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Abstract

Many infectious diseases like the Spanish flu (1918-1919) or currently SARS-CoV-2, also known as COVID19,
exhibit a certain wave-like behaviour. An epidemic wave can be defined as the time-distance between two
consecutive peaks of infectious population. In many cases there is a seasonal reason for a wave-like be-
haviour. In others, like in COVID19, this is not so clear and it could be related to several circumstances:
mobility restrictions imposed by governments, general lockdown, social contact constraints, school year,
holidays... The goal of this Bachelor’s degree thesis is to study epidemic waves from a dynamical systems
approach, considering a simple SEIR model. We start by exploring theoretical results associated to a simple
SEIR model as the basic reproduction number, Hethcote’s theorem or variational equations. Then, we
study how the SEIR parameter infection rate can lead to epidemic waves. Finally, we propose an original
numerical method to apply our simple SEIR model to Catalonia’s data. This method helps us analyse the
importance of restrictions and to examine how small variations in the infection rate can lead to higher or
smaller epidemic waves.
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1. Introduction

Epidemic waves caused by a disease are not a novelty. Among others, we can name the Spanish flu
(1918-1919) which caused more than 500 million infected people, approximately one third of the world’s
population [11]. This exceptionally severe disease was responsible for an estimated number of 50 million
deaths. Measures like social distancing or the use of face masks were imposed in order to reduce the impact
of this influenza pandemic along its three waves of infectious cases. The first epidemic wave arose in the
spring of 1918 and was rapidly followed by larger, higher and much more fatal second and third waves in
the fall of 1918 and winter of 1919, respectively.

One hundred years later, another epidemic hit and stopped the world. This time it was the turn of
SARS-COV2, also named COVID19. First detected in December 2019, COVID19 has caused more than
177 million infections and is responsible for almost 4 million deaths [12]. All around the world epidemic
waves were detected when analysing the number of infectious cases over time. In particular, Spain has
been among the most severelly hit countries in the world while experiencing three waves of infectious
cases. Oddly enough, these three waves arose at the same period of the year as the Spanish flu waves.
Indeed, the first wave took place from March 2020 until May 2020; the second from October 2020 until
November 2020 and the third one from December 2020 until February 2021. In fact, when this study
was proposed, Spain’s second wave was just about to end and the dynamics of COVID19 epidemic waves
triggered curiosity. Unlike other infectious diseases like influenza, there seemed not to be a seasonal reason
for COVID19’s wave-like behaviour. Hence, it could be related to several circumstances such as mobility
restrictions imposed by governments, general lockdown, social distancing, school year, holidays...

Widely used in epidemiology, the SEIR model appeared to be the best fit to study COVID19 epidemic
waves. In fact, this model is currently used by many scientists such as the ones from CSIC-UV [1] in order
to model COVID19. However, in these models, parameters tend to be added or changed from the classic
SEIR so that different phases such as hospitalizations or vaccinations can be considered. Therefore, we
wondered to which extent a classic SEIR could model epidemic waves. In addition, choosing a simple SEIR
would make us benefit from numerous theoretical theorems and properties.

In this final degree thesis we will study the dynamics of epidemic waves in a SEIR model by first
exploring theoretical results and then applying our model to Catalonia’s COVID19 data.
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Study of epidemic waves in a SEIR model

2. SEIR Model

The SEIR Model is a classic epidemiology model used to forecast the evolution of infectious diseases. This
model belongs to the family of compartmental models. First introduced by Kermack and McKendrick in
1927[8], the compartmental models rely on the rates of flow between different groups of the population.
Among them, we can find the models SIR, SIS, SEIS and SEIR. Indeed, the SEIR model consists in dividing
the population in groups based on the condition of the individuals:

• Susceptible. The susceptible (S) is the part of the population that could be potentially subjected to
the infection and has not yet been exposed to it.

• Exposed. The exposed (E) are individuals that have been exposed to the disease but are not yet
infectious. They carry a very small number of pathogens and therefore are unable to transmit the
disease. This period of time is called the latent phase.

• Infectious. The infectious (I) are individuals that have been infected with the disease and can actively
transmit it.

• Recovered/Deceased. The recovered (R) represent individuals that have overcome the disease and
whose probability of getting reinfected is very low. On the other hand, the deceased (D) is the
fraction of infectious people who died from the disease.

The SEIR model lies on the transitions S −→ E, E −→ I and I −→ R. It is a clear example of the
so-called compartmental models.

The step S −→ E involves the transmission of the disease which is determined by three factors: the
prevalence1 of the infected, the structure of contact of the population and the probability of transmission
given a contact. These factors are represented by the parameter β, also called the infection rate. We
can define β as β = pb where p is the probability of transmission of the disease given a contact and b is
the contact rate (the number of people, in average, in contact with an infectious individual) [6]. In other
words, β is the number of people that an infectious person infects each day.

The next step, E −→ I, lies on the latent phase. It is represented by the inverse of the average latent
time γ which governs the lag between becoming infected and showing symptoms.

The final step is I −→ R, where we include in R the deceased D. This step is governed by the recovery
rate λ and the death rate κ. In the classic SEIR model they are considered as a unique parameter µ.

Figure 1: Classic SEIR model scheme

1Prevalence is the proportion of individuals in a population having a disease or specific characteristic in a given period of
time.
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2.1 SEIR Model equations

The equations for the classic SEIR model explained above are:



dS(t)

dt
= −βI

S

N
dE (t)

dt
= βI

S

N
− γE

dI (t)

dt
= γE − (λ+ κ)I

dR(t)

dt
= (λ+ κ)I

(1)

where N is the total population and N = S + E + I + R. We consider Ṅ = 0 =⇒ N = constant.
In other words, the total variation of the population can be underestimated in reference to the population
size and, hence, we can assume that for every death there is a newborn. For a normalised SEIR model (i.e.
N = 1), the equations would end up being:



dS(t)

dt
= −βIS

dE (t)

dt
= βIS − γE

dI (t)

dt
= γE − (λ+ κ)I

dR(t)

dt
= (λ+ κ)I

(2)

Remark 2.1. To ease the notation during this study, sometimes we define µ = λ+ κ.

In the previous equations, we considered the recovered (R) and the deceased (D) as a same group in
our dynamics. However, it is possible to differentiate these two groups to expand the study. The scheme
in figure 2 below illustrates this situation.

