-output training data are generated 

offline by solving the open loop optimal control problem several times, each 

using different combination of the initial state variables values selected by a 

DOCE technique. The method is tested with benchmark problems used in the 

MultiParametric-Model Predictive Control literature, involving a simple 

discrete state-space model and a differential FPM of a stirred tank reactor.  

¶ Chapter 6 (Contribution IV)  reviews in detail the SOA of data-driven 

dynamic modelling in the chemical engineering area, and presents a novel 

methodology for data-driven multivariate dynamic modelling and multistep-

ahead prediction of nonlinear chemical processes using data-driven models. 

The proposed methodology utilizes machine learning techniques for building a 



 

28 Chapter 1: Introduction 

group of NARX models, each of them able to predict the evolution of one 

process output as a function of the other inputs and outputs of the process, over 

a suitable time lag. The set of multivariate dynamic models are, then, used to 

forecast the process outputs along larger time intervals (multistep-ahead 

prediction), through a recursive and inter-coordinated prediction scheme. The 

methodology also offers a new procedure for training data selection for dynamic 

modelling, based on the DOCE technique when a FPM of the process is 

available. The capabilities of the kriging technique are compared with those of 

one of the most popular techniques (i.e., ANNs). The application of the 

proposed methodology is illustrated through its application to three case-studies 

of nonlinear dynamic processes selected from the process industry presented in 

the literature, including a bioreactor, three-interconnected-tanks and an oil-

shale pyrolysis batch reactor. 

¶ Chapter 7 (Contribution V)  reviews the current methodologies and techniques 

for the dynamic optimization of chemical processes based on dynamic FPMs. 

First, it introduces a novel data-driven methodology for the sequential dynamic 

optimization applicable to solve the open loop optimal control problem of 

complex highly nonlinear processes. The method is based on the construction 

of a set of multivariate dynamic surrogate models (Chapter 6), which are able 

to accurately and rapidly predict the process output behavior corresponding to 

any time-profile of the process control inputs. Second, a sequential dynamic 

optimization procedure is tuned to integrate this set of dynamic surrogate 

models representing a complex process FPM. The methodology is applied to 

three well-known problems from the process systems engineering area, 

including a plug-flow reactor, batch reactor, and a parallel reaction problem. 

¶ Chapter 8 (Contribution VI)  presents a detailed literature review on the 

different approaches and methods for FDD in the chemical engineering area 

and, then, proposes a novel hybrid data-based methodology for FDD. The main 

modules of the novel methodology are also described, which are: i) a dynamic 

observer based on multivariate dynamic surrogate models (Chapter 6) capable 

to estimate the expected normal outputs of the process, ii) static kriging models 

smoothing the real measurements of the process outputs to reduce the noise 

effects and iii)  data-based classification techniques, which are trained with 

patterns of residuals created from the comparison between the estimated outputs 

by the observer and the smoothed real outputs of the process. Different 

classification techniques such as ANN, SVM, GNB and DT, have been 
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developed and compared. The performance of the method is illustrated through 

its application to the well-known three-tank benchmark case study, considering 

different dynamic operating conditions and faulty situations, including 

scenarios with modified fault severities and fault styles. 

¶ Chapter 9 (Contribution VII)  presents a new soft-sensing methodology based 

on machine learning models for the online prediction of QIV of batch processes 

operated under changeable initial conditions. The chapter reviews in detail the 

state-of-art of soft-sensing in the chemical process engineering area and, 

consequently, claims the contributed novelties. The chapter also compares, 

within the proposed methodology, the performance of the kriging technique to 

the most common data-based modelling techniques used for soft-sensing as 

SVR and ANN, in order to assess its capabilities. The effectiveness and the 

capabilities of the proposed method is proved by its application to two 

simulation benchmark case-studies, including a simple batch reactor and a fed-

batch fermenter for Penicillin Production. The application is also extended to a 

real photochemical pilot plant case-study built to investigate water treatment 

processes based on the photo-Fenton reaction, working in a batch mode and 

considering paracetamol as reference contaminant.  

¶ Chapter 10 concludes the Thesis contributions and presents possible future 

research lines that can be built on the basis of the Thesis. 

