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ABSTRACT

We provide a systematic approach to validate the results of clustering methods on
weighted networks, in particular for the cases where the existence of a community
structure is unknown. Our validation of clustering comprises a set of criteria for
assessing their significance and stability. To test for cluster significance, we introduce a
set of community scoring functions adapted to weighted networks, and systematically
compare their values to those of a suitable null model. For this we propose a switching
model to produce randomized graphs with weighted edges while maintaining the
degree distribution constant. To test for cluster stability, we introduce a non parametric
bootstrap method combined with similarity metrics derived from information theory
and combinatorics. In order to assess the effectiveness of our clustering quality
evaluation methods, we test them on synthetically generated weighted networks with
a ground truth community structure of varying strength based on the stochastic block
model construction. When applying the proposed methods to these synthetic ground
truth networks’ clusters, as well as to other weighted networks with known community
structure, these correctly identify the best performing algorithms, which suggests their
adequacy for cases where the clustering structure is not known. We test our clustering
validation methods on a varied collection of well known clustering algorithms applied
to the synthetically generated networks and to several real world weighted networks.
All our clustering validation methods are implemented in R, and will be released in the
upcoming package clustAnalytics.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Data
Science, Network Science and Online Social Networks

Keywords Clustering, Weighted networks, Significance, Stability, Randomized graph, Bootstrap,
Mutual information, Stochastic block model, R

INTRODUCTION

Clustering of networks is a popular research field, and a wide variety of algorithms have
been proposed over the years. However, determining how meaningful the results are can
often be difficult, as well as choosing which algorithm better suits a particular data set. This
paper focuses specifically on weighted networks (that is, those in which the connections
between nodes have an assigned numerical value representing some property of the data),
and we propose novel methods to validate the community partitions of these networks
obtained by any given clustering algorithm. In particular, our clustering validation methods
focus on two of the most important aspects of cluster assessment: the significance and the
stability of the resulting clusters.

How to cite this article Arratia A, Renedo Mirambell M. 2021. Clustering assessment in weighted networks. Peer] Comput. Sci. 7:e600
http://doi.org/10.7717/peerj-cs.600


https://peerj.com/computer-science
mailto:argimiro@cs.upc.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.600
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.600

PeerJ Computer Science

We consider clusters produced by a clustering algorithm to be significant if there are
strong connections within each cluster, and weaker connections (or fewer edges) between
different clusters. This notion can be quantified and formalized by applying several
community scoring functions (also known as quality functions in Fortunato (2010)), that
gauge either the intra-cluster or inter-cluster density. Then, it can be determined that the
partition of a network into clusters is significant if it obtains better scores than those for a
comparable network with uniformly distributed edges.

On the other hand, stability measures how much a clustering remains unchanged under
small perturbations of the network. In the case of weighted networks, these could include
the addition and removal of vertices, as well as the perturbation of edge weights. This is
consistent with the idea that meaningful clusters should capture an inherent structure in
the data and not be overly sensitive to small and/or local variations, or the particularities
of the clustering algorithm.

Our goal is to provide a systematic approach to perform these two important clustering
validation criteria, which can be used when the underlying structure of a network is
unknown, because in this case different algorithms might produce completely different
results, and it is not trivial to determine which ones are more adequate, if any at all.

To assess the significance of communities structure, in general weighted networks,
we provide a collection of community scoring functions that measure some topological
characteristics of the ground-truth communities as defined by Yang ¢ Leskovec (2015)
for unweighted networks. Most of these topological characteristics focus on the relation
between the external and internal connectivity of clusters, density of edges and degree
distributions. Our scoring functions are proper extensions of those in Yang ¢ Leskovec
(2015) to weighted networks. A separate case is the clustering coefficient, a popular scoring
function in the analysis of unweighted networks. We examined several existing definitions
for the weighted case, being most relevant to us the descriptions given by Barrat et al.
(2004); Saramdiki et al. (2007), and McAssey ¢» Bijma (2015), and found the latter to be the
most versatile (for instance, it can be used in complete graphs where all the information is
given by the values of the edges, such as those generated from correlation networks). The
clustering coefficient of McAssey ¢» Bijma (2015) is defined in terms of an integral, and we
provide an efficient way of computing it. Then, to evaluate the significance (in a statistical
sense) of the scores produced by any scoring function, we compare them against null
models with similar properties but without any expectations of a community structure. For
this we propose an extension to weighted graphs of the switching model (Milo et al., 2003)
which produces random graphs by rewiring edges while maintaining the vertex degree
sequence. The idea is that a significant community in any given network should present
much better scores than those of the randomly generated ones.

As for the stability of clusters, it has been studied more widely for algorithms that work
on Euclidean data (as opposed to networks, weighted or not). For instance, Von Luxburg
(2010) uses both resampling and adding noise to generate perturbed versions of the
data. Hennig (2007) introduces bootstrap resampling (with and without perturbation) to
evaluate cluster stability. Also for Euclidean data, Vendramin, Campello & Hruschka (2010)
introduce a systematic approach for cluster evaluation that combines cluster quality criteria
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with similarity and dissimilarity metrics between partitions, and searches for correlations
between them. Our approach consists of a bootstrap technique with perturbations adapted
to clustering on networks, that resembles what Hennig does for Euclidean data. That is, the
set of vertices is resampled multiple times, and the clustering algorithms are applied to the
resulting induced networks. In this case, the perturbations are applied to the edge weights
after resampling the vertices, but the standard bootstrap method without perturbation can
be used on all networks, weighted or not.

To compare how the clusters of the resampled networks differ from the originals, we use
three measures. The adjusted Rand index (Hubert ¢ Arabie, 1985) is a similarity measure
that counts the rate of pairs of vertices that are in agreement on both partitions, corrected
for chance. Additionally, we use measures derived from information theory to compare
partitions such as the recently introduced Reduced Mutual Information (Newman, Cantwell
& Young, 2020), which corrects some of the issues with the original mutual information
or its normalized version (Darnon et al., 2005). For example, giving maximal scores when
one of the partitions is trivial, which in our case would mean that failed algorithms that
split most of the network into single vertex clusters would be considered very stable. Other
attempts at providing adjusted versions of the mutual information include Do (2002);
Vinh, Epps ¢ Bailey (2010) and Zhang (2015). The other information theory measure we
employ for the sake of comparison and control is the Variation of Information (VI) (Meild,
2007). The VI is a distance measure (as opposed to a similarity measure, like the Rand
index and mutual information) that actually satisfies the properties of a proper metric.

