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Abstract

In this project, we present a methodology to transform Optimal Stopping Problems into Free Boundary
Problems. The theory of Optimal Stopping can be found in fields such as statistics, theory of probability
and mathematical finance. First of all, we include all the necessary concepts in order to understand
this strategy, from the most basic definitions such as stochastic processes and Brownian motion to the
most sophisticated results such as Dynkin’s formula and the High Contact Principle. We also give three
interesting applications, two of them from the area of mathematical finance. The third one is the most
elaborated and it is about predicting resistance and support levels of an asset price. In this one, we also
give an algorithm to calculate numerically the solution of the problem: the optimal stopping boundary.
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Optimal Stopping Problems as Free Boundary Problems

1. Introduction

1.1 Motivation of the thesis

The main motivation for this project was the paper written by T. De Angelis and G. Peskir called Optimal
prediction of resistance and support levels [2]. In order to understand all the important concepts which
appear in this paper, I studied the book Stochastic Differential Equations: An Introduction with Applications
of B. Øksendal [6] and I solved some exercises from each chapter. Several of them appear in this thesis
since they are relevant. I also studied some parts from the book Optimal Stopping and Free-Boundary
Problems of G. Peskir and A. Shiryaev [5].

1.2 Main goal

The principal tool which is explained in the project is transforming Optimal Stopping Problems into Free
Boundary Problems. Solving the last ones gives us the solution of the first ones. The theory of optimal
stopping treats the issue of deciding when to take a specific action to maximize an expected gain or minimize
an expected cost. These type of problems can be found in fields of statistics, theory of probability and
mathematical finance. In sections 9 and 10 we present three interesting applications of this methodology,
two of them from the area of mathematical finance. The third one, which appears in section 10, is the
most elaborated and difficult, it is about characterizing resistance and support levels of asset prices and it
is based on the above mentioned paper by T. De Angelis and G. Peskir [2]. We study this article and we
fill in some details that are not in the original paper. We also give an algorithm to compute numerically
the solution to the problem: the optimal stopping boundary, and we attach the code on the Appendix.

1.3 Organization of the thesis

In section 2 we start by introducing the general scheme of solving optimal prediction problems. In section
3 we provide the definitions of stochastic process and stochastic differential equation. In section 4 we give
the basic concepts of filtration, martingale and semimartingale. In section 5 we explain the concept of
Brownian motion, Arithmetic Brownian motion and Geometric Brownian motion, and we present results
from Itô calculus such as the Itô formula. In section 6 we introduce important theorems from stochastic
analysis, for instance, the Itô-Tanaka-Meyer formula and the Optional Sampling theorem, which we will
need in the third application mentioned previously. In section 7 we give some important properties of
diffusion processes. In section 8 we present the main result to transform optimal stopping problems into
free boundary problems. Finally, as we mentioned above, in sections 9 and 10 we include three applications
of optimal stopping problems.
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2. General scheme of solution for optimal prediction
problems

We have a optimal prediction problem of stochastic equilibria and the method to solve this problem is
based on reformulation to an optimal stopping problem and then reduction to a free boundary problem.
The following scheme found in [5] illustrates this approach:

Optimal prediction problem

?

6

Optimal stopping problem

?

6

Free boundary problem

Downward is the way of reformulation and reduction. Upward is the way of finding a solution to the initial
problem.

We need some results to explain the methodology of transforming an optimal stopping problem into a
free boundary problem.

We consider a strong Markov process X = (Xt)t≥0 and we assume that it starts at x ∈ Rd .
Given a measurable function G : Rd → R such that

Ex

(
sup

0≤t≤T
|G (Xt)|

)
<∞ (1)

for all x ∈ Rd , the optimal stopping problem of interest is

V (x) = sup
0≤τ≤T

Ex [G (Xτ )] (2)

where x ∈ Rd and the supremum is taken over all stopping times τ of X . Here we note that if T =∞ we
interpret G (XT ) = 0. In addition, note Ex [G (Xt)] = E[G (Xt)|X0 = x ].

V is called the value function and G is known as the gain function. To solve the optimal stopping
problem (OSP) (2) means two things:

1. We need to exhibit an optimal stopping time τ∗ such that V (x) = Ex [G (Xτ∗)] when the supremum
is attained.

2. We want an expression for V (x) with x ∈ Rd that allows to compute its value as explicitly as possible.
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Optimal Stopping Problems as Free Boundary Problems

We may think of Xt as the state of a game at time t and each ω ∈ Ω corresponds to one sample of the
game. At each time t we have to decide either to stop the game, obtaining the gain G (Xt), or to continue
the game and stop later in order to try to get a bigger gain. The problem is that we do not know what
state has the game in the future. So, among all possible stopping times τ we want to find the optimal one,
τ∗, which gives the biggest expected gain.

Since X is Markovian, Dom(V (x)) ⊆ Rd . Hence, following the previous idea, the state space E := Rd can
be split into the continuation set C and the stopping set D = E \ C . So, as soon as the observed value
Xt(ω) enters D, the observation should be stopped and the optimal stopping time is attained. Therefore,
the key issue is to define the sets C and D.

Let us define the continuation set as

C = {x ∈ E ; V (x) > G (x)} (3)

and the stopping set as

D = {x ∈ E ; V (x) = G (x)} (4)

Let τD be the first entry time of X into D

τD = inf{t ≥ 0; Xt ∈ D} (5)

Note that τD is a stopping time.

The following definition is fundamental in order to solve the optimal stopping problem (2).

Definition 2.1. A measurable function F : E → R is superharmonic if

Ex [F (Xσ)] ≤ F (x) (6)

for all stopping times σ and all x ∈ E .

It is assumed in (6) that the left-hand side is well-defined (and finite).

In the following theorem, we give necessary conditions for the existence of an optimal stopping time.

Theorem 2.2. Assume that there exists an optimal stopping time τ∗ for the OSP (2), that is

V (x) = Ex [G (Xτ∗)] (7)

for all x ∈ E . Then:

The value function V is the smallest superharmonic function which dominates G : V (x) > G (x) ∀x ∈ E .

The stopping time τD satisfies τD ≤ τ∗ a.s. for all x ∈ E and is optimal in (2).

Let us present another theorem that provides sufficient conditions for the existence of an optimal
stopping time.
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Theorem 2.3. Consider the optimal stopping problem (2) and assume that the condition (1) is satisfied.
Let us assume that there exists the smallest superharmonic function V̂ which dominates G on E . We
define D = {x ∈ E ; V̂ (x) = G (x)} and τD by (5). Then:

i) If Px(τD <∞) = 1 for all x ∈ E , then V̂ = V and τD is an optimal stopping time in (2).

ii) If Px(τD < ∞) < 1 for some x ∈ E , then there is no optimal stopping time (with probability 1) in
(2).

Theorem 2.2 and its reciprocal 2.3 show that the OSP (2) is equivalent to find the smallest super-
harmonic function V̂ which dominates the gain function G . Once V̂ is found we have that V = V̂ and
τD = inf{t ≥ 0 : Xt ∈ D} is optimal, where D = {x ∈ E : V̂ (x) = G (x)}.

To find V̂ we use the method of free boundary problem. The basic idea is that V̂ and C (or D) solve the
following free boundary problem (FBP):

LX V̂ ≤ 0 (8)

V̂ ≥ G (V̂ > G on C & V̂ = G on D) (9)

where Lx is the infinitesimal generator of X (e.g. for a diffusion process we have E = R and LXV =

µ(x)∂V∂x + σ(x)2

2
∂2V
∂x2 ).

If G is smooth in a neighbourhood of ∂G (boundary of G ), the FBP (8, 9) can be expressed as

LX V̂ = 0 on C (10)

∂V̂

∂x

∣∣∣
∂C

=
∂G

∂x

∣∣∣
∂C

(11)

V̂ > G on C & V̂ = G on D (12)

These are sufficient conditions for solving the Optimal Stopping problem and they are known as High
Contact Principle (or smooth fit principle). We will give more details in section 8. More aspects of this
methodology are explained in references [5] and [6].

Let us see briefly this strategy applied to the problem from [2] which motivated this thesis. The financial
problem is to determine when the price of a stock, represented by random variable Xt , reaches or hits a
certain level (support or resistance), represented by random variable l . The optimal prediction problem
of interest will be

V∗(x) = inf
0≤τ≤T

Ex [|Xτ − l |] (13)

where X is a geometric Brownian motion with X0 = x > 0, l > 0 is a random variable independent from
X and T > 0 is the given horizon.

We will reformulate this problem to an optimal stopping problem using the following lemma (which will be
proved later):

Lemma 2.4. For all x > 0, we have:

E[|x − l |] = 2

∫ x

0

(
F (y)− 1

2

)
dy + E[l ] (14)

where F is the distribution function of l , which is fixed and given.
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Optimal Stopping Problems as Free Boundary Problems

This lemma allows us to rewrite the optimal prediction problem (13) to the following optimal stopping
problem

V (x) = inf
0≤τ≤T

Ex [G (Xτ )] (15)

where the gain function G is defined for x > 0 as G (x) =
∫ x

0

(
F (y)− 1

2

)
dy and we will have assumed

that E[l ] <∞.

We will write the previous problem as an extended optimal stopping problem in the time and space domain.

V (t, x) = inf
0≤τ≤T−t

Et,x [G (Xt+τ )] (16)

Finally, applying the results explained above and other important ones which we will see later on, we
will obtain the following free boundary problem

∂V

∂t
(t, x) + µx

∂V

∂x
(t, x) +

σ2

2
x2∂

2V

∂x2
(t, x) = 0 for x ∈ (0, b(t)) and t ∈ [0, T ) (17)

V (t, x) = G (x) for x ∈ [b(t),∞) and t ∈ [0, T ) (18)

∂V

∂x
(t, x) = G ′(x) for x = b(t) and t ∈ [0, T ) (19)

V (t, x) < G (x) for x ∈ (0, b(t)) and t ∈ [0, T ) (20)

V (T , x) = G (x) for x ∈ (0,∞). (21)

where b(t) = min{x ∈ (0,∞); V (t, x) = G (x)}.

In the next sections, we will present some definitions and results that are necessary to understand the
problem which we will be working with.

3. Stochastic Processes

Definition 3.1. A stochastic process is a collection of random variables {Xt ; t ∈ T}, each one referred to
an instant in time t, known as the time-parameter, which runs over an index set T , known as the time-
parameter set. It is defined on a probability space (Ω,F ,P), where Ω is a sample space, F is a σ-algebra
on this sample space and P is a probability measure on F .

Remark 3.2. We will abuse notation and write X instead of {Xt ; t ∈ T}. Other notations for X are
{X (t); t ∈ T}, {Xt}t∈T , (Xt)t∈T or X (t).

Definition 3.3. Let X be a stochastic process. X is called a continuous-time stochastic process when T
is a continuous set, for example when T is an interval in the real line such as T = [0,∞). By contrast, X
is called a discrete-time stochastic process when T is a discrete set (i.e. finite or countable), for instance
when T = Z+ or T = Z.

Definition 3.4. Let X be a stochastic process. For any given ω ∈ Ω fixed, as time passes, we get a
sequence {Xt(ω); t ∈ T} which is called a realization, sample path or trajectory of X corresponding to ω.
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Note that for each t ∈ T fixed we have a random variable

ω 7→ Xt(ω); ω ∈ Ω.

To understand better the concept of a stochastic process intuitively, it may be useful to think of t as
”time” and each ω as an individual ”particle” or ”experiment”. So, Xt(ω) represent the position (or result)
at time t of the particle (or experiment) ω. Observe that we can also write X (t,ω) instead of Xt(ω), thus
we may think of the process as a function of two variables

X : T × Ω→ Rn

(t,ω) 7→ X (t,ω)

Definition 3.5. A stochastic differential equation is a differential equation in which we allow randomness
in the coefficients, i.e., with one or more terms that are stochastic processes. So, its solution is also a
stochastic process.

We will consider stochastic differential equations of the form

dXt = b(t, Xt)dt + σ(t, Xt)dBt (22)

or in integral form

Xt = X0 +

∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s, Xs)dBs (23)

where Bt is a Brownian motion (we give the definition in section 5), and b is called the drift coefficient
and σ the diffusion coefficient. A solution of these equations is called a diffusion process or diffusion.

4. Filtrations and martingales

Definition 4.1. A filtration on (Ω,F ,P) is an increasing family (Mt)t≥0 of σ-algebras of F such that for
0 ≤ s ≤ t

Ms ⊆Mt ⊆ F

Intuitively, we can think of Mt as the historical information that we have up to time t.

Definition 4.2. The space (Ω,F , (Mt)t≥0,P) is known as a filtered probability space.

We present the concept of martingale which is a stochastic process such that the conditional expected
value of an observation at a future time s, given all the past information up to time t, is equal to the value
of the observation at time t. More formally:

Definition 4.3. Let (Ω,F ,P) be a probability space. A martingale with respect to the a filtration (Mt)t≥0

is a stochastic process X such that

i) Xt is Mt-measurable ∀t

ii) E[|Xt |] <∞ ∀t

9



Optimal Stopping Problems as Free Boundary Problems

iii) E[Xs |Mt ] = Xt ∀s ≥ t

Similarly, if i) and ii) hold and we have iii) E[Xs |Mt ] ≤ Xt ∀s ≥ t, then X is called a supermartingale.
And if we have iii) E[Xs |Mt ] ≥ Xt ∀s ≥ t, then X is called a submartingale.

Definition 4.4. Let (Mt)t≥0 be a filtration on (Ω,F ,P). A stochastic process X on Rn is called Mt-
adapted if for each t ≥ 0 the function ω 7→ Xt(ω) is Mt-measurable.

Definition 4.5. Let (Mt)t≥0 be a filtration on (Ω,F ,P) and X anMt-adapted stochastic process on Rn.
X is called local martingale with respect to (Mt)t≥0 if there exists an increasing sequence ofMt-stopping
times τk such that

i) P(limk→∞ τk =∞) = 1

ii) Xt∧τk is a martingale with respect to (Mt)t≥0 for all k

where t ∧ τ = min(t, τ) (we give the definition of a stopping time in section 7.1).

Definition 4.6. Let X be a stochastic process. The total variation of X on [0, t] is defined by

Vt(X ) = lim
∆tj→0

n−1∑
j=0

|Xtj+1 − Xtj |

where 0 = t0 < t1 < ... < tn−1 < tn = t is a partition and ∆tj = tj+1 − tj . We say that X is a process of
bounded variation if the total variation of X is finite.

Definition 4.7. Let X be a stochastic process defined on a filtered probability space (Ω,F , (Mt)t≥0,P)
with càdlàg trajectories, i.e. right-continuous with left limits. Then X is called semimartingale with respect
to (Mt)t≥0 if it admits a decomposition of the form

X = x + M + A (24)

where X0 = x is finite, M is a local martingale with respect to (Mt)t≥0 and A is a process of bounded
variation.

5. Brownian motion or Wiener process

The botanist Robert Brown was the first person who observed and documented the physical phenomenon of
the erratic movement of particles suspended in a fluid, specifically he observed that pollen grains suspended
in liquid performed an irregular motion. This motion takes the name of Brownian motion and to describe
it mathematically it is natural to use the concept of a stochastic process. The mathematical formalization
was due to Norbert Wiener and for this reason, it is also known as Wiener process.

Definition 5.1. A Gaussian process is a stochastic process {Xt ; t ∈ T} where (Xt1 , ..., Xtk ) follows a
multivariate normal distribution for any choice of distinct values t1, ..., tk ∈ T ,

Definition 5.2. A (1-dimensional or standard) Wiener process or Brownian motion Bt , t ∈ R is continuous-
time Gaussian process such that

10



i) B0 = 0

ii) the trajectories of Bt are continuous functions

iii) it has independent and stationary increments {Bt − Bs ; t < s}

iv) the increments have E[Bt − Bs ] = 0 and Var[Bt − Bs ] = |t − s|, for s, t ∈ R

One important consequence of the previous properties is that Bt − Bs ∼ N(0, |t − s|).

Remark 5.3. The Wiener process or Brownian motion can also have an initial value B0 = x with x ∈ R.

Definition 5.4. A n-dimensional Wiener process or Brownian motion Bt , t ∈ R is a vector-valued stochastic
process of the form

Bt = (B
(1)
t , ..., B

(n)
t ) (25)

where the components B
(i)
t , 1 ≤ i ≤ n, are independent, 1-dimensional Brownian motions.