 

 

 

 

 





 

Chapter 2: Tools and Techniques 31 

Chapter 2: Tools and Techniques 

This chapter overviews the basics and general characteristics of the different tools and 

techniques used to build and develop the methodologies in this Thesis. These tools and 

techniques include design of computer experiment methods, machine learning models for 

regression (surrogate models or metamodels), machine learning models for classification, 

clustering techniques and optimization algorithms. 

2.1 DESIGN OF COMPUTER EXPERIMENTS  

In the area of physical experimentations and laboratory-based investigations, Design Of 

Experiments (DOE) techniques have been established (Fisher, 1971; Fisher, 1980) and 

extensively used to select specific combinations of input values (independent design variables) 

at which experiments must be run to obtain an optimal quantification of the effect of these 

input variables on the behavior of a certain observed output (dependent) variable. In this sense, 

different methods have been developed, as full -factorial, fractional-factorial designs for fitting 

linear regression models, central composite and Box-Behnken designs for fitting polynomial 

regression models (Fang, et al., 2005). The DOE considers three basic principles: 

randomization, blocking and replication, in order to avoid prediction bias, obtain homogenous 

response, and to minimize the experimental random error, respectively (Fang, et al., 2005).  

The rapid growth of computer capabilities has motivated huge interests of the 

engineering research community to study/analyze products and processes using high fidelity 

and detailed simulation models describing these products or processes. However, serious 

obstacles hinder the smooth use of such high-fidelity simulation models, such as their 

complexity, high nonlinearity, sophisticated structure and/or the computational burden 

required for their convergence (Fang, et al., 2005; Ibrahim, et al., 2019). The rise of advanced 

machine learning techniques (e.g., Artificial Neural Networks (ANNs), kriging) has inspired 

the construction of simplified data-driven models trained using input-output data generated by 

the simulation of the complex FPM (Garud, et al., 2017). Then, these simplified data-driven 

models (metamodels or surrogate models) take the place of the complex FPM in the targeted 

application (e.g., optimization, sensitivity analysis, uncertainty quantifications, etc.), 

providing accurate predictions with simple usage and much lower computational cost. 

Consequently, this has induced the development of the Design Of Computer Experiment 

(DOCE) techniques (Jurecka, 2007), which aim at selecting the best combinations of the input 

variables values -within specific domain or bounds- that can be used for the simulation of the 
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complex FPM providing the most representative information/knowledge about the output 

behavior (Garud, et al., 2017). The set of combinations of the input variables values is called 

a ñsampling planò, ὼ ȟὼᶰὙ , where ὲ is the number of sample points or instances and Ὧ 

is the number of input dimensions. The main objective is to collect as much information as 

possible about the output behavior over all the local sub-regions of the input space, assuming 

that most computer simulation models are deterministic. As a result, DOCE techniques 

consider samples selection criteria different from those of the DOE, which are, mainly, the 

space-fillingness and stratification of the sampling plan. While the space-fillingness criterion 

aims at spreading the sampling plan points over the whole input domain, the stratification 

ensures that the sampling plan points projection onto each input variable axis is uniform 

(Garud, et al., 2017; Forrester, et al., 2008). Both criteria ensure high uniformity of the 

sampling plan and better covering of all the local sub-regions of the input domain. 

Many DOCE techniques have been developed for static surrogate modeling. The most 

common techniques include Latin hypercube sampling (Forrester, et al., 2008), low 

discrepancy sequences as the Hammersley technique (Ibrahim, et al., 2019) and space-filling 

designs as max-min techniques and Space-filling Latin Hypercube Sampling (SLHS) design 

(Joseph, 2016). Alternatively, sequential or adaptive sampling are special type of DOCE 

techniques that are commonly related to the use of kriging/GP models (Kajero, et al., 2017). 

In these sequential techniques, the total number of training points are not selected at once, but: 

the surrogate model is, initially, fitted with a relatively small number of training points, and it 

is, iteratively, adapted by adding new training points of interest (infill or update points) to the 

initial training dataset and, then, the surrogate model is refitted so as to enhance a desired 

criterion or index of its performance. This criterion is highly dependent on the eventual use of 

the surrogate model (for global approximation, surrogate-based optimization, reliability 

analysis, etc.). The iterative procedure stops when the surrogate model performance index 

reaches a desired level. For example, when the surrogate model is to be used just for global 

approximation, the most common performance criterion is the maximization of the surrogate 

model global accuracy, which implies the selection of infill points that maximize the estimated 

prediction error of the kriging/GP model (Jurecka, 2007; Forrester, et al., 2008). Notice that 

the term ñglobalò refers to the globality with respect to the entire input domain. 