We apply these clustering quality evaluation methods on several real world weighted
networks together with a varied collection of well known clustering algorithms.
Additionally, we also test them on synthetic weighted networks based on the stochastic
block model construction (Holland, Laskey ¢ Leinhardt, 1983; Wang ¢ Wong, 1987), which
allows us to have predefined clusters whose strength can be adjusted through a parameter,
and which we can compare to the results of the algorithms for their evaluation.

Our main contributions are the following: a switching model for randomizing weighted
networks while maintaining the degree distribution, and its use together with the scoring
functions we adapted to the weighted case, to provide a general approach to the validation
of significance of clustering results. An implementation of a bootstrap method with
perturbation adapted to weighted networks, to test for stability. A model to generate
benchmark weighted networks based on the stochastic block model, which we use to test
our methodology for stability and significance of clusters. Additionally we contribute
with an R package clustAnalytics, which contains all the functions and methods for cluster
analysis that are explained in this paper.

The remainder of this paper is organized as follows. ‘Materials and Methods’ contains
the details of our methods for assessing clustering significance and stability, as well as a
description of the clustering algorithms we will put to test and the datasets. ‘Discussion’
presents the discussion of our experiments. ‘Conclusions’ presents our conclusions. Finally,
we put in an Appendix (“Appendix”) the technical details on the time complexity of our
algorithms. Our experiments results figures are reported separately in the Table S1 file,
which the reader can consult conveniently.
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!For every variable or function defined over
the unweighted graph, will use a “ ~” to
denote its weighted counterpart

MATERIALS AND METHODS

To determine if the partition of a graph into communities given by a clustering algorithm
provides significant results, we use the scoring functions defined in ‘Community scoring
functions’. Our method consists in evaluating these functions on clusters produced by a
given algorithm on both the original graph and on multiple samples of randomized graphs
generated from the original graph (see ‘Randomized graph’). Then, for each function we
see how the score of the original graph clusters compares to the scores of the randomized
graph clusters, as we can define a relative score (score of the original graph over the mean
of the scores of the random graphs). We also observe the percentile rank of the original
score of the graph in the distribution of scores from the randomized graphs. Depending
on the nature of the scoring function, a significant cluster structure will be associated with
percentile ranks either close to 1 (for scores in which higher is better) or 0 (when lower is
better).

For testing cluster stability, we implement a bootstrap resampling on the set of vertices of
the network, plus the addition of a perturbation to the weights of the edges in the induced
graph. The details of this methodology are described in ‘Bootstrap with perturbation’. The
Variation of Information (VI), Reduced Mutual Information (RMI) and Adjusted Rand
Index (ARI) introduced in ‘Materials and Methods’ are used as similarity measures. Then,
the bootstrap statistics are the values of these similarity measures comparing the resampled
bootstrap graphs to the original one.

On our experiments we evaluate the results of clustering on a selection of networks
with different community structure (‘Data’) with several well-known clustering algorithms
(“Clustering algorithms”). Additionally, we also test the algorithms on synthetic graphs
with a preset community structure constructed using stochastic block models (“Synthetic
ground truth models”). By varying one of the parameters of the model (1), we generate
networks that range from being mostly uniform (that is, with no community structure)
to having very strong communities. This allows us to see how our evaluation methods
respond in a controlled environment where the existence or not of strong clusters in the
network is known.

Community scoring functions

Here we will provide functions which will evaluate the division of networks into clusters,
specifically when the edges have weights. Using the scoring functions for communities
in unweighted networks given in Yang ¢» Leskovec (2015) as a reference, we propose
generalizations of most of them to the weighted case.

Basic definitions

Let G(V,E) be an undirected graph of order n =|V| and size m = |E|. In the case of a
weighted graph' G(V, E), we will denote =) _,_zw(e) the sum of all edge weights. Given
S C G a subset of vertices of the graph, we have ng =S|, ms=|{(u,v) €eE:ueS,v €S},
and in the weighted case #ig = Z(u,v)eﬁ:u,vesw((u’v))' We use w,,, instead of w((u,v)).
Note that if we treat an unweighted graph as a weighted graph with weights 0 and 1 (1 if
two vertices are connected by an edge, 0 otherwise), then m = 71 and ms =g forall SC V.
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2We assume the weight function w,, is
defined for every pair of vertices u, v of the
weighted graph, with w,, = 0 if there is no
edge between them.

3To prevent confusion between the
function dg(-) and the median value
(which only depends on G) d,,, we will
always refer to subgraphs of G with
uppercase letters.

Table 1 Community scoring functions f (S) for weighted and unweighted networks.

Unweighted f (S) weighted f (S)
1 Internal density ﬁ ,,s(,,;ﬂil) 7
1 Edges Inside ms s
1 Average Degree ZWLT 2,%
| Expansion f,f Zi
| Cut Ratio P P ns(;ir,s)
J Conductance 2,,12165 Zrhjs+65
| Normalized Cut e T e szs+z5 m
J Maximum ODF maxyes H(uv);(% MmaXyes EV;(TXW
| Average ODF n{Zueg W VI%ZMGS Zv;(i;/w

Associated to G there is its adjacency matrix A(G) = (Ajj) 1< j<n Where A;; = 1if (i,j) € E, 0
otherwise. We insist that A(G) only take binary values 0 or 1 to indicate existence of edges,
even in the case of weighted graphs. For the weights we will always use the weight function
w((i,])) = wj.

The following definitions will also be needed later on:

o cs=|{(u,v) €eE:ueS,v ¢S} is the number of edges connecting S to the rest of the
graph.

® C5=D (4)cEues.vgsWuv is the natural extension of cs to weighted graphs; the sum of
weights of all edges connecting S to G\ S.

e du)=y", LWy 1 the natural extension of the vertex degree d(u) to weighted graphs;
the sum of weights of edges incident to u.

o ds(u)=|{veS:(u,v)€E}| and ds(u) = Y esWuv are the (unweighted and weighted,
respectively) degrees” restricted to the subgraph S.

e d,, and d,, are the median values of d(u), ue V°.

The left column in Table 1 shows the community scoring functions for unweighted
networks defined in Yang ¢ Leskovec (2015). These functions characterize some of the
properties that are expected in networks with a strong community structure, with more ties
between nodes in the same community than connecting them to the exterior. There
are scoring functions based on internal connectivity (internal density, edges inside,
average degree), external connectivity (expansion, cut ratio) or a combination of both
(conductance, normalized cut, and maximum and average out degree fractions). Uparrow
(respectively, downarrow) indicates the higher (resp., lower) the scoring function value the
stronger the clustering.