Lemma 5.5. Let Bt be a n-dimensional Brownian motion starting at a point x ∈ Rn. Then, Bt satisfies
the next properties:

i) Ex [Bt ] = x

ii) Ex [(Bt − x)2] = nt

iii) Ex [(Bt − x)(Bs − x)] = n min(s, t)

Hence,

iv) Ex [(Bt − Bs)2] = n(t − s) if t ≥ s

v) Bt − Bs ∼ N(0, n(t − s)) if t ≥ s

Proof. Let us prove the last two properties which can be deduced from the three first ones.

iv) For t ≥ s:

Ex [(Bt − Bs)2] = Ex [(Bt − x)2 − 2(Bt − x)(Bs − x) + (Bs − x)2]

= Ex [(Bt − x)2]− 2Ex [(Bt − x)(Bs − x)] + Ex [(Bs − x)2]

= nt − 2ns + ns = n(t − 2s + s) = n(t − s)

v) For t ≥ s:

Ex [Bt − Bs ] = Ex [Bt ]− Ex [Bs ] = x − x = 0

Varx [Bt − Bs ] = Ex [(Bt − Bs)2]− Ex [Bt − Bs ]2 = n(t − s)

Recall that a Brownian motion is a Gaussian process and hence Bt − Bs ∼ N(0, n(t − s)).

Lemma 5.6. A n-dimensional Brownian motion Bt = (B
(1)
t , ..., B

(n)
t ), t ≥ 0 with initial value x ∈ Rn is a

martingale with respect to the σ-algebras Ft generated by {Bs ; s ≤ t}.

11



Optimal Stopping Problems as Free Boundary Problems

Proof. We need to see that i), ii) and iii) from Definition 4.3 hold. Note that i) is clearly satisfied, let us
see the other two points:

ii) Ex [|Bt |]2 ≤ Ex [|Bt |2] = Ex [|Bt − x |2 − |x |2 + 2|xBt |] = nt − |x |2 + 2|x |2 = nt + |x |2 <∞ ∀t ≥ 0

⇒ Ex [|Bt |] <∞ ∀t ≥ 0

where we have used that Ex [|Bt − x |2] = nt and Ex [Bt ] = x .

iii) Ex [Bs |Ft ] = Ex [Bs −Bt + Bt |Ft ] = Ex [Bs −Bt |Ft ] + Ex [Bt |Ft ]
(∗)
= Ex [Bs −Bt ] + Bt = Bt ∀s ≥ t

where in (∗) we have used that Bs − Bt is independent of Ft and that Bt is Ft-measurable.

5.1 Arithmetic Brownian motion

Definition 5.7. Let f be a function with continuous derivative f ′ over the interval [a, b]. We define the
Wiener integral of f by ∫ b

a
f (s)dBs = [f (s)Bs ]ba −

∫ b

a
Bs f ′(s)ds (26)

where Bs is a Brownian motion.

Definition 5.8. The generalized Wiener process or arithmetic Brownian motion is a stochastic process X
which satisfies the following differential equation

dXt = αdt + σdBt (27)

where α and σ are constants and Bt is Brownian motion with B0 = 0.

Remark 5.9. Note that the previous equation is a stochastic differential equation (SDE).

Lemma 5.10. The solution of the SDE (27) can be obtained taking Wiener integrals and it is

Xt = X0 + αt + σBt (28)

Proof. Taking Wiener integrals in (27) and using (26) with f ≡ σ we obtain the claimed solution:∫ t

0
Xs =

∫ t

0
αds +

∫ t

0
σdBt ⇔ Xt − X0 = αt + [σBs ]t0 −

∫ t

0
0Bsds ⇔ Xt = X0 + σBt

Lemma 5.11. The previous process satisfies the following properties:

i) For any choice of s and t, with s < t,

Xt − Xs ∼ N(α(t − s),σ2(t − s)) (29)

ii) It has stationary and statistically independent increments {Xt − Xs ; s < t}.

iii) The sample paths of the process are everywhere continuous, but nowhere differentiable with probability
1.
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Proof. We are going to prove the first point. Consider s < t and use the expression (28) for an arithmetic
Brownian motion:

Xt − Xs = (X0 + αt + σBt)− (X0 + αs + σBs) = α(t − s)− σ(Bt − Bs)

Recall that Bt − Bs ∼ N(0, t − s), so we have

Ex [Xt − Xs ] = Ex [α(t − s)− σ(Bt − Bs)] = α(t − s)− σEx [Bt − Bs ] = α(t − s)

Varx [Xt − Xs ] = Varx [α(t − s)− σ(Bt − Bs)] = σ2Varx [Bt − Bs ] = σ2(t − s)

Hence, Xt − Xs ∼ N(α(t − s),σ2(t − s)).

5.2 The Itô Integral and the Itô Formula

We now present the concept of Itô integral, very important in stochastic calculus. It allows us to integrate
stochastic processes with respect to the increments of a Brownian motion.

Definition 5.12. Let {Bt}t≥0 be a Brownian motion and (Ft)t≥0 a filtration generated by {Bs ; s ≤ t}.
Consider a function f (t,ω) : [0,∞)× Ω→ R such that

i) f (t,ω) is B × F-measurable, where B is the Borel σ-algebra on [0,∞)

ii) f (t,ω) is Ft-adapted

iii) E
[∫ T

S f (t,ω)2dt
]
<∞, for 0 ≤ S < T

Consider a partition S = t0 < t1 < ... < tn−1 < tn = T of the interval [S , T ]. Then the Itô integral of f
is defined by

I [f ](ω) =

∫ T

S
f (t,ω)dBt(ω) = lim

∆tj→0

n−1∑
j=0

f (tj ,ω)[Btj+1 − Btj ](ω) (30)

where ∆tj = tj+1 − tj and the limit is meant in L2 sense.

Lemma 5.13. The Itô integral has the following properties for 0 ≤ S < U < T :

i)
∫ T
S ftdBt =

∫ U
S ftdBt +

∫ T
U ftdBt

ii)
∫ T
S (cft + gt)dBt = c

∫ T
S ftdBt +

∫ T
S gtdBt for c constant

iii) E
[∫ T

S ftdBt

]
= 0

iv) M =
∫ T
S ftdBt is a martingale

The Itô integral can also be defined more generally with respect to a semimartingale.

13
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Definition 5.14. Let X be a semimartingale and (Mt)t≥0 be a filtration generated by {Xs ; s ≤ t}.
Consider a function f (t,ω) : [0,∞) × Ω → R satisfying the same conditions of Definition 5.12 with the
filtration Mt and consider a partition S = t0 < t1 < ... < tn−1 < tn = T of the interval [S , T ]. Then the
Itô integral of f with respect to the semimartingale X is defined by

I [f ](ω) =

∫ T

S
f (t,ω)dXt(ω) = lim

∆tj→0

n−1∑
j=0

f (tj ,ω)[Xtj+1 − Xtj ](ω) (31)

where ∆tj = tj+1 − tj and the limit is meant in L2 sense.

Definition 5.15. Let Bt be a 1-dimensional Brownian motion. A (1-dimensional) Itô process (or stochastic
integral) is a stochastic process X on (Ω,F ,P) of the form

Xt = X0 +

∫ t

0
a(s, Xs)ds +

∫ t

0
b(s, Xs)dBs (32)

or, equivalently,
dXt = a(t, Xt)dt + b(t, Xt)dBt (33)

where a is (Lebesgue) integrable and b is B-integrable, i.e. they satisfy

P
[∫ t

0
b(s, Xs)2ds <∞; ∀t ≥ 0

]
= 1

P
[∫ t

0
|a(s, Xs)|ds <∞; ∀t ≥ 0

]
= 1

Definition 5.16. An n-dimensional Itô process is a stochastic process X in Rn of the form

dX (t) = adt + bdB(t)

where

X (t) =

 X1(t)
...

Xn(t)

 , a =

 a1
...

an

 , b =

 b11 · · · b1m
...

...
bn1 · · · bnm

 , B(t) =

 B1(t)
...

Bm(t)


with ai (t, Xi (t)) and bi ,j(t, Xi (t)) satisfying the conditions given in Definition 5.15 for
1 ≤ i ≤ n, 1 ≤ j ≤ m.

Theorem 5.17. (The 1-dimensional Itô formula). Let X be an Itô process in R given by

dXt = a(t, Xt)dt + b(t, Xt)dBt

where Bt is a Brownian motion. Let g = g(t, x) be a differentiable function on [0,∞) × R and consider
Yt = g(t, Xt). Then, Yt is again an Itô process and the following identity holds

dYt =

(
a(t, Xt)

∂g

∂x
(t, Xt) +

∂g

∂t
(t, Xt) + b(t, Xt)

2 1

2

∂2g

∂x2
(t, Xt)

)
dt + b(t, Xt)

∂g

∂x
(t, Xt)dBt (34)

14



Theorem 5.18. (The general Itô formula). Let X be an n-dimensional Itô process given by

dX (t) = adt + bdB(t)

where B(t) is an m-dimensional Brownian motion. Let g = g(t, x) = (g1(t, x), ..., gp(t, x)) be a differen-
tiable map from [0,∞)× Rn into Rp and consider Y (t,ω) = g(t, X (t)). Then, Y is again an Itô process
and the following identity holds for every component Yk of Y :

dYk =
∂gk
∂t

(t, X )dt +
n∑

i=1

∂gk
∂xi

(t, X )dXi +
1

2

n∑
i=1

n∑
j=1

∂2gk
∂xi∂xj

(t, X )dXidXj (35)

where dBidBj = δijdt, dBidt = dtdBi = 0.

Lemma 5.19. Let X be an Itô process in R. Then, X is a semimartingale.

Proof. Recall that X has the form

Xt = X0 +

∫ t

0
a(s, Xs)ds +

∫ t

0
b(s, Xs)dBs

Note that Mt =
∫ t

0 b(s, Xs)dBs is a (local) martingale by the properties of Itô integral (see Lemma 5.13).

Define At :=
∫ t

0 a(s, Xs)ds, then we need to see that the total variation of A is finite:

n−1∑
j=0

|Atj+1 − Atj | ≤
n−1∑
j=0

∣∣∣∣∫ tj+1

0
a(s, Xs)ds −

∫ tj

0
a(s, Xs)ds

∣∣∣∣ =
n−1∑
j=0

∣∣∣∣∣
∫ tj+1

tj

a(s, Xs)ds

∣∣∣∣∣
≤

n−1∑
j=0

∫ tj+1

tj

|a(s, Xs)|ds =

∫ t

0
|a(s, Xs)|ds <∞ with probability 1

for all partitions 0 = t0 < t1 < ... < tn−1 < tn = t. Hence, we have

Xt = X0 + At + Mt

with A a process of bounded variation and M a (local) martingale. Therefore, X is a semimartingale.

5.3 Geometric Brownian Motion

Definition 5.20. A geometric Brownian motion is the continuous model of the form Pt = eXt , where Xt

is an arithmetic Brownian motion.

Note that the arithmetic Brownian motion can take negative and positive values because it follows a
normal distribution. But, we may want to allow only positive values, for example, to model the price of
a stock, and therefore it is a better option to consider a geometric Brownian motion that we have just
defined.

Lemma 5.21. The geometric Brownian motion satisfies the following stochastic differential equation

dPt = µPtdt + σPtdBt (36)

where µ = α + 1
2σ

2 and Bt is a Brownian motion.

15
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Proof. Consider an arithmetic Brownian motion X satisfying the SDE dXt = a(t, Xt)dt + b(t, Xt)dBt with
a ≡ α and b ≡ σ, hence it is an Itô process. We choose g(t, x) = ex and we set Yt = g(t, Xt) = eXt = Pt ,
which is again an Itô process by Theorem 5.17. Note that

∂g

∂t
(t, x) = 0,

∂g

∂x
(t, x) =

∂2g

∂x2
(t, x) = ex

Then by Itô’s formula (34),

dYt =

(
αeXt + 0 + σ2 1

2
eXt

)
dt + σeXt dBt

⇔ dPt =

(
αPt + σ2 1

2
Pt

)
dt + σPtdBt

⇔ dPt =

(
α +

1

2
σ2

)
Ptdt + σPtdBt

⇔ dPt = µPtdt + σPtdBt

Lemma 5.22. The strong solution of the SDE (36) is the following one:

Pt = P0e(µ− 1
2
σ2)t+σBt (37)

Proof. We can prove this fact directly using the expression for an arithmetic Brownian motion X (28):

Pt = eXt = eX0+αt+σBt = P0eαt+σBt = P0e(µ− 1
2
σ2)t+σBt

Remark 5.23. Let X be a geometric Brownian motion starting at a point x ∈ R, i.e. X0 = x . So, in this
starting point we have the following expression for Xt :

X0 = xe(µ−σ2/2)0+σB0 = xeσB0

Then, since X0 = x we need to have B0 = 0, hence the Brownian motion Bt starts at point x = 0.

Lemma 5.24. Consider a Brownian motion {Bt}t≥0 starting at a point x ∈ R. Then, it follows the next
property:

Ex [eσBt ] = eσx+ 1
2
σ2t (38)

Proof. We present two methods for proving this equality:

1) Recall that if Z is a random variable which follows a normal distribution, Z ∼ N(µ,σ2), then its
moment-generating function is

MZ (t) := E[etZ ] = etµ+ 1
2
σ2t2

We know that if Bt is a Brownian motion in R starting at a point x then

Ex [Bt ] = x

Ex [(Bt − x)2] = t

16



and Bt follows a normal distribution. So we have

Ex [B2
t ] = Ex [(Bt − x)2 − x2 + 2xBt ] = t − x2 + 2x2 = t + x2

⇒ Varx [Bt ] = Ex [B2
t ]− Ex [Bt ]

2 = t + x2 − x2 = t

Hence, Bt ∼ N(x , t). Therefore, the moment-generating function of Bt is

E[eσBt ] = eσx+ 1
2
σ2t

2) In this second method we are going to use Itô’s formula. We choose Xt = Bt , i.e. dXt = dBt where Bt

is a Brownian motion in R starting at a point x . So if we think of X satisfying dXt = a(t, Xt)dt+b(t, Xt)dBt

we have a ≡ 0 and b ≡ 1.

Set g(t, x) = eσx , then
Yt = g(t, Xt) = g(t, Bt) = eσBt

Note that
∂g

∂t
(t, x) = 0,

∂g

∂x
(t, x) = σeσx ,

∂2g

∂x2
(t, x) = σ2eσx

Hence, applying Itô’s formula (34) we obtain

dYt =
1

2
σ2eσBt dt + σeσBt dBt

which is equivalent to

Yt = Y0 +
1

2
σ2

∫ t

0
eσBs ds + σ

∫ t

0
eσBs dBs

Taking the expected value in the previous expression we get

Ex [Yt ] = Ex [Y0] +
1

2
σ2Ex

[∫ t

0
eσBs ds

]
+ σEx

[∫ t

0
eσBs dBs

]
Recall that a property of the Itô integral (see Lemma 5.13) is that the expected value of the integral is 0,
so we have

Ex

[∫ t

0
eσBs dBs

]
= 0

Hence,

Ex [Yt ] = Ex [Y0] +
1

2
σ2Ex

[∫ t

0
Ysds

]
= Ex [Y0] +

1

2
σ2

∫ t

0
Ex [Ys ]ds

which yields

d

dt
Ex [Yt ] =

1

2
σ2Ex [Yt ]

Ex [Y0] = Ex [eσB0 ] = eσx

If we solve this ODE we obtain:

Ex [Yt ] = Ce
1
2
σ2t , C ∈ R

Ex [Y0] = Ce
1
2
σ20 = C = eσx ⇒ Ex [Yt ] = eσx+ 1

2
σ2t

17



Optimal Stopping Problems as Free Boundary Problems

Therefore

Ex [eσBt ] = eσx+ 1
2
σ2t

which is the same result obtained with the first method.

