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Abstract
The motion of space objects orbiting the Earth is not only affected by the Keplerian
central gravity field of the Earth, but it is also subjected to some complex perturbations,
such as solar radiation pressure, luni-solar gravitational attraction, Earth’s non-spherical
gravity, atmospheric drag, as the main ones, and also others of smaller significance. Since
the equations of motion are strongly nonlinear and non-integrable, it is difficult to obtain
closed-form analytical solutions for predicting the satellite motion and only long and
particular expansions can be available. Therefore, numerical integration techniques are
the main tools to accurately propagate spacecraft trajectories. However, due to the rapid
time-varying characteristics of satellite dynamics, small integration time steps have to
be often employed, which results in a heavy computational time, specially for many
simulations to obtain statistical distributions. To improve the computational efficiency,
some alternatives, such as covariance analysis and unscented transformations, have been
developed at the cost of accuracy loss. Consequently, using these state transition methods,
it is hard to achieve high propagation accuracy and efficiency.

On the other hand, these state transition methods are indispensable in the design of
sequential Bayesian filters, so the developed orbit estimators inherit their weaknesses.
This is, the problem is either a bad prediction accuracy or a low computational efficiency.
In order to alleviate this dilemma about the computational accuracy and efficiency in
both orbit propagation and orbit determination applications, a set of polynomial-based
high order nonlinear propagators and estimators have been developed. In particular,
this dissertation proposes a specific polynomial algebraic software based in an arbitrary
number of variables, called Jet Transport (JT), which enables to perform the precise and
efficient Taylor or Chebyshev polynomial algebra and its implementation in nonlinear
state propagation and estimation algorithms.

1) An efficient polynomial operation tool has been proposed. This tool de-
fines a series of polynomial algebraic manipulation in a modern computer, such
as polynomial storage, addition, subtraction, multiplication, division, differentia-
tion, integration and composition with an arbitrary number of variables. The tool
includes as well useful algorithms, for instance, polynomial-based Runge-Kutta in-
tegrators and efficient polynomial evaluation. In overall, the methodology provides
an efficient and accurate way to calculate polynomial expansions (such as Taylor
and Chebyshev series), up to an arbitrary order, for practical problems defined by
a set of nonlinear functions or ordinary differential equations (ODEs).
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2) Efficient and accurate propagations of the spacecraft trajectories and its
associated statistics, like advanced Monte Carlo (MC) methods, are put
forward. This newly proposed MC method is constructed via the combination of
high order polynomial propagators with polynomial evaluation techniques at real
vectors. Both algorithms are implemented in the JT framework. To be specific,
the high order polynomial propagators are based on either Taylor series expansion
or Chebyshev interpolation technique and employed to approximate the flow of the
dynamics with the polynomial results. Then, the polynomial evaluation technique is
used to transport the state vectors in a neighborhood of an initial state to determine
statistical distributions.

3) An augmented high order extended Kalman filter is proposed in the JT
framework (JT-AHEKF) to jointly estimate the spacecraft trajectories
and their parameters. In the design of the JT-AHEKF filter, the aforemen-
tioned high order Taylor series expansion method is employed to achieve the a
priori prediction of the state and measurement (tracking) vectors. Apparently, the
JT-AHEKF filter enables to extract more nonlinear information from the dynami-
cal and measurement models, such that both spacecraft trajectories and associated
parameters are estimated accurately, even when very adverse conditions, such as
large initial state deviations and low measurement frequency, are considered. Fur-
thermore, a standard high order extended Kalman filter can be also deduced in the
JT framework (JT-HEKF) by degrading the augmented JT-AHEKF filter without
consideration of parameter estimation.

4) To avoid the pollution of false measurements on the performance of the
JT-HEKF filter, three fault-tolerant strategies have been put forward and
analyzed. These practical strategies are proposed based on either the direct aban-
don of the identified false measurements or the adaptive adjustment of the measure-
ment noise covariance matrix with the usage of a single scale factor and an adaptive
scale matrix.

5) An adaptive order-switching strategy tailored for the JT-HEKF filter
(JT-OSHEKF) has been proposed to further mitigate the dilemma about
the computational accuracy and efficiency in orbit determination appli-
cations. Although, to a great extent, the JT-HEKF filter reaches an efficient
balance between the computational accuracy and efficiency, its continuous usage in
a whole estimation process can be uneconomic since a high order JT-HEKF filter
might be not necessary at the filter steady stage. A specific algorithm, based on a
chi-square test, for detecting the filter consistency has been designed to dynamically
and automatically switch the filter order within one single run, making the filtering
process even more efficient.