Figure 2: SEIR model differentiating (R) from (D) scheme
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Hence, when differentiating the recovered from the deceased, the following equations are derived:

dS(t)

dt
= −βI

S

N
dE (t)

dt
= βI

S

N
− γE

dI (t)

dt
= γE − (λ+ κ)I

dR(t)

dt
= λI

dD(t)

dt
= κI

(3)

where N = S + E + I + R = constant.

All this time, we have assumed that the total population N(t) was a constant. In other words, we
have supposed that for every death there was a newborn. However, there could be many deaths due to
COVID19 not offset by the number of newborns. In that case, we would want N(t) to be a variable where
N(t) = S(t) + E (t) + I (t) + R(t). This would lead us to the equations:

dS(t)

dt
= −βI

S

N(t)
dE (t)

dt
= βI

S

N(t)
− γE

dI (t)

dt
= γE − (λ+ κ)I

dR(t)

dt
= λI

dD(t)

dt
= κI

(4)

where N(t) = S(t) + E (t) + I (t) + R(t).

In our study, we considered working with these three models. However, in order to be able to apply
the different theorems and properties that we will present in the following sections, we decided to work
exclusively with the classic SEIR Model equations (1) and (2).
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2.2 Basic reproduction number R0

The basic reproduction number is of high relevance in epidemiology since from its value we can know
whether the disease cannot grow anymore or it can quickly spread through the population.

Definition 2.2. The basic reproduction number R0 is the expected number of secondary cases produced
by a typical infectious individual in a completely susceptible population.

In other words, if R0 ≥ 1, on average an infectious individual causes more than one new infected
individual over the course of its infectious period. Hence, the disease will quickly spread through the
population. If R0 < 1 it means that an infectious individual will produce less than one new infected
individual and the disease can be controlled.

Definition 2.3. A disease free equilibrium (DFE) is an equilibrium point x∗ where there is no disease.

For instance, in the classic SEIR model a DFE x∗ is such that x∗ ⊂ {x = (S , E , I , R)|E = 0, I = 0}.

Definition 2.4. The basic reproduction number can also be defined as the number of new infections
produced by a typical infectious individual in a population around a DFE. [14]

Our aim in this section is to find an expression for the basic reproduction number R0 following definition
2.4. We will explore two different approaches in order to reach our goal.

2.2.1 Classic method

Let us recall the following theorem:

Theorem 2.5. Let us consider the non linear system ẋ = f (x). Let x∗ be an equilibrium point of this
system and let A be the matrix

A = Df (x∗) =

(
∂fi
∂xj

(x∗)

)
1≤i ,j≤n

1. If A has an eigenvalue λ with Re(λ) > 0, then x∗ is unstable.

2. If every eigenvalue λ of A has Re(λ) < 0, then x∗ is asymptotically stable.

Following this theorem, we proceed to study the stability of a disease free equilibrium point of the SEIR
system. We start by calculating the Jacobian matrix J of the classic SEIR system:

J =


−βI
N 0 −βS

N 0
βI
N −γ βS

N 0

0 γ −(λ+ κ) 0

0 0 λ+ κ 0


We will consider the equilibrium point x∗ = (S , 0, 0, N − S) of the invariant manifold {E = 0, I = 0}.

The equilibrium point x∗ corresponds to the situation where there are no exposed or infectious cases. Our
population is either susceptible or recovered and we have overcome the virus.

Let Jx∗ be the value of the Jacobian matrix J at the equilibrium point x∗. Note that Jx∗ = A.
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Jx∗ =


0 0 −βS

N 0

0 −γ βS
N 0

0 γ −(λ+ κ) 0

0 0 λ+ κ 0


We calculate the eigenvalues ci of Jx∗ by solving the equation det(Jx∗ − c · Id) = 0.

det(Jx∗ − cId) = 0⇐⇒

∣∣∣∣∣∣∣∣
−c 0 −βS

N 0

0 −γ − c βS
N 0

0 γ −(λ+ κ)− c 0
0 0 λ+ κ −c

∣∣∣∣∣∣∣∣ = 0

⇐⇒ (−c)

∣∣∣∣∣∣
−γ − c βS

N 0
γ −(λ+ κ)− c 0
0 λ+ κ −c

∣∣∣∣∣∣ = 0

⇐⇒ c2

∣∣∣∣−γ − c βS
N

γ −(λ+ κ)− c

∣∣∣∣ = 0

⇐⇒ c2

(
c2 + c(λ+ κ+ γ) + γ(λ+ κ)− γ βS

N

)
= 0

⇐⇒
{

c = 0

c2 + c(λ+ κ+ γ) + γ(λ+ κ)− γ βS
N = 0

⇐⇒


c = 0

c =
−(λ+ κ+ γ)±

√
(λ+ κ+ γ)2 − 4γ(λ+ κ− βS

N )

2
:= c±

Hence, Jx∗ has four eigenvalues: c1 = c2 = 0, c3 = c− and c4 = c+.

We need to distinguish two situations:

1. if (λ+ κ+ γ)2 < 4γ(λ+ κ− βS
N ), then c± ∈ C and

c± =
−(λ+ κ+ γ)± i

√
4γ(λ+ κ− βS

N )− (λ+ κ+ γ)2

2

We observe that in this case Re(c±) < 0.

2. if (λ+κ+γ)2 ≥ 4γ(λ+κ− βS
N ), then c± ∈ R. In this second case, c− < 0. However, if λ+κ− βS

N < 0
we observe that c+ > 0. Moreover,

c+ > 0⇐⇒ λ+ κ <
βS

N
⇐⇒ βS

N(λ+ κ)
> 1,

where we have taken into account that λ+ κ > 0. Therefore, if
βS

N(λ+ κ)
> 1, x∗ is unstable.

We can now define the basic reproduction number R0 as

R0 =
βS

N(λ+ κ)

8



2.2.2 Next-generation matrix

Even though the expression that we found in the previous section is correct, we omitted to study the
stability of the eigenvalues equal to zero. However, the next-generation matrix (NGM), first introduced by
Diekmann and Heesterbeek in [5], can be useful to solve this issue. Hence, in this section we will study
this method following the articles written by Sallet [13], Van den Driessche and Watmough [14].

Let us suppose that we divide our population in several compartments where the m first compartments
correspond to uninfected people and the last ones to infected people. Let x = (x1, ..., xn)T , with each
xi ≥ 0, be the number of individuals in each compartment. Let Ys be the set of all disease free states,
Ys = {x ≥ 0 | xi = 0, i = m + 1, ..., n}.