Lemma 5.25. Let X be a geometric Brownian motion starting at a point x ∈ R. Then, for t ∈ [0,∞)

i) Ex [Xt ] = xeµt

ii) Ex [X k
t ] = xkek(µ−σ2/2)te

1
2
k2σ2t for k ∈ N

iii) Varx [Xt ] = x2e2µt(eσ
2t − 1)

Proof. We are going to use that, from Lemma 5.22, Xt can be written as

Xt = x exp((µ− σ2/2)t + σBt)

i) For the first expected value we have

Ex [Xt ] = E[xe(µ−σ2/2)t+σBt ] = xe(µ−σ2/2)tE[eσBt ]

where E = E0. Note that Bt starts at point x = 0 (see Remark 5.23), so using Lemma 5.24 we get

E[eσBt ] = e
1
2
σ2t

Hence,

Ex [Xt ] = xe(µ−σ2/2)te
1
2
σ2t = xeµt

as it was claimed.

ii) We need to calculate Ex [X k
t ] for k ∈ N:

Ex [X k
t ] = E[(xe(µ−σ2/2)t+σBt )k ] = E[xkek(µ−σ2/2)t+kσBt ] = xkek(µ−σ2/2)tE[ekσBt ]

Using again equation (38) applied to E[ekσBt ] we obtain

Ex [X k
t ] = xkek(µ−σ2/2)te

1
2
k2σ2t

iii) To compute the variance we can use points i) and ii):

Varx [Xt ] = Ex [X 2
t ]− Ex [Xt ]

2 = x2e2(µ−σ2/2)te
1
2

22σ2t − x2e2µt = x2e2µt−σ2t+2σ2t − x2e2µt

= x2e2µt(eσ
2t − 1)
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6. Other important results of Stochastic Analysis

6.1 Integration by parts formula for Itô processes

Lemma 6.1. Let X and Y be Itô processes in R. Then

d(XtYt) = XtdYt + YtdXt + dXt · dYt

and ∫ t

0
XsdYs = XtYt − X0Y0 −

∫ t

0
YsdXs −

∫
dXs · dYs (39)

which is known as the general integration by parts formula for Itô processes.

Proof. Note that (Xt , Yt) is a 2-dimensional Itô process and let g(t, x , y) = xy . Then

Zt = g(t, Xt , Yt) = XtYt

Note that

∂g

∂t
(t, x , y) = 0,

∂g

∂x
(t, x , y) = y ,

∂g

∂y
(t, x , y) = x ,

∂2g

∂x∂y
(t, x , y) =

∂2g

∂y∂x
(t, x , y) = 1,

∂2g

∂x2
(t, x , y) =

∂2g

∂y 2
(t, x , y) = 0

Then by the general Itô formula (35),

dZt =
∂g

∂t
(t, Xt , Yt)dt +

∂g

∂x
(t, Xt , Yt)dXt +

∂g

∂y
(t, Xt , Yt)dYt +

1

2

∂2g

∂x∂y
(t, Xt , Yt)dXt · dYt+

1

2

∂2g

∂y∂x
(t, Xt , Yt)dYt · dXt +

1

2

∂2g

∂x2
(t, Xt , Yt)(dXt)

2 +
1

2

∂2g

∂y 2
(t, Xt , Yt)(dYt)

2

=YtdXt + XtdYt +
1

2
dXtdYt +

1

2
dYt · dXt

Therefore,

d(XtYt) = YtdXt + XtdYt + dXt · dYt

as it was claimed.

Finally, taking integrals ∫ t

0
d(XsYs) =

∫ t

0
YsdXs +

∫ t

0
XsdYs +

∫ t

0
dXs · dYs

⇔ XtYt − X0Y0 =

∫ t

0
YsdXs +

∫ t

0
XsdYs +

∫ t

0
dXs · dYs

⇔
∫ t

0
XsdYs = XtYt − X0Y0 −

∫ t

0
YsdXs −

∫ t

0
dXs · dYs

and we have obtained the general integration by parts formula as we wanted.
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6.2 Itô-Tanaka-Meyer formula

Definition 6.2. Let X be a stochastic process. The quadratic variation of X is defined by

[X ]t = lim
∆tj→0

n−1∑
j=0

(Xtj+1 − Xtj )
2

where 0 = t0 < t1 < ... < tn−1 < tn = t is a partition and ∆tj = tj+1 − tj .

Definition 6.3. Let X and Y be two stochastic processes. The quadratic covariation of X and Y is defined
by

[X , Y ]t = lim
∆tj→0

n−1∑
j=0

(Xtj+1 − Xtj )(Ytj+1 − Ytj )

where 0 = t0 < t1 < ... < tn−1 < tn = t is a partition and ∆tj = tj+1 − tj .

Lemma 6.4. If X and Y are semimartingales then

d [X , Y ]t = dXt · dYt (40)

Proof. Consider a partition 0 = t0 < t1 < ... < tn−1 < tn = t and ∆tj = tj+1 − tj . Then, we can write

XtYt = X0Y0 +
n−1∑
j=0

(Xtj+1Ytj+1 − Xtj Ytj )

= X0Y0 +
n−1∑
j=0

Xtj (Ytj+1 − Ytj ) +
n−1∑
j=0

Ytj (Xtj+1 − Xtj ) +
n−1∑
j=0

(Xtj+1 − Xtj )(Ytj+1 − Ytj )

Since X and Y are semimartingales, the Itô integral exists. So taking limits as ∆tj → 0, we obtain

XtYt = X0Y0 +

∫ t

0
Xs−dYs +

∫ t

0
Ys−dXs + [X , Y ]t

which is the integration by parts formula for semimartingales. This can be written in differential form as

d(XtYt) = XtdYt + YtdXt + d [X , Y ]t (41)

On the other hand, we know that Itô’s formula works well for semimartingales and hence applying the same
argument as we did in proof from Lemma 6.1 we get

d(XtYt) = XtdYt + YtdXt + dXt · dYt (42)

Therefore, from (41) and (42) we finally obtain

d [X , Y ]t = dXt · dYt
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Theorem 6.5. (Itô-Tanaka-Meyer formula). If B = {Bt}t≥0 is a Brownian motion and F = F (x) is a
function such that its derivative F ′(x) has bounded variation then

F (Bt) = F (B0) +

∫ t

0
F ′(Bs)dBs +

1

2

∫
R

La
tF ′′(da)

where La
t is the local time that the Brownian motion B ”spends” at level a up to time t:

La
t = lim

ε→0+

1

2ε

∫ t

0
I{|Bs−a|≤ε}ds

with I denoting the characteristic (indicator) function.

Corollary 6.6. If X is a continuous semimartingale and F = F (x) is a concave (convex or the difference
of the two) function, then the Itô-Tanaka-Meyer formula takes the form

F (Xt) = F (X0) +

∫ t

0

1

2
(F ′+(Xs) + F−(Xs))dXs +

1

2

∫
R

La
t (X )F ′′(da) (43)

where La
t (X ) is the local time at level a of X over [0, t] (i.e. the amount of time X has ”spent” at a given

level a) defined as

La
t (X ) = lim

ε→0+

1

2ε

∫ t

0
I{|Xs−a|≤ε}d [X ]s (44)

where [X ] is the quadratic variation of X .

Corollary 6.7. (Occupation times formula). Let X be a continuous semimartingale and Φ = Φ(x) a
positive Borel function, then ∫ t

0
Φ(Xs)d [X ]s =

∫
R

Φ(a)daLa
t (X ) (45)

where La
t (X ) is the local time at a of X over [0, t].

Remark 6.8. Notation: ∫
R

La
s (X )Φ(da) =

∫
R

Φ(a)daLa
s (X ) (46)

6.3 The Optional Sampling theorem

Theorem 6.9. (The optional sampling theorem). Let X be a submartingale (or martingale) with respect
to a filtration (Ft)t≥0 and consider two stopping times τ and σ such that

• E[|Xτ |] <∞

• E[|Xσ|] <∞

• lim inf
t→∞

E[Iτ>t |Xt ] = 0

Then

i) E[Xτ |Fσ] ≥ (=) Xσ a.s. on the set {τ ≥ σ}

ii) E[Xτ ] ≥ (=) E[Xσ] if P(τ ≥ σ) = 1
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7. Properties of diffusions

7.1 Markov time and stopping time

Definition 7.1. Consider a filtered probability space (Ω,F , (Mt)t≥0,P) and let τ : Ω → [0,∞] be a
random variable. Then τ is called stopping time with respect to the filtration (Mt)t≥0 if

{ω; τ(ω) ≤ t} ∈ Mt , for all t ≥ 0 (47)

Intuitively, this means that we should be able to determine whether or not the event τ ≤ t has occurred
based only on the knowledge of Mt , not on any future information.

Definition 7.2. Consider a stochastic process X on a filtered space (Ω,F , (Mt)t≥0,P). We define a
discrete Markov time for X as a non-negative integer-valued random variable τ satisfying that for each
t ≥ 0, the event {τ = t} depends only on {X0, X1, ..., Xt} and not on {Xt+s ; s ≥ 1}.

A discrete stopping time is a (discrete) Markov time τ such that it has probability one of being finite,
i.e. P(τ <∞) = 1.

Example 7.3. Let X be a stochastic process and let U ∈ Rn be a measurable set. Then we define the
first exit time from U as follows

τU = inf{t > 0; Xt /∈ U} (48)

And τU is a stopping time.

7.2 Markov property and strong Markov property

Theorem 7.4. (The Markov property for diffusions). Consider a diffusion process X on Rn such that for
t ≥ 0

dXt = b(Xt)dt + σ(Xt)dBt ; X0 = x (49)

where Bt is an m-dimensional Brownian motion, b : Rn → Rn and σ : Rn → Rn×m. Let f : Rn → R be a
bounded Borel function and consider Ft as the σ-algebra generated by {Bs ; s ≤ t}. Then, for t, h ≥ 0

Ex [f (Xt+h)|Ft ] = EXt [f (Xh)] (50)

Note that we can think of Ft as the history of Bs up to time t. Then, the Markov property states that
the future behaviour of the process given what has happened up to time t is the same as the behaviour
obtained when starting the process at Xt . So, the process is memoryless, i.e. the future state does not
depend on the past.

We say that X is a Markov process with respect to the family of σ-algebras (Ft)t≥0.

Theorem 7.5. (The strong Markov property for diffusions). Let X be a diffusion process on Rn starting
at X0 = x ∈ Rn and f : Rn → R a bounded Borel function. Consider Ft as the σ-algebra generated by
{Bs ; s ≤ t} where Bs is an m-dimensional Brownian motion and let τ be a stopping time with respect to
Ft such that τ <∞ a.s. Then, for h ≥ 0

Ex [f (Xτ+h)|Fτ ] = EXτ [f (Xh)] (51)

where Fτ is defined as the σ-algebra generated by {Bs∧τ ; s ≥ 0}.
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Note that the strong Markov property is the same as the Markov property but considering stopping
times.

We say that X is a strong Markov process with respect to the family of σ-algebras (Ft)t≥0.

7.3 Hitting distribution

Definition 7.6. Let U and V be subsets of Rn. Then, U is compactly embedded in V , U ⊂⊂ V , if
U ⊆ U ⊆ V ◦ and U is compact.

Definition 7.7. Let H ∈ Rn be a measurable set and let X be a diffusion on Rn starting at a point x ∈ Rn

in the interior of H. Consider τH as the first exit time from H. If we consider G ⊂⊂ H measurable, then
we define the harmonic measure (or hitting distribution) of X on ∂G , µxG , by

µxG (F ) = Qx [XτG ∈ F ] (52)

for F ⊂ ∂G and x ∈ G , where τG is the first exit time from G and Qx is the probability law of {Xt}t≥0

with X0 = x .

Intuitively, the harmonic measure of X on ∂G is the probability that the first contact of X with ∂G is
somewhere in the set F . So, it describes the distribution of X as it hits the boundary of G .

Lemma 7.8. With the previous definition, we have that if f is a bounded measurable function, then the
function φ(x) = Ex [f (XτH )] satisfies the mean value property:

φ(x) =

∫
∂G
φ(y)dµxG (y) (53)

for all x ∈ G and for all Borel sets G ⊂⊂ H.

Note that the mean value property is an analogous result in stochastic analysis to the mean value
theorem for integrals in calculus.

We will also make use of the probabilistic analogue of the general mean value theorem.

Remark 7.9. (Mean value theorem). Consider two non-negative random variables X , Y such that E[X ] <
E[Y ] < ∞. Let f (x) be a measurable and differentiable function with its derivative f ′(x) being also
measurable and satisfying E[f (X )],E[f (Y )] < ∞. Then, there exists a non-negative random variable Z
such that

E[f (Y )]− E[f (X )] = E[f ′(Z )](E[Y ]− E[X ]) (54)

7.4 Diffusion process generator and Dynkin’s formula

We present an important concept in stochastic analysis: a partial differential operator that encodes a large
amount of information about a diffusion.

Definition 7.10. Let X be a diffusion process in Rn. The infinitesimal generator (or simply generator) of
X is the operator A defined as

Af (x) = lim
t→0+

Ex [f (Xt)]− f (x)

t
(55)

where x ∈ Rn and f : Rn → R.
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Optimal Stopping Problems as Free Boundary Problems

The relation between A and the coefficients σ, b in the SDE (56) of a diffusion process X is given in
the next Theorem.

Theorem 7.11. Consider a diffusion process X in Rn such that

dXt = b(Xt)dt + σ(Xt)dBt (56)

Let f ∈ C 2
0 (Rn), i.e. f ∈ C 2(Rn) and has compact support. Then, the infinitesimal generator of X is

Af (x) =
n∑

i=1

bi (x)
∂f

∂xi
+

1

2

n∑
i=1

n∑
j=1

ai ,j(x)
∂2f

∂xi∂xj
(57)

where a = σσT .

Remark 7.12. We will denote the differential operator which appears on the right-hand side of equation
(57) as L or LX .

Example 7.13. The n-dimensional Brownian motion Bt is the solution of the SDE

dXt = dBt

So, it satisfies (56) with b = 0 and σ = I where I the identity matrix in Rn. Then, applying Theorem
7.11, we have that the infinitesimal generator of Bt is

Af =
1

2

n∑
i=1

∂2f

∂x2
i

=
1

2
∆f

where f ∈ C 2
0 (Rn) and ∆ is the Laplace operator or Laplacian.

Example 7.14. Consider a geometric Brownian motion X given by the SDE

dXt = µXtdt + σXtdBt

where Bt is a (1-dimensional) Brownian motion and µ,σ are constants. We have that the process satisfies
(56) with b(x) = µx and σ(x) = σx . Then, using formula (57) with n = 1 we obtain that the generator
of Xt is

Af (x) = µxf ′(x) +
1

2
σ2x2f ′′(x)

for f ∈ C 2
0 (R).

Now we present an important theorem in stochastic analysis known as Dynkin’s formula, which gives the
expected value of a diffusion process at a stopping time. We can interpret it as a stochastic generalization
of the (second) fundamental theorem of calculus.

Theorem 7.15. (Dynkin’s formula). Let X be a diffusion on Rn and f ∈ C 2
0 (Rn). Assume that τ is a

stopping time with Ex [τ ] <∞. Then Dynkin’s formula holds:

Ex [f (Xτ )] = f (x) + Ex

[∫ τ

0
Af (Xs)ds

]
(58)

where A is the infinitesimal generator of X .
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This formula is one of the keys to solve optimal stopping problems and in section 8, we will use it to
transform an optimal stopping problem into a free boundary problem.

Now we introduce the following operator which is very related to the infinitesimal generator A.

Definition 7.16. Let X be a diffusion process in Rn. Consider open sets Uk such that Uk+1 ⊂ Uk and⋂
k

Uk = {x} and let τU be the first exit from U for X : τU = inf{t > 0; Xt /∈ U}. Then the characteristic

operator A of X is defined as

Af (x) = lim
U→x+

Ex [f (XτU )]− f (x)

τU
(59)

where x ∈ Rn and f : Rn → R.

The next theorem states that A and A coincide in C 2.

Theorem 7.17. Consider a diffusion process X in Rn. Let f ∈ C 2(Rn), then

Af = Af = Lf =
n∑

i=1

bi
∂f

∂xi
+

1

2

n∑
i=1

n∑
j=1

ai ,j
∂2f

∂xi∂xj
(60)

Finally, we present a useful criterion that we will use to solve the optimal stopping problem from section
9.2.

Lemma 7.18. Let X be a diffusion on Rn and f ∈ C 2(Rn). Then f is superharmonic with respect to X if
and only if Af ≤ 0.

Proof. Recall that f is superharmonic if

f (x) ≥ Ex [f (Xτ )]

for all stopping times τ and all x ∈ Rn. Then using Dynkin’s formula (58) and Theorem 7.17 we have

Ex [f (Xτ )] = f (x) + Ex

[∫ τ

0
Af (Xs)ds

]
= f (x) + Ex

[∫ τ

0
Af (Xs)ds

]
Therefore,

Ex [f (Xτ )] ≤ f (x)⇔ Af ≤ 0

8. The High Contact Principle

In this section, we will study a methodology to transform an optimal stopping problem into a free boundary
problem. We will see that, under some conditions, a possible solution to an OSP satisfying the High
Contact Principle is an optimal solution to the problem. [7]

Let us start considering a diffusion process X in Rn such that

dXt = b(Xt)dt + σ(Xt)dBt ; X0 = x
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where x ∈ Rn and b : Rn → Rn and σ : Rn → Rn×m are Lipschitz continuous functions. Let G : Rn → R
be the gain function such that it is real bounded continuous. Consider the optimal stopping problem

V (x) = sup
τ

Ex [G (Xτ )] = Ex [G (Xτ∗)]

where the supremum is taken over all stopping times τ of X and τ∗ is the optimal stopping time.