Most of these DOCE techniques show both desired and limiting characteristics in terms 

of the uniformity of the generated sampling plan and the required computational cost. For 

example, Latin hypercube and low discrepancy sequence designs provide sampling plans of 

good uniformity with very low computational cost (Ibrahim, et al., 2019). Space-filling designs 

are able to provide sampling plans with very high uniformity, although the associated 

computational cost is relatively high (Joseph, 2016; Caballero & Grossmann, 2008). Because, 
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these techniques usually encompass a complex optimization problem, in which the locations 

of the input combinations (i.e., instances) within the Ὧ-dimensional input space of the model 

(i.e., the decision variables) are manipulated to maximize a certain space-filling criterion (i.e., 

objective function) (Forrester, et al., 2008). For instance, in the max-min space-filling designs, 

the objective function is to maximize the minimum distance between the sample points. The 

former criterion tends to distribute the sampling points uniformly across the k-dimensional 

input domain (Fang, et al., 2005). Sequential sampling designs have also shown very high 

uniformity and high efficiency, since they take maximum advantages of each point in the 

sampling plan, but the computational cost of such techniques is extremely high, since each 

iteration involves an optimization problem seeking for the point that optimally enhances the 

surrogate model accuracy, in addition to the subsequent fitting of the surrogate model with the 

updated training set (Jones, et al., 1998). For the previous reasons, the iterative DOCE 

procedures are favorable when dealing with very expensive FPM (e.g., computational fluid 

dynamic models) where the cost of one simulation run using the FPM is much higher than one 

iteration of the sequential sampling procedure. A more detailed analysis about the different 

DOCE techniques can be found in (Garud, et al., 2017; Fang, et al., 2005; Jurecka, 2007; 

Garud, et al., 2017) 

After designing an efficient sampling planὼ ȟὼᶰὙ , a computer experiment or a 

simulation run using the complex FPM is carried out at each point of the sampling plan, to 

obtain the response or output variable values ώ ȟ ώᶰὙ.  

In general, most of the Thesis chapters/methodologies consider the Hammersley design 

technique, due to its ability to provide sampling plans of good uniformity and stratification 

properties with very low computational cost (Garud, et al., 2017; Ibrahim, et al., 2019). In 

particular, Chapter 3 employees sequential sampling techniques for building SBO methods.  

On another hand, number of sample points (ὲ) required to train the surrogate model in 

order to capture the output behavior with satisfactory accuracy is case-dependent. Because the 

selection of ὲ depends on the input dimensionality of the surrogate model (Ὧ), the volume of 

the input space and, also, on the intricacy and nonlinearity of the considered output behavior. 

In general, as ὲ increases, the effort (time/cost) required not only for executing the 

experiments, but also for the surrogate model fitting increases. Then, the modeler should 

carefully balance the trade-offs between the required surrogate model accuracy, the 

computational cost and the eventual application benefits of the surrogate model. 
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2.2 MACHINE LEARNING FOR  REGRESSION (SURROGATE MODELS)  

In the Thesis different machine learning models for regression have been considered. 

The main objective is not the detailed comparison of the machine learning models 

performance, but to assess the robustness, applicability and flexibility of the proposed 

methodologies (in which these machine learning models are employed, as well as other tools) 

by handling different data-based modelling techniques and software. 

2.2.1 Ordinary kriging  

The Ordinary Kriging (OK) model has emerged in the field of geo-statistics (Krige, 

1951; Cressi, 1993), and after the pioneer work of Sacks, et al. (Sacks, et al., 1989) and Jones 

(Jones, 2001), OK became popular for modeling and optimization of complex highly nonlinear 

static systems in various engineering areas. The OK is a nonparametric data-driven model that 

has shown potential capabilities to approximate highly nonlinear, multimodal and complex 

systems (Fang, et al., 2005; Queipo, et al., 2005). These capabilities stem from the ability of 

the OK to combine global modeling through estimating a general trend of the system to be 

approximated, and local modeling through a spatial correlation function. Besides, this model 

is able to estimate a prediction variance or error, which represents an uncertainty measure 

about its prediction (Forrester, et al., 2008).  