Let Fi (x) be the rate of appearance of new infections in compartment i , V+i (x) the rate of transfer of
individuals into compartment i by all other means, and V−i (x) the velocity of transfer of individuals out
of compartment i . Let Vi = V+i − V

−
i . We have ẋi = f (x) = Fi (x) + Vi (x) for i = 1, ..., n. From the

epidemiological nature of the model follow the properties below:

1. x ≥ 0,Fi (x) ≥ 0,V+i (x) ≥ 0,V−i (x) ≥ 0

2. If xi = 0 then V−i (x) = 0

3. If i ≤ m then Fi (x) = 0

4. If x ∈ Ys then Fi (x) = 0 and for i ≥ m we have V+i (x) = 0, V−i (x) = 0 and Fi (x) = 0

Let X be the array of the infected compartments and Y be the array of all disease free compartments
such as x = (Y , X )T . Our system can be rewritten as{

Ẋ = f1(X , Y )

Ẏ = f2(X , Y )

In our case, we have

X =

(
E
I

)
, Y =

(
S
R

)
from which follows

F =


0
0

β SI
N

0

 ,V =


−β SI

N
(λ+ κ)I
−γE

γE − (λ+ κ)I


Observation 2.6. A DFE is x∗ ∈ Ys such that f (x∗) = 0.

We consider now the linearization of ẋ = f (x) around a DFE x∗. In our case we have that any
x∗ = (S0, N − S0, 0, 0) is a DFE.

Df (x) =


−βI

N 0 0 −βS
N

0 0 0 λ+ κ
βI
N 0 −γ βS

N
0 0 γ −(λ+ κ)

 =⇒ Df (x∗) =


0 0 0 −βS0

N
0 0 0 λ+ κ

0 0 −γ βS0
N

0 0 γ −(λ+ κ)


Observation 2.7. Van den Driessche and Watmough [14] suppose that the DFE is locally asymptotically
stable. However, this is not exactly true in our case. Therefore, we follow Sallet’s reasoning [13].
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Definition 2.8. Let F and V be matrices satisfying

DF(x∗) =

[
0 0
0 F

]
, DV(x∗) =

[
J3 J4
0 V

]
In our case we have

DF(x) =


0 0 0 0
0 0 0 0
βI
N 0 0 βS

N
0 0 0 0

 =⇒ DF(x∗) =


0 0 0 0
0 0 0 0

0 0 0 βS0
N

0 0 0 0

 =⇒ F =

(
0 βS0

N
0 0

)

DV(x) =


−β I

N 0 0 −β S
N

0 0 0 λ+ κ
0 0 −γ 0
0 0 γ −(λ+ κ)

 =⇒ DV(x∗) =


0 0 0 −β S0

N
0 0 0 λ+ κ
0 0 −γ 0
0 0 γ −(λ+ κ)


=⇒ V =

(
−γ 0
γ −(λ+ κ)

)
Observation 2.9. F and V are defined by

F =

(
∂F
∂X

)
x∗

, V =

(
∂V
∂X

)
x∗

Definition 2.10. A Metzler matrix is a matrix in which all the off-diagonal components are positive (equal
to or greater than zero), that is to say if i 6= j then aij ≥ 0.

Theorem 2.11. The matrix F is a positive matrix, i.e ∀i , j fij ≥ 0; and V is a Metzler matrix.

Definition 2.12. The spectral radius of a matrix A is the supremum among the absolute values of the
eigenvalues of A, that is to say

ρ(A) = max
λ∈Sp(A)

| λ |

Definition 2.13. We define R0 as R0 = ρ(−FV−1). We call −FV−1 the next generation matrix of the
model.

In our case, we have

−FV−1 =
1

γ(λ+ κ)

(
γ βS

N γ βS
N

0 0

)
Thus, R0 = ρ(−FV−1) =

βS

N(λ+ κ)
.

The following definition and theorem assure the accuracy of the definition of R0.

Definition 2.14. Let A be a Metzler matrix. A regular decomposition of A is a decomposition of the form

A = F + V

where F ≥ 0 and V is a Metzler matrix asymptotically stable (equivalent to V invertible).

Theorem 2.15. (Varga) For all regular decomposition of a Metzler invertible matrix, the following asser-
tions are equivalent

• A is asymptotically stable

• ρ(−FV−1) < 1

10



2.3 Hethcote’s theorem

Curious about the characteristics of a SEIR wave, we encountered Hethcote’s article [7] in which lied an
interesting theorem. Among other facts, this theorem affirms that a classic SEIR model can experience
either one wave or none. In addition, it remarks the relevance of the infection rate β in the dynamics of
a SEIR wave. Indeed, as we will see in section 3, variations of β can lead to several epidemic waves in a
SEIR model.

Theorem 2.16. Let (S(t), E(t), I(t), R(t)) be a solution of the classic SEIR model (1) with initial conditions

S(0) = S0, E (0) = E0, I (0) = I0 and R(0) = R0. Let µ = λ + κ and σ =
β

Nµ
. If σS0 ≤ 1, then E (t) and

I (t) decrease to zero as t −→∞. If σS0 > 1, then E (t) + I (t) first increases up a maximum with value

Emax + Imax = E0 + I0 + S0 −
1

σ
ln(σS0)− 1

σ
(5)

and then decreases to zero as t −→∞.

Demonstration 2.17. Let us demonstrate the formula of the maximum value (5). Recall the equations
of the classic SEIR model (1): 

dS(t)

dt
= −βI

S

N
(i)

dE (t)

dt
= βI

S

N
− γE (ii)

dI (t)

dt
= γE − µI (iii)

dR(t)

dt
= µI (iv)

From (i) and (iv) we have
S ′

S
= −β I

S
= −β R ′

µN
.

