
Empirical Evidence for MPSoCs in Critical Systems:
The Case of NXP’s T2080 Cache Coherence

Roger Pujol∗†, Hamid Tabani†, Jaume Abella†‡, Mohamed Hassan§ and Francisco J. Cazorla†‡
∗ Universitat Politecnica de Catalunya, Spain † Barcelona Supercomputing Center, Spain

‡ Maspatechnologies S.L., Spain § McMaster University, Canada

Abstract—The adoption of complex MPSoCs in critical real-
time embedded systems mandates a detailed analysis of their
architecture to facilitate certification. This analysis is hindered
by the lack of a thorough understanding of the MPSoC
system due to the unobvious and/or insufficiently documented
behavior of some key hardware features. Confidence in those
features can only be regained by building specific tests to
both, assess whether their behavior matches specifications and
unveil their behavior when it is not fully known a priori. In
this line, in this work we develop a thorough understanding
of the cache coherence protocol in the avionics-relevant NXP
T2080 architecture.

I. INTRODUCTION

The use of multicore processors and COTS Multipro-
cessors Systems on Chip (MPSoCs) platforms [5, 17]
is settling up in domains like avionics, automotive, and
space [10, 14, 9] due to the need for higher performance.
However, the complex hardware architecture of modern
MPSoCs hinders their adoption in the safety-critical do-
main, because it is mandatory to achieve a thorough under-
standing of the system’s behavior and how resources are
shared (e.g., shared multi-level caches and complex cache
coherence) to derive meaningful timing bounds and hence,
ensure system predictability and certifiability [3].

Unfortunately, understanding the architecture of COTS
MPSoCs is impeded by multiple factors, including the
MPSoC complexity, intentionally hidden details for in-
tellectual property reasons, and poor documentation. In
this line, some authors already reported different observed
behavior of the coherence protocol to that reported in
the Technical Reference Manuals (TRMs) [12]. Others
reported discrepancies in the hardware monitors between
the observed values and the description provided in the
TRM [1, 11, 16].

We contend that empirical evidence of the correctness
of key multicore features affecting timing should be devel-
oped, instead of assuming the correctness of the descrip-
tions in the TRMs. In this work, we develop such empirical
evidence for the NXP T2080 SoC [5], which is relevant in
the avionics domain [10]. In particular, we show how it can
lead to a thorough understanding of one of the most com-
plex architectural features: cache coherence. Apart from
capturing the details of the coherence protocol deployed
by the SoC, our experiments reveal some behavior that will
affect the timing analysis and is not well-documented in the
TRMs, including unexpected coherence-related messages,
and incomplete and unobvious event monitor behavior.

II. SETUP

The NXP T2080 SoC [5] (see Figure 1), assessed for
its use in avionics, features four PowerPC e6500 cores [4],
each with its private instruction and data cache (IL1 and
DL1, respectively) as well as a private Memory Man-
agement Unit (MMU). Each core communicates with the
shared L2 cache via the cache-core interface (CCI). The
L2 cache is shared between all the cores. A “CoreNet” co-
herence fabric (CCF) provides access to the DDR SDRAM

Fig. 1: Simplified block diagram of the T2080

memory controller as well as other interfaces present in the
board like the Direct Memory Access (DMA). The L2 has
a single port to the CCF whose access is controlled by the
Bus Interface Unit (BIU). The L2 cache is the point of co-
herency in the cluster. DL1 caches contain no modified data
as they are write-through. The L2 is inclusive of the DL1
of each core, so if a data line is evicted from the L2 cache,
it is invalidated in the corresponding DL1 caches. The
T2080 implements a 4-state Modified-Exclusive-Shared-
Invalid (MESI) cache coherence protocol. The coherence
granularity is a L2 cache line, such that each line has its
own coherence state information.

DMA transfers can ‘generate’ snoop requests to the L2.
This can lead to invalidations of data in the DL1 caches
and/or the L2 since this data becomes not up to date with
respect to the latest value written by the DMA to memory.

Interestingly, under MESI certain messages are ex-
changed among coherent elements (caches) to inform/re-
quest that a line has changed state in the cache sending
the request. A starting hypothesis we made is that no such
messages are sent in the T2080 as it is a single-cluster MP-
SoC and hence, there is a single coherent cache (the DMA
has no internal coherent cache). This is a valid hypothesis
as previous studies show that cache coherence increases
processor energy profile [8], favoring predictability and
tightening bounds as fewer messages are sent over the CCF.

