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Abstract

The chiral effects cannot be described by means of the classical theory of elasticity. In
this paper we study the thermoelastic deformation of chiral plates in the context of
the strain gradient theory of thermoelasticity. The work is motivated by the interest
in using chiral continuum as model for some carbon nanotubes, auxetic materials
and bones. First, we derive the basic equations which govern the deformation of thin
thermoelastic plates. In contrast with the theory of achiral plates, the stretching and
flexure cannot be treated independently of each other. A system of Timoshenko-
Ehrenfest type is presented and an existence result is established. Then, we consider
the dynamic theory of plates and present a uniqueness result with no definiteness
assumption on the elastic constitutive coefficients. The effects of a concentrated
heat source are investigated.

Key words: Chiral materials; Strain gradient theory of thermoelasticity; Thermal
stresses in plates; Uniqueness results; Timoshenko-Ehrenfest system; Concentrated
heat source.

1 Introduction

The behaviour of chiral materials has received in recent years a widespread
attention. The chiral elastic solid was used to model the behaviour of carbon
nanotubes (see, e.g., Chandraseker et al. 2009; Zhang et al. 2010; Askes and
Aifantis, 2011), auxetic materials (see, e.g., Spadoni and Ruzzene, 2012; Ha
et al. 2016, Reasa and Lakes, 2020) , bones (Lakes 1982; Lakes et al. 1983;
Park et al. 1986) and piezoelectric materials (Lakes, 2015). In chiral mate-
rials qualitative new phenomena are predicted. Lakes and Benedict (1982)
studied the deformation of an elastic rod of circular cross section, made of
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an isotropic chiral material. The rod is stretched by an axial force and the
lateral surface is free of tractions. It is shown that the rod is predicted to un-
dergo torsional deformation when is subjected to tensile load. Unlike the case
of achiral solids, the flexure of isotropic chiral cylinders with arbitrary cross
section is accompanied by extension and bending of terminal couples. It is
shown that a uniform pressure acting on the lateral surface of a chiral circular
elastic cylinder produces a twist around its axis (Ieşan, 2010). In the case of
a chiral hollow cylinder the torsion produces a radial deformation (Papani-
colopulos, 2010). Within the thermoelasticity theory it has been established
that, in contrast to the case of achiral materials, a uniform thermal field in
an isotropic chiral cylinder produces torsional effects (Ieşan, 2013). The chiral
effects cannot be described within classical elasticity (Lakes, 2001). The strain
gradient theory of elasticity is an adequate tool to describe the deformation
of chiral elastic solids (Marangati and Sharma, 2007; Papanicolopulos, 2011
and references therein). In the linear theory the chirality behavior is controlled
by a single material parameter, in contrast to the three additional material
parameters required in Cosserat theory. The equations and the boundary con-
ditions of the strain gradient theory of elastic solids were first established by
Toupin (1962, 1964). The linear theory has been developed by Mindlin (1964)
and Mindlin and Eshel (1968). The interest in the gradient theory of elasticity
is stimulated by the fact that this theory is adequate to investigate impor-
tant problems related to size effects and nanotechnology (Askes and Aifantis,
2011).

Deformation of thermoelastic plates is of interest both from a mathematical
and a technical point of view (Nowacki, 1962; Lagnese, 1989). The gradient
theories of thermomechanics have been studied in various papers (see, e.g.,
Ahmadi and Firoozbakhsh, 1975; Ieşan, 2004; Gurtin and Anand, 2009; For-
est and Aifantis, 2010; Ieşan and Quintanilla, 2018). The theory proposed
by Altan and Aifantis (1997) has been used to investigate the deformation
of achiral elastic plates (Lazopoulos, 2004; Papargyri-Beskou et al., 2010).
Ramezani (2012) developed a first order shear deformation micro-plate model
which is based on the general form of the strain gradient elasticity established
by Mindlin (1964). The plate is assumed to be made of an isotropic and ho-
mogeneous achiral material. In recent years there has been an interest for
the investigation of chiral thermoelastic materials. Deformation of a cylinder
subjected to a prescribed thermal field presents new chiral effects. It is shown
that a temperature field which is independent of the axial coordinate produces
axial extension, bending and torsion (Ieşan, 2013). A plane temperature field
in an achiral cylinder does not produce torsional effects.

In this paper we establish a theory of isotropic chiral plates in the framework
of the strain gradient thermoelasticity. We assume that on the upper and lower
faces of the plate there are prescribed the surface tractions and the heat flux.
In contrast with the theory of achiral plates, the stretching and flexure cannot
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be treated independently of each other. First, we present the basic equations
of homogenenous and isotropic chiral thermoelastic solids in the context of
the strain gradient theory. Then, we derive a theory of thermoelastic thin
plates. As a special case of the considered model we present a generalization
of the Timoshenko-Ehrenfest system from the classical theory of elasticity.
Existence and uniqueness results are established. The effects of a concentrated
heat source are also investigated.

2 Preliminaries

In this section we present the basic equations of the gradient thermoelasticity
for an isotropic chiral continua . Mindlin (1964) presented three forms of the
linear theory of gradient elasticity. The relations among the three forms have
been established by Mindlin and Eshel (1968). In what follows we will use the
first form of the gradient elasticity. We note that the three forms of the theory
lead to the same displacement equations of motion for isotropic elastic solids.
The constitutive equations of isotropic chiral elastic solids in linear gradient
elasticity have been established by Papanicolopulos (2011).

Let us consider a body that in the undeformed state occupies the region B of
Euclidean three-dimensional space and is bounded by the surface ∂B. We refer
the deformation of the body to a fixed system of rectangular axes Oxk, (k =
1, 2, 3). Let n be the outward unit normal of ∂B. Letters in boldface stand for
tensors of an order p ≥ 1, and if v has the order p, we write vij...k (p subscripts)
for the components of v in the Cartesian coordinate system. We shall employ
the usual summation and differentiation conventions: Latin subscripts (unless
otherwise specified) are understood to range over the integer (1, 2, 3), whereas
Greek subscripts to the range (1, 2), summation over repeated subscripts is
implied and subscripts preceded by a comma denote partial differentiation
with respect to the corresponding Cartesian coordinate. The partial derivative
with respect to time t is denoted by a superposed dot. We assume that B is a
bounded region with Lipschitz boundary ∂B. The boundary ∂B consists in the
union of a finite number of smooth surfaces, smooth curves (edges) and points
(corners). Let Ck be the union of the edges. We assume that B is occupied by
a homogeneous and isotropic chiral elastic solid. Let uj be the components of
the displacement vector field on B × T , where T is a given interval of time.
The strain measures are given by

eij =
1

2
(ui,j + uj,i), κijk = uk,ij. (1)

The equations of motion are

tji,j + fi = ρüi, (2)
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where tij is the Cauchy stress tensor, fi is the body force and ρ is the reference
mass density. In the strain gradient theory of elasticity the tensor tij has the
form

tji = τji − µsji,s, (3)

where τij is the partial stress tensor and µsij is the double stress tensor. The
energy equation can be expressed as

ρT0η̇ = qi,i + s, (4)

where η is the entropy, qi is the heat flux vector, s is the heat supply, and T0 is
the constant absolute temperature of the body in the reference configuration.