Thus, if we integrate and take into account that R(0) = 0 we obtain∫
S ′

S
=

∫
−β R ′

µN
=⇒ ln

(
S(t)

S(0)

)
=
−β
Nµ

R(t) (6)

Let t∗ be the time when E (t) + I (t) has a maximum. We know that E ′(t∗) + I ′(t∗) = 0. Moreover,

E ′(t) + I ′(t) = 0⇐⇒ I

(
β

S

N
− µ

)
= 0

I 6=0
=⇒ S(t∗) =

µN

β
=

1

σ
(7)

Now, from (6) we have

R(t∗) =
−Nµ

β
ln

(
S(t∗)

S(0)

)
(7)
= − 1

σ
ln

(
1

σS(0)

)
=

1

σ
ln[S(0)]

We know that E (t) + I (t) = N − R(t)− S(t), where N = constant = S(0) + E (0) + I (0), therefore

Emax + Imax = N − R(t∗)− S(t∗) = S(0) + E (0) + I (0)− 1

σ
ln[S(0)]− 1

σ

11
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2.4 Variational equations

Our aim in this section is to study the variational equations regarding parameters of our SEIR model in
order to apply them in section 4.4. As we will see, variational equations regarding parameters can help
study how small variations in a given infection rate can influence the number of infectious people over time.

We will start by recalling the First Variational Equation (9) regarding initial conditions. Then we will
study variationals equations regarding parameters, to finally apply them to our SEIR model.

2.4.1 Variationals regarding initial conditions

Let us consider the initial value problem{
ẋ = f (t, x) where f : R× Rn −→ Rn, f ∈ Cr , r ≥ 2
x(t0) = x0

(8)

and let x = ϕ(t; t0, x0) be a solution of the initial value problem (8), where ϕ ∈ Cr , r ≥ 2.

We know that
d

dt
(ϕ(t; t0, x0)) = f (t,ϕ(t; t0, x0))

Therefore, applying the chain rule and considering f ,ϕ ∈ Cr , r ≥ 2, we get

d

dt
(Dx0ϕ(t; t0, x0)) = Dx0

(
d

dt
(ϕ(t; t0, x0)

)
= Dx f (t,ϕ(t; t0, x0))Dx0ϕ(t; t0, x0)

Moreover,

ϕ(t0; t0, x0) = x0 =⇒ Dx0ϕ(t; t0, x0) = Id

In other words, Dx0ϕ(t; t0, x0) is a solution of the so called First Variational Equation (along ϕ(t; t0, x0)):{
Ż = Dx f (t;ϕ(t; t0, x0))Z
Z (t0) = Id

(9)

which provides information about the sensitivity of the solutions of ẋ = f (t, x) when one starts with initial
conditions close to x0 (for t = t0).

2.4.2 Variationals regarding parameters

In order to study the dependency of an initial value problem regarding a parameter µ ∈ U ⊂ Rp, we
consider µ as a variable and apply the previous formula.

Let us consider the initial value problem{
ẋ = f (t, x ,µ) where f : R× Rn −→ Rn, f ∈ Cr , r ≥ 2,µ ∈ U ⊂ Rp, x ∈ Rn

x(t0,µ0) = x0
(10)

and let x = ϕ(t; t0, x0,µ0) be a solution of the initial value problem (10), where ϕ ∈ Cr , r ≥ 2.

Let y be y =

(
x
µ

)
. Then ẏ =

(
ẋ
µ̇

)
=

(
f (t, y)

0

)
=: F (t, y).

12



In this case the First Variational Equation (VE1) would be Ẇ (t) = DyF (t,

(
ϕ(t; t0, x0,µ0)

µ0

)
)W (t)

W (t0) = Id
(11)

Moreover,

DyF (t,

(
ϕ(t; t0, x0,µ0)

µ0

)
) = Dy

(
f (t,ϕ(t; t0, x0,µ0),µ0)

0

)

=

Dx f (t,ϕ(t; t0, x0,µ0),µ0)
∂

∂µ
f (t,ϕ(t; t0, x0,µ0),µ0)

0 0


Then we can write VE1 asDx0ϕ(t; t0, x0,µ0)

∂

∂µ
ϕ(t; t0, x0,µ0)

0 Idp

′ =

Dx f (t,ϕ(t; t0, x0,µ0),µ0)
∂

∂µ
f (t,ϕ(t; t0, x0,µ0),µ0)

0 0


·

Dx0ϕ(t; t0, x0,µ0)
∂

∂µ
ϕ(t; t0, x0,µ0)

0 Idp


where the initial conditions are  Dx0ϕ(t0; t0, x0,µ0) = Id

∂

∂µ
ϕ(t0; t0, x0,µ0) = 0

Thus, we have

d

dt
(Dx0ϕ(t; t0, x0,µ0)) = Dx f (t,ϕ(t; t0, x0,µ0),µ0)Dx0ϕ(t; t0, x0,µ0) (12)

d

dt

(
∂

∂µ
ϕ(t; t0, x0,µ0)

)
= Dx f (t,ϕ(t; t0, x0,µ0),µ0)

∂

∂µ
ϕ(t; t0, x0,µ0)+

∂

∂µ
f (t,ϕ(t; t0, x0,µ0),µ0) (13)

Let us apply these equations to our system

dS(t)

dt
= −βI

S

N
dE (t)

dt
= βI

S

N
− γE

dI (t)

dt
= γE − (λ+ κ)I

dR(t)

dt
= (λ+ κ)I

⇐⇒ ẋ = f (x ,µ) where

{
x = (S , E , I , R)
µ = (β, γ,λ,κ)

with N = S + E + I + R, Ṅ(t) = 0.

13



Study of epidemic waves in a SEIR model

We consider t0 = 0 since our system is autonomous. Then, if ϕ(t, x0,µ0) is a solution of the initial
value problem {

ẋ = f (x ,µ)
x(0,µ0) = x0

we get

Dx f (ϕ(t, x0,µ0)) =


−βI
N 0 −βS

N 0
βI
N −γ βS

N 0

0 γ −(λ+ κ) 0

0 0 λ+ κ 0



∂

∂µ
f (x ,µ) =


−IS
N 0 0 0
IS
N −E 0 0

0 E −I −I

0 0 I I


Let B(t) be the vector

B(t) =
∂

∂β
ϕ(t, x0,µ0)T =

(
b1(t), b2(t), b3(t), b4(t)

)T
=

(
∂S

∂β
,
∂E

∂β
,
∂I

∂β
,
∂R

∂β

)T

From (13) we observe that B(t) satisfies the following differential equation not homogeneous:

Ḃ(t) =


−βI
N 0 −βS

N 0
βI
N −γ βS

N 0

0 γ −(λ+ κ) 0

0 0 λ+ κ 0

B(t) +
1

N


−IS
IS
0
0

 (14)

where ϕ(t, x0,µ0) =
(
S(t), E (t), I (t), R(t)

)
That is to say,

ḃ1(t) = − β
N

I (t)b1(t)− β

N
S(t)b3(t)− 1

N
I (t)S(t) (15)

ḃ2(t) =
β

N
I (t)b1(t)− γb2(t) +

β

N
S(t)b3(t) +

1

N
I (t)S(t) (16)

ḃ3(t) = γb2(t)− (λ+ κ)b3(t) (17)

ḃ4(t) = (λ+ κ)b3(t) (18)

We observe that the equations (15)-(16)-(17) decouple from the last one (18).