Note that if V is known then we can find τ∗ easily because if G (Xt) < V (Xt) we have to continue
since we have obtained a reward smaller than the optimum, whereas if G (Xt) ≥ V (Xt) we should stop as
we have attained the optimal gain. Recall that the continuation set is defined as

C = {x ∈ E ; V (x) > G (x)}

and the stopping set as
D = {x ∈ E ; V (x) = G (x)}

Recall also that τD is the first entry time of X into D

τD = inf{t ≥ 0; Xt ∈ D}

Then τ∗ = τD .

On the other hand, if we know C, we can transform our problem of finding V into a Dirichlet problem.
Let us consider the infinitesimal generator of X given by Theorem 7.11

L =
n∑

i=1

bi (x)
∂

∂xi
+

1

2

n∑
i=1

n∑
j=1

ai ,j(x)
∂2

∂xi∂xj
(61)

where a = σσT . By the mean value property (see Lemma 7.8), we have for H ⊂ C

V (x) =

∫
∂H

V (y)dµxH(y) =

∫
∂H

V (y)Qx [XτH ∈ dy ] = Ex [V (XτD )]

where τH is the first exit time from H and µxH(F ) = Qx [XτH ∈ F ] is the hitting distribution (or harmonic
measure) of X on ∂H.

Hence, we have that V (x) = Ex [V (XτD )] and by Dynkin’s formula (Theorem 7.15)

LV = 0

Thus, we have that V is the solution of the differential equation

n∑
i=1

bi (x)
∂V

∂xi
+

1

2

n∑
i=1

n∑
j=1

ai ,j(x)
∂2V

∂xi∂xj
= 0 (62)

on C with boundary conditions
lim
x→y

V (x) = G (y) (63)
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for all regular y ∈ ∂C .

But, this is a free boundary problem because we do not know C . Hence, we need to impose an additional
boundary condition and this is given by the High Contact principle. This principle states that

∇V = ∇G on ∂C (64)

and so we obtain the extra condition that we wanted.

This principle is important because it was proved that, under certain conditions, the High Contact property
is a sufficient condition for a solution of the OSP to be optimal. More formally, if there exists an open set
C ⊂ Rn with boundary C 1 and a function f on C satisfying

f ≥ G on C (65)

LG ≤ 0 outside C (66)

and such that f and C are a solution of the free boundary problem

Lf = 0 on C (67)

f = G on ∂C (68)

∇f = ∇G on ∂C (69)

then f = V on C .

All this methodology is summarized in the following Theorem where we consider a more general problem
[6, Chapter 10]:

Theorem 8.1. (Variational inequalities for optimal stopping). Let W be a domain in Rn and X a diffusion
process in Rn starting at a point X0 = x. Consider

T = inf{t > 0; Xt /∈W } (70)

Let G : Rn → R and F : Rn → R be continuous functions such that

• Ex

[∫ T
0 |F (Xt)|dt

]
<∞ ∀x ∈ Rn

• {G−(Xτ ); τ stopping time, τ ≤ T} is uniformly integrable for all x ∈ Rn

Consider the problem of finding Φ(x) and τ∗ ≤ T such that

Φ(x) = sup
τ≤T

Jτ (x) = Jτ∗(x) (71)

where

Jτ (x) = Ex

[∫ τ

0
F (Xt)dt + G (Xτ )

]
(72)

Assume that we are able to find a function φ : W → R satisfying:

i) φ ∈ C 1(W ) ∩ C (W )
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ii) φ ≥ G on W and φ = G on ∂W

iii) Ex

[∫ T
0 I∂C (Xt)dt

]
= 0 ∀x ∈W , where

C = {x ∈W ;φ(x) > G (x)}

This means that X spends 0 time on ∂C with probability 1.

iv) ∂C is a Lipschitz surface

v) φ ∈ C 2(W \ ∂C ) and φ has locally bounded second order derivatives near ∂C

vi) Lφ+ F ≤ 0 on W \C

vii) Lφ+ F = 0 on C

viii) τD := inf{t ≥ 0; Xt ∈ D} <∞ with probability 1, where D = {x ∈W ;φ(x) = G (x)}

ix) {φ(Xτ ); τ ≤ τD} is uniformly integrable

Then φ(x) = Φ(x) for x ∈W and τ∗ = τD is an optimal stopping time.

9. Applications to optimal stopping problems

9.1 Brownian motion recurrence and transience

We want to know what is the likelihood of a particle’s trajectory described by Brownian motion beginning
in some state to return to that particular state. States for which there is some non-zero probability that a
stochastic process beginning in a state will never return to that state are called transient, while those states
for which there is a guarantee (probability 1) that the process will return to them are called recurrent. We
will show

Theorem 9.1. For an n-dimensional Brownian motion B = (B1, ... , Bn), when n = 1 all states are
recurrent; for n = 2 all non-zero states are recurrent; for n > 2 all states are transient. We thus say that
n-dimensional Brownian motion is recurrent for n ≤ 2 and transient for n > 2.

We will prove this by applying the High Contact Principle scheme for solving optimal stopping problems.
The steps are:

1. State the probabilistic problem as an Optimal Stopping Problem (OSP)

2. Convert to a Free Boundary Problem (FBP)

3. Solve the differential equations

4. Reinterpret solutions probabilistically

28



Step 1. The n-dimensional Brownian motion starts at a point x in the annulus

K = {x ∈ Rn; R1 < ||x || < R2}

where R1, R2 > 0 and ||x || =
√

x2
1 + ... + x2

n .

Our problem is to determine the probability that x will reach the outer circle (||x || = R2) before reaching
the inner circle, and for R2 (resp. R1) arbitrary large (resp. small).

Consider the stopping time τK = inf{t > 0; Bt /∈ K}, that is the first time that Bt hits ∂K given
that B0 = x ∈ K . Then our problem is to determine the following probability

f (x) = Px(||BτK || = R2) (73)

This is the same as the OSP

f (x) = Ex [G (BτK )] (74)

where the gain function is given by

G (x) =


1 if ||x || = R2

0 if ||x || = R1

Step 2. By the mean value property (see Lemma 7.8), we have for V ⊂ K

f (x) =

∫
∂V

f (y)dµxV (y) =

∫
∂V

f (y)Qx [BτV ∈ dy ] = Ex [f (BτK )]

where τV is the first exit time from V and µxV (F ) = Qx [BτV ∈ F ] is the hitting distribution (or harmonic
measure) of B on ∂V .

Thus, we have that f (x) = Ex [f (BτK )], and by Dynkin’s formula (Theorem 7.15) and Example 7.13
we obtain

Af =
1

2

n∑
i=1

∂2f

∂x2
i

= 0

Then, f (x) is the solution of the differential equation

n∑
i=1

∂2f

∂x2
i

= 0 (75)

on K with boundary conditions

f (x) =


1 if ||x || = R2

0 if ||x || = R1

(76)
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By rotational symmetry the solution is a function of ||x ||, but it is also a function of z = ||x ||2 =
∑

x2
i ,

which is best to consider to avoid working with square roots. So, we seek a solution of eq. (75) of the
form

f (x) = φ(z) = φ
(∑

x2
i

)
And we have

∂f

∂xi
= 2xiφ

′(z) and
∂2f

∂x2
i

= 2φ′(z) + 4x2
i φ
′′(z)

and summing over all i = 1, 2, ... , n to get

2Af (x) = 2nφ′(z) + 4zφ′′(z) = 0 (77)

Step 3. We now solve the differential equation (77) with the boundary conditions (76). Put ψ(z) = φ′(z)
and this simplifies (77) to the ODE

2nψ(z) + 4zψ′(z) = 0

Note that we can use the method of separation of variables. We have

2nψ(z) + 4zψ′(z) = 0 ⇒ ψ′(z)

ψ(z)
= − n

2z

Integrating both sides with respect to z we get∫
ψ′(z)

ψ(z)
dz =

∫
− n

2z
dz ⇒ ln(ψ(z)) = −n

2
ln(z) + C

where C is a constant. Then, applying the exponential function, we obtain

ψ(z) = e−
n
2

ln(z)+C = e ln(z−n/2)eC = c1z−n/2

where c1 = eC is a constant. So, we just have to integrate with respect to z to get a general expression
for φ:

ψ(z) = φ′(z) ⇒ φ(z) = c2 +

∫
ψ(z)dz = c2 +

∫
c1z−n/2dz = c2 + 2c1

z−
n
2

+1

2− n

where c2 is another constant. We are going to use the boundary conditions to find the constants c1 and
c2. Note that equation (76) is equivalent to

φ(z) =


1 if z = R2

2

0 if z = R2
1

So, using that φ(R2
1 ) = 0, we get the following equation

φ(R2
1 ) = c2 + 2c1

R2−n
1

2− n
= 0 ⇔ c2 = −2c1

R2−n
1

2− n

Taking the other condition, φ(R2
2 ) = 1, and using the previous expression we obtain

φ(R2
2 ) = 1 ⇔ c2 + 2c1

R2−n
2

2− n
= 1 ⇔ −2c1

R2−n
1

2− n
+ 2c1

R2−n
2

2− n
= 1

⇔ c1
2

2− n

(
R2−n

2 − R2−n
1

)
= 1 ⇔ c1 =

2− n

2(R2−n
2 − R2−n

1 )

30



Then

c2 = −2c1
R2−n

1

2− n
= −

R2−n
1

R2−n
2 − R2−n

1

Therefore, the solution for φ(z) is

φ(z) =
z−

n
2

+1 − R2−n
1

R2−n
2 − R2−n

1

and hence

f (x) = φ(z) = φ(||x ||2) =
||x ||2−n − R2−n

1

R2−n
2 − R2−n

1

(78)

This expression can also be rewritten as

f (x) =
Rn−2

2 (Rn−2
1 − ||x ||n−2)

(Rn−2
1 − Rn−2

2 )||x ||n−2

Step 4. Interpret solutions. We are going to fix the values n = 1, n = 2, n > 2 and set R2 → ∞ and
R1 → 0 to see if B is recurrent or transient in each case.

Case n = 1: We have that

f (x) =
||x || − R1

R2 − R1

hence

lim
R1→0
R2→∞

f (x) = lim
R1→0
R2→∞

||x || − R1

R2 − R1
= 0

Then
lim

R1→0
R2→∞

f (x) = lim
R1→0
R2→∞

Px(||BτK || = R2) = Px(τK =∞) = 0

and therefore
Px(τK <∞) = 1

which means that 1-dimensional Brownian motion is recurrent.

Case n = 2: We have that

lim
n→2

f (x) = lim
n→2

||x ||2−n − R2−n
1

R2−n
2 − R2−n

1

(∗)
= lim

n→2

||x ||2−n ln(||x ||)− R2−n
1 ln(R1)

R2−n
2 ln(R2)− R2−n

1 ln(R1)
=

ln(||x ||)− ln(R1)

ln(R2)− ln(R1)

where in (∗) we have applied l’Hôpital’s rule since we had an indetermination (0/0). Then we fix R1 = ε
with ε > 0 very small and set R2 →∞. Assuming that x 6= 0 we get

lim
R2→∞

ln(||x ||)− ln(ε)

ln(R2)− ln(ε)
= 0

On the other hand, we fix R2 = M with M > 0 huge and set R1 → 0. Assuming again that x 6= 0 we
obtain

lim
R1→0

ln(||x ||)− ln(R1)

ln(M)− ln(R1)
= lim

R1→0

1/R1

1/R1
= 1
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where we have used again l’Hôpital’s rule in the first equality. Hence

Px(τK <∞) = 1

and 2-dimensional Brownian motion is recurrent for x 6= 0.

Case n > 2: We have that

lim
R1→0
R2→∞

f (x) = lim
R1→0
R2→∞

||x ||2−n − R2−n
1

R2−n
2 − R2−n

1

= lim
R1→0
R2→∞

1
||x ||n−2 − 1

Rn−2
1

1
Rn−2

2

− 1
Rn−2

1

=
−1

−1
= 1

Therefore
Px(τK =∞) = 1

and we conclude that n-dimensional Brownian motion is transient for n > 2.

9.2 Optimal time to sell a warrant

Paul A. Samuelson published a paper called Rational Theory of Warrant Pricing (1965) [8] where the
High Contact Principle was formulated for the first time. He presented a theory of rationally evaluating a
warrant, taking into account the right to sell or buy the warrant at any time and deducing the value of the
stock which an investor will pay to exercise the warrant.

A warrant is a derivative which gives the right, but not the obligation, to buy or sell an asset at a
fixed price before an expiration date. The exercise price or strike price is the guaranteed price at which
the investor has the right to buy or sell the underlying asset. Exercising the warrant means that the trade
specified on the warrant is to be carried out.

He considered that the reward obtained by selling the asset at time t and when the price is ξ is given
by the gain function

G (t, ξ) = e−ρt(ξ − 1)+ (79)

where x+ = max{x , 0}, ρ is a discounting factor and, in this case, the exercise price is 1.

The price Xt at time t of a person’s asset is assumed to be a geometric Brownian motion given by
the next SDE

dXt = rXtdt + αXtdBt , X0 = x > 0 (80)

where Bt is a 1-dimensional Brownian motion and r , α are known constants with r < ρ.

We will apply the High Contact Principle scheme to find the optimal time for selling the asset and the
optimal reward. As in the previous section, the steps are:

1. State the Optimal Stopping Problem (OSP)

2. Convert to a Free Boundary Problem (FBP)

3. Solve the differential equations

4. Reinterpret solutions
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First of all, we need to present a lemma which we will use in the first step.

Lemma 9.2. Consider G ∈ C 2(Rn) and define the set

U := {x ;AG (x) > 0} (81)

where A is the characteristic operator of X . Then

U ⊂ C (82)

where C is the continuation region.

This tells us that stopping the process, e.g. selling an asset, before it exits from U is not optimal.

Proof. Consider x ∈ U and a bounded open set W such that W ⊂ U and x ∈ W . Let τW be the first
exit time from W defined by τW = inf{t > 0; Xt /∈ W }. Then, using the Dynkin’s formula and Theorem
7.17, we have for t > 0

Ex [G (XτW∧t)] = G (x) + Ex

[∫ τW∧t

0
AG (Xs)ds

]
= G (x) + Ex

[∫ τW∧t

0
AG (Xs)ds

]
> G (x)

where τW ∧ t = min(τW , t). Hence,

V (x) = sup
σ

Ex [G (Xσ)] ≥ Ex [G (XτW∧t)] > G (x)

where the supremum is taken over all stopping times σ of X . Then

V (x) > G (x)

and therefore x ∈ C = {x ∈ Rn; V (x) > G (x)}.

Let us start with the steps defined above:

Step 1. We consider the next optimal stopping problem:

V (s, x) = sup
τ

E(s,x)

[
e−ρ(s+τ)(Xτ − 1)+

]
= E(s,x)

[
e−ρ(s+τ∗)(Xτ∗ − 1)+

]
(83)

where we denote E(s,x)[G (Xt)] = E[G (Xt)|Xs = x ] for t ≥ s.

We define Yt = Y
(s,x)
t =

(
s + t

Xt

)
∈ R2 with t ≥ 0 and so we have that our optimal stopping

problem is

V (s, x) = sup
τ

E(s,x)[G (Yτ )]

Step 2. First, we are going to prove that the continuation region C has the form

C = {(s, x); 0 < x < x0}
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for some x0 >
ρ
ρ−r .