A. Observability
Hardware Monitors. Several hardware event monitors

in the T2080 [4] provide information about the L2 cache
coherence activity, which we show in Table I.

Debugger Support. Using CodeWarrior, the standard
IDE for the T2080, we access several flags for each cache
line with information about their coherence state: Dirty (i.e.
Modified), Valid, Shared, and Exclusive.

B. Experimental Setup
We seek to observe the behavior of the L2 cache when

transitioning from one coherence state to another. To that
end, we execute a benchmark during the warm-up phase
that sets several lines in the L2 cache to a given coher-
ence state. Afterwards, during the execution phase, another
benchmark is executed to force the coherence state of those
cache lines to change. Such benchmark accesses a subset
of the addresses accessed in the warm-up phase. Moreover,
the benchmark in the execution phase can access other

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. https://doi.org/10.23919/DATE51398.2021.9474078



TABLE I: Coherent related event counters in for the L2

Counter Description
L2DA Number of L2 data accesses.
L2DM Number of L2 data misses.
L2SH Number of L2 cache snoop hits.
L2SP Number of L2 cache snoop pushes.
ESR Externally generated snoop requests.
L2SM L2 snoops causing MINT (Modified INTervention).
L2SS L2 snoops causing SINT (Shared INTervention).
L2RC Number of L2 reloads from CoreNet.
BL BLINK requests from L2 to core (e.g. back invalidates)
CL CLINK requests from L2 to core(CoreNet data forwarding)

addresses not shared with the benchmark executed in the
warm-up phase. This is explained on a per experiment basis.

We set a breakpoint right after the warm-up phase (right
before the execution phase) to confirm that the state is
the one we expect. We also set another breakpoint right
after the execution phase to verify that the cache lines have
changed to the desired state.

Benchmarks. We use two micro-benchmark types, CPU
and DMA, each with read (r) and write (w) variants,
resulting in 4 combinations (CPUr, CPUw, DMAr, DMAw).

The CPU benchmarks perform 128,000 accesses mapped
to a set of either 4K or 8K different addresses. In the former
case it accesses 256KB of data with a 64B granularity,
so it accesses 256KB/64B=4,096 cache lines; and in the
latter it accesses 512KB or 512KB/64B=8,192 lines. We
refer to these benchmarks as CPUx(4K) and CPUx(8K)
respectively, where ‘x’ is either ‘r’ or ‘w’ and the number
of accesses is omitted as it is the same in all variants.

The DMAr benchmark reads data from a memory address
range including the one used by the CPU benchmarks and
writes it to a not overlapping memory address range, while
the DMAw benchmark reads from the non-overlapping
range and writes to the overlapping one. Both benchmarks,
transfer either 2MB or 4MB of data. Hence, they perform
32,768 or 65,536 64B accesses to the overlapping range and
the same number to the non-overlapping. We refer to these
benchmarks as DMAx(32K) and DMAx(64K) respectively.
Note that DMAr and DMAw perform necessarily both read
and write operations.

Workloads. A workload comprises the execution of
one or several benchmarks during the warm-up phase
and one during the execution phase. For instance,
[CPUw(4K), DMAr(32K);DMAw(32K)] shows that
during the warm-up CPUw(4K) and DMA4r(32K) are
executed one after the other; and in the execution phase
the DMAw(32K) is executed. Note that, as the DL1 cache
is write-through and the L2 is the only coherent cache,
no coherence messages are sent to handle the shared data
between tasks running simultaneously in the cores. Hence,
we perform no experiment to capture this scenario.

III. ANALYSIS

A. Coherence Protocol Analysis

Modified to Shared. During the warm-up phase, we
run CPUw that causes the data to be dirty in L2. In the
execution phase, we run DMAr to force snoops from the
CoreNet addressed to the L2 that has to (i) send the data
to the main memory, (ii) clean the dirty flag and (iii) move
the cache line to the shared state. We evaluate four sce-
narios: (A) [CPUw(4K); DMAr(64K)], (B) [CPUw(8K);
DMAr(64K)], (C) [CPUw(4K); DMAr(32K)], and (D)
[CPUw(8K); DMAr(32K)].

As we start measuring right after the warm-up (i.e.
the execution of CPUw), there can be few accesses that
are pending to L2, causing the few L2DA, as shown in

TABLE II: PMCs for all transitions.