To conclude, this dissertation proposes a set of nonlinear state propagators and estima-
tors using polynomial expansion techniques, whose computational efficiency are improved
by the newly developed Jet Transport software. The feasibility and reliability of the
algorithms have been tested in propagation and estimation problems involving geosyn-
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chronous trajectories. The results show that the proposed propagators and estimators
are highly efficient and accurate. Note that these propagators and filters can be not only
applied in practical space missions, but also regarded as a useful tool to achieve state
prediction and estimation in general engineering problems.
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Resum
El moviment de cossos orbitant la Terra no només està influenciat pel camp gravitatori
Keplerià central d’aquesta, sinó que a més, està subjecte a perturbacions complexes:
la pressió de radiació solar, l’atracció luni-solar, les perturbacions del camp gravitatori
terrestre i el frenat atmosfèric són les més importants, però també n’hi ha d’altres de
menor significància. Degut a que les equacions del moviment són fortament no lineals i
no integrables, és dif́ıcil d’obtenir expressions anaĺıtiques de la solució per a fer prediccions
del moviment de satèl·lits i només es disposa d’expansions llarges i particulars. Aleshores,
les tècniques d’integració numèriques són les eines més importants per a la propagació de
trajectòries de manera precisa. Passa però, que degut a variacions temporals ràpides de
la dinàmica, cal usar passos d’integració petits que es tradueix en un cost computacional
elevat quan calen moltes simulacions per a trobar distribucions estad́ıstiques. A fi de
millorar aquesta carrega computacional, s’han desenvolupat algunes alternatives, com
l’anàlisi de covariança i transformacions no biaxades (unscented), però amb el cost de
pèrdua de precisió. Consequentment, usant aquests mètodes de transició d’estat és dif́ıcil
d’aconseguir nivells de precisió i eficiència alts.

D’altra banda, els mètodes de transició d’estat són indispensables en el disseny de filtres
Bayesians seqüencials, i per tant, els estimadors d’òrbita que se’n derivin herederan les
seves febleses. Aix́ı que, els ĺımits de la balança del problema els tindrem entre prediccions
pobres i baixa eficiencia computacional. Per a alleugerir aquest dilema computacional de
precisió respecte d’eficiència, ja sigui en la propagació d’òrbites o en el problema de de-
terminació d’òrbita, s’han desenvolupat un conjunt d’integradors i estimadors d’ordre alt
basats en àlgebra polinomial amb un nombre arbitrari de variables. En particular, aquesta
memòria implementa un software espećıfic, anomenat Jet Transport (JT), que permet, de
manera precisa i eficient, obtenir expansions polinomials de Taylor o de Chebyshev, que
s’implementen en algoritmes per a problemes de propagació i estimació no lineals.

1) Es proposa una eina operacional polinòmica eficient. Aquesta eina defineix
manipulacions algebràiques polinomials adaptades a computadores modernes, en-
tre elles, enmagatzematge de polinomis, adició, multiplicació, divisió, diferenciació,
integració i composició amb un nombre arbitrari de variables. L’eina inclou també
altres algoritmes útils com per exemple, integradors Runge-Kutta basats en àlgebra
polinomial i metodologies eficients per a l’avaluació dels polinomis. En resum, la
metodologia proveeix una manera eficient i precisa de calcular expansions polinomi-
als (ja siguin de Taylor o de Chebyshev) d’ordre arbitrari, per a problemes definits

ix



per un conjunt de funcions no lineals o bé per equacions diferencials ordinàries
(ODEs).

2) Es proveeix una propagació precisa i eficient per a trajectòries de satèl·lits
i suport per l’estad́ıstica associada via mètodes Montecarlo avançats.
Aquesta nova metodologia de Montecarlo es construeix via la combinació d’integradors
numèrics d’ordre alt basats en àlgebra polinomial i tècniques per a la seva avaluació
vectorial. Ambdues metodologies s’implementen dins l’entorn JT. Dit de manera
una mica més precisa, els propagadors polinomials d’ordre elevat estan basats en
expansions de Taylor o d’interpolacions de Chebyshev i s’empren per a aproximar el
flux de la dinàmica obtenint-ne expressions polinomials. Aleshores amb això, s’usa
la tècnica d’avaluació polinomial per a transportar els vectors d’estat a l’entorn
d’una condició inicial per a determinar distribucions estad́ıstiques.