Note that the characteristic operator Â of Yt is given by

Âf (s, x) =
∂f

∂s
(s, x) +Af (s, x); f ∈ C 2(R2) (84)

where A is the characteristic operator of Xt . Then in our case, we have (see Example 7.14)

Âf (s, x) =
∂f

∂s
+ rx

∂f

∂x
+

1

2
α2x2 ∂

2f

∂x2
; f ∈ C 2(R2)

Note that

∂G

∂x
(s, x) =

{
0 x ≤ 1
e−ρs x > 1

and
∂G

∂s
(s, x) = −ρe−ρs(x − 1)+

Thus

ÂG (s, x) =

{
0 x ≤ 1
−ρe−ρs(x − 1) + rxe−ρs x > 1

=

{
0 x ≤ 1
e−ρs((−ρ+ r)x + ρ) x > 1

Recall that we have r < ρ from the statement and note that

e−ρs((−ρ+ r)x + ρ) > 0 ⇔ (−ρ+ r)x + ρ > 0 ⇔ x >
ρ

ρ− r

So, using Lemma 9.2 we can define

U := {(s, x); ÂG (s, x) > 0} =

{
(s, x); x >

ρ

ρ− r

}
satisfying U ⊂ C .

Let us establish that the region C must be invariant with respect to t, in the sense that

C + (t0, 0) = C ∀t0

To prove this, we consider

C + (t0, 0) = {(t + t0, x); (t, x) ∈ C} = {(s, x); (s − t0, x) ∈ C}
= {(s, x); G (s − t0, x) < V (s − t0, x)}

Note that

V (s − t0, x) = sup
τ

E(s−t0,x)[G (Yτ )] = sup
τ

E(s−t0,x)[e−ρ(s+τ)(Xτ − 1)+] = sup
τ

E(s,x)[e−ρ(s+τ−t0)(Xτ − 1)+]

= eρt0 sup
τ

E(s,x)[e−ρ(s+τ)(Xτ − 1)+] = eρt0 sup
τ

E(s,x)[G (Yτ )] = eρt0V (s, x)

G (s − t0, x) = e−ρ(s−t0)(x − 1)+ = eρt0e−ρs(x − 1)+ = eρt0G (s, x)

34



Therefore

C + (t0, 0) = {(s, x); eρt0G (s, x) < eρt0V (s, x)} = {(s, x); G (s, x) < V (s, x)} = C

Hence, C must have the form

C = {(s, x); 0 < x < x0} for some x0 >
ρ

ρ− r

Now, following the High Contact Principle scheme, we need to solve the following free boundary problem Âf = 0 on C
f = G on ∂C
∇f = ∇G on ∂C

(85)

which corresponds to solving
∂f
∂s + rx ∂f∂x + 1

2α
2x2 ∂2f

∂x2 = 0 for 0 < x < x0

f (s, 0) = 0
f (s, x0) = e−ρs(x0 − 1)+

∂f
∂x = ∂G

∂x when x ∈ {x0, 0}

(86)

Step 3. Let us try a solution of the form f (s, x) = e−ρsφ(x), so we get
−ρe−ρsφ(x) + rxe−ρsφ′(x) + 1

2α
2x2e−ρsφ′′(x) = 0 for 0 < x < x0

f (s, 0) = e−ρsφ(0) = 0
f (s, x0) = e−ρsφ(x0) = e−ρs(x0 − 1)+

∂f
∂x = e−ρsφ′(x) = ∂G

∂x when x ∈ {x0, 0}

that is 
−ρφ(x) + rxφ′(x) + 1

2α
2x2φ′′(x) = 0 for 0 < x < x0

φ(0) = 0
φ(x0) = (x0 − 1)+

φ′(0) = 0

e−ρsφ′(x0) = ∂G
∂x (s, x0)

Note that we have a Cauchy-Euler differential equation which has the form

ax2y ′′(x) + bxy ′(x) + cy(x) = 0

with a = 1
2α

2, b = r and c = −ρ. If we put x = et and z(t) = y(et), we get the ODE

az ′′ + (b − a)z ′ + cz = 0

Let λ1,λ2 be the roots of the characteristic polynomial

aλ2 + (b − a)λ+ c = 0

Then, the general solution of the Cauchy-Euler equation is

y(x) = c1xλ1 + c2xλ2
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with c1, c2 constants.

So, in our case we can find that

λi =
1

α2

[
1

2
α2 − r ±

√
(r − α2/2)2 + 2ρα2

]
, for i = 1, 2, λ2 < 0 < λ1

and hence we have that the general solution of φ is

φ(x) = c1xλ1 + c2xλ2

with c1, c2 constants. Let us find now these constants. Note that using the first boundary condition we
get

φ(0) = c1 · 0 + c2 · 0 = 0

so this condition does not give any new information. Let us try with the second one

φ(x0) = c1xλ1
0 + c2xλ2

0 = (x0 − 1)+ ⇒ c1 =
(x0 − 1)+ − c2xλ2

0

xλ1
0

If we use the third condition, which is the one from the High Contact Principle evaluated at x = 0, we
obtain

φ′(0) = 0 ⇒ λ1c1 · 0 + λ2c2 · 0 = 0

but this does not provide any new information. We can use that φ(x) is bounded as x → 0 and so we

must have c2 = 0. Then c1 = (x0−1)+

x
λ1
0

and hence

φ(x) =

(
x

x0

)λ1

(x0 − 1)+

Therefore

f (s, x) = e−ρsφ(x) = e−ρs(x0 − 1)+

(
x

x0

)λ1

Finally, let us determine x0 using the last condition for x = x0 which is the one from the High Contact
Principle:

∂f

∂x
=
∂G

∂x
when x = x0

Note that

∂f

∂x
(s, x) = e−ρs(x0 − 1)+λ1

(
x

x0

)λ1−1 1

x0
⇒ ∂f

∂x
(s, x0) =

e−ρsλ1

x0
(x0 − 1)+

that is
∂f

∂x
(s, x0) =

{
0 x0 ≤ 1
e−ρsλ1(x0−1)

x0
x0 > 1

Note also that

∂G

∂x
(s, x0) =

{
0 x0 ≤ 1
e−ρs x0 > 1
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Then, imposing the High Contact Principle, we get

∂f

∂x
(s, x0) =

∂G

∂x
(s, x0) ⇒ e−ρsλ1(x0 − 1)

x0
= e−ρs ⇒ λ1(x0 − 1) = x0 ⇒ x0 =

λ1

λ1 − 1

with λ1 > 1 (one can see that λ1 > 1⇔ r < ρ).

Finally, the solution to our optimal stopping problem is the optimal expected reward

V (s, x) = f (s, x) = e−ρs(λ1 − 1)λ1−1

(
x

λ1

)λ1

(87)

and the optimal stopping time

τ∗ = τD = inf{t > 0; Xt ≥ x0} = inf{t > 0; Xt ≥
λ1

λ1 − 1
} (88)

Step 4. The conclusion from the obtained results is that one should sell the assets the first time the price
of them reaches the value x0 = λ1

λ1−1 and the expected profit would be V (s, x) from equation (87).

10. Optimal Prediction of Resistance and Support
Levels

10.1 Introduction

We are going to study the paper of T. De Angelis and G. Peskir [2] and complete the missing details
which are taken for granted. In this paper, the authors developed a method that provides the strategies for
optimal trading with the aim of predicting the resistance and support levels of asset prices. A resistance
level is the price at which the majority of traders wish to sell the asset and when this level is reached the
price goes down during an interval of time. Whereas, a support level is the price at which the majority of
traders wish to buy the asset and when this level is reached the price goes up during an interval of time.
The principal problem is that these levels are not directly observable and they are seen as hidden targets.

We will assume that traders already have a goal price in mind at which they want to sell or buy an
asset and this approach is called aspiration level hypothesis [11]. We will consider a representative trader
and suppose that his or her aspiration level follows a random variable which we will represent by l . So,
we wish to detect when the asset price reaches this level. We will also consider that the trader selects a
horizon T > 0 for making the decision of buying (or selling) the asset. Then, the problem of interest is
minimising the expected distance from the asset price process to l and it is formulated as the following
optimal prediction problem

inf
0≤τ≤T

Ex [|Xτ − l |] (89)

where the infimum is taken over all stopping times τ of X and X is the observed asset price process. Note
that we will assume that l is independent from X .
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Hidden Targets: The Median Rule

The aspiration level l is not directly observable and we do not have any information about l in terms
of the observed path of the asset price t 7→ Xt . Then, l is called a hidden target.

In the paper by G. Peskir, [10] it is presented a rule called median rule that states that there exists a
stopping time of X that is optimal for (89). In particular, it states that when the asset price process X
enters in the set of all medians of l , Ml = [m, M], then it is optimal to stop. In other words, if X has a
positive trend then it will be optimal to stop when the price reaches the lowest median m, which represents
the resistance level. Whereas, if X has a negative trend then it will be optimal to stop when the price
reaches the highest median M, which represents the support level.

10.2 Formulation of the problem

We assume that the asset price X follows a geometric Brownian motion which satisfies the following SDE

dXt = µXtdt + σXtdBt (90)

with X0 = x for x > 0, where µ ∈ R is the drift, σ > 0 is the volatility and Bt is a Brownian motion
defined on a probability space (Ω,F ,P). Note that if µ > 0 the price has a positive trend and the goal
of the trader is to predict when is the optimal time to sell the asset, i.e. when the price will reach the
resistance level. Whereas, if µ < 0 the price has a negative trend and the goal of the trader is to detect
when is the optimal time to buy the asset, i.e. when the price will reach the support level.

We know from Lemma (5.22) that the SDE (90) has a strong solution given by

Xt = xe(µ− 1
2
σ2)t+σBt (91)

for t ≥ 0.

We consider the optimal prediction problem

V∗(x) = inf
0≤τ≤T

Ex [|Xτ − l |] (92)

where the infimum is taken over all stopping times τ of X which are bounded by the horizon T > 0 and
l > 0 is a random variable independent from X . Let us denote the distribution function of l by F , which
is given. Our aim is to solve (92) applying the methodology explained at the beginning and thus find the
optimal trading strategy.

The following lemma will be useful to reformulate our optimal prediction problem to an optimal stopping
problem.

Lemma 10.1. For all x > 0, we have:

E[|x − l |] = 2

∫ x

0

(
F (y)− 1

2

)
dy + E[l ] (93)

Proof. Note that for all x > 0

E[|x − l |] =

∫ ∞
0
|x − y |f (y)dy (94)
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where f is the density function of the random variable l . We do not know f , but the distribution function
F of l is given and fixed. So, we can write f as dF/dy and we have:

E[|x − l |] =

∫ ∞
0
|x − y |dF

dy
(y)dy (95)

Let us remove the absolute value separating the previous integral in two.

∫ ∞
0
|x − y |dF

dy
(y)dy =

∫ x

0
(x − y)

dF

dy
(y)dy +

∫ ∞
x

(y − x)
dF

dy
(y)dy (96)

Adding and subtracting
∫ x

0 (x − y)dFdy (y)dy , we get that the previous expression is equal to

∫ x

0
(x − y)

dF

dy
(y)dy +

∫ x

0
(x − y)

dF

dy
(y)dy −

∫ x

0
(x − y)

dF

dy
(y)dy +

∫ ∞
x

(y − x)
dF

dy
(y)dy

= 2

∫ x

0
(x − y)

dF

dy
(y)dy +

∫ x

0
(y − x)

dF

dy
(y)dy +

∫ ∞
x

(y − x)
dF

dy
(y)dy

= 2

∫ x

0
(x − y)

dF

dy
(y)dy +

∫ ∞
0

(y − x)
dF

dy
(y)dy

Note that ∫ ∞
0

(y − x)
dF

dy
(y)dy = E[l − x ] = E[l ]− x (97)

So we get that

E[|x − l |] = 2

∫ x

0
(x − y)

dF

dy
(y)dy + E[l ]− x (98)

Let us integrate by parts the previous integral setting u = x − y and dv = dF
dy (y)dy , so we have du = −dy

and v = F (y). We obtain that

∫ x

0
(x − y)

dF

dy
(y)dy = [(x − y)F (y)]x0 −

∫ x

0
−F (y)dy

= (x − x)F (x)− xF (0) +

∫ x

0
F (y)dy

=

∫ x

0
F (y)dy
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where we have used that F (0) = 0. This last expression yields

E[|x − l |] = 2

∫ x

0
(x − y)

dF

dy
(y)dy + E[l ]− x

= 2

∫ x

0
F (y)dy + E[l ]− x

= 2

∫ x

0
F (y)dy + E[l ]−

∫ x

0
dy

= 2

∫ x

0

(
F (y)− 1

2

)
dy + E[l ]

for all x > 0, as we wanted to obtain.

Let us assume that E[l ] <∞ and define a function G for x > 0 by

G (x) =

∫ x

0

(
F (y)− 1

2

)
dy (99)

As l and X are independent, we see from (93) that the optimal prediction problem (92) reduces to the
following optimal stopping problem

V (x) = inf
0≤τ≤T

Ex [G (Xτ )] (100)

where the infimum is taken over all stopping times τ of X which are bounded by the horizon T > 0. Note
that V∗(x) = 2V (x) + E[l ] for x > 0. From Eq. (99) observe that G ′(x) = F (x) − 1/2 is increasing for
x ∈ (0,∞) and thus G (x) is convex on (0,∞). We need the following definition:

Definition 10.2. Let X be a random variable and F its distribution function. Then the number m is called
a median of X if

P(X ≤ m) ≥ 1

2
and P(X ≥ m) ≥ 1

2
(101)

which is equivalent to

F (m−) ≤ 1

2
≤ F (m) (102)

where F (m−) = P(X < m).

The set of all medians of X is a bounded and closed interval [m, M] where m is the lowest median of
X and M is the highest median of X . If X has a unique median then m = M.

Using this definition, observe that G ′ = F − 1
2 < 0 on (0, m) and G ′ = F − 1

2 > 0 on (M,∞). Hence,
G is strictly decreasing on (0, m), strictly increasing on (M,∞), constant on the set of all medians [m, M]
and it satisfies G (0) = 0.

Note that we will treat the finite horizon formulation (T < ∞) and the infinite horizon formulation
(T = ∞) of the optimal stopping problem (100) at the same time. In the case of T < ∞ we have to
substitute the process Xt for the process Zt = (t, Xt) for t ≥ 0 so that we enable the process X to start
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at arbitrary points at any allowable time, and we consider the extended optimal stopping problem in the
time and space domain

V (t, x) = inf
0≤τ≤T−t

Et,x [G (Xt+τ )] (103)

where Xt = x . Note that the results obtained for the problem (100) with T = ∞ will automatically hold
for the problem (103) if we just think of X to be Z . It is also a technical advantage to work with a two
variable function V (t, x) for formulating the free boundary problem associated with the OSP.

We define the continuation set C as

C = {(t, x) ∈ [0, T ]× (0,∞); V (t, x) < G (x)} (104)

and the stopping set D as

D = {(t, x) ∈ [0, T ]× (0,∞); V (t, x) = G (x)} (105)

Then the first entry time of X into D is given by

τD = inf{s ∈ [0, T − t]; (t + s, Xt+s) ∈ D} (106)

Before solving the optimal stopping problem, we are going to see some observations and definitions.
First of all, we are going to prove that if µ = 0 then it is optimal to stop immediately in (103).

Theorem 10.3. (Jensen’s inequality). If φ is a convex function and X is a random variable such that
E[|φ(X )|] <∞ then

φ(E[X ]) ≤ E[φ(X )] (107)

Lemma 10.4. Mt := eσBt−σ
2

2
t , t ≥ 0, is a martingale.

Proof. Note that using Lemma 5.25 we have

E[|Ms |] = E[exp(σBt − (σ2/2)t)] = e0t = 1 <∞ ∀t ≥ 0

So we just need to see that E[Ms |Ft ] = Mt ∀s ≥ t. Hence, consider now s ≥ t and note that we can write

Ms = exp(σBs − (σ2/2)s) = exp(σBt + σ(Bs − Bt)− (σ2/2)s)

Then

E[Ms |Ft ] = E[exp(σBt + σ(Bs − Bt)− (σ2/2)s)|Ft ]

= e−(σ2/2)s · E[eσBt |Ft ] · E[eσ(Bs−Bt)|Ft ]
(∗)
= e−(σ2/2)s · eσBt · E[eσ(Bs−Bt)]

(∗∗)
= e−(σ2/2)s · eσBt · e(σ2/2)(s−t) = eσBt−(σ2/2)t = Mt

where in (∗) we have used that Bt is measurable with respect to Ft and that Bs −Bt is independent from
Ft , and in (∗∗) we have applied Lemma 5.24.
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Since G is convex, using Jensen’s inequality, the expression (91) and the fact that dP̃ = MτdP defines
a probability measure because Ms is a martingale, we obtain

Ex [G (Xτ )] ≥ G (Ex [Xτ ]) = G (xẼ[eµτ ])
µ=0
= G (x) (108)

So, we have that the optimal stopping time is τ∗ = 0 as claimed. Since the problems (103) and (92) are
equivalent, we also have that it is optimal to stop at once in (92).