The constitutive equations for isotropic chiral thermoelastic solids are (Mindlin
and Eshel, 1968; Papanicolopulos, 2011)

τij = λerrδij + 2µeij + f(εikmκjkm + εjkmκikm)− βTδij,

µijk =
1

2
α1(κrriδjk + 2κkrrδij + κrrjδik) (5)

+ α2(κirrδjk + κjrrδik) + 2α3κrrkδij+

+ 2α4κijk + α5(κkji + κkij) + f(εiksejs + εjkseis),

ρη = βejj + aT, qi = kT,i,

where T is the temperature measured from the constant absolute temperature
T0 of the reference state, δij is Kronecker delta, εijk is the alternating symbol
and λ, µ, αs (s = 1, 2, . . . , 5), β, a, k and f are constitutive constants. For a
centrosymmetric material the coefficient f is equal to zero.

The equations of motion can be expressed in the form

τji,j − µsji,sj + fi = ρüi. (6)

The basic equations of the strain gradient thermoelasticity consist of the geo-
metrical equations (1), the equation of motion (6), the equation of energy (4)
and the constitutive equations (5) on B × T . To the field equations we must
adjoin boundary conditions and initial conditions.

Following Toupin (1962) and Mindlin (1964), we introduce the functions Pi, Ri

and Q∗
i by

Pi = (τki − µski,s)nk −Dj(nrµrji) + (Dknk)nsnpµspi,

Ri = µrsinrns, Q∗
i = ⟨µpjinpnq⟩εjrqsr, (7)

whereDi are the components of the surface gradient,Di = (δik−nink)∂/∂xk, sj
are the components of the unit vector tangent to C, and < g > denotes the
difference of limits of g from both sides of C.
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If the boundary ∂B is smooth, then Q∗
i = 0 and the second boundary-initial-

value problem is characterized by the following boundary conditions

Pi = P̃i, Ri = R̃i, qjnj = q̃ on ∂B × T ,

where P̃i, R̃i and q̃ are prescribed functions.

The initial conditions are

ui(xk, 0) = u0i (xk), u̇i(xk, 0) = v0i (xk), T (xk, 0) = T 0(xk), (xk) ∈ B,

where u0i , v
0
i and T 0 are given. We assume that: (i) fi and s are continuous on

B × T ; (ii) ρ is a given positive constant; (iii) P̃i, R̃i and q̃ are continuous on
∂B × T ;

(iv) u0i , v
0
i and T 0 are continuous on B.

3 Chiral plates

We assume now that the region B refers to the interior of a right cylinder of
length 2h with open cross-section Σ and the lateral boundary Π (Fig. 1).

Fig. 1. A plate of thickness 2h

We assume that the surface Π is smooth. The Cartesian coordinate frame
consists of the orthonormal basis {e1, e2, e3} and the origin O. The system
Oxj is supposed to be chosen in such a way that the plane x1Ox2 is middle
plane. We denote by Γ the boundary of Σ. In what follows we derive a theory of
thin plates of uniform thickness where the displacements and the temperature
have the form (Eringen, 1999; Nowacki, 1962)

uα = wα(x1, x2, t) + x3vα(x1, x2, t), u3 = w3(x1, x2, t),

T = T1(x1, x2, t) + x3T2(x1, x2, t), (8)

(x1, x2) ∈ Σ, −h < x3 < h, t ∈ T , where wj, vα and Tα are unknown functions.
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Following Eringen (1999) and Nowacki (1962), to obtain a plate theory we have
to perform the following integrations: (i) we integrate equations of balance
of momenta with respect to x3 over the thickness of the plate; (ii) we take
the cross product of the equations of the balance of momenta with x3e3 and
integrate over the thickness of the plate; (iii) we integrate the equation of
energy over x3 between the limits −h and h; (iv) we multiply the equation of
energy by x3 and integrate over the thickness of the plate. Let us introduce
the notations

ski =
1

2h

∫ h

−h
tkidx3, F ∗

i =
1

2h

∫ h

−h
fidx3. (9)

The results of (i) are

sβi,β +
1

2h
[t3i]

h
−h + F ∗

i = ρẅi. (10)

To the equations (10) we add the results of (ii),

Γβα,β − 2hs3α +H∗
α + [x3t3α]

h
−h = ρIv̈α, (11)

where

Γβα =
∫ h

−h
x3tβαdx3, H

∗
α =

∫ h

−h
x3fαdx3, I =

2

3
h3. (12)

We denote

σβi =
1

2h

∫ h

−h
τβidx3, mkβi =

1

2h

∫ h

−h
µkβidx3. (13)

In view of (3), (9) and (13) we obtain

sβi = σβi −mρβi,ρ −
1

2h
[µ3βi]

h
−h. (14)

From (7) we get

Pi(x1, x2, h) = τ3i − 2µρ3i,ρ − µ33i,3, Ri(x1, x2, h) = µ33i, on x3 = h,

Pi(x1, x2,−h) = −τ3i + 2µρβi,ρ + µ33i,3, Ri(x1, x2,−h) = µ33i, on x3 = −h.
(15)

We have
[t3i − µ3βi,β]

h
−h = [Pi]

h
−h. (16)

In view of (14) and (16) the equations (10) become

σβi,β −mρβi,ρβ + Fi = ρẅi, (17)

where

Fi = F ∗
i +

1

2h
[Pi]

h
−h. (18)

We assume that Pi, Ri and qjnj are prescribed on the surfaces x3 = ±h.