3) Es proposa un filtre de Kalman augmentat d’ordre alt dins l’entorn JT
(JT-AHEKF) per a fer estimacions conjuntes de trajectòries de satèl·lits
i de paràmetres associats. En el disseny del filtre JT-AHEKF, s’usen les expan-
sions de Taylor abans esmentades per a aconseguir la predicció a priori d’estat i els
vectors de mesura (de seguiment). S’evidencia que el filtre JT-AHEKF permet ex-
treure més informació no lineal dels models dinàmics i de mesura. De manera que la
trajectòria del satèl·lit i els paràmetres associats s’estimen de manera precisa, inclús
en condicions molt adverses, com podrien ser grans desviacions de la condició inicial
o baixa freqüència de mesura. A més, es desenvolupa un filtre de Kalman estàndard
d’ordre alt dins l’entorn JT, anomenat JT-HEKF, per degradació del JT-AHEKF,
sense considerar la part d’estimació de paràmetres.

4) A fi d’evitar la pol·lució deguda a mesures errònies en el rendiment del
filtre JT-HEKF, es proposen i analitzen tres estratègies tolerants a fal-
lades. Aquestes estratègies es proposen de manera pràctica, basades o bé en el
descartament directe de les mesures identificades com a errònies o bé en l’ajust
adaptatiu de la matriu de covariança que quantifica el soroll de mesura, cosa que
s’aconsegueix usant un sol factor d’escala i un escalat adaptatiu de la matriu.

5) Es proposa una estratègia de variació d’ordre pel filtre JT-HEKF (JT-
OSHEKF) per a mitigar, encara més, el dilema entre el cost i la precisió
computacional en problemes de determinació d’òrbita. Malgrat que en gran
mesura el filtre JT-HEKF ja aconsegueix un balanç molt eficient entre precisió i cost
computacional, el seu ús continu en totes les parts del procés d’estimació d’òrbita
pot ser poc econòmic, ja que un filtre JT-HEKF d’ordre alt pot no ser necessari
en estats estacionaris. Per a això, s’ha dissenyat un algoritme espećıfic, basat en el
test de khi-quadrat, per a detectar la consistència del filtre i, de manera dinàmica i
automàtica, adaptar l’ordre del filtre dins del mateix cicle d’aplicació, fent aix́ı que
el filtre sigui encara més eficient.

En conclusió, aquesta memòria proposa un conjunt de propagadors i estimadors per a
dinàmiques no lineals usant tècniques d’expansions polinomials, l’eficiència computacional
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de les quals es veu millorada per un software de transport de jet. La viabilitat i fiabilitat
dels algoritmes ha estat testejada en problemes de propagació i estimació d’òrbita asso-
caits a trajectòries geośıncrones. Els resultats mostren que els propagadors i estimadors
desenvolupats són molt eficients i precisos. Notem finalment que aquests integradors i
filtres no són només d’aplicació en problemes de missions espacials, sinó que es poden
considerar una eina útil per a problemes d’enginyeria en general.
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Chapter 11
Introduction

1.1 Advanced space activities

The successful launch of the first artificial Earth satellite Sputnik-1 on 4th October 1957,
triggered a completely new era of space exploration. It firstly created the needs for
accurate and efficient orbit prediction, tracking and determination techniques. As of the
rapid development of space technology, highly efficient and accurate orbit prediction and
estimation methods for space objects, including active spacecraft and space debris, have
become the most critical factor concerning whether the space mission could be successfully
performed or not. Based on those techniques, over the past six decades, a large quantity
of high-value but costly satellites with various practical functions have been launched and
deployed into terrestrial space. As a reward, those space missions provide a wide variety
of appealing space services, including communications [1,2], weather forecasts [3], remote
sensing [4], global navigation and so on, which remarkably change the way we live, and
the economical and scientific activities we take.

However, despite that, the human being still has imperious demands to achieve more pro-
gressive space missions and applications, such as the state-of-the-art synthetic aperture
radar (SAR) onboard a geosynchronous Earth orbit (GEO) satellite [5]. The development
of an unprecedented orbit prediction and determination accuracy (centimeter level in the
radial direction) is requisite for GEO SAR missions, in the interest of significantly reduc-
ing the influence of orbit errors on the SAR imaging and interferometric processing [6,7].
On the other hand, the security of high-value space assets, including the aforementioned
GEO SAR satellites, is being threatened by many resident space objects (RSOs), which
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are inevitably produced due to the increasing human activities in space. To reduce or
even eliminate the risks of space collisions, the space situational awareness (SSA) project
arises at the historic moment. The main constituent part of an impeccable SSA system
is the timely updating of a working catalog of the RSOs resident in the near-Earth orbits
through precise observation, prediction and estimation of their physical locations. The
ultimate objective of the SSA programs is to predict the collision probability, plan col-
lision avoidance paths, protect expensive spacecraft, and ensure space sustainability [8].
In essence, a SSA surveillance activity can be cast as orbit prediction and estimation
problems of some known or unknown objects of interest (i.e., active satellites or inac-
tive debris), where only some partial information on the dynamical behavior and a series
of observations produced by sensors are available. Therefore, the development of orbit
prediction and estimation techniques with a high precision is of vital importance.