On the right column we propose generalizations to the scoring functions which are
suitable for weighted graphs while most closely resembling their unweighted counterparts.
Note that for graphs which only have weights 0 and 1 (essentially unweighted graphs)
each pair of functions is equivalent (any definition that did not satisfy this would not be a
generalization at all).
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e Internal Density, Edges Inside, Average Degree: These definitions are easily and
naturally extended by replacing the number of edges by the sum of their weights.

e Expansion: Average number of edges connected to the outside of the community, per
node. For weighted graphs, average sum of edges connected to the outside, per node.

e Cut Ratio: Fraction of edges leaving the cluster, over all possible edges. The proposed
generalization is reasonable because edge weights are upper bounded by 1 and therefore
relate easily to the unweighted case. In more general weigthed networks, however, this
could take values well over 1 while lacking many “potential” edges (as edges with higher
weights would distort the measure). In general bounded networks (with bound other
than 1) it would be reasonable to divide the result by the bound, which would result in
the function taking values between 0 and 1 (0 with all possible edges being 0 and 1 when
all possible edges reached the bound).

e Conductance and Normalized Cut: Again, these definitions are easily extended using
the methods described above.

e Maximum and Average Out Degree Fraction: Maximum and average fractions of edges
leaving the cluster over the degree of the node. Again, in the weighted case the number
of edges is replaced by the sum of edge weights.

Some of the introduced functions (internal density, edges inside, average degree,
clustering coefficient) take higher values the stronger the clusterings are, while the others
(expansion, cut ratio, conductance, normalized cut, out degree fraction) do the opposite.

Clustering coefficient

Another possible scoring function for communities is the clustering coefficient or
transitivity: the fraction of closed triplets over the number of connected triplets of vertices.
A high internal clustering coefficient (computed on the graph induced by the vertices of a
community) matches the intuition of a well connected and cohesive community inside a
network, but its generalization to weighted networks is not trivial.

There have been several attempts to come up with a definition of the clustering
coefficient for weighted networks. One is proposed in Barrat et al. (2004) and is given
FTaT dl(l.)_ 5 Zj’ hw"jgw"hAijAjhAih. Note that this gives a local(i.e. defined for each
vertex) clustering coefficient.

by ¢;i =

While this may work well on some weighted networks, in the case of complete networks
(e.g., such as those built from correlation of time series as in Renedo ¢ Arratia (2016), we

obtain
o 1 wij +Wwin
“T A0 -1 ; 2
2wt 2w (n=2)3 wi+(n—2)) ,wi
 d()(n-=2)-2 d(i)(n—2)-2
_ (n—2~)[i‘(i)+(n—2)c~i(i) _1, ()
di)(n—2)-2

which does not give any information about the network.
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An alternative was proposed in McAssey ¢ Bijma (2015) with complete weighted
networks in mind(with weights in the interval [0, 1]), which makes it more adequate
for our case.

e For t €[0,1] let A; be the adjacency matrix with elements Afj =1ifwjj>tand 0
otherwise.

e Let C; the clustering coefficient of the graph defined by A,.

e The resulting weighted clustering coefficient is defined as

1
czf C, dt 2)
0

For networks where the weights are either not bounded or bounded into a different
interval than [0, 1], the most natural approach is to simply take

N
C:7/ C, dt, (3)
wJo

where w can be either the upper bound or, in the case of networks with no natural bound,
the maximum edge weight. The computation of this integral, which can be expressed

as a sum of the values of C; (a finite amount) is detailed in the “Weighted clustering
coefficient”.

It is a desirable property that the output of scoring functions remain invariant under
uniform scaling, that is, if we multiply all edge weights by a constant ¢ > 0, as the
community structure of the network would be the same. This holds for all of the measures
of the third group, which combine the notions of internal and external connectivity.

This means that these scores will be less biased in favour of networks with high overall
weight (for the internal connectivity based scores) or low overall weight (for the external
connectivity ones). It is particularly interesting for networks with weights that are not
naturally upper bounded by one, and facilitates comparisons between networks with
completely different weight distributions. When we compare each network’s scores to
those of a randomized counterpart generated by the switching model, though, the total
weight is kept constant, so even scores without this property could still give valuable
information.

Let G4(V, E,) be the weigthed graph obtained by multiplying all edge weights in E by
real positive number ¢. In this case, ns, = ns, ms, = Pms, cs, = ¢cs, ds, (u) = pds(u).
This means that the internal density, edges inside, average degree, expansion and cut ratio
behave linearly (with respect to their edge weights). Conductance, normalized cut and
maximum and average out degree fractions, on the other hand, remain constant under
these transformations. Since the notion of community structure is generally considered
in relation to the rest of the network (a subset of vertices belong to the same community
because they are more connected among themselves than to vertices outside of the
community), it seems reasonable to consider that the same partitions on two graphs whose
weights are the same up to a multiplicative positive constant factor have the same scores.
This makes the scores in the third group, the only ones for which this property holds, more
adequate in principle.
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For the chosen definition of clustering coefficient this property also holds, as all terms
in the integral in equation (3) behave linearly (the proof is immediate with a change of
variables), and that linear factor cancels out.

Modularity
As for the modularity (Newman, 2006b), it is defined as:
1 d(i)d(j)
Q=%i2j[wi,- ol GG (4)
Then, by multiplying the edges by a constant ¢ > 0, we get the graph G4(V,E,) of
modularity:
1 ¢*d(i)d(j)
=_— i~ |6(ci,¢
Qyp 2 2 [d)W] 2 (cirg)

(5)

d(i)d
¢Z[ (i) (7)}8( 66 = O,

which means that modularity is also invariant under uniform scaling.

Randomized graph

The algorithm proposed here to generate a random graph which will serve as a null model
“Recall wj; refers to the weight of the edge

between vertices i and j

is a modification of the switching algorithm described in Milo et al. (2003), Rao, Jana ¢
Bandyopadhyay, (1996). It produces a graph with the same weighted degree sequence as
the original, but otherwise as independent from it as possible. Each step of this algorithm
involves randomly selecting two edges AC and BD and replacing them with the new edges
AD and BC (provided they did not exist already). This leaves the degrees of each vertex
A, B, C and D unchanged while shuffling the edges of the graph.

One way to adapt this algorithm to our weighted graphs (more specifically, complete
weighted graphs, with weights in [0, 1]) is, given vertices A, B, C and D, transfer a certain
weight w from wac to wap, and from wpp to wac”. We will select only sets of vertices
{A, B, C, D} such that wac > wap and wpp > wpc, that is, we will be transferring weight
from “heavy” edges to “weak” edges. For any value of w, the weighted degree of the vertices
remains constant, but if it is not chosen carefully there could be undesirable side effects.