By using (9) and (13) we obtain

2hs3α = 2hσ3α − 2hmρ3α,ρ − [µ33α]
h
−h. (19)
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From (12) and (3) we get

Γβα =Mβα − Λρβα,ρ − [x3µ3βα]
h
−h + 2hm3βα, (20)

where we have used the notations

Mβα =
∫ h

−h
x3τβαdx3, Λρβα =

∫ h

−h
x3µρβαdx3. (21)

Clearly, we have

[x3t3α + µ33α − x3µ3βα,β]
h
−h = [hPα +Rα]

h
−h. (22)

It follows from (19), (20) and (22) that the equations (11) can be expressed
in the form

Mβα,β − Λρβα,ρβ − 2hσ3α + 4hm3βα,β +Hα = ρIv̈α, (23)

where
Hα = H∗

α + [hPα +Rα]
h
−h. (24)

If we integrate the equation (4) with respect to x3 between the limits −h and
h, then we obtain the equation

ρT0ζ̇ = χα,α + S1, (25)

where the functions ζ, χj and S1 are introduced by

ζ =
1

2h

∫ h

−h
ηdx3, χj =

1

2h

∫ h

−h
qjdx3, S1 =

1

2h

∫ h

−h
sdx3 +

1

2h
[q3]

h
−h. (26)

The equation which results from the multiplication of the equation (4) by x3
and integration over x3 between the limits −h and h can be written as

ρT0σ̇ = Qα,α − 2hχ3 + S2, (27)

where

σ =
∫ h

−h
x3ηdx3, Qα =

∫ h

−h
x3qαdx3, S2 =

∫ h

−h
x3sdx3 + [x3q3]

h
−h. (28)

We note that the functions Fj, Hα and Sα are prescribed.

It follows from (1) and (8) that eij and κijk are given by

eαβ = γαβ + x3ξαβ, 2eα3 = φα, e33 = 0, (29)

καβρ = ηαβρ + x3ζαβρ, καβ3 = ηαβ3, κα3ρ = ψαρ, κ33j = 0, κ3α3 = 0,

where

γαβ =
1

2
(wα,β + wβ,α), ξαβ =

1

2
(vα,β + vβ,α), (30)

ηαβk = wk,αβ, ζαβρ = vρ,βα, φα = w3,α + vα, ψαβ = vβ,α.
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Thus, we find

err = γρρ + x3ξρρ, καrr = ηανν + x3ζανν , κ3rr = ψρρ,

κrrα = ηρρα + x3ζρρα, κrr3 = ηρρ3 = ∆w3, (31)

where ∆ is the two-dimensional Laplacian.

It follows from (5), (12), (13), (26), (28) and (29) that

σβα = λγρρδαβ + 2µγαβ + f [ε3ρβ(vρ,α − w3,ρα) + ε3ρα(vρ,β − w3,βρ)]

− βT1δαβ,

σβ3 = µφβ + fε3ρνηβρν ,

mρβα =
1

2
α1(ηννρδβα + 2ηαννδρβ + ηννβδρα) + α2(ηρννδβα + ηβννδρα)+

+ 2α3ηνναδρβ + 2α4ηρβα + α5(ηαβρ + ηαρβ)

+
1

2
f(ε3ραφβ + ε3βαφρ),

mρβ3 = α1ψηηδρβ + 2α3ζνν3δρβ + 2α4ηρβ3 + 2α5ξρβ
+ f(ε3ηργβη + ε3ηβγρη), (32)

m3βα =
1

2
α1ηρρ3δβα + α2ψρρδβα + 2α4ψβα + α5(ηαβ3 + ψαβ) + fε3ανγβν ,

Mαβ = I(λξρρδαβ + 2µξαβ − βT2δαβ),

Λρβα = I[
1

2
α1(ζννρδβα + 2ζαννδρβ + ζννβδρα)+

+ α2(ζρννδβα + ζβννδρα) + 2α3ζνναδρβ + 2α4ζρβα + α5(ζαβρ + ζαρβ)],

ρζ = βγρρ + aT1, χα = kT1,α, χ3 = kT2,

ρσ = I(βξρρ + aT2), Qα = kIT2,α.

The theory of thermoelastic chiral plates is governed by the equations of mo-
tion (17) and (23), the equations of the energy (25) and (27), the constitutive
equations (32), and the geometrical equations (30). The equations (17), (23),
(25) and (27) lead to the following equations for the unknown functions wj,
vα and Tα,

µ∆wα + (λ+ µ)wρ,ρα − 2(α1 + α2 + α5)∆wρ,ρα − 2(α3 + α4)∆∆wα−
− 2fε3ρα∆w3,ρ + fε3ρα∆vρ + fε3ρβvρ,αβ − fε3ραvβ,βρ − βT1,α + Fα = ρẅα,

µ∆w3 + µvρ,ρ − 2(α3 + α4)∆∆w3 − (α1 + 2α5)∆vρ,ρ+ (33)

+ 2fε3ρν∆wν,ρ + F3 = ρẅ3,

I[µ∆vα + (λ+ µ)vρ,ρα − 2(α3 + α4)∆∆vα − 2(α1 + α2 + α5)∆vρ,ρα − βT2,α]−
− 2h[µ(w3,α + vα)− (α1 + 2α5)∆w3,α − 4α4∆vα−
− 2(α2 + α5)vρ,ρα + fε3ρνwν,ρα − fε3αν(wρ,ρν +∆wν)] +Hα = ρIv̈α,

k∆T1 − cṪ1 − βT0ẇα,α = −S1,

I(k∆T2 − cṪ2 − βT0v̇α,α)− 2hkT2 = −S2,
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on Σ×T , where we have used the notation c = aT0. In the case of centrosym-
metric materials the equations (33) reduce to two uncoupled systems: one for
the functions wα and T1 and the other for the functions w3, vα and T2.

The initial conditions are

wj(x1, x2, 0) = w0
j (x1, x2), vα(x1, x2, 0) = v0α(x1, x2), Tα(x1, x2) = T 0

α(x1, x2),

ẇj(x1, x2, 0) = ω0
j (x1, x2), v̇α(x1, x2, 0) = ξ0α(x2, x2), (x1, x2) ∈ Σ, (34)

where w0
j , v

0
α, ω

0
j and ξ0α are prescribed functions. The first boundary-initial-

value problem is characterized by the conditions

wi = w̃i, Dwi = σ̃i, vα = ṽα, Dvα = γ̃α, Tα = T̃α on Γ× T , (35)

where Dφ = φ,αnα and w̃i, σ̃i, ṽi, γα and T̃α are given functions. We introduce
the notations

Πi = (σβi −mρβi,ρ)nβ + (Dνnν)mρβinρnβ −Dβ(mρβinρ),

Mi = mρβinρnβ, Nα = Λρβαnρnβ, (36)

Σα = (Mβα − Λρβα,ρ + 4hmβ3α)nβ + (Dνnν)Λρβαnρnβ −Dβ(Λρβαnρ).