Using the previous argument in (108) with a small change, applying that G is increasing on [m,∞) and
decreasing on (0, M], we can easily show that [0, T ]×[m,∞) ⊆ D if µ > 0 and [0, T ]×(0, M] ⊆ D if µ < 0.

The form of D below m when µ < 0 or above M when µ > 0 can be complicated and so we are going
to present a class of distribution functions F of l that give a simple structure of D. But first, we need a
definition:

Definition 10.5. Let X be a random variable with distribution function F on R satisfying F (0) = 0. Then
F is piecewise C 1 if there exists a partition [xi−1, xi ) of R+ for i ≥ 1 such that F restricted on each interval
[xi−1, xi ] is C 1.

With this definition and Definition 10.2, we can define the admissible aspiration level laws:

Definition 10.6. (Admissible aspiration level laws). For µ > 0 and σ > 0 consider F(µ,σ) as the family of
piecewise C 1 probability distribution functions F on R satisfying F (0) = 0 for which there exists α ∈ (0, m)
such that

xF ′(x) <
µ

σ2/2

(
1

2
− F (x)

)
for x ∈ (0,α) and xF ′(x) >

µ

σ2/2

(
1

2
− F (x)

)
for x ∈ (α, m) (109)

where m is the lowest median of F .
For µ < 0 and σ > 0 consider F(µ,σ) as the family of piecewise C 1 probability distribution functions F
on R satisfying F (0) = 0 for which there exists β ∈ (M,∞) such that

xF ′(x) >
µ

σ2/2

(
1

2
− F (x)

)
for x ∈ (M,β) and xF ′(x) <

µ

σ2/2

(
1

2
− F (x)

)
for x ∈ (β,∞) (110)

where M is the highest median of F .

10.3 Solution to the problem

The next step is to transform the optimal stopping problem (103) into a free boundary problem and solve
it. First, we need to define some functions that are used in the paper [2]:

J(t, x) = Ex [G (XT−t)] =

∫ ∞
0

G (z)f (T − t, x , z)dz (111)

H(x) = LXG (x) = µx

(
F (x)− 1

2

)
+
σ2

2
x2F ′(x) (112)

K (s, x , y) = Ex [H(Xs)IXs>y ] =

∫ ∞
y

H(z)f (s, x , z)dz (113)

L(s, x , y) = Ex [H(Xs)IXs<y ] =

∫ y

0
H(z)f (s, x , z)dz (114)
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for t ∈ [0, T ], x ∈ (0,∞), s ∈ (0, T − t] and y ∈ (0,∞). Note that LX is the infinitesimal generator of
X (see Example 7.14) and z 7→ f (s, x , z) is the probability density function of Xs under Px defined as

f (s, x , z) =
1

σ
√

sz
ϕ

(
1

σ
√

s

[
log
(z

x

)
+

(
σ2

2
− µ

)
s

])
(115)

for s > 0, x > 0 and z > 0, and ϕ is the standard normal density function given by ϕ(x) = 1√
2π

e−x
2/2 for

x ∈ R.

The solution of our problem is given in Theorem 3 of the paper [2], which states the following:

Theorem 10.7. Let X be a geometric Brownian motion solving (90) and l > 0 a random variable in-
dependent from X such that E[l ] < ∞. Consider the optimal prediction problem (92) and the extended
optimal stopping problem (103). Assume that the distribution function F of l belongs to A(µ,σ) with
µ 6= 0 (because when µ = 0 it is optimal to stop immediately in both (103) and (92)). We have two cases:

Case 1: µ > 0. The stopping set D in problem (92) has the form D = {(t, x) ∈ [0, T )× (0,∞); x ≥
b(t)} ∪ ({T} × (0,∞)) where the optimal stopping boundary b : [0, T )→ R is the unique solution to the
nonlinear integral equation

J(t, b(t)) = G (b(t)) +

∫ T

t
K (s − t, b(t), b(s))ds (116)

with b continuous decreasing and satisfying α ≤ b(t) ≤ m for t ∈ [0, T ) and b(T−) = α. We have that
the stopping time τD defined in (106) is optimal in problem (103) and the stopping time given by

τb = inf{t ∈ [0, T ); Xt ≥ b(t)} (117)

is optimal in problem (92). The value function V from (103) is given by

V (t, x) = J(t, x)−
∫ T

t
K (s − t, x , b(s))ds (118)

for (t, x) ∈ [0, T ]× (0,∞) and so the value function V∗(x) from (92) is 2V (0, x) + E[l ] for x > 0.

Case 2: µ < 0. The stopping set D in problem (103) has the form D = {(t, x) ∈ [0, T )× (0,∞); x ≤
b(t)} ∪ ({T} × (0,∞)) where the optimal stopping boundary b : [0, T )→ R is the unique solution to the
nonlinear integral equation

J(t, b(t)) = G (b(t)) +

∫ T

t
L(s − t, b(t), b(s))ds (119)

with b continuous increasing and satisfying M ≤ b(t) ≤ β for t ∈ [0, T ) and b(T−) = β. We have that
the stopping time τD defined in (106) is optimal in problem (103) and the stopping time given by

τb = inf{t ∈ [0, T ); Xt ≤ b(t)} (120)

is optimal in problem (92). The value function V from (103) is given by

V (t, x) = J(t, x)−
∫ T

t
L(s − t, x , b(s))ds (121)

for (t, x) ∈ [0, T ]× (0,∞) and so the value function V∗(x) from (92) is 2V (0, x) + E[l ] for x > 0.

43



Optimal Stopping Problems as Free Boundary Problems

To prove this theorem the authors follow several steps. Note that they only treat the case µ > 0 in
detail because the case µ < 0 is analogous. We give a sketch of the main steps of the proof and fill in
some details of some of the steps that are not in the original paper.

Steps of the proof

1. Show that the value function V (t, x) is continuous on [0, T ] × (0,∞). This is achieved using the
mean value theorem, the definition of continuous function and the dominated convergence theorem. In
addition, the authors use that X 1

t = exp((µ − σ2/2)t + σBt) is a submartingale, so let us prove this
statement.

Lemma 10.8. X 1 is a submartingale.

Proof. Note that using Lemma 5.25 we have

E[|X 1
t |] = E[exp((µ− σ2/2)t + σBt)] = eµt <∞ ∀t ≥ 0

So we just need to see that E[X 1
s |Ft ] ≥ X 1

t ∀s ≥ t. Hence, consider now s ≥ t and note that we can write

X 1
s = exp((µ− σ2/2)s + σBs) = exp((µ− σ2/2)s + σBt + σ(Bs − Bt))

Then

E[X 1
s |Ft ] = E[exp((µ− σ2/2)s + σBt + σ(Bs − Bt))|Ft ]

= e(µ−σ2/2)s · E[eσBt |Ft ] · E[eσ(Bs−Bt)|Ft ]
(∗)
= e(µ−σ2/2)s · eσBt · E[eσ(Bs−Bt)]

(∗∗)
= e(µ−σ2/2)s · eσBt · e(σ2/2)(s−t) = eσBt+(µs−(σ2/2)t)

s≥t
≥ eσBt+(µ−σ2/2)t = X 1

t

where in (∗) we have used that Bt is measurable with respect to Ft and that Bs −Bt is independent from
Ft , and in (∗∗) we have applied Lemma 5.24.

2. Show that the stopping set in problem (103) is given by

D = {(t, x) ∈ [0, T )× (0,∞); x ≥ b(t)} ∪ ({T} × (0,∞)) (122)

where b : [0, T ) → R is a decreasing function such that b(t) ∈ [α, m] for t ∈ [0, T ). To prove this, we
need the next statement:

Lemma 10.9. The following equality holds:

G (Xt+s) = G (x) +

∫ s

0
(LXG )(Xt+u)du +

∫ s

0
σXt+uG ′(Xt+u)dBu (123)

where LX = µx(d/dx) + (σ2x2/2)(d2/dx2) is the infinitesimal generator of X (see Example 7.14).

Proof. Recall that the gain function G (x) is convex on (0,∞) and we have that X is a semimartingale
(see Lemma 5.19), hence we can apply Itô-Tanaka-Meyer formula (Corollary 6.6) to G yielding

G (Xt+s) = G (Xt) +

∫ s

0

1

2
(G ′+(Xt+u) + G ′−(Xt+u))dXt+u +

1

2

∫
R

La
s (X )G ′′(da)

= G (x) +

∫ s

0
G ′(Xt+u)dXt+u +

1

2

∫
R

La
s (X )G ′′(da) (124)
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Recall that X is a geometric Brownian motion solving

dXs = µXsds + σXsdBs

So, we have ∫ s

0
G ′(Xt+u)dXt+u =

∫ s

0
G ′(Xt+u)(µXt+ud(t + u) + σXt+udBt+u)

=

∫ s

0
µXt+uG ′(Xt+u)du +

∫ s

0
σXt+uG ′(Xt+u)dBt+u (125)

Note that, using the Occupation times formula (Corollary 6.7) with Φ = G ′′, we obtain∫
R

La
s (X )G ′′(da) =

∫ s

0
G ′′(Xt+u)d [X ]t+u (126)

Applying lemma 6.4, we have

d [X ]s = d [X , X ]s = dXs · dXs = (µXsds + σXsdBs) · (µXsds + σXsdBs)

= µ2X 2
s dsds + 2σµX 2

s dsdBs + σ2X 2
s dBs · dBs = σ2X 2

s ds

Hence, substituting this in the expression (126) we get∫
R

La
s (X )G ′′(da) =

∫ s

0
G ′′(Xt+u)d [X ]t+u =

∫ s

0
G ′′(Xt+u)σ2X 2

t+ud(t + u)

=

∫ s

0
σ2X 2

t+uG ′′(Xt+u)du (127)

Then, replacing Eq. (125) and (127) into Eq. (124), we obtain

G (Xt+s) = G (x) +

∫ s

0
µXt+uG ′(Xt+u)du +

∫ s

0
σXt+uG ′(Xt+u)dBt+u +

1

2

∫ s

0
σ2X 2

t+uG ′′(Xt+u)du

= G (x) +

∫ s

0
(µXt+uG ′(Xt+u) +

1

2
σ2X 2

t+uG ′′(Xt+u))du +

∫ s

0
σXt+uG ′(Xt+u)dBt+u

= G (x) +

∫ s

0
(LXG )(Xt+u)du +

∫ s

0
σXt+uG ′(Xt+u)dBu

as it was claimed.

This result is equivalent to

G (Xt+s) = G (x) +

∫ s

0
H(Xt+u)du + Ms (128)

where H is given by (112) and Ms :=
∫ s

0 σXt+uG ′(Xt+u)dBu is a (continuous local) martingale (see Lemma
5.13). We can use this to see that the set [0, T )× (0,α) is contained in the continuation set C . So, define
the stopping time σα = inf{u ∈ [0, T − t]; Xt+u ≥ α} and note that from (109) we have H(x) < 0 for
x ∈ (0,α). Then, taking the expected value in (128), replacing s by σα and using the optional sampling
theorem with σ = 0 and τ = σα (see Theorem 6.9 ii)) we obtain

Et,x [G (Xt+σα)] = G (x) + Et,x

[∫ σα

0
H(Xt+u)du

]
+ Et,x [Mσα ] < G (x) + Et,x [M0] = G (x)
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for (t, x) ∈ [0, T )× (0,α). Hence, taking the infimum we get

V (t, x) = inf
0≤τ≤T−t

Et,x [G (Xt+τ )] ≤ Et,x [G (Xt+σα)] < G (x)

for (t, x) ∈ [0, T )× (0,α). Therefore, we conclude that [0, T )× (0,α) ⊆ C . It is easy to see that

i) [0, T )× [m,∞) ⊆ D (we have proved this in the previous section),

ii) if a point (t, x) ∈ [0, T )× [α, m) belongs to D, then (s, x) with s ∈ (t, T ] belongs to D (it is evident
since G does not depend on time),

iii) if a point (t, x) ∈ [0, T ) × [α, m) belongs to D, then (t, y) with y > x belongs to D (it is evident
for y ≥ m and for y ∈ (x , m) it can be proved using the optional sampling theorem similarly as we
did before)

Finally, we conclude that

b(t) := min{x ∈ (0,∞); V (t, x) = G (x)} (129)

with b(t) ∈ [α, m] for t ∈ [0, T ).

3. Prove that b is continuous on [0, T ) and b(T−) = α. To see the first fact, the authors show
that b is right-continuous on [0, T ) considering a sequence tn → t+ as n → ∞ with t ∈ [0, T ) and then
they make a proof by contradiction assuming that b makes a jump at some t ∈ (0, T ) and using the
dominated convergence theorem. Finally, they prove that b(T−) = α supposing that b(T−) > α and
reaching another contradiction.

4. Show that the Hight Contact Principle holds at b, i.e. see that x 7→ V (t, x) is differentiable at b(t)
and

∂V

∂x
(t, b(t)) = G ′(b(t)) ∀t ∈ [0, T ) (130)

On the one hand, to prove ∂V
∂x (t, b(t)) ≥ G ′(b(t)) we fix t ∈ [0, T ), x = b(t) and we use the definition of

derivative. So, for ε > 0 we have

V (t, x − ε)− V (t, x)

−ε
≥ G (x − ε)− G (x)

−ε

and setting ε→ 0+ we obtain the claimed result. On the other hand, to prove the other inequality we set
τε := τ∗(t, x − ε) for ε > 0 and we use the mean value theorem. So, we get

V (t, x − ε)− V (t, x)

−ε
≤

E[G ((x − ε)X 1
τε)]− E[G (xX 1

τε)]

−ε
= E[G ′(ξ)X 1

τε ]

where ξ ∈ [(x − ε)X 1
τε , xX 1

τε ]. Setting ε→ 0+ and using the dominated convergence theorem we get what
we wanted.
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5. Putting all of the previous results together, the authors obtain the following free boundary problem:

∂V

∂t
(t, x) + µx

∂V

∂x
(t, x) +

σ2

2
x2∂

2V

∂x2
(t, x) = 0 for x ∈ (0, b(t)) and t ∈ [0, T ) (131)

V (t, x) = G (x) for x ∈ [b(t),∞) and t ∈ [0, T ) (instantaneous stopping) (132)

∂V

∂x
(t, x) = G ′(x) for x = b(t) and t ∈ [0, T ) (High Contact Principle) (133)

V (t, x) < G (x) for x ∈ (0, b(t)) and t ∈ [0, T ) (134)

V (T , x) = G (x) for x ∈ (0,∞). (135)

The next steps consist of solving this problem. This is the hard part.

6. Show that V is given by equation (118) and that b is a solution of (116). The most important tools
which the authors use are the mean value theorem and the change-of-variable formula with local time on
curves, which is a theorem that G. Peskir developed [12].

7. Prove that the function b is the unique solution of equation (116) which satisfies α ≥ b(t) ≥ m
for t ∈ [0, T ). To show this, they consider a continuous function c : [0, T ) → R which solves (116) and
satisfies α ≤ c(t) ≤ m for t ∈ [0, T ) and they define the function V c : [0, T ]× (0,∞)→ R by

V c(t, x) = Et,x [G (XT )]−
∫ T−t

0
Et,x [H(Xt+u)IXt+u>c(t+u)]du

for (t, x) ∈ [0, T ]× (0,∞). Then:

i) They show that V c(t, x) = G (x) ∀(t, x) ∈ [0, T ) × (0,∞) with x ≥ c(t). For this they use the
Markov property of X and the optional sampling theorem.

ii) They prove that V c(t, x) ≥ V (t, x) ∀(t, x) ∈ [0, T ] × (0,∞). They apply (i) and the optional
sampling theorem.

iii) They show that c(t) ≤ b(t) ∀t ∈ [0, T ). They use an argument by contradiction, (i), (ii) and the
optional sampling theorem.

iv) They prove that b(t) = c(t) ∀t ∈ [0, T ). They use again an argument by contradiction, (i), (ii),
(iii) and the optional sampling theorem.

10.4 Calculation of the optimal stopping boundary

Theorem 10.7 presents the nonlinear integral equations which characterised the optimal stopping boundary
b(t). For the case µ > 0, b(t) is the unique solution of equation (116) and for µ < 0, it is the unique
solution of (119). We cannot find an explicit solution for these equations generally, but we can use them to
find b(t) numerically. In this section, we are going to see how to do this for the case µ > 0 and considering
that the random variable l follows an exponential distribution. In the next section, we will show examples
and we will explain why we choose this distribution for l in the two first examples.
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Methodology

Recall that the equation that we want to solve is the following one:

J(t, b(t)) = G (b(t)) +

∫ T

t
K (s − t, b(t), b(s))ds

where α ≤ b(t) ≤ m for t ∈ [0, T ) and b(T−) = α.