Given a set of ὲ input-output training data ὼȟώ ȟὼᶰὙ , ώᶰὙ, Ὥ ρȟςȟȢȢὲ, , the 

OK assumes the predictor ώὼ  ‘ ὤὼ, where the constant term ‘  represents the 

main trend of the system to be approximated, and ὤὼ is a deviation/residual from that trend, 

which accounts for detailed complex behavior of the system that could not be captured via the 

main trend ‘ . The residual ὤὼ is modeled as a stochastic Gaussian process with expected 

value of Ὁὤὼ  π, and a covariance between two residuals ὧέὺὤὼȟὤὼ  that only 

depends on their corresponding inputs locations ὼȟὼ. Thus, it can be calculated as: 

ὧέὺὤὼȟὤὼ =„  Ὑὼȟὼ , being „  the process variance, and Ὑὼȟὼ   a correlation 

function calculated as Ὑὼȟὼ ὩὼὴВ ‚ὼȟὼȟ ȟ  where, ‚ȟὰ‗ ‏ ρȟȣὯ 

are the model hyper-parameters, ὴ are smoothing parameters, ‏  is the Kronecker delta and 

‗ is a regularization constant that enables the kriging predictor to regress noisy data (Azman 

& Kocijan, 2007). The value of the parameter ‚ represents a measure of the degree of 

correlation among the data along the ὰ input dimension.  

The maximization of the likelihood function (Eq.(2.1)) of the observed data ὣ   

yields the closed form mathematical expressions for the optimal values of ‘  and „  that are 

shown in Eq.(2.2) and Eq.(2.3), respectively, where ὢ  is the matrix of training inputs, 
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ὣ   is the corresponding vector of the training outputs, Ὑ   is the correlation matrix 

between the training inputs and  is the identity vector- it is highlighted with bold font 

to differentiate it from the normal number 1 in the equations- (Caballero & Grossmann, 2008). 
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The substitution of the optimal values of ‘  and „  in the likelihood function leads to 

the maximization of the concentrated log-likelihood function, which is given by Eq.(2.4). 
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The kriging predictor (Eq.(2.5)) and its estimated error (Eq.(2.6)) are obtained by 

deriving the augmented likelihood function of the original training data set and a new 

interpolating point ὼᶻȟώᶻ. In Eq. (2.5), ὶ  is the vector of correlations between the point 

to be predicted ὼᶻand the original training data points, and calculated as Ὑ ὼȟὼᶻ (Jones et 

al., 1998; Caballero & Grossmann, 2008; Forrester et al., 2008).  

 ώὼᶻ ‘ ὶὙ ὣ ‘  (2.5) 

 ίǶὼᶻ „ ρ ‗ ὶὙ ὶ ρ Ὑ ὶ Ὑϳ  (2.6) 

The fitting of an OK model is achieved by obtaining the optimal parameters 

‚ȟὴȟ‗ through the maximization of the concentrated log-likelihood function. In practice, 

this optimization problem is computationally challenging, because of the high computational 

cost associated to the repetitive calculation of the inverse of the correlation matrix 

Ὑ  during the optimization iterations. This effort quickly grows with the size of the 

training data set and/or the model input dimensionality. Besides, the nature of the concentrated 

log-likelihood function itself is quite complicated, because it is flat near the optimum (Fang, 

et al., 2005). More details about these computational challenges and the numerical methods 

and optimization techniques to overcome or reduce these obstacles can be found in (Forrester, 

et al., 2008). 

This Thesis considers the OK implementation developed by Forrester, et al. (2008), 

because of its high efficiency, generality and applicability. Besides, the ñfminconò algorithm 

included in the Matlab optimization toolbox is used for the maximization (nonlinear 



 

36 Chapter 2: Tools and Techniques 

optimization) of the concentrated likelihood function (Eq.(2.4)), considering different values 

of the initial solution, so as to avoid the entrapment in a local optimum (Matlab, 2018). The 

Cholesky factorization has been used to find the inverse of Ὑ   matrix to avoid ill-

conditioning, and the smoothness parameters ὴ are often kept to the value of 2, which provide 

smooth infinitely differentiable correlation functions (Forrester et al., 2008). 