1.1.1 Geosynchronous earth orbit synthetic aperture radars

Due to the unique feature of the geosynchronous orbit regime for maintaining a space-
craft in a high altitude and almost fixed position relative to the Earth-centered Earth-fixed
reference frame (ECEF), SAR devices mounted on the GEO spacecraft possess obvious
advantages, such as enormous instantaneous coverage and short revisit time [9]. These
excellent characteristics make a permanent radar monitoring of local regions of interest
possible, thus hold huge potential application value on a variety of urgent missions requir-
ing continuous imaging and fast assessment, such as the timely natural hazard monitoring
and disaster alarming of volcanic activity, earthquakes and forest fire [10,11]. In addition,
the observation peculiarity of the GEO SAR is also benefiting to achieve a series of ap-
pealing atmospheric and terrestrial applications [12,13], which makes up for the deficiency
existing in the traditional observation mode of low Earth orbit SAR (LEO SAR) [14].

The concept of the GEO SAR was firstly introduced by Kiyo Tomiyasu [5, 15]. In 2003,
Jet Propulsion Laboratory put forward a great plan in which SAR devices installed on an
inclination GEO satellite were studied for enabling earthquake prediction, that in turn
obtained many valuable experiment results in orbit design [16]. From then on, a lot of
studies focusing on GEO SAR missions have been extensively carried out and devoted to
enriching the relevant theory [17–20]. Furthermore, the quasi-geostationary SAR concept
was also proposed and proved feasible for achieving GEO SAR missions [21]. A compre-
hensive comparison of practicable orbits, imaging performance and intended applications
between the classical inclination geosynchronous SAR and quasi-geostationary SAR were
given in [22].

Up to now, a variety of indispensable techniques for achieving GEO SAR missions have
been studied, such as signal modelling, resolution calculation, and imaging algorithms [23].
Nevertheless, there is little literature about the related research of the orbit design, pre-
diction and determination, as well as the influence analysis of orbital errors on the GEO
SAR imaging. The lack of these work vastly limits the advance of GEO SAR missions.
Current research about GEO SAR missions mainly focuses on theoretical analysis and
simulation stage. In [24], the influence of orbit errors on the Doppler parameters and final
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SAR imaging performance was simply analyzed. Analogously, the significant impact of
the satellite orbit error on the radar interferometric phase of differential interferometric
SAR was investigated and verified [25]. Subsequent studies were devoted to analyzing
the effect of orbit determination errors on the GEO SAR imaging from quantitative and
qualitative perspective [6, 7, 9]. It concluded that the accuracy of orbit determination
approaches should be at centimeter level in the radial direction in order to satisfy the
demands for future GEO SAR missions.

1.1.2 Space situational awareness mission

The space collision is extremely dangerous, not only because it always severely damages
the artificial spacecraft, but also because it would create tens of thousands of debris to
further deteriorates the space environment. For instance, on 10th February 2009, an
operational United States’ communications satellite, called Iridium 33, was struck and
destroyed by a long-defunct Russian communications satellite, called Kosmos 2251, in a
low Earth orbit [26], as shown in Fig. 1.1. It has been observed that this severe collision
produced over 2500 pieces of debris (larger than 10 centimeters in diameter) [27], which
often experience very slow natural reentry and likely remain in the low Earth orbits
for tens of years. The serious trouble is that these debris, in turn, would significantly
threaten the safety of satellites operating in the nearby orbit region for a long time
duration. Moreover, the rapid accumulation of debris very easily results in the soon
reach of a critical number threshold of the RSOs, where an incidental collision would
cause a runaway exponential increase of space collisions. This accidental space collision
occurred completely due to the space congestion and lack of accurate orbit estimation and
prediction information of both satellites. As a fundamental foundation, the development
of accurate orbit prediction and determination techniques are extremely urgent and useful.

As a solution to understand and maintain awareness of the RSOs’ population in the
Earth orbits and further identify the collision risks to existing missions, the concept of
the SSA comes into being and obtains an increasing attention from a great number of
experienced space agencies. Based on the efficient tracking and identification of the RSOs,
the SSA project is expected to obtain a comprehensive knowledge of the near-Earth
space environment with the purpose of achieving various functions, including anomaly
detection, tracking and data association, conjunction analysis, probability of collision
calculation, and sensor resource management [28]. The main tasks in SSA missions
contain: 1) efficient tracking and identification of the RSOs; 2) precise orbit prediction
and estimation; 3) timely maintaining and updating a catalog of the RSOs; 4) predict
space events and maintain a collision-free space environment. Note that the accurate and
complete position and velocity information of the RSOs, provided by a SSA system, is
the fundamental to compute the probability of collision events, such that the collision-
free space environment can be maintained via performing effective evasive maneuvers if
necessary.