Set tk = kh for k = 0, 1, ..., n with h = T/n. Then, the previous expression can be written as

J(tk , b(tk)) = G (b(tk)) +
n−1∑
l=k

K (tl+1 − tk , b(tk), b(tl+1))h (136)

for k = 0, ..., n−1. Setting k = n−1 and using b(tn) = α, we can solve equation (136) numerically and get
a value for b(tn−1). Setting k = n− 2 and using b(tn−1) and b(tn) we can solve (136) and obtain a value
for b(tn−2). If we continue this backward induction we obtain the values b(tn), b(tn−1), ..., b(t1), b(t0) as
an approximation of the optimal stopping boundary b at the points T , T − h, ..., h, 0.

Computations

We need to calculate J(t, x), G (x) and K (s, x , y). First, recall that in our case l follows an exponen-
tial distribution with parameter λ > 0 and so its distribution function F is defined by

F (x) =

{
1− e−λx x ≥ 0

0 x < 0
(137)

Using the definition of G from equation (99) we can find an explicit expression for this function:

G (x) =

∫ x

0

(
F (y)− 1

2

)
dy =

∫ x

0

(
1

2
− e−λy

)
dy =

[
1

2
y

]x
0

+

[
1

λ
e−λy

]x
0

=
1

2
x +

1

λ
e−λx − 1

λ
(138)

Let us now calculate J. Recall that J is given by equation (111), so using the expression for G in (138)
we can write

J(t, x) = Ex [G (XT−t)] =
1

2
Ex [XT−t ] +

1

λ
Ex [e−λXT−t ]− 1

λ
(139)

Thus, we need to calculate Ex [Xt ] and Ex [e−λXt ]. Recall that from Lemma 5.25 we have

Ex [Xt ] = xeµt (140)

Hence, we only need to find an expression for Ex [e−λXt ]. For this we are going to use the Taylor series
expansion of the exponential function:

e−λXt =
∞∑
k=0

(−λXt)
k

k!
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So taking the expected value

Ex [e−λXt ] = Ex

[ ∞∑
k=0

(−λXt)
k

k!

]
=
∞∑
k=0

(−λ)k

k!
Ex [X k

t ] (141)

From Lemma 5.25 we know that

Ex [X k
t ] = xkek(µ−σ2/2)te

1
2
k2σ2t

So substituting in (141) we get

Ex [e−λXt ] =
∞∑
k=0

(−λ)k

k!
xkek(µ−σ2/2)te

1
2
k2σ2t (142)

Finally, we replace the values of Ex [Xt ] and Ex [e−λXt ] into the expression (139) for J

J(t, x) =
1

2
Ex [XT−t ] +

1

λ
Ex [e−λXT−t ]− 1

λ

=
1

2
xeµ(T−t) +

1

λ

∞∑
k=0

(−λ)k

k!
xkek(µ−σ2/2)(T−t)e

1
2
k2σ2(T−t) − 1

λ
(143)

Once we have an expression for G and J, we need to find another for K . Recall the definition of K
from equation (113)

K (s, x , y) = Ex [H(Xs)IXs>y ] =

∫ ∞
y

H(z)f (s, x , z)dz

where H = LXG and f is given by equation (115). The expression for H is the following:

H(x) = LXG (x) = µx

(
F (x)− 1

2

)
+
σ2

2
x2F ′(x) = µx

(
1

2
− e−λx

)
+
σ2

2
x2λe−λx

=
µ

2
x − µxe−λx +

σ2

2
x2λe−λx (144)

Recall that f is defined as

f (s, x , z) =
1

σ
√

sz
ϕ (Φ(s, x , z))

where

Φ(s, x , z) =
1

σ
√

s

[
log
(z

x

)
+

(
σ2

2
− µ

)
s

]
and ϕ is the standard normal density function given by ϕ(x) = 1√

2π
e−x

2/2 for x ∈ R.

Hence, we have to solve the next integral

K (s, x , y) =

∫ ∞
y

H(z)f (s, x , z)dz =

∫ ∞
y

(
µ

2
z − µze−λz +

σ2

2
z2λe−λz

)
1

σ
√

sz
ϕ (Φ(s, x , z)) dz

=
µ

2σ
√

s

∫ ∞
y

ϕ (Φ(s, x , z)) dz − µ

σ
√

s

∫ ∞
y

e−λzϕ (Φ(s, x , z)) dz

+
λσ2

2σ
√

s

∫ ∞
y

ze−λzϕ (Φ(s, x , z)) dz
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Let us try to solve the first integral: ∫ ∞
y

ϕ (Φ(s, x , z)) dz

We are going to do a change of variable:

u = Φ(s, x , z) =
1

σ
√

s
[log(z)− log(x) + A], with A =

(
σ2

2
− µ

)
s

So, we have

z = xeσ
√
su−A

dz = xσ
√

seσ
√
su−Adu

Then ∫ ∞
y

ϕ (Φ(s, x , z)) dz =
1√
2π

∫ ∞
y

e−Φ2(s,x ,z)/2dz =
1√
2π

∫ ∞
y ′

e−u
2/2xσ

√
seσ
√
su−Adu

=
1√
2π

xσ
√

se−A
∫ ∞
y ′

e−u
2/2eσ

√
sudu

where y ′ = 1
σ
√
s
[log(y)− log(x) + A]. Note that

∫ ∞
y ′

e−u
2/2eσ

√
sudu =

∫ ∞
y ′

e−1/2(u2−2σ
√
su)du =

∫ ∞
y ′

e−1/2((u−σ
√
s)2−σ2s)du = eσ

2s/2

∫ ∞
y ′

e
−
(

u−σ
√
s√

2

)2

du

Let us do a change of variable:

w =
u − σ

√
s√

2
, dw =

1√
2

du

So ∫ ∞
y ′

e
−
(

u−σ
√
s√

2

)2

du =
√

2

∫ ∞
y ′′

e−w
2
dw =

√
2

(
−
∫ y ′′

0
e−w

2
dw +

∫ y ′′

0
e−w

2
dw +

∫ ∞
y ′′

e−w
2
dw

)

=
√

2

(
−
∫ y ′′

0
e−w

2
dw +

∫ ∞
0

e−w
2
dw

)

=
√

2

√
π

2

(
− 2√

π

∫ y ′′

0
e−w

2
dw +

2√
π

∫ ∞
0

e−w
2
dw

)

=

√
π√
2

(
−erf(y ′′) + erf(∞)

)
=

√
π√
2

(
−erf(y ′′) + 1

)
where y ′′ = y ′−σ

√
s√

2
and erf is the error function defined as

erf(z) =
2√
π

∫ z

0
e−t

2
dt
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This error function can be approximated with Taylor series around x = 0, which are known also Maclaurin
series, and we would get:

erf(z) =
2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n + 1)

So regrouping terms, we have∫ ∞
y

ϕ (Φ(s, x , z)) dz =
1√
2π

xσ
√

se−A
∫ ∞
y ′

e−u
2/2eσ

√
sudu =

1√
2π

xσ
√

se−Aeσ
2s/2

∫ ∞
y ′

e
−
(

u−σ
√
s√

2

)2

du

=
1√
2π

xσ
√

se−Aeσ
2s/2

√
π√
2

(
−erf(y ′′) + 1

)
=

xσ
√

s

2
eσ

2s/2−A(1− erf(y ′′))

=
xσ
√

s

2
eσ

2s/2−A
(

1− erf

(
1

σ
√

2s
[log(y)− log(x) + A]− σ

√
s√

2

))
(145)

and we will denote this last expression with I1 = I1(s, x , y).

We are going to use a method of numeric integration to approximate the other two integrals and we
will consider the Simpson’s rule:

Lemma 10.10. (Simpson’s rule). Let f (x) be a given function in an interval [a, b] ⊂ R. Then, the

Simpson’s rule states that the integral I =
∫ b
a f (x)dx can be approximated by

I ≈ b − a

6

(
f (a) + 4f

(
a + b

2

)
+ f (b)

)
(146)

Lemma 10.11. (Composite Simpson’s rule). Let f (x) be a given function in an interval [a, b] ⊂ R. Then,

the composite Simpson’s rule states that the integral I =
∫ b
a f (x)dx can be approximated by

I ≈ h

3

f (x0) + 4

m/2∑
i=1

f (x2i−1) + 2

m/2−1∑
i=1

f (x2i ) + f (xm)

 (147)

where h = b−a
m and we have considered a partition of the interval [a, b] such that xi = a+ih for i = 0, 1, ..., m

with x0 = a and xm = b.

So, we need to do a change of variable to the two integrals in order to have finite integration limits. We
consider the new variable u = 1/z with du = −dz/z2 = −u2dz and we replace it into the two integrals:

∫ ∞
y

e−λzϕ (Φ(s, x , z)) dz =
1√
2π

∫ ∞
y

e−λze−Φ2(s,x ,z)/2dz =
1√
2π

∫ ∞
y

e−λze−
1

2σ2s
(log( z

x
)+A)2

dz

= − 1√
2π

∫ 0

1/y

1

u2
e−λ/ue−

1
2σ2s

(log( 1
xu

)+A)2

du

=
1√
2π

∫ 1/y

0

1

u2
e−λ/ue−

1
2σ2s

(A−log(xu))2

du
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∫ ∞
y

ze−λzϕ (Φ(s, x , z)) dz =
1√
2π

∫ ∞
y

ze−λze−Φ2(s,x ,z)/2dz =
1√
2π

∫ ∞
y

ze−λze−
1

2σ2s
(log( z

x
)+A)2

dz

= − 1√
2π

∫ 0

1/y

1

u3
e−λ/ue−

1
2σ2s

(log( 1
xu

)+A)2

du

=
1√
2π

∫ 1/y

0

1

u3
e−λ/ue−

1
2σ2s

(A−log(xu))2

du

with A =
(
σ2

2 − µ
)

s. We now define the functions

f1(s, x , u) =
1√

2πu2
e−λ/ue−

1
2σ2s

(A−log(xu))2

f2(s, x , u) =
1√

2πu3
e−λ/ue−

1
2σ2s

(A−log(xu))2

and we approximate the integrals using the composite Simpson’s rule:∫ ∞
y

e−λzϕ (Φ(s, x , z)) dz =

∫ 1/y

0
f1(s, x , u)du

≈ h2

3

f1(s, x , 0) + 4

m/2∑
i=1

f1(s, x , u2i−1) + 2

m/2−1∑
i=1

f1(s, x , u2i ) + f1(s, x , 1/y)


∫ ∞
y

ze−λzϕ (Φ(s, x , z)) dz =

∫ 1/y

0
f2(s, x , u)du

≈ h2

3

f2(s, x , 0) + 4

m/2∑
i=1

f2(s, x , u2i−1) + 2

m/2−1∑
i=1

f2(s, x , u2i ) + f2(s, x , 1/y)


where h2 = 1/(my) and ui = ih2 for i = 0, 1, ..., m. We will denote these two last expressions with
I2 = I2(s, x , y) and I3 = I3(s, x , y) respectively. So the approximation of K becomes

K (s, x , y) ≈ µ

2σ
√

s
I1(s, x , y)− µ

σ
√

s
I2(s, x , y) +

λσ2

2σ
√

s
I3(s, x , y) (148)

Algorithm

Finally, replacing the expressions and approximations (138), (143), (148) found respectively for G , J
and K into equation (136) evaluating in t = tk , x = b(tk), s = tl+1 − tk and y = b(tl+1) we obtain the
next formula for k = 0, ..., n − 1

1

2
b(tk)(eµ(T−tk ) − 1) +

1

λ

∞∑
j=0

(−λ)j

j!
b(tk)je j(µ−σ

2/2)(T−tk )e
1
2
j2σ2(T−tk )

=
1

λ
e−λb(tk ) +

n−1∑
l=k

(
µ

2σ
√

tl+1 − tk
I1 −

µ

σ
√

tl+1 − tk
I2 +

λσ

2
√

tl+1 − tk
I3

)
h (149)
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where I1, I2, I3 are evaluated in (tl+1 − tk , b(tk), b(tl+1)) and tk = kh with h = T/n.

Algorithm 1: Algorithm for finding the optimal stopping boundary

Input : µ, σ, α, T , λ, n
Output: b
h = T/n
Let b be a vector of length n + 1 with b[0, ..., n − 1] = [0, ..., 0] and b[n] = α
Define the function G (x) (Eq. (138))
Define the function J(t, x) (Eq. (143))
Define the function K (s, x , y) (Eq. (148))
Function f(x , k, b):

t = k ∗ h
res = J(t, x)− G (x)
for l = k , ..., n − 1 do

s = h ∗ (l + 1)− t
res = res − K (s, x , b[l + 1])

return res
for k = n − 1, ..., 0 do

Find the solution x of f (x , k , b) = 0 with k , b given
b[k] = x

We have programmed this algorithm in R, using packages stats and DEoptim for solving optimization
problems (see Appendix A.1).

10.5 Examples

Example 1: Resistance level

In this case, we consider that the asset price behaves as a geometric Brownian motion with µ > 0. We
choose the random variable l to follow an exponential distribution with parameter λ > 0, so its distribution
function F is defined by

F (x) =

{
1− e−λx x ≥ 0

0 x < 0
(150)

We choose the exponential distribution because it is the maximum entropy probability distribution for a
random variable among all continuous distributions with support [0,∞) which have a particular mean of
1/λ. This means that is the one with the largest entropy and so the one that has most uncertainty, i.e.
the least-informative. Recall that the entropy of a distribution is the expected amount of information in
an event extracted from that distribution.

Let us verify that l has an expected value of 1/λ. Recall the formula to compute the mean:

E[l ] =

∫ ∞
0

xf (x)dx

where f is the density function of the random variable l which is f (x) = F ′(x) with

F ′(x) =

{
λe−λx x ≥ 0

0 x < 0
(151)
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So, we can write:

E[l ] =

∫ ∞
0

xλe−λxdx

Let us integrate by parts setting u = λx and dv = e−λxdx , so we have du = λdx and v = − 1
λe−λx . We

obtain that

E[l ] =

∫ ∞
0

xλe−λxdx = lim
M→∞

[
−xe−λx

]M
0
−
∫ ∞

0
−e−λxdx = lim

M→∞

−M

eλM
− lim

M→∞

[
1

λ
e−λx

]M
0

= lim
M→∞

−1

λeλM
− lim

M→∞

1

λ
e−λM +

1

λ
=

1

λ

Let us calculate the median of l . First, we need to compute the quantile function Q(p) which is the
inverse of the distribution function:

F (Q(p)) = p ⇔ 1− e−λQ(p) = p ⇔ 1− p = e−λQ(p) ⇔ Q(p) =
− ln(1− p)

λ

We know that the median is the quantil value with p = 1/2 so we obtain

m = M =
− ln(1/2)

λ
=

ln(2)

λ
(152)

We need to find α ∈ (0, m) such that it satisfies the definition of admissible aspiration level laws (109).
Let us develop the two conditions; the first one is the following:

xF ′(x) <
µ

σ2/2

(
1

2
− F (x)

)
for x ∈ (0,α)

So, in our case we have for x ∈ (0,α)

xλe−λx <
µ

σ2/2

(
1

2
− (1− e−λx)

)
=

µ

σ2/2

(
−1

2
+ e−λx

)
⇔ xλ <

µ

σ2/2

(
1− 1

2
eλx
)

(153)

The second condition is

xF ′(x) >
µ

σ2/2

(
1

2
− F (x)

)
for x ∈ (α, m)

Hence, analogously we get

xλ >
µ

σ2/2

(
1− 1

2
eλx
)

for x ∈ (α, m) (154)

Therefore, combining (153) and (154) we conclude that (109) is satisfied with α ∈ (0, m) being the unique
solution of the following equation

αλ =
µ

σ2/2

(
1− 1

2
eλα
)

(155)

Thus, F belongs to A(µ,σ) for all σ > 0.
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Recall that by Theorem 10.7 we know that the optimal stopping time for selling is given by

τ∗ = inf{t ∈ [0, T ]; Xt ≥ b(t)} (156)

where b(t) is the unique continuous decreasing solution to (116) satisfying α ≤ b(t) ≤ m for t ∈ [0, T )
and b(T−) = α.