Selection of w
We distinguish between two types of weighted networks: those with an upper bound on
the possible values of their edge weights given by the nature of the data (usually 1, such
as in the Forex correlation network —see ‘Data’ below), and those without (such as social
networks where edge weights count the number of interactions between nodes). Networks
with negative weights have not been studied here, so 0 will be a lower bound in all cases.
However, in the case of networks which are upper and lower bounded, this results in
a very large number of edge weights attaining the bounds, which might be undesirable
(particularly networks like the Forex network, in which very few edges, if any, have weights
0 or 1) and give new randomized graphs that look nothing like the original data.
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The value of w that most closely translates the essence of the switching method for
unweighted graphs would perhaps be the maximum that still keeps all edges within their
set bounds. This method seems particularly suited to sparse graphs with no upper bound,
because it eliminates (by reducing its weight to zero) at least an edge per iteration. Other
methods without this property could dramatically increase the edge density of the graph,
constantly adding edges by transferring weight to them, while rarely removing them.

However, in the case of very dense graphs such as the Forex correlation network (or
any other graph similarly constructed from a correlation measure), this method results in
a large number of edge weights attaining the bounds (and in the case of the lower bound
0, removing the edge), which can reduce this density dramatically.

As an alternative, to produce a new set of edges with a similar distribution to those of the
n
ij=1
the mean) to remain constant after applying the transformation, and find the appropriate
value of w. The variance remains constant if and only if the following equality holds:

original network, we can impose the sample variance (i.e., ﬁ ot (wjj—m)?*, where m is

(wac —m)* 4 (wpp — m)? + (wap — m)* + (wpc — m)?
= (wac—w—m)*+ (wpp—w—m)*+
(Wap +W —m)* + (wpe +w —m)* (6)

& 2W? +W(—wac — wpp +wap+wpc) =0.

The solutions to this equation are w = 0 (which is trivial and corresponds to not applying

any transformation to the edge weights) and w = YACEWE—WAD=WEC

While this alternative can result in some weights falling outside of the bounds, in the
networks we studied it is very rare, so it is enough to discard these few steps to obtain the
desired results.

Figure 1 shows how the graph size decreases as the algorithm iterates with the maximum
weight method, which also produces a dramatic increase in the variance. The constant
variance method on the other hand does not remove any edges and the the size stays constant
(as well as the variance, which is constant by definition, so the their corresponding lines
coincide at 1).

However, applying the constant variance method on networks that are sparsely connected
(such as most reasonably big social networks) results in a big increase in the graph size,
to the point of actually becoming complete weighted graphs (see Fig. 2). Meanwhile, the
maximum weight method does not significantly alter the size of the graph.

Therefore, we will use the constant variance method only for very densely connected
networks, such as correlation networks, which are in fact complete weighted graphs. For
sparse networks, the maximum weight method will be the preferred choice.

Note that if all edge weights are either 0 or 1, in both cases this algorithm is equivalent to
the original switching algorithm for discrete graphs, as in every step the transferred weight
will be one if the switch can be made without creating double edges, or zero otherwise
(which corresponds to the case in which the switch cannot be made).
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Figure 1 Normalized size, variance and variation of information for the Louvain clustering after ap-
plying the proposed algorithm on the Forex graph. The horizontal axis is on logarithmic scale.
Full-size Gal DOI: 10.7717/peerjcs.600/fig-1
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Figure 2 Normalized size, variance and variation of information for the Louvain clustering after ap-
plying the proposed algorithm on the karate club graph. The horizontal axis is on logarithmic scale.
Full-size Ga) DOI: 10.7717/peerjcs.600/fig-2

Number of iterations

To determine the number Tm of iterations for the algorithm to sufficiently “shuffle”
the network (where m is the size of the graph, and T a parameter we select), we study
the variation of information (Meild, 2007) of the resulting clustering (in this case using
the Louvain algorithm, though other clustering algorithms could be used instead) with
respect to the initial one. (In “Clustering similarity measures” we discuss variation of
information, and other clustering similarity metrics that we use in this work, and in
“Clustering algorithms” we detail all the clustering algorithms that we put to test.) Figs. 1
and 2 show a plateau where the variation of information stops increasing after around
T =1 (which corresponds to one iteration per edge of the initial graph). This is consistent
with the results for the original algorithm in Milo et al. (2003) for unweighted graphs, and
we can also select =100 as a value that is by far high enough to obtain a sufficiently
mixed graph.
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Bootstrap with perturbation

Non-parametric bootstrap, with and without perturbation or “jittering”, has been used to
study the stability of clusters of euclidean data sets (Hennig, 2007). For graphs, bootstrap
resampling can be done on the set of vertices, and then build the resampled graph with the
edges that the original graph induces on them (i.e. two resampled vertices will be joined
by an edge if and only if they were adjacent in the original graph, with the same weight
in the case of weighted graphs). As for adding noise to avoid duplicate elements, it can be
added to the edge weights. We suggest generating that noise from a normal distribution
truncated to stay within the bounds of the edge weights of each graph (which means it can
be truncated on one or both sides depending on the graph).

Then, to deal with copies of the same vertex on the resampled graph, it seems necessary
to add heavy edges between them to reflect the idea that a vertex and its copy should
be similar and well connected between each other. Not doing so would incentivize the
clustering methods to separate them in different clusters, because they generally try to
separate poorly connected vertices. We can distinguish two cases:

e Graphs with edge weights built from correlations or other similar graphs which by their
nature have a specific upper bound on the edge weights (usually 1): We assign the value
of the upper bound to the edge weight. After applying the perturbation, this will result
in a weight which will be close to that upper bound.

e Other weighted graphs, where no particular upper bound to the edge weights is known:
To assign these edges very high weights (to reflect the similarity that duplicate vertices
should have in the resampled network) within the context of the network, one option is
to sample values from the highest weights (e.g. the top 5%) of the original edge set.

Synthetic ground truth models

Another way of comparing and assessing the fit of a clustering algorithm is to compare it
to a ground truth community structure if there is one, which is seldom known in reality.
Alternatively one can synthetically generate a graph with a ground truth community
structure. This will allow us to verify that the results of the algorithm match the expected
outcome. For the particular case of time series correlation networks one can generate the
time series using a suitable model that imposes a community structure with respect to
correlations, such as the Vector Autoregressive (VAR) model construction in Arratia &
Cabaria (2013), and then compute the values of the edges accordingly.

A common benchmark for clustering algorithm evaluation is the family of graphs with a
pre-determined community structure generated by the I-partition model (Condon & Karp,
2001; Girvan & Newman, 2002; Fortunato, 2010). It is essentially a block-based extension
of the Erdos-Renyi model, with I blocks of g vertices, and with probabilities p;, and p,,; of
having edges within the same block and between different blocks respectively.