At present, some SSA programs have been put forward and acknowledged. The well-
known one was proposed in 2009 by European Space Agency, which consists of three
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(a) Point of collision (b) Debris fields after 50 minutes

Figure 1.1: Diagram of Iridium 33 and Kosmos 2251 Collision.

segments [29], including Space Weather (SWE) system, Near-Earth Objects (NEO) sys-
tem, and Space Surveillance and Tracking (SST) system, as shown in Fig. 1.2. Another
distinguished SSA system is Space Surveillance Network (SSN) operated by United States
Strategic Command Joint Space Operations Center, which is the first operational SSA
system and currently tracks around 21,000 objects with diameters greater than 10 cen-
timeters [30].

(a) SWE (b) NEO (c) SST

Figure 1.2: Three segments of ESA SSA programme.

Figure 1.3 illustrates a classical architecture of a SSA system. The orbit determination
(OD) module, typically running in a Bayesian framework, contains both orbit prediction
(OP) and update steps. The OP module is used to predict the orbits and associated un-
certainty through the dynamics of the RSOs, while the observation module is employed
to sequentially observe the RSOs of interest and provides useful range or angular infor-
mation to the filters for updating the predicted orbits. Therefore, the accuracy of the
OD algorithm essentially depends on prediction errors involved in OP methods and the
observation errors induced by measurement sensors. It is worth mentioning that the ac-
curate OD module is a major component for updating and maintaining a catalog of the
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RSOs. Besides, the timely update of the catalog of the RSOs in turn enables to provide
a priori state information as inputs to both orbit prediction and observation modules.
The space weather data monitoring module is requisite for measuring the space physical
parameters, such as the atmospheric density, solar photon intensity and so on, which
always remarkably affects the dynamics of the RSOs.

Figure 1.3: Basic architecture of a SSA system.

Finally, it is worth to mention that a key issue of SSA missions is to settle the measurement
data-starved problem. As the space launch activities increase, the number of the RSOs are
likely to be much larger than that of the ground or space observation stations for actively
tracking them, such that it is almost impossible to provide high frequency observations
for any single RSO. That is, OD algorithms inevitably have to employ increasingly sparse
observations. It further requires that the adopted OP method possesses high prediction
accuracy in between measurements over long time intervals. As a conclusion, one topic
of recent interest in SSA programs is to design both OP and OD modules in a highly
efficient and accurate way to predict and estimate the orbits, even when encounter high
nonlinearity, sparse observations or large initial state deviations. Another topic of interest
lies in how to achieve the trade-off between the accuracy and computational cost for
designate tasks.

1.2 Orbit uncertainty propagation methods

The orbit uncertainty propagation concept refers to the prediction of the state probability
density function (PDF) or state moments of the RSOs (generally mean and covariance ma-
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trix). The commonly used propagation methods often employ the physics-based analyti-
cal high-fidelity models, described by a set of ordinary differential equations (ODEs) with
consideration of several dominant orbital perturbations, including Earth non-spherical,
luni-solar gravitational forces, solar radiation pressure (SRP), and atmospheric drag [31].
In general, uncertainties existing in the initial state vectors and model parameters stem
from the lack of accurate orbital observation data, space environmental models or actual
physical characteristics of the RSOs. Except these factors, uncertainties can also arise
from the necessary simplifications of the high-fidelity models and truncation errors in the
numerical simulations [32].

The main purpose of orbit uncertainty propagation methods is to accurately transport
the uncertainties associated with the initial states and parameters of a RSO to future
possible states. Therefore, it clearly plays an important role in the ongoing space projects
such as the aforementioned SSA and GEO SAR missions. For instance, in SSA mis-
sions, a variety of orbit prediction methods have been extensively studied and applied
to perform a series of vital tasks, including but not limited to space tracking and data
association, collision detection and sensor resource management [28]. On the other hand,
since the state prediction step of Bayesian filters relates to the state propagation tech-
nique, therefore, the filtering accuracy heavily rides on the error of the adopted state
propagation method. Consequently, for space OD problems, highly precise state propa-
gation approaches are badly requisite to transport the state PDF in between measurement
updates. Homoplastically, in GEO SAR missions, nonlinear Bayesian filters are expected
to accurately determine the spacecraft orbit, calculate the interferometer baseline, and
further distinctly decrease the influence of orbit errors on the GEO SAR imaging quality.