In the second boundary-initial-value problem the boundary conditions are

Πi = Π̃i,Mi = M̃i,Σα = Σ̃α, Nα = Ñα, χαnα = χ̃, Qαnα = Q̃ on Γ× T , (37)

where the functions Π̃i, M̃i, Σ̃α, Ñα, χ̃ and Q̃ are continuous in time and piece-
wise regular on Γ× T .

4 A system of Timoshenko-Ehrenfest type

In this section we use the theory of thermoelastic plates presented in Section 3
to derive a generalization of the Timoshenko-Ehrenfest system from the classi-
cal theory of elasticity (Elishakoff, 2019). Let us investigate the deformation of
the one-dimensional elastic fiber characterized by x1 ∈ (0, l), x2 = c0, x3 = 0,
where l and c0 are constants. In this case we have wj = wj(x, t), vα = vα(x, t),
Tα = Tα(x, t), where we have denoted x1 by x. In what follows we shall use
the notations

w1 = u,w2 = v, w3 = φ, v1 = ψ, v2 = χ,

T1 = τ, T2 = θ, φ,1 = φx, φ̇ = φt,∆φ = φxx,

a1 = α1 + 2α5, a2 = α2 + 2α4 + α5, a3 = 2(α3 + α4), (38)

a4 = µI + 8hα4, l
2
1 =

5∑
s=1

αs.
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The equations (33) reduce to two uncoupled systems: one for the unknown
functions u, χ and τ and the other for the functions v, φ, ψ and θ. The first
system is characterized by the following equations

(λ+ 2µ− 2l21∆)uxx − 2fχxx − βτx + F1 = ρutt,

(a4∆− 2hµ− Ia3∆∆)χ− 4hfuxx +H2 = ρIχtt, (39)

kτxx − cτt − βT0uxt = −S1.

on F , where F = (0, l) × T . In the case of achiral materials (f = 0) this
system describes an extensional motion. The second system can be written as

(µ− a3∆)vxx − 2f∆φx + F2 = ρvtt,

(µ− a3∆)φxx + (µ− a1∆)ψx + 2f∆vx + F3 = ρφtt, (40)

2h(a1∆− µ)φx + [I(λ+ 2µ− 2l21∆)∆− 2h(µ− 2a2∆)]ψ − Iβ2θx = ρIψtt,

I(kθxx − cθt − βT0ψxt)− 2hkθ = −S2,

on F . The system (40) generalizes the Timoshenko-Ehrenfest system from the
classical theory. If f = 0, then the system describes the behavior of achiral
nonsimple beams. The equations corresponding to simple materials can be
found by taking am = 0, (m = 1, 2, . . . , 5). We consider the first boundary
value problem and assume that the boundary data are equal to zero. Thus we
have the following conditions associated to the system (39)

u = 0, Du = 0, χ = 0, Dχ = 0, τ = 0, (41)

and the corresponding conditions for the system (40)

v = 0, Dv = 0, φ = 0, Dφ = 0, ψ = 0, Dψ = 0, θ = 0, (42)

for x = 0 and x = l, and t ∈ T . The initial conditions are

u(x, 0) = u0(x), ut(x, 0) = z0(x), χ(x, 0) = χ0(x),

χt(x, 0) = η0(x), τ(x, 0) = τ 0(x), (43)

and

v(x, 0) = v0(x), vt(x, 0) = v01(x), φ(x, 0) = φ0(x), φt(x, 0) = φ0
1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ0
1(x), θ(x, 0) = θ0(x), (44)

for x ∈ (0, l). As in the classical theory of thermoelastic plates (see Nowacki,
1962; Lagnese, 1989), equations (40) contain a term that depends linearly on
temperature

In what follow we give an existence theorem (see Goldstein, 1985; Iesan and
Quintanilla 1994; Magana and Quintanilla 2018 ) for the solutions of the
problem determined by the system (39) with the boundary conditions (41)
and the initial conditions (43). We assume that:

10



(i) ρ, l21, 3λ+ 2µ, I, a3, a4, h, µ, k and c are positive.

(ii) ha4(λ+ 2µ) > 2h2f 2;

To study this problem we consider the Hilbert space

H =W 1,2
0 (0, l)× L2(0, l)×W 1,2

0 (0, l)× L2(0, l)× L2(0, l).

and we define the inner product

⟨(u, z, χ, η, τ), (u∗, z∗, χ∗, η∗, τ ∗)⟩ = T0h
∫ l

0
(ρzz∗+2l21uxxu

∗
xx+(λ+2µ)uxu

∗
x)dx

+
T0
2

∫ l

0
(ρIηη∗+Ia3χxxχ

∗
xx+a4χxχ

∗
x+2hµχχ∗+2hf(uxχ

∗+u∗xχ)dx+
c

2

∫ l

0
ττ ∗dx.

It is clear that in view of the our assumptions, this inner product determines
a norm which is equivalent to the usual one in the Hilbert space.

We can also define the matrix operator

A =



0 I 0 0 0

1
ρ
((λ+ 2µ)D2

x − 2l21D
4
x) 0 −2

ρ
D2

x 0 −β
ρ
Dx

0 0 0 I 0

−4hf
ρI
D2

x 0 1
ρI
(a4D

2
x − 2hµ− Ia3D

4
x) 0 0

0 −βT0Dx

c
0 0 −k

c


where Dx = d/dx.

Our problem can be written as a Cauchy problem

dU
dt

= AU(t) + G(t), U(0) = U0,

where
G(t) = (0, F1, 0, H2, S1), U0 = (u0, z0, χ0, η0, τ 0).

It is worth noting that the domain of the operator A is given by the elements
in the Hilbert space such that

τ ∈ W 1,2
0 ∪W 2,2, η, z ∈ W 2,2

0 , uxxxx, χxxxx ∈ L2.

It is clear that

⟨AU ,U⟩ = −k
2

∫ l

0
|τx|2dx ≤ 0.