Let us define W (t) =

b1(t)
b2(t)
b3(t)

. From (14) we obtain

Ẇ (t) =


−β
N I (t) 0 −β

N S(t)
β
N I (t) −γ β

N S(t)

0 γ −(λ+ κ)

W (t) +
1

N

−I (t)S(t)

I (t)S(t)

0

 = M(t)W (t) +
1

N
C (t) (19)

We observe that tr(M(t)) =
−β
N

I (t) ≤ 0, ∀t ≥ 0.
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Remark 2.18. At t = t0, W (t0) =

0
0
0

. Indeed, if we consider β as a variable and we calculate the

variationals regarding initial conditions we have:

∂S

∂S0

∂S

∂E0

∂S

∂I0

∂S

∂β0
∂E

∂S0

∂E

∂E0

∂E

∂I0

∂E

∂β0
∂I

∂S0

∂I

∂E0

∂I

∂I0

∂I

∂β0
∂β

∂S0

∂β

∂E0

∂β

∂I0

∂β

∂β0


=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



Observation 2.19. From equations (15), (16) and (17) we get:{
˙(b1 + b2) = −γb2

ḃ3 = γb2 − (λ+ κ)b3

Let us solve the second differential equation. We observe that it is a linear differential equation of first
order. Therefore,

b3(t) = c1e−(λ+κ)t + γe−(λ+κ)t

∫ t

0
b2(s)e(λ+κ)sds, where b3(0) = 0 =⇒ c1 = 0

Thus,

b3(t) = γe−(λ+κ)t

∫ t

0
b2(s)e(λ+κ)sds

15



Study of epidemic waves in a SEIR model

3. Infection rate β: parameter leading to epidemic
waves

Let us recall that the infection rate β is the number of people that an infectious person infects each day
and β = pb where p is the probability of transmission of the disease and b is the contact rate, the number
of people, in average, in contact with an infectious individual.

We have assumed that β is a constant. However, we can expect β to vary in time: decreasing thanks
to government restrictions or confinements since these reduce people’s contact rate and hence reduce β;
and increasing in a lockdown easing period of time. In this section we will see how a SEIR model with a
piecewise infection rate β(t) representing restrictive measures can lead to epidemic waves. In fact, as we
will see in section 4, this can also be achieved by defining the infection rate as a step function and therefore
make it easier to adjust the waves to the given data.

3.1 Decreasing and increasing of β depending on the restrictions

Let us contemplate a period of time where the infection rate decreases thanks to restrictions. Let us
consider an initial time (in days) t = 0 where the infection rate is β0, a constant. Let T > 0 be the day
where restrictive measures are taken. These measures are active until day T + tm, where we arrive to a
constant infection rate β1 < β0. We suppose that this new infection rate β1 prevails at least until day
Tf > T + tm. We could simulate the variation of β in time with the following definition of β:

β(t) =


β0 if 0 ≤ t ≤ T

β0e
−(t−T )

ζ if T < t ≤ T + tm

β1 = β0e
−tm
ζ if T + tm < t ≤ Tf

(20)

However, in order to model this situation we need to take in account the characteristics of the measures
taken. We can distinguish two kinds of measures: hard and brief restrictions; or long and soft restrictions.
This is where ζ and tm take sense. On the one hand, if hard restrictions are taken it makes sense to
think that they will last for a brief period before reaching the desired value β1. On the other hand, if the
restrictions are softer, one can think that they will last longer before reaching β1. This is why in our model
we considered two different ζ (ζ1 < ζ2) and tm (tm1 < tm2) where ζ1, tm1 correspond to hard and brief
restrictions and where ζ2, tm2 correspond to soft and long restrictions.

16



Figure 3: Example of variation of β in time with β0 = 1 and T = 2. Hard and brief restrictions are
represented by function f with parameters ζ1 = 5, tm1 = 5; long and soft restrictions are represented by
function g where ζ2 = 20 and tm2 = 20.

Similarly, we can model the increase of the infection rate β. Let us consider an initial time (in days)
t = 0 where the infection rate is β1 = constant. Let I = [T , T + ti ], where T > 0 and ti > 0, be a
lockdown easing period of time. Let β2 = constant > β1 be the final infection rate at time T + ti . We
suppose that this new infection rate β2 prevails at least until day Tf > T + ti . We could simulate the
variation of β in time with the following definition of β:

β(t) =


β1 if 0 ≤ t ≤ T

β1e
(t−T )

ξ if T < t ≤ T + ti

β2 = β1e
ti
ξ if T + ti < t ≤ Tf

(21)

3.2 SEIR model with infection rate subjected to restrictions

In this section we will numerically show how a piecewise infection rate can lead to epidemics waves.

Following the previous section, we define the infection rate β of our normalised SEIR model (2) subjected
to restrictions. We consider first an increase of β followed by a decrease of β and repeat the variations.
That is to say, the expression of the first variation of β is:

β(t) =



β1 if 0 ≤ t ≤ T1

β1e
(t−T1)

ξ if T1 < t ≤ T + ti

β2 = β1e
ti
ξ if T1 + ti < t ≤ T2

β2e
−(t−T2)

ζ if T2 < t ≤ T2 + tm

β3 = β2e
−tm
ζ if T2 + tm < t ≤ Tf

(22)

where we imposed β1 = 0.1, T1 = 0, ti = 30, ξ = 50, T2 = 15 and tm = ζ =

{
5 if hard measures
30 if soft measures

Remark 3.1. During this study we used Runge-Kutta method with Matlab function ode45 in order to solve
numerically the classic SEIR model equations (1) and (2). Furthermore, following [2] and [9] and in order
to fit best our data in section 4, we imposed the average latent time to be equal to four days, the average
infectious period equal to five days and the death rate equal to 3 × 10−3. Hence, we used parameters
γ = 1

4 and µ = λ+ κ = 1
5 + 3× 10−3. These values are frequently used for the COVID19 disease.
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After solving numerically equations (2) with the infection rate defined above, we obtained the following
plot where we could observe epidemic waves:

Figure 4: Infectious cases extracted from the normalised SEIR model with an infection rate subjected to
restrictions

As we can see, when implementing hard and brief measures the number of infectious cases is consid-
erably lower and lead to shorter waves. This can explain why many countries such as Australia or New
Zealand decided to run a zero-COVID policy [10]. This strategy aims to eliminate the virus by keeping its
transmission rate as close to zero as possible. In order to accomplish this goal, hard and brief restrictions
are taken every time a small number of infectious cases is detected.