Up to now, a variety of orbit uncertainty propagation methods proposed in the literature
usually can be divided into three categories: analytical, numerical and semi-analytical [33,
34]. Ideally, using analytical integration methods, a closed-form analytical solution of
an ODE system can be represented as an explicit function of time, initial state and
model parameters [35–37]. Clearly, it is preferred since the complicated state uncertainty
propagation along the stochastic, nonlinear ODEs is reduced to the simple evaluation of
explicitly known mapping functions, which makes the orbit uncertainty propagation very
efficient. In particular, the analytical solution is usually valid for all or at least large ranges
of initial conditions. However, except in some special cases, it is hard to analytically solve
an ODE system describing a real physical procedure due to its complicated nonlinearity.
As an exception, under the Kepler assumption, the motion of the RSOs described by a
set of ODE equations can be analytically solved, but it significantly loses the accuracy
resulting from the omission of all orbital perturbations [31].

To consider the influence of orbital perturbations, semi-analytical method is another
elegant technique to propagate the orbit uncertainties. The effects of dominant orbital
perturbations separate the constant, short periodic and long-periodic terms [38]. With
the direct usage of the averaging technique on the variational equations or Hamiltonian
formulation of the dynamics [39–41], the short periodic effects, which normally have
small amplitudes, are filtered analytically. Therefore, the obtained averaged equations
only include long periodic perturbation effects and can be integrated numerically with
very large step sizes, making semi-analytical methods more computational efficient. The
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main shortcoming is that the derivation procedure of the averaged equations is often
complicated and time-consuming with the consideration of specific orbital perturbations.
Another type of semi-analytical methods employ first order polynomials to approximate
the vector fields governing the motion of the RSOs, then carry out analytical integration
of the simplified models. Clearly, this semi-analytical solution is only an approximation
of the actual system, thus again encounters the “accuracy loss” issue.

As a useful alternative to analytical and semi-analytical approaches, numerical methods
completely consider the nonlinear perturbation vector fields, which strongly benefits the
accuracy of the state propagation problem. Consequently, it enables to numerically solve
ODE systems within an acceptable precision. However, accurate calculation of the intri-
cate nonlinear vector fields requires small time-steps adopted in the numerical integration
procedures, which significantly reduces the state propagation speed. In particular, it is a
huge disaster to numerical methods when a great amount of the repetitive computation
over the same time interval are carried out to investigate state statistical characteristics,
such as Monte Carlo (MC) simulations.

For the sake of comparison, the most well-known MC simulations, linearized models, and
nonlinear propagation methods are reviewed in what follows. Note that two key indicators,
i.e., computational accuracy and efficiency, are employed to describe the performance
of these orbit uncertainty propagation methods. The computational accuracy is often
represented by the degree of closeness of the propagated state to its true value, while the
computational efficiency is frequently addressed by the amount of computational burden.

1.2.1 Monte Carlo simulations

As an intuitive and comprehensible uncertainty propagation method, a MC simulation
enables to completely describe the statistical properties of an uncertainty propagation
process through the implementation of particle-type studies. Therefore, it naturally pos-
sesses two features: 1) it enables to propagate nonlinear and non-Gaussian distributions;
2) when the number of sampling points approaches to infinity, its result perfectly approx-
imates to the true probability distribution. With the consideration of these two merits,
for nonlinear orbit uncertainty propagation problems, the MC simulation is frequently
employed to predict future trajectory statistics. Besides, due to the high propagation
accuracy, the MC result is usually cast as the reference value to validate the accuracy of
other linear or nonlinear methods.

In the existing literature, the MC method has been extensively adopted to propagate
the orbit uncertainties in many applications. In [42, 43], the MC method was used to
propagate the non-Gaussian characteristics of orbit uncertainties in different coordinate
reference frames. Besides, a similar method was further explored to accurately trans-
port the trajectory distributions under thrust errors for non-impulsive orbital transfer
missions [44]. Ghrist et al. also adopted MC simulations to investigate the effect of
non-Gaussian error volumes on collision probability computation [45]. However, if the
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dynamics in question is a high dimensional system, the MC method has to adopt a great
number of sampled trajectories for realizing good convergent statistics, which clearly re-
sults in very heavy computational burden [46]. In other words, the MC method is possible
to encounter the so-called “curse of dimensionality” issue when it is adopted to handle
high dimensional propagation problems. One key topic of interest about the variant of
MC methods is to improve the computational efficiency.

An alternative approach is to create a minimal particle representation of the transient
state uncertainty distributions in order to achieve the identical performance to that of
traditional MC simulations [47]. An elegant solution is to dynamically and adaptively
adjust the number of particles with a single run of the MC simulation in order to balance
the computational accuracy and burden [48]. To speed up the implementation of MC
simulations, two advanced techniques based on line sampling and subset simulation were
put forward [49, 50]. Another alternative to decrease the computational burden of MC
simulations is to employ the parallel manner of modern computer, such as the usage of
graphics processing units [51,52].