To prove the existence of solutions, the new step we need to prove is that zero
belongs to the resolvent of the operator A. To this end we need to see that if
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F = (f1, f2, f3, f4, f5) belongs to the Hilbert space H there exists an element
U in the domain of the operator such that

AU = F.

That is

z = f1, η = f3, (λ+ 2µ− 2l21D
2
x)D

2
xu− 2fD2

xχ− βDxτ = ρf2,

(a4D
2
x − 2hµ− Ia3D

4
x)χ− 4hfD2

xu = ρIf4, kD2
xτ − βT0Dxz = cf5.

It is clear the existence of z, η ∈ W 2,2
0 . Then we have the equation

kD2
xτ = cf5 + βT0Dxf1.

As the right hand side belongs to L2, we obtain the existence of a solution τ
that belongs to W 1,2

0 ∩W 2,2. Now, we can consider the system

(λ+ 2µ− 2l21D
2
x)D

2
xu− 2fD2

xχ = ρf2 + βDxτ,

(a4D
2
x − 2hµ− Ia3D

4
x)χ− 4hfD2

xu = ρIf4.

To study this system we can consider the bilinear form

B[(u, χ), (u∗, χ∗)] = T0h
∫ l

0
[2l21uxxu

∗
xx + (λ+ 2µ)uxu

∗
x]dx

+
T0
2

∫ l

0
[Ia3χxxχ

∗
xx + a4χxχ

∗
x + 2hµχχ∗ + 2hf(uxχ

∗ + u∗xχ)]dx.

In view of the asumptions (i) and (ii), this is a bilinear coercive and bounded
form on W 2,2

0 ×W 2,2
0 . As the ρf2 + βDτ and ρIf4 belong to L2 we can obtain

the existence of (u, χ) satisfying the above system. It is also clear that U =
(u, z, χ, η, τ) belongs to the domain of the operator and even more there exists
a positive constant M such that

||U|| ≤MF.

In view of the fact that A is defined in a dense subspace, it is dissipative and
zero belongs to the resolvent of the operator. We can conclude that:

Theorem 1. Under the assumptions (i), (ii) the operator A generates a con-
tractive semigroup.

A consequence of the previous theorem is the well posedness of the problem.
That is:

Theorem 2. Let us assume that (F1, H2, S1) is C1 in [L2]3 and continuous
on W 2,2

0 ×W 2,2
0 ×W 1,2

0 ∩W 2,2 and the conditions (i) and (ii) hold. Then for

12



every initial data (43) belonging to the domain of the operator A there exists
a unique solution to boundary-initial-value problem (39),(41),(42).

It is worth noting that, as the operator A generates a contractive semigroup,
we can obtain the estimate

||U(t)|| ≤ ||U0||+
∫ t

0
||G(s)||ds, (45)

which is a result of continuous dependence of the solutions with respect initial
data and supply terms. Therefore, we can conclude that our problem is well
posed in the sense of Hadamard.

It is also worth saying that we could also study the problem determined by
the system (40) with the boundary conditions (42) and the initial conditions
(44). Again under suitable conditions on the constitutive parameters, we could
also prove that the boundary-initial-value problem (33)-(35) is well posed in
the sense of Hadamard. We note that the value of the chirality coefficient f
plays a relevant role to define the energy of the system and therefore the inner
product in the Hilbert space. Limits on the possible values of f are imposed by
the requirement for positive definiteness of the potential energy. The results
about existence and stability only hold in the case that the parameter f can
be controlled by means of the other constitutive coefficients.

5 Uniqueness

In this section we consider the the second boundary-initial-value problem for-
mulated in Section 3. We derive a uniqueness result in the dynamic theory by
using the method of Brun (1969). By an admissible process on Σ×T we mean
an ordered array ϑ = {wi, vα, Tα, γαβ, φα, ξαβ, ψαβ, ηαβk, ζαβρ, σαj,miβj,Mαβ,Λαβγ,
ζ, σ, χj, Qα} with the property that wi and vα are of class C4,2 on Σ×T and of
class C2,0 on Σ×T ; Tα are of class C2,1 on Σ×T ; γαβ, ξαβ, φα, ψαβ, ηαβj, ζαβρ
and σ3α are continuous on Σ× T ; σαj,Mβα,m3βα, χj and Qα are of class C1,0

on Σ× T ; mρβi and Λαβγ are of class C2,0 on Σ× T , and ζ and σ are of class
C0,1 on Σ×T . By a solution of the second boundary-initial-value problem we
mean an admissible process that satisfies the equations (17), (23), (25) and
(30) on Σ × T , the initial conditions (34) and the boundary conditions (37).
In this section we restrict our attention to the second boundary-initial-value
problem but the results presented hold also for the first boundary-initial-value
problem.

If G is a continuous function on Σ × T , then we denote by Ĝ the function
defined by

Ĝ(x, t) =
∫ t

0
G(x, τ)dτ, x ∈ Σ, t ∈ T .

13



We introduce the functions Φ1 and Φ2 by

Φ1 = Ŝ1 + ρT0ζ
0, Φ2 = Ŝ2 + ρT0σ

0, (46)

where

ρζ0 = βw0
ρ,ρ + aT 0

1 , ρσ0 = I(βv0α,α + aT 0
2 ). (47)

By using (25), (27), (46) and (47) we obtain the following result.

Lemma 1 The functions ζ, σ, χj and Qα satisfy the equations (25), (27) and
the initial conditions ζ(x, 0) = ζ0(x), σ(x, 0) = σ0(x), x ∈ Σ, if and only if

ρT0ζ = χ̂α,α + Φ1, ρT0σ = Q̂α,α − 2hχ̂3 + Φ2, (48)

on Σ× [0,∞).