State L2DA L2SHL2SP ESR L2SML2SSL2RCL2DM BL CL

M2S

A 13 3968 3968 65536 3968 0 6432 0 0 6447
B 12 8064 8064 65536 8064 0 6418 0 0 6418
C 13 3968 3968 32768 3968 0 3226 0 0 3241
D 13 8064 8064 32768 8064 0 3226 0 0 3242

M2I

A 14 3968 0 65536 0 0 6418 0 3968 6418
B 14 8064 0 65536 0 0 6418 0 8064 6418
C 14 3968 0 32768 0 0 3213 0 3968 3213
D 14 8064 0 32768 0 0 3212 0 8064 3212

E2MA127999 0 0 0 0 0 0 0 0 0

E2S

A 12 3968 3968 65536 0 3968 6418 0 0 6418
B 12 8064 8064 65536 0 8064 6418 0 0 6418
C 12 3968 3968 32768 0 3968 3212 0 0 3212
D 12 8064 8064 32768 0 8064 3212 0 0 3212

E2I

A 13 3968 0 65536 0 0 6418 0 3968 6418
B 13 8064 0 65536 0 0 6419 0 8064 6419
C 13 3968 0 32768 0 0 3213 0 3968 3213
D 13 8064 0 32768 0 0 3212 0 8064 3212

S2M A127998 0 0 0 0 0 3968 0 3968 0
B127998 0 0 0 0 0 8064 0 8064 0

I2M A127998 0 0 0 0 0 3968 3968 0 0
B127998 0 0 0 0 0 8064 8064 0 0

I2E A128001 0 0 0 0 0 3968 3968 0 7936
B128001 0 0 0 0 0 8064 8064 0 16128

(M2S) case in Table II (conclusion-L2A). A GetS/GetM
message is sent for every address read or written by the
DMAr 1. Hence, the number of expected ESR is 65,536
in (A) and (B) and 32,768 in (C) and (D), matching the
observed results in Table II (M2S) (conclusion-ESR). The
GetS messages hit in the L2 for the memory locations
that were accessed previously by the CPUw, which results
in 4K2 L2SH in (A) and (C) and 8K3 in (B) and (D)
(conclusion-L2SH).

Unexpectedly, the L2 responds to each of these snoop
hits in the L2 by requesting other coherent devices to set
such lines as shared, but there is no other coherent device in
the T2080. This matches L2SP and L2SM values. Further
conclusions about these events and counters are discussed
in Section III-B. DMAr does not reload any data from
the CoreNet to the L2. However, we observe L2RC and
CL report around 6 and 3 thousand events for cases (A)-
(B) and (C)-(D) respectively. This activity corresponds to
the accesses performed by the core by polling the DMA
controller to know when DMAr has finished as we describe
later on in Section III-B, (conclusion-L2RC CL).

Modified to Invalid. We run CPUw in the warm-
up phase causing the data to be dirty in L2. In the
execution phase, we run DMAw to force snoops from
the CoreNet addressed to the L2 to invalidate its data
because the DMA is overwriting it. We evaluate four sce-
narios: (A) [CPUw(4K); DMAw(64K)], (B) [CPUw(8K);
DMAw(64K)], (C) [CPUw(4K); DMAw(32K)], and (D)
[CPUw(8K); DMAw(32K)].

Conclusion-L2A, conclusion-L2RC CL and conclusion-
ESR apply to this scenario as shown in Table II (M2I). The
GetM messages sent for each DMA write operation that hit
in the L2 for the memory locations – that were accessed
previously by the CPUw – make L2 invalidate those lines.
Hence, we expect that each line invalidated has to send a
back invalidate request, so BLINK matches L2SH as shown
in Table II (M2I).

Exclusive to Modified. We run CPUr in the warm-up,
loading the data to the L2, which changes the state to

1Recall that DMAr also performs writes that result in GetM requests.
2In reality, we expect 4, 096 − 128 and 8, 192 − 128 respectively, as

we perform 31 and 63 iterations respectively of 128 accesses each.



Exclusive. In the execution phase, CPUw changes the state
to Modified, and since it is the only owner of the data, it
does not have to invalidate anything nor wait for a response
before writing. We evaluate one scenario: (A) [CPUr(4K);
CPUw(4K)]. As the task in the execution phase runs in the
CPU (CPUw), we see 128,000 L2 accesses (L2DA), see
Table II (E2M). Since L2 is the only data owner, it does
not send any message and thus, no requests are generated.