The Thesis also considers (in some chapters) another different software implementation 

for the GP model, which is the GP-Regression (GPR) algorithm based on the function ñfitrgpò 

included in the Matlab statistics and machine learning toolbox (Matlab, 2018).  

2.2.2 Ar tificial neural networks  

Artificial Neural Networks are a very well-known and widely-used efficient technique 

for nonlinear data-driven modelling. The technique is inspired from the biological neural 

networks of the brain nervous system (Masters, 1993; Himmelblau, 2000). An ANN is a lattice 

of nodes, termed as neurons, which are placed in this lattice through a certain number, ὲ, of 

layers, ȟ ρȟςȟȢȢὲ, and are interlinked together to be capable of the nonlinear processing 

of the information. Figure 2.1 shows a schematic representation of one-hidden layer ANN. 

The weight value ″ ȟ  is assigned to the link connecting the Ὥ  neuron in  the layer, , 

to the Ὦ neuron in the successive layer, ; additionally, a bias, ὦ , is considered as an 

independent input to the Ὥ  neuron in each layer, . Considering one-hidden layer ANN 

(Figure 2.1), the output ὥ  of theὮ  neuron in the hidden layer is computed as the weighted 

sum of its inputs received from the neurons in the previous layer plus the bias, see Eq.(2.7), 

where ὗ  and ὗ  are the numbers of neurons in the input and hidden layers, respectively. 

The computed value is, then, processed by a transfer function, , and is sent to the output layer 

(Masters, 1993; Nagy, 2007) that calculates the ANN output, ώ, as in Eq.(2.8). Notice that the 

formulations for the multi-layer ANN is straightforward. 

The training of an ANN is accomplished relying on a set of input-output training 

patterns ὼȟώ ȟὼᶰὙ , ώᶰὙ , Ὥ ρȟςȟȢȢὲ, and through the solution of a nonlinear 

optimization problem, in which an objective or loss function is minimized by tuning the 

optimization variables values represented in the weights and the biases of the neurons 

(Masters, 1993; Nagy, 2007). With respect to ANNs models for regression, the loss/objective 

function of the training task is related to the sum of errors between the predicted outputs by 

the network, ώ, and the target outputs, ώ, being the Mean Squared Error (MSE) (given by 

Eq.(2.9)) the most common loss function. 
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Figure 2.1. Schematic illustration of a feedforward ANN structure: an input layer, at 

least one hidden layer and an output layer. 
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Amongst various kinds of ANNs, the feed-forward multi-layer perceptron is considered 

as the most popular kind used in engineering practices (Himmelblau, 2000), as it offers high 

efficiency, accuracy and straightforward applicability (Fang, et al., 2005; Nagy, 2007).  

The ñfeedforwardnetò function of the Matlab ANN toolbox is used in this Thesis to 

build multilayer ANNs for regression (Matlab, 2018). A trial and error procedure is employed 

for selecting the suitable number of layers, number of neurons and the training algorithm 

achieving a compromise between the structure simplicity and the prediction accuracy. Two 

training algorithms have been considered in the Thesis, depending on the different application 

cases, which are the Levenberg-Marquardt backpropagation based on the Matlab function 

ñtrainlmò and the Bayesian regularization backpropagation based on the Matlab function 

ñtrainbrò. The latter minimizes a combination of MSE and the network weights, which leads 

to very good generalization properties. The default ñsigmoidò transfer function in the hidden 

layers, , and ñlinearò transfer function in the output layer, 

  .are maintained ,אָ

2.2.3 Support vector regression  

Given a set of input-output training data ὼȟώ ȟὼᶰὙ , ώᶰὙ, Ὥ ρȟςȟȢȢὲ, a

 Support Vector Regression (SVR) model (Vapnik, 1995) maps the input data original 
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space into a high-dimensional feature space, often through a basis or kernel function 

ɮ  ὼȟὼ that may be presented by different styles as linear, polynomial, Gaussian, etc. Then, 

the modeling problem becomes the determinations of the optimal (flattest) surface ώὼ 

ὦ В ύɮ ὼȟὼ  in this feature space, which fits the data, where ὦ ‘  is a base or 

bias (Forrester & Keane, 2009). This can be done through the minimization of the weights 

vector norm ȿύȿȟύᶰὙ . In order to ensure better generalization performance, SVR allows 

specifying margins or a tube around the training data with a radius ‐, within which prediction 

errors in the training data are accepted or tolerable (constraints of the optimization problem). 