A more general approach is the stochastic block model (SBM) (Holland, Laskey ¢
Leinhardt, 1983; Wang & Wong, 1987), which uses a probability matrix P (which has to be
symmetric in the undirected case) to determine probabilities of edges between blocks. P;;
will be the probability of having an edge between any given pair of vertices belonging to
blocks i and j respectively. Then, having higher values in the diagonal than in the rest of
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the matrix will produce strongly connected communities. Note that subgraph induced by
each community is in itself an Erdos-Renyi graph (with p = P;; for the community 7). This
model also allows having blocks of different sizes. While this model can itself be used for
community detection by trying to fit it to any given graph (Lee ¢» Wilkinson, 2019), here
we will simply use it as a tool to generate graphs of a predetermined community structure.

To obtain a weighted SBM (WSBM) graph, we propose a variation of the model which
produces multigraphs, which can then be easily converted into weighted graphs by setting
all edge weights as their corresponding edge count. In this case, probability matrix of the
original SBM will be treated as the matrix of expectations between edges of each pair of
blocks. Then, we simply add edges one by one with the appropriate probability (the same at
each step) that will allow each weight expectation to match its defined value. By definition,
the probability of the edge added at step k to join vertices i and j is given by

.. Eij
Plex=(i,j)) = Fsteps’ (7)

where Ej; is the expected number of edges between them given by the expectation matrix.
The sum of these probabilities for all vertices must add up to one, which gives

1
#steps=—> (ICIGIE:)). (8)

Note that the % factor is added because we are using undirected graphs, and we do not
want to count edges (i,) and (j,7) twice.

This process produces a binomially distributed weight for each edge, though these
distributions are not independent, so independently sampling each edge weight from the
appropriate binomial distribution would not be equivalent.

We will use a graph sampled from this model with block sizes (40,25,25,10), with a
parametrized expectation matrix:

0.034 0.01 0.01 0.03
0.01 0.022 0.05 0.02
0.01 0.05 0.02a2 0.01
0.03 0.02 0.01 0.03A

9)

With A =1 the network will be quite uniform, but as it increases, the high values in the
diagonal compared to the rest of the matrix will result in a very strong community structure,
which should be detected by the clustering algorithms.

There are other possible extensions of the stochastic block model to weighted
networks such as (Aicher, Jacobs ¢» Clauset, 2014), which can have edges sampled from
any exponential family distribution. While our approach produces Bernoulli distributed
edges (which can be approximated by a Poisson distribution in most cases), the edge
distributions obtained in Aicher, Jacobs ¢ Clauset (2014) are not independent from each
other, so the results are not exactly equivalent. For instance, in our case the total network
weight is fixed and will not vary between samples.
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Table 2 Contingency table of partitions &7 and &', with labelings r and s.

4 Z; i sum
P C11 C12 C1s a
2, €1 22 s a
P Cr1 CRr2 CRS a,
Sum b, b, bs n=>y cj

Clustering similarity measures

To compare and measure how similar two clusterings of the same network are, we will
use two measures based on information theory, the Variation of Information (VI) and the
Reduced Mutual Information (RMI), and another more classical measure, the (adjusted)
Rand index which relates to the accuracy. All of these measures are constructed upon
the contingency table of the labeling, which is summarized in Table 2, and the terms are
explained below.

Consider a set of n elements and two labelings or partitions, one labeled by integers
r=1,...,R and the other labeled by integers s=1,..., S, let’s say & = {H,..., P} and
P ={P|,..., Z;}. Define a, as the number of elements with label 7 in the first partition,
bs the number of elements with label s in the second partition, and ¢,; be the number of
elements with label r in the first partition and label s in the second. Formally,

S

a1’=|t@r|=zcrs (10)
s=1
R

bs:|<@5/|:zcrs (11)
r=1

s = | P NP (12)

Define the probability P(r) (respectively, P(s)) of an object chosen uniformly at random
has label r (resp. s), and the probability P(r,s) that it has both labels  and s, that is

pm:%, p(g:%, P(r,s):% (13)

Variation of information

The variation of information between two clusterings, a criterion introduced in Meild
(2007), is defined as follows.

Definition 2.1 The entropy of a partition &P ={Z,..., Pr} of a set is given by:

R
H(r)=—=Y_P(r)log(P(r)), (14)

r=1

Arratia and Renedo Mirambell (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.600 13/27


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.600

PeerJ Computer Science

Definition 2.2 The mutual information is defined as:

P
I(r;s)_ZZP(r 5)10g<P((;PS())) (15)

r=1 s=1

Definition 2.3 The variation of information of partitions &7 and ' is given by:

VI(r;s) =5 (r)+ 5 (s)—21(r;s) (16)

Intuitively, the mutual information measures how much knowing the membership of
an element of the set in partition & reduces the uncertainty of its membership in &?’. This
is consistent with the fact that the mutual information is bounded between zero and the
individual partition entropies

0<I(r;s) <min{J7(r), 7 (s)}, (17)

and the right side equality holds if and only if one of the partitions is a refinement of the
other.

Consequently, the variation of information will be 0 if and only if the partitions are equal
(up to permutations of indices of the parts), and will get bigger the more the partitions
differ. It also satisfies the triangle inequality, so it is a metric in the space of partitions of
any given set.

Reduced mutual information
The mutual information (Cover ¢ Thomas, 1991), often in its normalized form is one
of the most widely used measures to compare graph partitions in cluster analysis. More
recently (Newman, Cantwell & Young, 2020) proposed the Reduced Mutual Information
(RMI), an improved version which corrects the high mutual information values given
to quite dissimilar partitions in some cases. For instance, if one of the partition is the
trivial one splitting the network into n clusters of one element each, the standard mutual
information will always take the maximal value (1, in the case of the normalized mutual
information), even if the other is completely different. More generally, any partitions will
always have maximal mutual information with all of their filtrations. This is crucial when
comparing clustering algorithms, as some algorithms will output trivial partitions into
single-element clusters when they fail to find a clustering structure. Therefore, it would not
be possible to reliably measure the stability of these clustering methods with the standard
mutual information.

Given r and s two labelings of a set of n elements, the Reduced Mutual Information is
defined as:

RMI(r;s)=1I(r;s)— %logQ(a, b) (18)

where Q2(a, b) is an integer equal to the number of R x S non-negative integer matrices with
row sums a = {a,} and column sums b = {b;}. Details on how to compute or approximate
Q(a, b) are given in the “Methods for counting contingency tables”.
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The Reduced Mutual Information can also be defined in a normalized form (NRMI),
in the same way the standard mutual information is, by dividing it by the average of the
values of the reduced mutual information of labelings a and b with themselves:

RMI(r;s)
[RMI(r;7)+RMI(s; )]
I(r;s)— %logQ(a, b)
%[H(r) +H(s)— %(logQ(a,a) +logQ2(b,b))]

NRMI(r;s) =

1
2 (19)

We will use this normalized form to be able to compare more easily the results of
networks with different number of nodes, as well as to compare them to other similarity

measures.