Exclusive to Shared. During the warm-up, we run CPUr
that causes the data to be loaded to the L2 in Exclusive
state. In the execution phase, we run DMAr to force
snoops from the CoreNet addressed to the L2 to send
the data to the main memory and move the cache line
to the shared state. We evaluate the following four sce-
narios: (A) [CPUr(4K); DMAr(64K)], (B) [CPUr(8K);
DMAr(64K)], (C) [CPUr(4K); DMAr(32K)], and (D)
[CPUr(8K); DMAr(32K)]. As shown in Table II (E2S),
the results are almost the same as in Modified to Shared
transition, where the only difference is switching L2SM to
L2SS, which makes sense because the original state is not
Modified in this case.

Exclusive to Invalid. During the warm-up, we run
CPUr that causes the data to be loaded to the L2 in
Exclusive state. In the execution, we run DMAw to force
snoops from the CoreNet addressed to the L2 to inval-
idate the data. We evaluate the following four scenar-
ios: (A) [CPUr(4K); DMAw(64K)], (B) [CPUr(8K);
DMAw(64K)], (C) [CPUr(4K); DMAw(32K)], and (D)
[CPUr(8K); DMAw(32K)].

As shown in Table II (E2I), conclusion-L2A, conclusion-
L2RC CL and conclusion-ESR apply. For every request
made by the DMAw, a GetS/GetM message is sent, with
GetM messages hitting in the L2 for the memory locations
that were accessed previously by CPUw. Then, the L2
invalidates all the lines where the snoops have hit. This
results in back invalidation messages sent to the core for
all lines in L2, which results in BL being equal to L2SH.

Shared to Modified. During the warm-up, we run CPUw
that causes the data to be dirty in L2, and then we run
DMAr, which sends a request for the data and the L2
sends the dirty data to the CoreNet moving to Shared
state. In the execution phase, we run CPUw, which sends
GetM requests to the CoreNet to invalidate all the valid
copies in any potential device with that data set as shared,
despite there is none. As a simultaneous modification of
this data could have occurred in another device with a
shared copy of the data, the L2 sends a data forward
request to CoreNet. This request might bring either no
new data or an updated copy if a remote modification
occurred between the local modification and its notification
to other coherent devices. Those unexpected messages
to non-present coherent devices are further discussed in
Section III-B. We evaluate the following four scenar-
ios: (A) [CPUw(4K),DMAr(64K); CPUw(4K)], and (B)
[CPUw(8K),DMAr(64K); CPUw(4K)].

As in the E2M transition, the task analyzed (CPUw)
generates accesses from the CPU as captured by the L2DA
counter in Table II (S2M). Each of these accesses triggers
the L2 to send a GetM message to ask all other sharers
to invalidate their own copy of the shared data to the
CoreNet, generating around 4K BL in (A) and around 8K
in (B). As explained, since other coherent devices could
be performing simultaneous modifications of the shared
data, the L2 performs 4K L2RC in (A) and around 8K
in (B). Those L2RC receive no answer since there is no
other coherent device in the platform.

Shared to Invalid. This scenario is exactly the same as
Exclusive to Invalid transition in all the results. The only
difference is how warm-up the cache to get it to Shared
state (CPUw+DMAr).

Invalid to Modified. In the warm-up, we run CPUr
that causes the data to be loaded in L2, and then we run
DMAw to overwrite and invalidate it in the L2. In the
execution, we run CPUw, the CPU misses in the L2, and
triggers it to send GetM requests to CoreNet, which grants
modification access to the L2. We evaluate four scenar-
ios: (A) [CPUr(4K),DMAw(64K); CPUw(4K)], and (B)
[CPUr(8K),DMAw(64K); CPUw(8K)].

In this case, the task analyzed (CPUw) performs 128k
accesses to the L2 that are shown in the L2DA counter
(Table II I2M). From these accesses, only around 4K in
(A) and 8K in (B) miss in the L2 (L2DM), and these
misses cause the reloads in the L2 from CoreNet (L2RC).
Since DMA does not own the data, it does not have to back
invalidate the data (thus BL is 0), and also, since the CPU
is overwriting the cache lines, it does not have to wait for
the data to be forwarded (thus CL is 0).

Invalid to Exclusive. During the warm-up, the CPUr
causes the data to be loaded in L2. Then we run DMAw
to overwrite and invalidate it in the L2. In the exe-
cution, CPUr misses in the L2 and triggers it to send
GetS requests to CoreNet, which sends the data ex-
clusively to the L2. We evaluate the following scenar-
ios: (A) [CPUr(4K),DMAw(64K); CPUr(4K)], and (B)
[CPUr(8K),DMAw(64K); CPUr(4K)].