Let us consider two external data systems L(α) = {F (α)
j , H

(α)
β , S

(α)
β , Π̃

(α)
i , M̃

(α)
i ,

Σ̃
(α)
β , Ñ

(α)
β , χ̃(α), Q̃(α), w

0(α)
j , v0(α)α , T

0(α)
β , ω

0(α)
j , ξ

0(α)
β }. We denote by A(α) =

{w(α)
j , v

(α)
β , T

(α)
β , γ(α)ρν , ξ

(α)
ρν , φ

(α)
β , ψ

(α)
βν , η

(α)
ρβν , ζ

(α)
ρβν , σ

(α)
βj ,m

(α)
iβj ,M

(α)
ρν ,Λ

(α)
ρβν , ζ

(α), σ(α),

χ
(α)
j , Q

(α)
β } a solution of the second boundary-initial-value problem correspond-

ing to L(α), (α = 1, 2). We denote by Π
(α)
i ,M

(α)
i ,Σ

(α)
β and N

(α)
β the functions

Πi,Mi,Σβ and Nβ from (36) associated to A(α), and introduce the notations

χ(α) = χ
(α)
β nβ, Q

(α) = Q
(α)
β nβ,Φ

(α)
1 = Ŝ

(α)
1 + ρT0ζ

0(α),Φ
(α)
2 = Ŝ

(α)
2 + ρT0σ

0(α).
(49)

We denote

Kκν(r, s) =
∫
Σ
{2hρẅ(κ)

j (r)w
(ν)
j (s) + ρIv̈(κ)α (r)v(ν)α (s)−

− k

T0
[2hT̂

(κ)
1,α (r)T

(ν)
1,α (s) + IT̂

(κ)
2,α (r)T

(ν)
2,α (s) + 2hT̂

(κ)
2 (r)T

(ν)
2 (s)]}da,

Πκν(r, s) =
∫
Σ
[2hF

(κ)
i (r)w

(ν)
i (s) +H(κ)

α (r)v(ν)α (s)− (50)

− 2h

T0
Φ

(κ)
1 (r)T

(ν)
1 (s)− 1

T0
Φ

(κ)
2 (r)T

(ν)
2 (s)]da+

+
∫
Γ
[2hΠ

(κ)
i (r)w

(ν)
i (s) + 2hM

(κ)
i (r)Dw

(ν)
i (s)+

+ Σ(κ)
α (r)v(ν)α (s) +N (κ)

α (r)Dv(ν)α (s)− 2h

T0
χ̂(κ)(r)T

(ν)
1 (s)

− 1

T0
Q̂(κ)(r)T

(ν)
2 (s)]dl,

for all r, s ∈ T . For convenience, in (50) we have supressed the argument x.

Theorem 3. Let

Eαβ(r, s) = Παβ(r, s)−Kαβ(r, s), (51)
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for all r, s ∈ T . Then

Eαβ(r, s) = Eβα(r, s), (α, β = 1, 2). (52)

Proof. We introduce the notation

Wκν(r, s) = 2h[σ
(κ)
βα (r)γ

(ν)
βα (s) + σ

(κ)
α3 (r)φ

(ν)
α (s) +m

(κ)
ρβj(r)η

(ν)
ρβj(s)+

+ 2m
(κ)
3βα(r)ψ

(ν)
βα (s)− ρζ(κ)(r)T

(ν)
1 (s)] +M

(κ)
βα (r)ξ

(ν)
βα (s)+ (53)

+ Λ
(κ)
ρβα(r)ζ

(ν)
ρβα(s)− ρσ(κ)(r)T

(ν)
2 (s).

By using the constitutive equations (32) we find that

Wκν(r, s) = 2hJκν(r, s) + INκν(r, s), (54)

where

Jκν(r, s) = λγ(κ)ρρ (r)γ
(ν)
ηη (s) + 2µγ

(κ)
βα (r)γ

(ν)
βα (s) + µφ(κ)

α (r)φ(ν)
α (s)+

+ α1[ψ
(κ)
ρρ (r)η

(ν)
αα3(s) + ψ(ν)

ρρ (s)η
(κ)
αα3(r) + η

(κ)
ββρ(r)η

(ν)
ραα(s)+

+ η
(κ)
αββ(r)η

(ν)
ρρα(s)] + 2α2[ψ

(κ)
ρρ (s)ψ

(ν)
αα(s) + η

(κ)
ρββ(r)η

(ν)
ραα(s)]+

+ 2α3η
(κ)
ββj(r)η

(ν)
ρρj(s) + 2α4[2ψ

(κ)
βα (r)ψ

(ν)
βα (s) + η

(κ)
ρβj(r)η

(ν)
ρβj(s)]+

+ 2α5[ψ
(κ)
βα (r)η

(ν)
αβ3(s) + ψ

(ν)
βα (s)η

(κ)
αβ3(r)] + α5[η

(κ)
αβρ(r)η

(ν)
ρβα(s)+

+ η
(ν)
αβρ(s)η

(κ)
ρβα(r) + 2ψ

(κ)
αβ (r)ψ

(ν)
βα (s)] + fε3ρβ{2[ψ(κ)

αρ (r)γ
(ν)
βα (s)+

+ ψ(ν)
aρ (s)γ

(κ)
βα (r)] + 2[η

(κ)
βα3γ

(ν)
ρα (s) + η

(ν)
βα3(s)γ

(κ)
ρα (r)]+

+ η
(κ)
αρβ(r)φ

(ν)
α (s) + η

(ν)
αρβ(s)φ

(κ)
α (r)} − β[T

(κ)
1 (r)γ(ν)ρρ (s)

+ T
(ν)
1 (s)γ(κ)ρρ (r)]− aT

(κ)
1 (r)T

(ν)
1 (s), (55)

Nκν(r, s) = λξ(κ)ρρ ξ
(ν)
αα (s) + 2µξ

(κ)
αβ (r)ξ

(ν)
αβ (s)+

+ α1[ζ
(κ)
ηηρ(r)ζ

(ν)
ραα(s) + ζ(κ)αηη(r)ζ

(ν)
ρρα(s)] + 2α2ζ

(κ)
ραα(r)ζ

(ν)
ρββ(s)+

+ 2α3ζ
(κ)
ββα(r)ζ

(ν)
ρρα(s) + 2α4ζ

(κ)
ρβα(r)ζ

(ν)
ρβα(s)+

+ α5[ζ
(κ)
αβρ(r)ζ

(ν)
ρβα(s) + ζ

(ν)
αβρ(s)ζ

(κ)
ρβα(r)]− β[T

(κ)
2 (r)ξ(ν)ρρ (s)+

+ T
(ν)
2 (s)ξ(κ)ρρ (r)]− aT

(κ)
2 (r)T

(ν)
2 (s).