Rand index

The Rand Index (RI) and the different measures derived from it (Hubert ¢» Arabie, 1985) are
based on the idea of counting pairs of elements that are classified similarly and dissimilarly
across the two partitions &2 and &?'. There are four types of pairs of elements:

e typel: elements are in the same class both in & and &’

e type II: elements are in different classes both in &2 and &’

e typeIll: elements are in different classes in & and in the same class in &'.
e typeIV: elements are in the same class in &7 and different classes in &',

Then, similar partitions would have many pairs of elements of types I and II (agreements)
and few of type III and IV (disagreements). The Rand index is defined as the ratio of
agreements over the total number of pairs of elements.

Using the terms of the contingency table (Table 2), the Rand index is given by

R S
n Ty ar b
I = 2 - 2
RI(r.s) (2)+ Zs(z) [§<2)+§(2>] (20)
An adjusted form of the Rand index (Hubert ¢ Arabie, 1985) introduces a correction to

account for all the pairings that match on both partitions because of random chance. The
Adjusted Rand Index (ARI) is defined as:

Index — Expected Index

ARI(r;s) = 21
(ris) Maximum Index — Expected Index’ @)
which in terms of the contingency table (Table 2) can be expressed as:
Crs\ __ ar bs n

)+ -1, () 2 BH)1/6)

Clustering algorithms

We have selected five well known state-of-the-art clustering algorithms based on different
approaches, and all suitable for weighted graphs. They will be applied to all of the networks
to then evaluate the results:
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1. Louvain method (Blondel et al., 2008), a multi-level greedy algorithm for modularity
optimization. We use the original algorithm, without the resolution parameter (i.e.
with resolution y =1).

2. Leading eigenvector method (Newrman, 2006a), based on spectral optimization of
modularity.

3. Label propagation (Raghavan, Albert ¢» Kumara, 2007), a fast algorithm in which nodes
are iteratively assigned to the communities most frequent in their neighbors.

4. Walktrap (Pons & Latapy, 2005), based on random walks.

5. Spin-glass (Reichardt ¢» Bornholdt, 2006), tries to find communities in graphs via a
spin-glass model and simulated annealing.

In any application, the choice of the clustering algorithm will be hugely dependant on
the characteristics of the dataset, as well as its size. The methods proposed here, though,
can be applied to evaluate any combination of weighted graph and clustering algorithm.

Data

e Zachary’s karate club: Social network of a university karate club (Zachary, 1977). The
vertices are its 34 members, and the edge weights are the number of interactions between
each pair of them. In this case, we have a “ground truth” clustering, which corresponds
to the split of the club after a conflict, resulting into two clusters.

e Forex network: Network built from correlations between time series of exchange rate
returns (Renedo ¢ Arratia, 2016). It was built from the 13 most traded currencies and
with data of January 2009. It is a complete graph of 78 edges (corresponding to pairs of
currencies) and has edge weights bounded between 0 and 1.

e News on Corporations network: In this network, a list of relevant companies are the
nodes, while the weighted edges between them are set by the amount of times they have
appeared together in news stories over a certain period of time (in this instance, on
2019-03-13). It has 899 nodes and 13,469 edges.

e Social network: A Facebook-like social network for students from the University of
California, Irvine (Opsahl ¢ Panzarasa, 2009). It has 1899 nodes (students) and 20,296
edges, weighted by the number of characters of the messages sent between users.

e Enron emails: a network composed of email communications among Enron employees
(Klimt & Yang, 2004). The version of the dataset used here is available in the igraphdata
R package (Csardi, 2015), and consists of a multigraph with 184 vertices (users) and
125,409 edges, corresponding to emails between users. We convert it to a an undirected
weighted graph by using as weights for the edges the number of edges in the multigraph
(i.e. the number of emails between the corresponding users).

Software

All the methods proposed here are implemented in R (R Core Tearm, 2020), and will be
released in an upcoming package. This includes all of the significance functions and the
adaptations to the existing boostrap methods to make them work on weighted graphs.
All the code interacts with igraph objects (Csardi ¢ Nepusz, 2006) for easy testing and
manipulation of the graphs, as well as allowing the use of already implemented clustering
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methods and other existing functions for exploring graphs. The more computationally
intensive parts such as the switching model have been written in C++ for better efficiency,
and are called from R through Repp (Eddelbuettel ¢ Frangois, 2011; Eddelbuettel, 2013).
Our code is available online: https://github.com/martirm/cluster_assessment.

DISCUSSION

Cluster Significance

As explained in the Materials and Methods section, to test for cluster significance of a
given clustering algorithm, we apply the scoring functions defined in “Community scoring
functions” to the clustering produced on the original graph and on randomized versions
obtained by the method described in “Randomized graph”. It should be expected that
whenever the communities found by an algorithm on the original graph are significant,
they will receive better scores than those found by the same algorithm on a graph with no
actual community structure.

The results of computing these scores on the clustering obtained by the algorithms on
each of the networks can be seen on Tables S1.1, S1.2,51.3,51.4, S1.5 and S1.6 (recall that 4
identifies scores for which higher is best, and | means lower is best). For each combination
of scoring function and algorithm, we represent its value on the original network, its mean
across multiple samples of its randomized switching model, and the percentile rank of the
original score in the distribution of randomized graph scores. This percentile rank value
serves as a statistical test of significance for each of the scores: a score is significant if its
value is more extreme (either higher or lower, depending on its type) than most of the
distribution.

It is important to note that some of the scores greatly depend on the number of clusters,
and cannot adequately compare partitions in which that number differs. For instance,
internal density can easily be high on small communities, while it will generally take lower
values on bigger ones, even when they are very well connected. This can result in networks
with no apparent community structure having high overall internal density scores just
because they are partitioned into many small clusters.

In comparison, scores that combine both internal and external connectivity
(conductance, normalized cut, out degree fractions), clustering coefficient, and modularity
suffer less from this effect and seem more adequate in most circumstances. These also
happen to be the scores that are invariant under the multiplication of the weights by
positive constants (see ‘Definitions’).