However, countries like Spain or France chose to prioritise the health system not to be overwhelmed
with long and soft restrictions. Aiming to flatten the infectious curve, these containment strategies lead
to higher and longer waves of infectious cases but may end up with an earlier ”herd immunity”, if this is
such an option.
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4. Application of the SEIR model to Catalonia’s
data

Our aim in this section is to reencounter Catalonia’s second and third wave of COVID19 infectious people
by applying the SEIR model to the data provided by the Generalitat de Catalunya [3].2 In order to achieve
our goal, we will need to find the infection rate β associated to the data. The SEIR model with this
infection rate will then, ideally, approximate Catalonia’s COVID19 epidemic waves. In contrast with the
previous section and due to the fact that the data varies from day to day like a step function, in this section
the infection rate will be defined as a step function.

Bearing all this in mind, we propose two different numerical methods to find the infection rate β
associated to Catalonia’s data. On the one hand, the first numerical method approach is based on the
classic and normalised SEIR equations and Hethcote’s theorem. On the other hand, the second method is
strictly based on the classic and normalised SEIR equations. By means of this second method, we will first
analyse the importance of restrictions. Then, we will examine how small variations in the infection rate
can lead to higher or smaller epidemic waves. Finally, we will explore the possibility of making predictions.

4.1 First numerical method approach

Our first method is based on Hethcote’s theorem (2.16) which says that if σ0S(t0) > 1, where σ0 = β0
1
µ ,

and µ is constant, then E (t) + I (t) reaches a (unique) maximum and then decreases. This maximum,
reached at t = T0, is equal to

E (T0) + I (T0) = E (t0) + I (t0) + S(t0)− 1

σ
ln(σS(t0))− 1

σ

Let us recall the equations of the classic and normalised SEIR model (2):

dS(t)

dt
= −βIS (i)

dE (t)

dt
= βIS − γE (ii)

dI (t)

dt
= γE − µI (iii)

dR(t)

dt
= µI (iv)

Adding (ii) and (iii) we observe that

(E + I )′(t) = (βS(t)− µ)I (t)

At t = T0, (E + I )′(t) = 0 and since I (t) 6= 0,

S(t) =
µ

β
=

1

σ
⇐⇒ σS(t) = 1

2In order to overcome the weekend effect where less COVID19 tests are done we chose to work with the seven days aggregate
data and divided the values by seven. In other words, we defined the daily value of infectious cases as the weekly arithmetic
mean.
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In our case,
S(T0) =

µ

β0
(23)

On the other hand, from (i) we get

S ′ = −β0SI =⇒ S ′

S
= −β0I =⇒ d

dt
(log(S(t))) = −β0I (t)

=⇒
∫ T0

t0

d

dt
(log(S(t)))dt = −β0

∫ T0

t0

I (t)dt

We observe that ∫ T0

t0

d

dt
(log(S(t)))dt = log

(
S(T0)

S(t0)

)
(23)
= log

(
µ

S0β0

)
Thus,

log

(
S0β0
µ

)
= β0

∫ T0

t0

I (t)dt (24)

Hence, from (24) we will be able to get an approximation of β0.

We implemented this method in Matlab by calculating

∫ T0

t0

I (t)dt first with the Trapezoidal rule, which

states that: ∫ b

a
f (t)dt ≈ (b − a)

f (a) + f (b)

2
(25)

Since we wanted our method to be more efficient, we then changed to Simpson’s rule:∫ b

a
f (t)dt ≈ (b − a)

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
(26)

Remark 4.1. Simpson’s rule is exact for polynomials of degree n ≤ 2 whereas Trapezoidal rule is exact
for polynomials of degree n ≤ 1. Moreover, the global error of the composite Simpson’s rule and the
composite Trapezoidal rule are, respectively, of order h4 and h2 where h = (b − a)/2. Note that we used
the composite rules in order to be more accurate. Hence, Simpson’s rule is more efficient since it achieves
a given level of accuracy faster and is exact for second degree polynomials.

Once we had calculated the integral of infectious people, we solved equation (24) with the Newton-
Raphson method. We obtained then an approximation of the infection rate β0 at the beginning of the
wave. We put that value of β in our SEIR equations and we used Matlab’s function ode45 to solve the
system.

In order to verify the proper functioning of this method, we first tried it on a data created by a known
SEIR. That is to say, we calculated the number of infectious people per day with our SEIR equations where
we imposed a value for β and then tried to reencounter that value of β with our numerical method. The
result was satisfactory since we reencountered the initial β with a small error (magnitude of 10−5).

We then applied our method to Catalonia’s data. The resulting number of infectious people per day
was however considerably different from the data. This was due to the fact that we were not considering
that the peak observed in the data was altered by the government’s restrictions. In other words, we were
supposing that the observed peak corresponded to the theoretical peak of a SEIR model whose value is
known (5), whereas in reality the observed peak is only a fraction of the wave’s ascent. If the government
had not imposed restrictive measures the ”real” or theoretical peak would have been reached later in time.
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Let us illustrate this with the following figure:

Figure 5: Schema illustrating the differences between waves of infectious cases with the observed data,
which is subject to restrictions, and the theoretical SEIR model
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4.2 Second numerical method

Since our first method was not accurate to model the real data, we came up with a second method. This
new method is strictly based on the classic and normalised SEIR model equations (2):

dS(t)

dt
= −βIS (i)

dE (t)

dt
= βIS − γE (ii)

dI (t)

dt
= γE − µI (iii)

dR(t)

dt
= µI (iv)

From (iii) we obtain an equation for β:

I ′′(t) = γE ′ − µI ′
(ii)
= γβIS − γ2E − µI ′

(iii)
= γβIS − γ(I ′ + µI )− µI ′

=⇒ β =
I ′′ + (γ + µ)I ′ + γµI

γIS
(27)