This case is very similar to the I2M transition, however,
here the L2 has to receive the data (since the CPU is reading
it), so the data is forwarded by the CoreNet, thus increasing
CL. Note that CL value is 2x that of the L2DM and L2RC.
Section III-B provides light on this behavior.

Invalid to Shared. This transition requires another com-
ponent outside the core cluster to have the data in exclusive,
shared, or modified state when cores access the data. Since
such a component does not exist in the T2080, such a
transition cannot occur.

B. Hardware Monitor Analysis
L2SM, L2SS, and L2SP. Coherence messages to re-

mote devices can either invalidate their copies if data
is modified locally or mark them as shared if a remote
device reads some data present in L2 either as exclusive
or modified. The latter matches exactly L2SP, as shown
in M2S and E2S transitions, meaning that those events
are snoop pushes, whereas invalidations are not counted
as snoop pushes. Moreover, L2SM counts exactly M2S
transitions and L2SS E2S transitions across all possible
state transitions. Interestingly, while those messages are
expected when there are multiple coherent devices, the NXP
T2080 has just one, so it should not send those messages.
A potential hypothesis is that since the e6500 core cluster
is also used in multi-cluster platforms (e.g. NXP T4240),
it is reused with no modifications in the T2080 despite
generating unnecessary messages. This would also explain
the unexpected messages to other non-existing coherent
devices in the S2M transition.

L2RC and CL when DMA runs during the execution
phase. Running DMAr or DMAw in the execution phase,
we observe that L2RC and CL count events, and such
events do not relate to the coherence protocol. To handle
DMA transfers, which are asynchronous with the core, we
build a solution that polls the DMA controller, specifically
a non-cacheable control register, to identify when the DMA



TABLE III: L2RC and CL specific experiments under E2I
DMA 32K DMA 64K

chunk L2RC CL L2RC CL L1M L2DemA L2DA L2DM
A 64B 5599 5599 C 11359 11359 11369 11371 12 0
B 256B 3282 3282 D 6419 6419 6568 6575 12 0

transfer is complete. Every read operation of such register
produces CL and L2RC events to fetch its value3. To verify
this behavior of L2RC and CL, we run DMA transfers with
64B and 256B chunks. Table III shows some results for the
E2I scenario. When we double the DMA transfer size from
32K to 64K, L2RC and CL values double since the transfer
duration doubles. Thus, 2x number of polls occur. If we
decrease chunk size from 256B to 64B, the number of polls
increases (but not by 4x) since 4x transactions are needed,
but each one of them is faster to transfer 64B instead of
256B of data.

L2DA and L2DM. In these very same experiments,
our results also show that L2DA and L2DM are almost
0 despite the number of L2RC and CL. To complete
our analysis, we have verified that L2RC and CL values
match quite precisely the number of L1 cache misses
(L1M), which match load accesses since DMA control
register accesses are uncacheable, and L2 demand accesses
(L2DemA). L2DemA corresponds to all L2 accesses except
prefetch and snoop ones. Hence, access to the DMA control
register can be traced end-to-end from the core to the
CoreNet with very similar values for L1M, L2DemA,
L2RC, and CL. However, L2DA and L2DM only count
cacheable data accesses despite, to the best of our knowl-
edge, public documentation does not reflect that casuistic.
Hence, undocumented features (e.g. L2DA and L2DM do
not count uncacheable data accesses) call for a thorough
validation of hardware monitors if used to validate any
hardware feature or build any type of certification evidence
for critical systems.

CL in CPUx scenarios during the execution phase.
As shown in the Invalid to Exclusive scenario, CL is
2x the number of L2DM and L2RC. This occurs since,
as explained in [5], despite cache lines are 64B, they
are transmitted over 2 cycles since the CoreNet can only
transmit up to 32B per transaction simultaneously. Hence,
a single L2 cache miss produces 2 CL events to fetch a
64B cache line. This is further corroborated with the data
in Table III, where we analyze the behavior of DMA polls,
where a single 8B register is fetched, hence needing a single
transaction, and thus matching CL and L2RC values.