We suggest focusing on the relative scores (the score of the actual network over the mean
of the randomized ones) to simplify the process of interpreting the results, especially when
trying to compare graphs of different nature. With relative scores, anything that differs
significantly from 1 will suggest that the clustering is strong. For instance, in Fig. 3 we have
the modularity of the stochastic block model for each algorithm, and for different values of
the parameter A (which will give increasingly stronger clusters). While the algorithms find
results closer to the ground truth the bigger A is, only the relative scores give us that insight.
However, when comparing several clustering methods on the same network (and not
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Figure 3 Scores of the weighted stochastic block model as a function of the parameter A, for each of
the algorithms.
Full-size Gl DOI: 10.7717/peerjcs.600/fig-3

simply trying to determine if a single given method produces significant results), absolute
scores are more meaningful to determine which one is best.

For the weighted stochastic block model graph, the clustering algorithms get results
closer to the ground truth clustering the bigger the A parameter is, as one would expect,
and for A > 30 the results perfectly match the ground truth clustering outcome in almost
all cases (a bit earlier for the Louvain, Walktrap and spinglass cases, see Fig. 4). The relative
scores match these results, and get better as A increases as well (Fig. 3). Note that in Fig. 3,
there are some jumps for the relative modularity in the spin-glass case, which are caused
by the instability of this algorithm (see “Cluster stability”). This effect is no longer present
when the structure of the network is stronger (A > 8).

In Table S1.1, corresponding to A = 15, we can see how for the Louvain algorithm, the
scores are more extreme (lower when lower is better, higher when higher is better) than
those of the randomized network in almost all circumstances. In the case of the leading
eigenvector algorithm the scores are slightly worse, but almost all of them still fall within
statistical significance (if we consider p-values < 0.05). In both cases, the only metric that
is better in the random network is internal density, due to the smaller size of the detected
clusters (which is why by itself internal density is not a reliable metric, as even in a network
with very poor community structure it will be high for certain partitions into very small
clusters that arise by chance). For both the label propagation and the Walktrap algorithms,
the real network scores are not as close to the edge of the distribution of random scores,

but they are still much better than the mean in all meaningful cases (the only exceptions
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Figure 4 VI distance between the ground truth clustering and the result of each of the algorithms for
the weighted stochastic block model (WSBM), as a function of the parameter A.
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are the internal density and edges inside, which are hugely dependent on cluster size and
are therefore inadequate to compare partitions with a different number of clusters).

In the case of the karate club network (Table S1.2), the label propagation algorithm gets
the closest results to the ground truth clustering, and this is reflected in most scores being
better than those of other methods. This does not apply to the modularity though, which
is always higher for the Louvain and spin-glass, which produce identical clusters (this is to
be expected, because Louvain is a method based on modularity optimization).

On the Forex graph (Table S1.3), we can see that both the leading eigenvector and
Walktrap algorithms produce almost identical results splitting the network into two
clusters, while the spin-glass algorithm splits it into three and Louvain into four. The scores
which are based on external connectivity give better results to the Walktrap and leading
eigenvector, while the spin-glass partition has slightly better clustering coefficient and
better modularity (with Louvain having very similar values in those two scores).

It is also important to disregard the results of the scoring functions whenever the
algorithms fail to distinguish any communities and either groups the whole network
together or separates each element into its own cluster (such as the label propagation
algorithm on the Forex network, seen in Table S1.3). In this case, the scores which are
based on external connectivity will be optimum, as the cut ¢; of the partition is 0, but
that of course does not give any information at all. In addition, the normalized cut and
conductance could be not well defined in this case, as it is possible to have a division by 0
for some of the clusters.

As for the news on corporations graph (Table S1.4), the results and in particular the
number of clusters vary greatly between algorithms (from 82 clusters for the Walktrap to
only 2 for the label propagation). While the label propagation algorithm scores well on
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some measures due to successfully splitting to very weakly connected components of the
network, others such as the clustering coefficient or internal density are very low. Louvain
and spin-glass have very similar scores across most measures and seem to be the best,
though leading eigenvector does have better conductance and normalized cut. In this case
the high variation in number of clusters across algorithms that still score highly could
suggest that there is not a single predominant community structure in the network.

In the Enron graph (Table S1.5) Louvain also produces the best results for most scores,
particularly in conductance and normalized cut, and it significantly surpasses all other
algorithms while having larger clusters, with the only exception of label propagation, which
partitions the network into much smaller clusters. The spin-glass algorithm stands out as
having by far the worse results across all scores, even though its number of clusters (12) is
the same as in leading eigenvector and similar to Louvain.

For the social network (Table S1.6), the Louvain, leading eigenvector and label
propagation algorithms produce the same number of clusters (with spin-glass being
also very close), which allows an unbiased comparison of scores. In this case, leading
eigenvector has better results for almost all scores, except for clustering coefficient and
modularity, for which Louvain is again the best algorithm. This huge disparity may be
explained by the fact that modularity compares edge weights to a null model that considers
the degrees of their incident vertices, and does not only discriminate between internal and
external edges (as most of the scoring functions do).

Overall the Louvain algorithm seems to be the best at finding significant clusters,
performing consistently well on a variety of weighted networks of very different nature.
It is worth noting though that there are some limitations to it (and all modularity based
methods in general) in terms of resolution limit (Fortunato ¢ Barthélemy, 2007) that can
appear when there are small communities in large networks, though there are methods to
address it, such as the use of a resolution parameter (Arenas, Ferndndez ¢ Gémez, 2008).

Cluster stability

Using the non-parametric bootstrap method described in “Bootstrap with perturbation”,
we resample the networks 999 times (R = 999), apply clustering algorithms to them, and
compare them to their original clustering with the metrics from “Clustering similarity
measures”. Stable clusterings are expected to persist through the process, giving small
mean values of the variation of information, and high (close to 1) values of the normalized
reduced mutual information and the Rand index. The results of the same method applied to
the randomized versions of each network (see “Randomized graph”) are also included, to
have reference values for the stability of networks where there is no community structure. If
the values of the clustering similarity measures, for the original and randomized networks,
happened to be close together, that would suggest that the chosen algorithm produces a
very unstable clustering on the network.

We observe in Table S1.7 that for the stochastic block model example graph, all
algorithms except for spin-glass produce very stable clusters, which is consistent with the
fact that we chose parameters to give it a very strong community structure. Meanwhile,
clustering algorithms applied to the Zachary and Forex networks (Table S1.8 and S1.9)
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produce clusters which are not as stable, but still much better than their baseline randomized
counterparts. Note that the stability values for the label propagation algorithm in the Forex
network (Table 51.9) should be ignored, as in that instance the output is a single cluster
(see Table S1.3) which does not give any information. It is clear that while it works on
less dense networks, the label propagation algorithm is not useful for complete weighted
networks and it fails to give results that are at all meaningful.