However, this equation depends on S , the susceptible number of people, which is difficult to approximate
at t 6= t0. Therefore, we studied equation (i) and obtained equality (28):

S ′

S
= −βI =⇒

∫ T

t0

S ′

S
dt = −β

∫ T

t0

Idt =⇒ log(S(T )) = log(S(t0))− β
∫ T

t0

Idt

=⇒ S(T ) = S(t0)e
−β

∫ T
t0

Idt
(28)

Hence, for T ≥ t0,

β(T ) =
I ′′(T ) + (γ + µ)I ′(T ) + γµI (T )

γIS(t0)e
−β

∫ T
t0

Idt
(29)

We then proceed to approximate β numerically with this new equation (29). As seen in the previous

section, we start by calculating

∫ T0

t0

I (t)dt first with the Trapezoidal rule (25) and then with Simpson’s

rule (26). Afterwards, we approximate the first and second derivatives of I with the symmetric difference
quotient. Recall that the symmetric difference quotient for the first derivative is:

f ′(t) ≈ f (t + h)− f (t − h)

2h
(30)

and for the second derivative is:

f ′′(t) ≈ f (t + h)− 2f (t) + f (t − h)

h2
(31)

Finally, we solve equation (29) with the Newton-Raphson method.

As before, we first verified the proper functioning of this new method by trying it on a data created by a
known SEIR. The test was successful with almost all values of β, but some of them returned wrong values.
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We solved the problem by changing the Newton-Raphson method to the Regula falsi method. Indeed,
when running the Newton-Raphson method, the derivative of one of the iterations was close to zero and
caused the method to fail. With this modification all the tests were successful.

We then applied our method to Catalonia’s data and calculated β(t) every day of the second wave
(25/05/2020 to 08/12/2020). When we introduced the found vector β = (β(1), ...,β(tf )) in our code to
solve the SEIR equations, we obtained really similar waves:

(a) Plot extracted from the data (b) Plot obtained by the SEIR model

Figure 6: Daily confirmed cases during the second wave according to the data or the SEIR model where
the day number 0 in figure 6b corresponds to September 25th, i.e the first day of figure 6a

We repeated this process adding the third wave (08/12/2020 to 13/03/2021) and observed again
similar waves:

(a) Plot extracted from the data (b) Plot obtained by the SEIR model

Figure 7: Daily confirmed cases during the second and third wave according to the data or the SEIR model

As we can see, the height of the simulation’s second peak is less accurate. However, this difference will
be reduced in the next steps.
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Certain values β(t) seemed to vary a lot from one day to another. In addition, we found some negative
values of β. This was due to the fact that we were ”cheating” in some way by choosing β so that when
integrating we would find exactly the given data. That is the reason why we decided to impose our β to
be a constant value within a given interval of time by performing a least square fitting.

We started by considering intervals of seven days in order to have a weekly value of the infection rate.
We obtained the following plots for the second and third wave:

(a) Infection rates β before and after least square fitting (b) Daily infectious cases extracted from the SEIR model

Figure 8: Modelling of the second and third wave with least square fitting of the infection rate every seven
days

While observing these graphics and their accuracy to model both waves, we asked ourselves if we could
obtain a similar plot with just four different infection rates (β1,β2,β3,β4), one for each variation of the
infectious curve.

(a) Infection rates β before and after least square fitting (b) Daily infectious cases extracted from the SEIR model

Figure 9: Modelling of the second and third wave with four infection rates obtained with least square fitting
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We need to remark that this new solution of the infectious cases in time presents a higher error
approximation when comparing with the real data as we can see in figure 10. Moreover, the peaks detected
in the SEIR model have a delay of two or three days from the ”real” peaks.

Nonetheless, the solution obtained is smoother than the previous ones and in fact is C∞. Furthermore,
we cannot affirm that the peaks observed in the real data correspond to the real situation since we need
to take into account some delay caused by weekends, bank holidays, required days to determine the result
of COVID19 tests, etc. Thus we can say that this indeterminacy is reasonable.

(a) Absolute error (b) Relative error

Figure 10: Error approximation when modelling the second and third wave with four βs obtained with least
square fitting

Even though we decided almost arbitrarily the dates where we wanted to change the value of β, we
observed that they could actually be associated to the dates where restrictive measures were taken in
Catalonia. Indeed, according to AQUAS’s report [4] new restrictions were imposed on November 15th,
25th and 30th in order to minimise the impact of the second wave and January 7th for the third wave. In our
model, we changed the value of β on November 23rd, December 8th and January 8th. Note that December
8th corresponded to the long weekend of the Constitution, were mobility was allowed in Catalonia. Hence,
we can say that restrictions clearly determine the value of β.
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4.3 Analysis of the importance of restrictions

In the previous section we observed a relationship between the value of the infection rate β and the
days where restrictive measures were taken. In this section we will continue to study the importance of
restrictions with regards to a wave’s impact in a population. We will consider as a basis the SEIR model
with four different infection rates (figure 9b).

Firstly, we asked ourselves what could have happened if no restrictive measures had been taken during
the second wave. In other words, what shape would the infectious curve have if the initial value of the
infection rate β had not changed over time. We modelled this situation and were able to illustrate it in the
following figure, where we can see the differences between the infectious curves of the basis model with
four infection rates (in blue) and the possible scenario without restrictions (in red) during the period of
time corresponding to the second and third wave.

Figure 11: Daily infectious cases extracted from the SEIR model with or without restrictions during the
period of time corresponding to the second and third wave

As we can see in figure 11, the difference of infectious cases is impressive as the peaks differ by more
than 2 ·105 cases, over a population around 7.5 ·106. This difference could have prompted to a vast number
of hospitalizations and deaths, collapsing the health system. Hence, restrictive measures are essential for a
population not to enter a critical situation.

Remark 4.2. When modelling the SEIR without restrictions, we observed that the peak of the exposed and
infectious’ sum corresponded to the value of Hethcote’s theorem (5) as we can see in figure 12 below.
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Figure 12: Hethcote’s maximum of the normalized SEIR without restrictions

Once we had calculated the four values of the infection rate overtime we asked ourselves what would
have happened if the restrictive measures had been taken a few days before or a few days after.

With that in mind, we started by moving the date where the first infection rate β1 changed to β2.