From (53), (54) and (55) we obtain

Wκν(r, s) = Wνκ(s, r), s, r ∈ T . (56)

On the other hand if we use the relations (17), (23), (30), (32) and (48), we
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find that

Wκν(r, s) = 2h{[σ(κ)
βi (r)−m

(κ)
ρβi,ρ(r)]w

(ν)
i (s) + [M

(κ)
βα (r)−

− Λ
(κ)
ρβα,ρ(r) + 2m

(κ)
β3α(r)]v

(ν)
α (s)− 1

T0
χ̂
(κ)
β (r)T

(ν)
1 (s)},β + [2hm

(κ)
ρβi(r)w

(ν)
i (s)+

+ Λ
(κ)
ρβα(r)v

(ν)
α,β(s)−

1

T0
Q̂(κ)

ρ (r)T
(ν)
2 (s)],ρ + 2h[F

(κ)
i (r)w

(ν)
i (s)− 1

T0
Φ

(κ)
1 (r)T

(ν)
1 (s)]+

+H(κ)
α (r)v(ν)α (s)− 1

T0
Φ

(κ)
2 (r)T

(ν)
2 (s)− 2hρẅ

(κ)
j (r)w

(ν)
j (s)− (57)

− ρIv̈(κ)α (r)v(ν)α (s) +
k

T0
[2hT̂

(κ)
1,α (r)T

(ν)
1,α (s) + IT̂

(κ)
2,α (r)T

(ν)
2,α (s)+

+ 2hT̂
(κ)
2 (r)T

(ν)
2 (s)].

If we integrate (57) over Σ and use the divergence theorem and the relations
(49), (50) and (51) then we get∫

Σ
Wκν(r, s)da = Eκν(r, s). (58)

From (56) and (58) we obtain the desired result. �

Theorem 3 implies the next result.

Theorem 4. Let A = {wj, vα, Tα, γρν , ξρν , φα, ψαβ, ηραβ, ζραβ, σβi,miβj,Mαβ,
Λρβα, ζ, σ, χi, Qα} be a solution corresponding to the external data system L =

{Fi, Hα, Sα, Π̃i, M̃i, Σ̃α, Ñα, χ̃, Q̃, w
0
i , T

0
α, ω

0
i , ξ

0
α} and let

Λ(r, s) =
∫
Σ
{2h[Fi(r)wi(s)−

1

T0
Φ1(r)T1(s)]+

+Hα(r)vα(s)−
1

T0
Φ2(r)T2(s)}da+

∫
Γ
{2h[Πi(r)wi(s)+

+Mi(r)Dwi(s)−
1

T0
χ̂(r)T1(s)] + Σα(r)vα(s) +Nα(r)Dvα(s)− (59)

− 1

T0
Q̂(r)T2(s)}dl,

for all r, s ∈ T . Then

d

dt
{
∫
Σ
ρ(2hwiwi + Ivαvα)da+

k

T0

∫ t

0

∫
Σ
(2hT̂1,αT̂1,α+

+ IT̂2,αT̂2,α + 2hT̂ 2
2 )dtda} =

∫ t

0
[Λ(t− s, t+ s)− Λ(t+ s, t− s)]ds+ (60)

+
∫
Σ
{2hρ[ẇj(0)wj(2t) + ẇj(2t)wj(0)] + ρI[v̇α(0)vα(2t) + v̇(2t)vα(0)]}da.
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Proof. It follows from (52) that

∫ t

0
E11(t+ s, t− s)ds =

∫ t

0
E11(t− s, t+ s)ds. (61)

We apply this relation to the solution A(1) = A. From (50), (51) and (59) we
get

∫ t

0
E11(t+ s, t− s)ds =

∫ t

0
Λ(t+ s, t− s)ds−

∫ t

0

∫
Σ
{2hρẅj(t+ s)wi(t− s)+

+ ρIv̈α(t+ s)vα(t− s)− k

T0
[2hT̂1,α(t+ s)T1,α(t− s)+ (62)

+ IT̂2,α(t+ s)T2,α(t− s) + 2hT̂2(t+ s)T2(t− s)]}dsda,

and

∫ t

0
E11(t− s, t+ s)ds =

∫ t

0
Λ(t− s, t+ s)ds−

∫ t

0

∫
Σ
{2hρẅj(t− s)wj(t+ s)+

+ ρIv̈α(t− s)vα(t+ s)− k

T0
[2hT̂1,α(t− s)T1,α(t+ s)+ (63)

+ IT̂2,α(t− s)T2,α(t+ s) + 2hT̂2(t− s)T2(t+ s)]}dsda.

If g1 and g2 are functions of class C2 on [0,∞), then we have

∫ t

0
g1(t+ s)ġ2(t− s)ds = −g2(0)g1(2t) + g1(t)g2(t) +

∫ t

0
ġ1(t+ s)g2(t− s)ds,∫ t

0
g̈1(t+ s)g2(t− s)ds = ġ1(2t)g2(0)− ġ1(t)g2(t) +

∫ t

0
ġ2(t− s)ġ1(t+ s)ds,∫ t

0
g̈2(t− s)g1(t+ s)ds = ġ2(t)g1(t)− ġ2(0)g1(2t) +

∫ t

0
ġ2(t− s)ġ1(t+ s)ds.

With the help of these relations we can express (62) and (63) in a different
way. Thus, the relation (62) can be written in the form

∫ t

0
E11(t+ s, t− s)ds =

∫ t

0
Λ(t+ s, t− s)ds−

∫
Σ
{2hρ[ẇi(2t)wi(0)−

− ẇi(t)wi(t) +
∫ t

0
ẇj(t+ s)ẇj(t− s)ds] + ρI[v̇α(2t)vα(0)− v̇α(t)vα(t)+

+
∫ t

0
v̇α(t+ s)v̇α(t− s)ds]− 2hk

T0
[T̂1,αT̂1,α +

∫ t

0
T1,α(t+ s)T̂1,α(t− s)ds]−

− kI

T0
[T̂2,αT̂2,α +

∫ t

0
T2,α(t+ s)T̂2,α(t− s)ds]− (64)

− 2hk

T0
[T̂ 2

2 +
∫ t

0
T2(t+ s)T̂2(t− s)ds]}da.
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In a similar way we obtain∫ t

0
E11(t− s, t+ s)ds =

∫ t

0
Λ(t− s, t+ s)ds−

∫
Σ
{2hρ[ẇi(t)wi(t)−

− ẇi(0)wi(2t) +
∫ t

0
ẇi(t− s)ẇi(t+ s)ds] + ρI[v̇α(t)vα(t)− v̇α(0)vα(2t)+

+
∫ t

0
v̇α(t− s)v̇α(t+ s)ds]}da+ k

T0

∫ t

0

∫
Σ
[2hT̂1,α(t− s)T1,α(t+ s)+ (65)

+ IT̂2,α(t− s)T2,α(t+ s) + 2hT̂2(t− s)T2(t+ s)]dsda.