1.2.2 Local linearized methods

To obtain accurate non-Gaussian statistical characteristics of orbit uncertainty propaga-
tion, MC simulations often consume a heavy computational burden with the increasing
dimensions of considered problems, or even encounter the “curse of dimensionality” issue.
However, not all space applications require such high trajectory propagation accuracy.
On the contrary, in some specific situations, the computational efficiency is also as vital
important as the required accuracy requirements.

Instead of the well-known MC simulations, the linearized mapping technique based on
state transition matrix (STM) is employed to simplify the dynamical models and accel-
erate the propagation of state uncertainties [31, 53]. In general, linearized models are
capable of yielding analytical solutions under the linearization assumption, thus they
usually possess high computational efficiency. However, they are only adopted when the
following two assumptions hold: 1) the local motion relative to a nominal trajectory is
sufficiently approximated by a first order expansion model; 2) the uncertainty distribution
can be assumed as Gaussian. Otherwise, it possibly fails to describe the characteristics
of state uncertainties, especially for highly nonlinear dynamical systems or long-duration
propagation intervals, since the omission of higher order terms always results in the sig-
nificant approximation errors. Therefore, linearized models can be only applied in the
linear or moderately nonlinear systems.

Based on the STM, Battin put forward a local linearization method, named linear co-
variance (LinCov) analysis, to quantitatively study the impacts of navigation estimation
errors on the trajectory dispersion [54]. Afterwards, Maybeck presented another LinCov
formulation describing the state error covariance in a general manner [46]. Based on
Battin’s and Maybeck’s work, Geller adopted the LinCov technique to predict the trajec-

8



1.2 - Orbit uncertainty propagation methods

tory dispersion under navigation errors and impulsive maneuver variations, and further
proposed a new trajectory control and navigation analysis method [55]. Due to the
high computational efficiency, the LinCov technique was extensively adopted in practical
space applications, such as the orbital rendezvous problem [56], lunar descent landing
problem [57,58], attitude estimation and control problem [59] and spacecraft atmospheric
entry problem [60]. In addition, the LinCov technique can be also employed to study the
influences of dynamical modelling errors [61], actuator errors [62] and sensor errors [63]
on the trajectory dispersion and estimation accuracy.

1.2.3 Nonlinear uncertainty propagation methods

Generally, the nonlinearity degree of a physical system is not an attribute intrinsic to the
system itself and often can be alleviated through a reasonable mathematical description,
such as the choice of coordinates, regularization and averaging methods [64]. Even so,
the dynamics of the Earth-orbiting spacecraft has been verified to be highly nonlinear (in
both Kepler case and perturbed case) [65]. Therefore, the propagation behavior of an or-
bit family over a long time interval, resulting from a large initial state uncertainty, cannot
be accurately approximated by a linearized model. In other words, the accuracy of the
orbit uncertainty propagation often drops off due to the inconsistency between the Gaus-
sian distribution assumption and actual statistics [66]. On the other hand, the commonly
used MC approach is high-precision and easy to implement orbit uncertainty propagation,
but it is very computationally expensive to obtain the convergent statistics [52]. Conse-
quently, neither of them enables to reach a superior trade-off between the computational
accuracy and efficiency. This sharp contradiction inspires a lot of researchers to study
computationally efficient approaches for accurately capturing the nonlinearity of the dy-
namics. In addition, the stability and chaotic issues also should be carefully considered in
the orbital propagation over a long duration, which can be effectively discussed through
calculating the future behaviors of many neighboring orbits or computing indicators of
chaos [67,68].

In [42, 64], Junkins et al. first discussed the nonlinear transformation method to cap-
ture non-Gaussian characteristics of the orbit uncertainty propagation. Scheeres et al.
deduced a new formulation of the constraint on covariance matrices that arises from
topological considerations through a series of observation on fundamental constraints ex-
isting on the propagation of orbit uncertainties [69, 70]. From then on, the study of the
nonlinear uncertainty propagation has received an increasing attention. A variety of an-
alytical and semi-analytical approaches were presented, which contain three types: 1)
sample-based unscented transformation (UT) and polynomial chaos (PC) expansions, 2)
dynamics-based state transition tensors (STTs) and differential algebra (DA), 3) PDF-
based Gaussian mixture model (GMM) and Fokker–Planck equations’ solution (FPE).
These methods effectually improve the weakness of the MC method and linearized model.