Additionally, to tolerate outliers, the data that presents a prediction error bigger than ‐ is 

penalized using the so-called Ů-sensitive loss function (Forrester, et al., 2008). Then the model 

fitting problem can be expressed as:  

 
ὓὭὲ 

ρ

ς
ȿύȿ

ὅ

ὲ
‚ ‚  (2.10) 

 

S.T.         

ώ ‘ ύ ὼ ‐ ‚

‘ ύ ὼ ώ ‐ ‚

‚ Ƞ ‚ π

 (2.11) 

Where ‚ Ƞ ‚ are the slack variables that describe the size of the positive and negative 

violation or excess than the tube radius ‐ for each training data sample, and ὅ π is a 

penalty factor that controls the trade-off between the model complexity (the flatness of  ώ) and 

the degree to which errors larger than ‐ are tolerated (Forrester & Keane, 2009). A schematic 

representation of the problem is illustrated in Figure 2.2. 

 
Figure 2.2. Representation of the SVR model. 
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The constrained optimization problem can be reformulated into a dual problem form by 

introducing Lagrange multipliers –ȟ–ȟ‌ȟ‌  to the constraints in Eq.(2.11), in order to 

combine them with the objective forming at the end the Lagrangian function: 

 ὒ ὓὭὲ ȿύȿ В ‚ ‚ В ‌ ‐ ‚ ώ

‘ ύ ὼ В ‌ ‐ ‚ ώ ‘ ύ ὼ В – ‚

– ‚   

(2.12) 

The resulting objective ὒ is then minimized with respect to ύȟ ‘  and the primal 

variables ‚ , and also it is maximized with respect to the dual variables – , ‌ , 

where – , ‌ π. For the active constraints (‌  ‌ ) π, the corresponding ώ will 

become the support vectors, while for inactive constraints ‌  ‌  = 0, the corresponding 

ώ will be excluded from the prediction (Forrester & Keane, 2009). 

The values of these Lagrange multipliers ‌ȟ‌  are determined by solving the dual 

optimization problem. The training vectors (samples) with non-zero Lagrange multipliers are 

called support vectors, which represent/construct the margins or the borders of the tube. 

Finally, the optimal weights ύ and the constant bias ‘  can be calculated from the relations 

in Eq.(2.13) and Eq.(2.14), and the final predictor is expressed by Eq.(2.15).  

 
ύ ‌ ‌ ɮὼ  (2.13) 

 
ὦ ‘ ώ ‌ ‌ ɮὼȟὼ  (2.14) 

 
ώὼᶻ ὦ ‌ ‌  ɮὼᶻȟὼ  (2.15) 

A drawback of the SVR is the huge time and effort required to select the kernel function 

type and the values of its parameters (e.g., the value of the parameter „ , in a Gaussian kernel 

ɮὼȟὼ Ὡὼὴὼȟὼ ς„ ), which are case dependent. The detailed mathematical 

description and derivations can be found in (Vapnik, 1995; Forrester, et al., 2008; Forrester & 

Keane, 2009). This Thesis uses the SVR algorithm based on the function ñfitrsvmò included 

in the Matlab statistics and machine learning toolbox (Matlab, 2018). 

2.3 MACHINE LEARNING FOR  CLASSIFICATION  

Classification Techniques (CTs) are supervised machine learning models that perform 

pattern recognition tasks (Vapnik, 1995; Zhang, 2000). Given a set of input-output data 

ὼȟώ ȟὼᶰὙ , Ὥ ρȟςȟȢȢὲȟώᶰὰȟȣȟὰȟȣȟὰ , ὲḻḻὲ, a classifier is trained to 






















































































































































































































































































































































































































