From (63), (64) and (65) we obtain the desired result. �

The following uniqueness result is a consequence of Theorem 4.

Theorem 5. Assume that ρ and k are strictly positive and a is different from
zero. Then the boundary-initial-value problem has at most one solution.

Proof. Assume that there are two solutions. Then their difference A corre-
sponds to null data. From (60) and the initial conditions we find that

∫
Σ
ρ(2hwiwi + Ivαvα)da+

k

T0

∫ t

0

∫
Σ
(2hT̂1,αT̂1,α+

+ IT̂2,αT̂2,α + 2hT̂ 2
2 )dtda = 0. (66)

If we use (66) and the hypotheses of theorem we obtain

wi = 0, vα = 0, T̂1,α = 0, T̂2 = 0 on Σ× T . (67)

Thus, we have T1,α = 0 on Σ × T so that T1 = ϑ(t), t ∈ T . From (32) we
obtain χα = 0 on Σ× T and ρζ = aϑ. The energy equation (25) implies that
aT0ϑ̇ = 0. Since a and T0 are different from zero we find that ϑ is a constant
on Σ × T . The initial conditions lead to ϑ(0) = 0 so that T1 = 0 on Σ × T .
From (67) we obtain that T2 = 0 on Σ× T . The proof is complete. �

6 Effects of a concentrated heat source

In this section we study the deformation of an infinite chiral plate subjected
to a concentrated heat source. We consider the equilibrium theory and assume
that

Fj = 0, Hα = 0, S1 = 0. (68)

We suppose that the concentrated heat source S2 acts in the point (y1, y2),
and introduce the notation r = [(x1 − y1)

2 + (x2 − y2)
2]1/2. We suppose that
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S2 = Sδ(x − y), where δ is the Dirac measure and S is a given constant. In
this case from (33) we obtain

T1 = 0, T2 =
S

2πk
K0(dr), d = (2h/I)1/2, (69)

where K0 denotes the modified Bessel functions of the third kind and order
zero. We try to solve the problem assuming that

wα = ε3αγU,γ, w3 =W, vα = V,α, (70)

where U,W and V are unknown functions which depend on the variable r. In
the case of equilibrium the equations (33) are satisfied if the functions U, V
and W satisfy the following equations

µU − 2(α3 + α4)∆U + 2fW = 0,

[µ− 2(α3 + α4)∆]W + [µ− (α1 + 2α5)∆]V = 2f∆U, (71)

(e∆− l21∆∆− µd2)V − d2[µ− (α1 + 2α5)∆]W = β2T2,

where

e = λ+ 2µ+ 2d2(α2 + 2α4 + α5), l21 =
5∑

j=1

αj. (72)

We introduce the notations

a∗1 = α1 + 2α5, a
∗
2 = 4(α3 + α4)

2, a∗3 = 4[(α3 + α4)µ− f 2], (73)

a∗4 = µ(α1 + 2α3 + 2α4 + 2α5), a
∗
5 = 2(α1 + 2α5)(α3 + α4),

and the operators

D1 = 2f(µ− a∗1∆), D2 = a∗3∆− a2∆∆− µ2,

D3 = 2f(e∆− l21∆∆− d2µ), D4 = d2(µ2 − a∗4∆+ a∗5∆∆). (74)

The system (71) can be presented in the form

2fW = 2(α3 + α4)∆U − µU, (75)

D1V +D2U = 0, D3V +D4U = 2fβ2T2. (76)

We consider the representation

U = D1Ω, V = −D2Ω, (77)

where Ω is a function of class C8. It is easy to see that the functions U and V
given by (77) satisfy the system (76) if the functions Ω satisfies the equation

(D1D4 −D2D3)Ω = 2fβ2T2. (78)
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In what follows we shall use the notations

b1 = a∗3l
2
1 + ea∗2 − a∗1a

∗
5d

2, b2 = d2a∗1a
∗
4 + µd2a∗5 − l21µ

2 − ea∗3 − d2µa∗2, (79)

b3 = d2µ(a∗3 − a∗4)− µ2(a∗1d
2 − e).

We note that

D1D4 −D2D3 = −2fl21a
∗
2(∆− k21)(∆− k22)(∆− k23)∆,

where k2j are the roots of the equation

l21a
∗
2z

3 − b1z
2 − b2z − b3 = 0. (80)

We assume that k1, k2, k3 and d are distinct positive constants. The function
Ω satisfies the equation

(∆− k21)(∆− k22)(∆− k23)∆Ω = PK0(dr), (81)

where

P = −β2S/(2πl21ka∗2). (82)

The function Ω that satisfies the equation (82) and vanishes at infinity is given
by

Ω = AK0(dr), A = P [(d2 − k21)(d
2 − k22)(d

2 − k23)d
2]−1.

It follows from (75) and (76) that the functions U, V and W have the form

U = 2fA(µ− d2a∗1)K0(dr), V = (a∗3d
2 − a∗2d

4 − µ2)AK0(dr),

W = A(µ− d2a∗1)[2(α3 + α4)d
2 − µ]K0(dr).

The displacements wj and vα can be determined from (70). In contrast with
the theory of centrosymmetric plates, the stretching and flexure of the plate
cannot be treated independently of each other.

7 Concluding remarks

In this paper we establish a theory of thermoelastic plates which is able to
describe the chiral behavior. We considered the strain gradient theory of ther-
moelasticity since the behavior of chirality in linear theory is controlled by a
single material parameter. The results presented in this paper can be summa-
rized as follows:

a) We derive the basic equations which govern the deformation of chiral ther-
moelastic thin plates. In contrast with the theory of achiral plates, the stretch-
ing and flexure cannot be treated independently of each other.
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b) As a special case of the equations of chiral plates, we deduce a generalization
of the Timoshenko-Ehrenfest system from the classical theory of elasticity.

c) In the case of the dynamic theory we establish a uniqueness result with no
definiteness assumption on the elastic constitutive coefficients as well as the
existence of solutions under suitable conditions on the constitutive coefficients.

d) We investigate the effects of a heat source in an unbounded chiral plate.
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