On the news on corporations graph (Table 51.10) spin-glass is again the most unstable
algorithm, with results for the RMI and ARI (which are both close to 0) that suggest that
the clusters of the original network and all the resampled ones are completely unrelated. In
this case the label propagation algorithm is the most stable, while the rest of the algorithms
are not as good. This might be in part explained by the fact that its clusters are much
bigger than in other networks, which allows them to remain strongly connected after small
perturbations.

Finally, we observe that algorithms on the Enron graph (Table S1.11) produce the most
unstable clusters out of all that were tested, which would suggest that the network does not
have a single prevalent clustering structure that can be consistently detected, at least in the
weighed graph configuration that we tested.

As a general remark on stability observed from all resulting experiments is that the
spin-glass algorithm is the most unstable across the networks we tested, which are a diverse
representation of different kinds of weighted networks.

CONCLUSIONS

We have successfully observed how the community scoring functions, combined with the
switching model, can easily help distinguish networks which have a community structure
from others that do not. A combination of a network and a clustering algorithm can be said
to produce significant clusters when their scores stand out from the distribution of scores
produced by the same algorithm on the collection of randomized graphs produced by the
switching model. The experiments conducted on the stochastic block model networks of
varying community strength support this hypothesis. This will be useful when working
with networks for which there is little information available, and one wants to determine
whether the results obtained from any given clustering algorithms do reflect an actual
community structure or if they are simply given by chance.

We recommend avoiding the scoring functions that can be heavily influenced by
variables like the number of clusters or their size (like internal density, which favours
smaller clusters), because the information they provide is hard to interpret in a systematic
manner. In comparison, functions that combine internal and external connectivity, like
conductance or normalized cut, seem more robust. However, we observed a tendency of
these measures to favour partitions into fewer bigger clusters, which makes comparisons
difficult when we want to compare partitions with a different number of parts. In contrast,
both modularity and clustering coefficient do not seem to be so dependant on the number
of communities in the partition, which is a relevant advantage.

We remark that our approach consists of a global analysis of the partitions, but it is
possible to perform similar evaluations based on individual scores of each cluster. In this
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case, some of the scoring functions that have not proved very useful might provide a more
meaningful insight into the local structure of the partition, as it is possible to have both
strong and weak clusters in the same network.

Additionally, the use of the switching model to generate randomized graphs provides
a valuable point of reference, especially when we do not have much information on the
structure of the network. The methods proposed here to test cluster significance can also
be used with any other scoring functions, which could even be customized depending on
the characteristics that one might want to prioritize in any given network clustering, such
as giving more emphasis to internal connectivity, or external connectivity, or scores that
naturally favour larger or smaller clusters.

In a more particular note, and according to our analyses, the Louvain algoritm, and to a
lesser extent, the Walktrap algorithm, seem to be the most stable while producing significant
clusterings, as specified by our scoring functions and across all networks considered. This
reaffirms Louvain as one of the state-of-the-art clustering algorithms.

APPENDIX

Computational complexity of scoring functions
Weighted clustering coefficient

Let I' be the number of connected triplets in the graph and y the number of closed triplets
(i.e., 3 times the number of triangles). As before I'(t) and y () are their respective values
when only edges with weight greater or equal than ¢ are considered. Then, the clustering
coefficient or transitivity is defined as:

c_Lf 7w

w Ji=o I'(¢) ’ (23)

This is an integral of a step function that takes a finite number of values (bounded by the
number of different edge weights) which we will compute as follows:

1. Construct a hash table of all edges with their corresponding weights to be able to search
if there is an edge between any two edges (and obtain it’s weight) in constant time.
Complexity: '(m)

2. Construct a hash table for each vertex containing all its neighbors. Can be done by
iterating once over the edges and updating the corresponding tables at each step. This
will be used to iterate over the connected triplets incident to each vertex. Complexity:
O (m)

3. Construct a sorted list containing the edge weights at which either a connected triplet
or a triangle appears (i.e., the maximum edge weight of that triangle or triplet), and an
associated variable for each indicating whether it corresponds to a triangle or a triplet.
For this, we iterate over the connected triplets using the hash tables from step 2, and for
each, we check if it also forms a triangle by checking the hash table from step 1 (which
allows each iteration to be done in constant amortized time). This step has complexity
O (T'logl"), as the list has I' + y elements, and (I'+y) € O(T).

4. We iterate the list from step 3 and compute the cumulative sums of connected triplets
and closed connected triplets (which correspond to y (t) and I'(¢) for increasing values
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r(t)
I'(t)’

(Eq. (23)). This involves &'(I") steps of constant complexity.

of ¢ in the list). This gives us all values of from which we compute the integral

Therefore, the overall complexity of the algorithm is &'(m+ I"'logI"). Because I' is
bounded by m?, we can also express the complexity only in terms of m (which will then be
O(m?)), but that bound is not tight in most graphs.

Other scoring functions

Computing 1, fing, €s (for all values of S), as well as all vertex degrees and out degrees
has complexity '(m), as it can be done sequentially by reading the edge list and updating
the appropriate values as necessary. This means that all scoring functions except for the
clustering coefficient, which are derived from these values, can be computed very efficiently.

Methods for counting contingency tables

To compute the number of contingency tables with fixed margins needed to obtain the value
of the reduced mutual information, we mainly use the analytical approximation suggested
by Newman, Cantwell ¢ Young (2020), which works whenever the number of clusters is
substantially smaller than the number of nodes. This works well in most of the cases we
study, except for the News graph when clustered with the Walktrap algorithm, which
produces many single node clusters. For this case, we use a hybrid approach combining the
analytical approximation for the clusters with more than one element, and then extending
it to the full contingency table with the Markov chain Monte Carlo method described by
Diaconis & Gangolli (1995). This estimates the size of the set by defining a nested sequence
of subsets and obtaining the ratio between the size of each one of them and its predecessor
with a Monte Carlo approximation.

Our solution consists of sorting and rearranging the rows and columns of the original
contingency table so that smaller elements sit at the top left part of the table. Then, we use
the analytical approximation on the submatrix formed by rows and columns with sums
strictly greater than one (which will sit on the bottom right corner). This will be the size of
the first subset of the chain, and the rest are estimated successively with the Markov chain
Monte Carlo method.

This method works well on the contingency tables generated by the Walktrap clustering
on our News graph, unlike the analytical approximation alone, which is inaccurate, or the
Monte Carlo method alone, which is much slower. However if the RMI is to be used to
compare partitions of very large graphs, establishing some general criteria to determine the
largest subset that can be analytically estimated with enough accuracy might be needed,
with the goal of minimizing the need for costly Monte Carlo approximations. This topic
has a lot of potential to be studied in future work, and which we hope to address in the
future in our clustAnalytics package.
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