Let us see an example fixing specific values µ = 1, λ = 1/2, σ = 2 and T = 1. To find the value of α
we can solve equation (155) numerically and we obtain α = 0.39. To get this result, we have programmed
the next function in R

f (α) =
µ

σ2/2

(
1− 1

2
eλα
)
− αλ (157)

and we have used the package rootSolve to find the zero of this function (see Appendix A.2).
We also have m = ln(2)/λ = 1.386. To calculate the optimal stopping boundary we use the algorithm
explained in the previous section. In our case, we have chosen n = 50 and we have obtained the values
b(t50), ..., b(t0) as an approximation of b at the points 1, 0.98, ..., 0.02, 0. If we plot these results, we get
the graphic in figure 1. Recall that b(tn) = b(T−) = α = 0.39 and note that b is a continuous decreasing
function as we expected. We have obtained b(0) = 0.695 approximately.

Figure 1: The optimal stopping boundary b from Example 1
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Example 2: Support level

In this case, we consider that the asset price behaves as a geometric Brownian motion with µ < 0.
We choose the random variable l to follow the same distribution as in the previous example, so l ∼ Exp(λ)
with λ > 0.

Recall that the mean of l is 1/λ and the median is m = M = ln(2)/λ. We need to find β ∈ (M,∞)
such that it satisfies the definition of admissible aspiration level laws (110). The first condition is

xF ′(x) >
µ

σ2/2

(
1

2
− F (x)

)
for x ∈ (M,β)

which yields

xλ >
µ

σ2/2

(
1− 1

2
eλx
)

for x ∈ (M,β) (158)

The second condition is

xF ′(x) <
µ

σ2/2

(
1

2
− F (x)

)
for x ∈ (β,∞)

which gives

xλ <
µ

σ2/2

(
1− 1

2
eλx
)

for x ∈ (β,∞) (159)

Therefore, combining (158) and (159) we conclude that (110) is satisfied with β ∈ (M,∞) being the
unique solution of the following equation

βλ =
µ

σ2/2

(
1− 1

2
eλβ
)

(160)

Thus, F belongs to A(µ,σ) for all σ > 0.

Recall that by Theorem 10.7 we know that the optimal stopping time for buying is given by

τ∗ = inf{t ∈ [0, T ]; Xt ≤ b(t)} (161)

where b(t) is the unique continuous increasing solution to (119) satisfying M ≤ b(t) ≤ β for t ∈ [0, T )
and b(T−) = β.

Let us see an example fixing specific values µ = −1, λ = 4, σ = 2 and T = 1. To find the value of β
we can solve equation (160) numerically, analogously to the previous example, and we obtain β = 0.619
(see Appendix A.2). We also have M = ln(2)/λ = 0.173. To calculate the optimal stopping boundary we
use a similar algorithm explained in the previous section. In this case, we have chosen n = 15 and we have
obtained the values b(t15), ..., b(t0) as an approximation of b. If we plot these results, we get the graphic
in figure 2. Recall that b(tn) = b(T−) = β = 0.619 and note that b is a continuous increasing function
as we expected. We have obtained b(0) = 0.173 approximately.
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Figure 2: The optimal stopping boundary b from Example 2

Example 3: Aspiration level at the ultimate maximum

In this case, we consider that the asset price behaves as a geometric Brownian motion with µ ∈ (0,σ2/2).
We choose the random variable l to follow the distribution of the ultimate maximum of X which is defined
as S = supt≥0

[
x0 exp((µ− (σ2/2))t + σBt)

]
where x0 is known and fixed. To calculate the distribution

function F of l we need the following formula:

Theorem 10.12. (Doob’s formula). Let Bt be a Brownian motion. Then for α > 0 and β > 0

P
(

sup
t≥0

(Bt − αt) ≥ β
)

= e−2αβ (162)

Let us compute P(S ≥ x):

P(S ≥ x) = P(ln(S) ≥ ln(x)) = P
(

sup
t≥0

(
ln(x0eσBt+(µ−σ2/2)t)

)
≥ ln(x)

)
= P

(
sup
t≥0

(
σBt + (µ− σ2/2)t

)
≥ ln(x)− ln(x0)

)
= P

(
sup
t≥0

(
Bt +

(µ− σ2/2)t

σ

)
≥ ln(x)− ln(x0)

σ

)
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Applying Doob’s formula (162) with α = −(µ− σ2/2)/σ and β = (ln(x)− ln(x0))/σ we obtain

P(S ≥ x) = exp

(
2(µ− σ2/2)

σ
· ln(x)− ln(x0)

σ

)
= exp

(
µ− σ2/2

σ2/2
ln

(
x

x0

))
= exp

ln

(
x

x0

)µ−σ2/2

σ2/2


=

(
x

x0

)µ−σ2/2

σ2/2

=

(
x

x0

) µ

σ2/2
−1

=
(x0

x

)1− µ

σ2/2

Therefore, the distribution function F of l is defined by

F (x) =

{
1−

(
x0
x

)1− µ

σ2/2 x ≥ x0

0 x < x0

(163)

Let us calculate the median of l . First, we need to compute the quantile function Q(p) which is the
inverse of the distribution function:

F (Q(p)) = p ⇔ 1−
(

x0

Q(p)

)1− µ

σ2/2

= p ⇔ 1− p =

(
x0

Q(p)

)1− µ

σ2/2

⇔ 1

1− p
=

(
Q(p)

x0

)1− µ

σ2/2

⇔
x

1−µ/(σ2/2)
0

1− p
= Q(p)1−µ/(σ2/2) ⇔ Q(p) =

x0

(1− p)1/(1−µ/(σ2/2))

We know that the median is the quantil value with p = 1/2 so we obtain

m = M =
x0

( 1
2 )1/(1−µ/(σ2/2))

= 21/(1−µ/(σ2/2))x0 (164)

We need to find α ∈ (0, m) such that it satisfies the definition of admissible aspiration level laws (109).
First, we have to calculate F ′(x):

F ′(x) =

{ (
1− µ

σ2/2

) (
x0
x

)1− µ

σ2/2
(

1
x

)
x ≥ x0

0 x < x0

(165)

Note that F ′ has a discontinuity at x0 and so it is only piecewise C 1. The first condition of (109) is

xF ′(x) <
µ

σ2/2

(
1

2
− F (x)

)
for x ∈ (0,α)
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which yields for x ∈ (0,α)

x

(
1− µ

σ2/2

)(x0

x

)1− µ

σ2/2

(
1

x

)
<

µ

σ2/2

(
−1

2
+
(x0

x

)1− µ

σ2/2

)
⇔
(

1− µ

σ2/2

)
<

µ

σ2/2

(
−1

2

(
x

x0

)1− µ

σ2/2

+ 1

)

⇔
(
σ2/2

µ
− 2

)
< −1

2

(
x

x0

)1− µ

σ2/2

⇔ 2

(
2− σ2/2

µ

)
<

(
x

x0

)1− µ

σ2/2

⇔ x1−µ/(σ2/2) > 2

(
2− σ2/2

µ

)
x

1−µ/(σ2/2)
0

⇔ x >

(
2

(
2− σ2/2

µ

))1/(1−µ/(σ2/2))

x0 (166)

The second condition is

xF ′(x) >
µ

σ2/2

(
1

2
− F (x)

)
for x ∈ (α, m)

Hence, analogously we get

x <

(
2

(
2− σ2/2

µ

))1/(1−µ/(σ2/2))

x0 for x ∈ (α, m) (167)

Therefore, combining (166) and (167) we conclude that (109) is satisfied with α ∈ (0, m) given by

α =

(
2

(
2− σ2/2

µ

))1/(1−µ/(σ2/2))

x0 (168)

for µ ∈ [σ2/3,σ2/2) and α = x0 for µ ∈ (0,σ2/3). Thus, F belongs to A(µ,σ) for all σ > 0.

Recall that by Theorem 10.7 we know that the optimal stopping time for selling is given by

τ∗ = inf{t ∈ [0, T ]; Xt ≥ b(t)} (169)

where b(t) is the unique continuous decreasing solution to (116) satisfying α ≤ b(t) ≤ m for t ∈ [0, T )
and b(T−) = α.

Finally, let us mention an example fixing specific values µ = 1, x0 = 1, σ = 2 and T = 1. In this case,
µ ∈ (0,σ2/3) and so we have α = x0 = 1. We also have m = 21/(1−µ/(σ2/2))x0 = 4. In addition, the
authors computed b(t) numerically and they obtained b(0) = 1.68 approximately.
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A. Programs code

A.1 Algorithm for finding the optimal stopping boundary

l i b r a r y ( s t a t s )
l i b r a r y ( DEoptim )
l i b r a r y ( pracma )

## I n i t i a l i z a t i o n p a r a m e t e r s
mu <− 1
lambda <− 1/2
sigma <− 2
m <− (1 / lambda )∗ log ( 2 )
T <− 1
a l p h a <− 0.3917735
n <− 50
h <− T/n

## F u n c t i o n G
G <− funct ion ( x ) {

r e s = x/2+(1/ lambda )∗exp(− lambda∗x )−(1/ lambda )
return ( r e s )

}

## F u n c t i o n J
J <− funct ion ( t , x ) {

sum = 0
f o r ( j i n ( 0 : 1 0 ) ) {

sum = sum + ((( − lambda )ˆ j ) / ( f a c t o r i a l ( j ) ) ) ∗ ( xˆ j )
∗exp ( j ∗ (mu−(s igma ˆ2) / 2)∗ (T−t ) ) ∗exp ( ( j ˆ2)∗ ( s igma ˆ2)∗ (T−t ) / 2)

}
r e s = (1 / 2)∗ ( x∗exp (mu∗ (T−t ))) −(1/ lambda )+(1/ lambda )∗sum
return ( r e s )

}

## A u x i l i a r y f u n c t i o n s f o r K
I 1 <− funct ion ( x , t , l , b ) {

s <− ( l +1)∗h − t
y <− b [ l +2]
A <− ( ( s igma ˆ2) /2−mu)∗ s
z <− (1 / ( s igma∗ s q r t (2∗ s ) ) ) ∗ ( log ( y/x)+A) − ( s igma∗ s q r t ( s ) ) / s q r t ( 2 )
e r f = 0
f o r ( i i n ( 0 : 1 0 ) ) {

e r f = e r f + (2 / s q r t ( p i ) ) ∗ ((( −1)ˆ i )∗ ( z ˆ(2∗ i +1)))/ ( f a c t o r i a l ( i )∗ (2∗ i +1))
}

61



Optimal Stopping Problems as Free Boundary Problems

r e s = ( ( x∗ s igma∗ s q r t ( s )∗exp ( ( s∗ ( s igma ˆ 2 ) ) /2−A) ) / 2)∗(1− e r f )
return ( r e s )

}

f 1 <− funct ion ( l , x , u , t ) {
s <− ( l +1)∗h − t
A <− ( ( s igma ˆ2) /2−mu)∗ s
r e s = (1 / ( s q r t (2∗ p i ) ) ∗u ˆ2)∗exp(− lambda/u )∗exp(−(1/ (2∗ ( s igma ˆ2)∗ s ) )

∗ (A−log ( x∗u ) ) ˆ 2 )
return ( r e s )

}

f 2 <− funct ion ( l , x , u , t ) {
s <− ( l +1)∗h − t
A <− ( ( s igma ˆ2) /2−mu)∗ s
r e s = (1 / ( s q r t (2∗ p i ) ) ∗u ˆ3)∗exp(− lambda/u )∗exp(−(1/ (2∗ ( s igma ˆ2)∗ s ) )

∗ (A−log ( x∗u ) ) ˆ 2 )
return ( r e s )

}

I 2 <− funct ion ( x , t , l , b ) {
y <− b [ l +2]
m2 <− 14
h2 <− 1/ (m2∗y )
sum = f 1 ( l , x , 0 , t ) + f 1 ( l , x , 1 /y , t )
f o r ( i i n ( 1 : ( m2/ 2 ) ) ) {

u <− (2∗ i −1)∗h2
sum = sum + 4∗ f 1 ( l , x , u , t )

}
f o r ( i i n ( 1 : ( m2/2 −1))) {

u <− (2∗ i )∗h2
sum = sum + 2∗ f 1 ( l , x , u , t )

}
r e s = ( h2/ 3)∗sum
return ( r e s )

}

I 3 <− funct ion ( x , t , l , b ) {
y <− b [ l +2]
m2 <− 14
h2 <− 1/ (m2∗y )
sum = f 2 ( l , x , 0 , t ) + f 2 ( l , x , 1 /y , t )
f o r ( i i n ( 1 : m2/ 2 ) ) {

u <− (2∗ i −1)∗h2
sum = sum + 4∗ f 2 ( l , x , u , t )

}
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f o r ( i i n ( 1 : ( m2/2 −1))) {
u <− (2∗ i )∗h2
sum = sum + 2∗ f 2 ( l , x , u , t )

}
r e s = ( h2/ 3)∗sum
return ( r e s )

}

## F u n c t i o n K
K <− funct ion ( x , t , l , b ) {

s <− ( l +1)∗h − t
r e s = (mu/ (2∗ s igma∗ s q r t ( s ) ) ) ∗ I 1 ( x , t , l , b)−(mu/ ( s igma∗ s q r t ( s ) ) )

∗ I 2 ( x , t , l , b ) +(( lambda∗ s igma ) / (2∗ s q r t ( s ) ) ) ∗ I 3 ( x , t , l , b )
return ( r e s )

}

## F u n c t i o n to o p t i m i z e
f <− funct ion ( x , k , b ) {

t <− k∗h
r e s = J ( t , x ) − G( x )
f o r ( l i n k : ( n−1)) {

r e s = r e s − K( x , t , l , b )∗h
}
return ( r e s )

}

## Loop which s t a r t s w i t h k=n−1 and c a l c u l a t e s b
b <− rep ( 0 , n+1) # v e c t o r b = b [ t0 , t1 , . . . , tn ] = b [ 1 , 2 , . . . , n+1]
b [ n+1] <− a l p h a # b [ tn ] = a l p h a

f o r ( k i n ( n −1) :0) {
p r i n t ( paste ( ” s t a r t i n g i t e r a t i o n ” , k ) )

# Two methods to o p t i m i z e :
# Method 1 :
r e s 1 <− optimize ( funct ion ( x ) f ( x , k , b ) , c ( b [ k+2]+1/ ( ( k+1)∗100) ,m) ,

maximum = FALSE)
r o o t <− r e s 1 $minimum

# Method 2 :
# r e s 2 <− DEoptim ( f u n c t i o n ( x ) r e t u r n ( f ( x , k , b ) ) ,

lower = b [ k+2]+1/ ( ( k+1)∗100) , upper = m,
co nt ro l = l i s t ( s t o r e p o p f r o m = 1 , trace = FALSE ,
i t e r m a x =100))$optim

# r o o t <− r e s 2 $bestmem

b [ k+1] <− r o o t
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p r i n t ( paste ( ” i t e r a t i o n ” , k , ” f i n i s h e d ” ) )
p r i n t ( paste ( ”b a f t e r i t e r a t i o n ” , k , ” : ” ) )
p r i n t ( b )

}

## Graph o f the o p t i m a l s t o p p i n g boundary b
x <− l i n s p a c e ( 0 , 1 , n+1)
y <− b
s m o o t h i n g S p l i n e <− smooth . s p l i n e ( x , y , s p a r =0.35)
p lot ( s m o o t h i n g S p l i n e , y l i m=c ( 0 , 1 ) , t y p e= ’ l ’ , x l a b=” t ” , y l a b=”b ( t ) ” ,

co l= ’ b l u e ’ )

A.2 Calculation of alpha and beta from Examples 1 and 2

l i b r a r y ( r o o t S o l v e )

## Example 1
mu <− 1
lambda <− 1/2
sigma <− 2
m <− (1 / lambda )∗ log ( 2 )

fun a <− funct ion ( a l p h a ) (mu/ ( s igma ˆ2/ 2 ) ) ∗(1−1/2∗exp ( lambda∗ a l p h a ) )
−lambda∗ a l p h a

a l p h a <− uni root ( fun a , c ( 0 , m) ) $ r o o t

## Example 2
mu <− −1
lambda <− 4
sigma <− 2
M <− (1 / lambda )∗ log ( 2 )

fun b <− funct ion ( beta ) (mu/ ( s igma ˆ2/ 2 ) ) ∗(1−1/2∗exp ( lambda∗beta ) )
−lambda∗beta

beta <− uni root ( fun b , c (M, 1 0 0 ) ) $ r o o t
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