(a) Restrictions taken seven days before (b) Restrictions taken seven days after

Figure 13: Daily infectious cases during the second wave extracted from the SEIR model when varying the
date where restrictions are taken

On the one hand, if we had introduced restrictive measures a week before we would have had only 2/3
of the infectious cases. In addition, it would have taken approximately twenty days less for the wave to
return to its initial value. On the other hand, if these measures had been taken a week after, the infectious
cases would have increased by a factor of 4/3 and the wave would have lasted for a longer period of time.

We can conclude that it is of high importance to introduce restrictive measures rapidly whenever we
detect several new cases in a population, at least from a medical point of view.
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4.4 Implementing variationals

All this time, we have considered as the basis model the SEIR model with four different infection rates
(figure 9b). However, the calculations of the values of the different infection rates can experience a certain
numerical approximation error which can influence the number of Susceptible, Exposed or Infectious people
over time. In addition, this influence phenomena could also be caused by small variations in the restrictive
measures. These are some of the reasons why we decided to study the variationals regarding parameter β.

After solving numerically the variationals equations regarding parameter β (19), we obtained the fol-
lowing plots:

(a) Variation regarding β1: the rise of the second wave (b) Variation regarding β2: the fall of the second wave

(c) Variation regarding β3: the rise of the third wave (d) Variation regarding β4: the fall of the third wave

Figure 14: Variationals regarding parameter β

Thanks to these plots we can determine how an initial numerical approximation error of the infection
rate will influence our SEIR model. Let us focus on the infectious group I (t). Let ε1 be the difference
between our approximation of the first infection rate β1 and the real value. Let tmax be the time where b3

is maximal and tend be the final time. We observe that at tmax = tend , b3 is maximal and approximately
equal to 0.0516 (figure 14a). Hence, at the peak of the second wave the predicted infectious cases will
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differ by ε̄1 ≈ 0.0516× ε1 from the ”real” ones. Similarly, we can find approximations for the maximal and
final differences of infectious cases associated to every infection rate. We did so and gathered the results
in the table below.

Infection rate Initial difference Final difference at tend Maximal difference held at tmax tmax

β1 ε1 0.0516× ε1 0.0516× ε1 28

β2 ε2 0.0221× ε2 0.0284× ε2 26

β3 ε3 0.0413× ε3 0.0413× ε3 31

β4 ε4 0.0216× ε4 0.0272× ε4 36

Figure 15: Initial, final and maximal difference of every infection rate

We could also interpret the initial difference ε as the result of small variations in the restrictive measures.
Therefore, at time tmax is where we would have detected a greater variation in the infectious number of
cases if we had taken different restrictive measures, either a little bit harder or softer. In order to numerically
confirm this we changed the value of β1 and β2 by adding or subtracting 0.01.

Indeed, as we can see in figures 16c and 16d below, the maximal difference is held at the respective
times tmax found at table 15. Furthermore, we see that at tmax the infectious cases differ by approximately
5.1×10−4 cases for β1 and 2.2×10−4 cases for β2. Since our initial difference was ε1 = 0.01, we expected
our maximal differences to be respectively ε̄1 ≈ 0.0516 × 0.01 = 5.16 × 10−4 and ε̄2 ≈ 0.0221 × 0.01 =
2.21× 10−4. Hence, we obtain the results from table 15.
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(a) Daily infectious cases when varying β1 by 0.01 (b) Daily infectious cases when varying β2 by 0.01

(c) Difference between curves from figure 16a (d) Difference between curves from figure 16b

Figure 16: Variation of daily infectious cases when varying β by 0.01
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4.5 Can we do predictions?

When calculating the four values of the infection rate, we asked ourselves whether it was necessary to know
the value of the infection rate β for each day before doing a least square fitting or if with just the first ten
values of β (for example) we could obtain a similar SEIR model. If the second option were to be accurate
we could then do predictions.

With that in mind, we calculated the accumulated values of the infection rate for each day. That is
to say, the value of β with least square fitting in the interval of time [1, T ] for each day T of the second
wave’s rise. The aim was to see if there was a day where the values became steady. However, as we can
see in figure 17a, there seemed not to be a day where the values stabilised. This observation became more
clear when modelling the rise of the second wave with the accumulated infection rate at day 10 and the
infection rate β1 (figure 17b).

(a) Daily accumulated value of the infection rate
(b) Daily infectious cases during the rise of the second
wave extracted from the SEIR model with β(10) and β1

Figure 17: Can we do predictions?

Indeed, at the end of the rise the infectious cases differ from more than 104 cases.
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5. Conclusions

The goal of this Bachelor’s degree thesis was to study the dynamics of epidemic waves in a SEIR
model, focusing on the COVID19 pandemic and taking Catalonia as an example. Our main finding is
that restrictive measures and lockdown easing periods influence COVID19’s wave-like behaviour. Hard
restrictions are more effective than softer ones; and it is also vital to impose them as soon as new cases
are detected to avoid the collapse of our health system and a large number of deaths.

In terms of approach, this thesis has found a pretty accurate numerical method to apply a simple SEIR
model to real data. In addition, thanks to the model’s simplicity, we were able to apply diverse theoretical
results previously examined like Hethcote’s theorem or the variationals equations. These results enabled
us to analyse the importance of restrictions and to study how small variations in the infection rate could
influence the number of infectious cases over time.

With regards to the infection rate, we saw how its definition was key to the development of epidemic
waves. Indeed, changing its value by increasing and decreasing it over time causes the SEIR model to exhibit
several infectious waves instead of only one. As a matter of fact, we only need two different infection rates
β1 > β2 to model an infectious wave shaped by restrictive measures.

All in all, the aim of this thesis has been to present an original numerical method to analyse the dynamics
of epidemic waves of infectious diseases such as COVID19 and draw conclusions on how best to tackle
them. Given its scope, this thesis has compared ”hard” and ”soft” restrictions, without distinguishing
each of these individually - for example, wearing a face-mask compared to closing restaurants. The list
of ”hard” and ”soft” measures is indeed very long and countries around the world have chosen to impose
different ones at different times. For example, countries like Belgium imposed a ”social bubble” rule, closed
restaurants for months but left mobility free, while in Spain mobility between regions was forbidden but
restaurants remained open (with rules varying significantly between regions). It would be interesting to
use this model to compare the impact of these different restrictions on COVID19 wave-like behaviour and
assess their respective usefulness. Furthermore, it would also be interesting to explore the possibility of
making predictions, maybe without using all the data. This thesis encourages further research in these
directions.
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