IV. RELATED WORK

Given its known potential to improve the performance
of data sharing, cache coherence is one of the key features
studied in recent works [15, 7, 13, 6]. [15] provides an
analysis of the MESI protocol and its drawbacks concerning
time predictability and demonstrates ways to implement a
MESI protocol that better suites critical systems. Authors
in [7] proposed invariants that guarantee predictable be-
havior upon adopting cache coherence in real-time sys-
tems and demonstrated the application of these invariants
by proposing the predictable MSI protocol (PMSI). [13]
proposes a time-based and configurable cache coherence
protocol targeting mixed-criticality systems. [6] introduced
a solution that improves latency bounds of coherence with-
out degrading the system’s performance. These works are

3An implementation based on interrupts to signal the finalization of
DMA transfers would not show this problem. On the other hand, interrupts
are known to be problematic to analyze, in addition to impacting tasks
execution time as they are not subject to scheduling [2].

in line with this paper’s focus, highlighting the importance
of cache coherence in modern critical systems.

Authors in [12] analyze the coherence between the
different e6500 clusters of the NXP T4240 processor and
conclude that it actually implements MESIF instead of
MESI as specified in the e6500 TRM [4]. We cannot assess
this hypothesis in the NXP T2080 as it has a single e6500-
based CPU cluster, and hence, there is only one coherent
L2 cache that can have the cache line in S/F state. The
L2cache will answer coherence requests whether it keeps
the data in S/F state.

V. CONCLUSIONS

Our empirical analysis of cache coherence in the T2080
brings some lessons learned. First, we can identify the
events triggered by each coherence state transition, pro-
viding a clearer understanding of the implemented cache
coherence behavior. Second, there are some hardware mon-
itors with ambiguous or incomplete descriptions of the
events tracked. And third, we detect unexpected coherence
messages for a single L2 coherent cache processor. All
these elements help validate the cache coherence protocol
itself and allow building other further validation evidence
on top of it.

VI. ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Science and Innovation under grant PID2019-
107255GB; the European Union’s Horizon 2020 research
and innovation programme under grant agreement No.
878752 (MASTECS) and the European Research Coun-
cil (ERC) grant agreement No. 772773 (SuPerCom); the
HiPEAC Network of Excellence; and the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES
[1] J. Barrera et al. On the reliability of hardware event monitors in

mpsocs for critical domains. In ACM SAC, 2020.
[2] B. B. Brandenburg et al. Accounting for interrupts in multiprocessor

real-time systems. In RTCSA, 2009.
[3] G. Fernandez et al. Contention in multicore hardware shared

resources: Understanding of the state of the art. In WCET Workshop,
2014.

[4] Freescale semicondutor. e6500 Core Reference Manual.
https://www.nxp.com/docs/en/reference-manual/E6500RM.pdf,
2014. E6500RM. Rev 0. 06/2014.

[5] Freescale semicondutor. QorIQ T2080 Reference Manual, 2016.
Also supports T2081. Doc. No.: T2080RM. Rev. 3, 11/2016.

[6] M. Hassan. Discriminative coherence: Balancing performance and
latency bounds in data-sharing multi-core real-time systems. In
ECRTS, 2020.

[7] M. Hassan et al. Predictable cache coherence for multi-core real-time
systems. In RTAS, 2017.

[8] M. Loghi et al. Exploring the energy efficiency of cache coherence
protocols in single-chip multi-processors. In GLSVLSI, 2005.

[9] O. Notebaert. On-Board Payload Data Processing requirements and
technology trends. In OBDP Workshop - ESA/ESTEC, 2019.

[10] D. Radack et al. (Rockwell Collins). Civil Certification of Multi-core
Processing Systems in Commercial Avionics, 2018.

[11] N. Semiconductors. Chip Errata for the i.MX 6SLL. Document
Number: IMX6SLLCE, 2019.

[12] N. Sensfelder et al. On how to identify cache coherence: Case of
the NXP qoriq T4240. In ECRTS, 2020.

[13] N. Sritharan et al. Enabling predictable, simultaneous and coherent
data sharing in mixed criticality systems. In RTSS, 2019.

[14] K. Suleman. Intel paves the road for BMW’s iNEXT autonomous
cars in 2021. 2017.

[15] S. Uhrig et al. MESI-Based Cache Coherence for Hard Real-Time
Multicore Systemsgh. In ARCS, LNCS, 2015.

[16] Xilinx. Zynq UltraScale+ MPSoC, APU - PMU Counter Values
Might Be Inaccurate When Monitoring Certain Events. Document
Number: AR# 68878, 2017.

[17] Xilinx. Zynq UltraScale+ Device Technical Reference Man-
ual. https://www.xilinx.com/support/documentation/user guides/
ug1085-zynq-ultrascale-trm.pdf, 2019. UG1085 (v2.1).