Both UT and PC methods are based on a straightforward and basic idea, that is, for
complicated nonlinear dynamical systems, it may be easier and faster to approximate
the state probability distribution than to approximate the nonlinear mapping process.
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The probability distribution at a future epoch can be approximated by full numerical
integration of a few samples chosen from the initial state distribution. To address the
imperfection of linearization, the UT method, proposed by Julier et al. [71–73], utilizes
2n+1 deterministic sigma-points to capture the system nonlinearity and delivers a second
order approximation of the first two moment of the propagated statistical distributions.
That is, only means and covariance matrices of state uncertainty distributions can be
accurately mapped, which results in the fact that the UT method is usually appropriate for
uncertainty propagation of moderately nonlinear systems. For strong nonlinear systems,
the UT method is often inaccurate, or even ineffectual since the higher order terms could
not be mapped.

Instead of using deterministic sampling points, the non-intrusive uncertainty propagation
method based on PC expansions utilizes a few random samples to accurately approximate
the solution to a stochastic ODE system [74]. It is worth highlighting that no simplifica-
tion of sophisticated nonlinear dynamical models is taken in the implementation of the
PC expansion procedure. Therefore, the PC method enables to elegantly approximate
any finite-variance and possibly non-Gaussian solution. Compared with the UT method,
it has been verified that the PC expansion technique is capable of extracting more nonlin-
ear information from the perturbed orbital dynamics and delivering high order moments
of the mapped state statistical distributions [75]. Compared with the MC method, the
PC expansion technique possesses exponential, mean-squares convergence rate relative
to the expansion order of the polynomial basis even in the mapping of non-Gaussian
uncertainty distributions. However, although the PC method alleviates the computa-
tional cost relative to the MC simulation, it is still likely to encounter the so-called “curse
of dimensionality” phenomenon [76]. To reduce the overall computational burden and
tackle the issue of dimensionality, several elegant variants of the PC method were put
forward [76–78].

Apart from the aforementioned sample-based nonlinear uncertainty propagation meth-
ods, two novel dynamics-based propagators were discussed. Park and Scheeres proposed
a semi-analytic method, i.e., STTs, for addressing the localized nonlinear motion rela-
tive to the nominal trajectory and analytically mapping the state uncertainty [79]. It
has been proved that the result computed by STTs affords good agreement with that
calculated by the MC method. Besides, the STTs method enables to accurately and ef-
ficiently propagate both Gaussian and non-Gaussian statistical distributions. Fujimoto
et al. further formulated a precise and consistent polynomial representation to transport
orbit uncertainties in both conservative and non-conservative dynamical systems [80,81].
Nevertheless, manual computation of high order derivatives of the governing dynamics is
very tedious, which limits its application in many cases, especially for high-dimensional
or high-fidelity dynamical systems. To address this disadvantage, several techniques such
as differential algebra (DA) [82], jet transport (JT) [83], automatic differentiation [84,85]
and modified Picard integrator [86] were put forward in succession to achieve fast and
automatic computations of the STTs within a computerized environment.

The first DA formalization was done by Berz and Makino for the study of particle beam
accelerators, and implemented in their COSY Infinity package [82]. Subsequently, the
DA technique was extensively studied and applied into the transport of orbit uncertain-
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ties [33, 87–89]. In 2009, another well-known polynomial algebra implementation named
JT technique was put forward to automatically compute the STTs of the flow of an ODE
system [83]. Since then, it has been widely employed to propagate the statistics of initial
orbit uncertainties to a future epoch [90]. It is worth mentioning that the accuracy of the
STTs method or its DA and JT implementations often dramatically decreases as the mag-
nitude of orbit uncertainties increases because of the natural properties of Taylor series
expansions. To accurately deliver large sets of orbit uncertainties, the automatic domain
splitting (ADS) technique was applied to both DA and JT implementations [91,92]. Fur-
thermore, with the usage of polynomial-based integration, semi-analytical DA and JT
solutions of an ODE system can be further adopted to develop an advanced MC method.
Compared with the conventional MC method, it significantly accelerates the state prop-
agation of sampling particles and reduce the computational load [93].

The evident disadvantage of the STTs or its DA and JT implementations is that these
methods require the propagated dynamical models to be continuous and differentiable.
In general, they are not suitable for problems with the consideration of solar radiation
pressure and atmospheric drag perturbations due to the entry and exit of the Earth
shadow or non-differentiable model of the atmospheric density. Instead of Taylor series
expansions, the non-intrusive Chebyshev polynomial interpolation technique has been
investigated to address this issue in the implementations of DA and JT procedures [94,95].

In addition to the aforementioned nonlinear uncertainty propagators, the exact evolution
of non-Gaussian distributions can be described by the associated PDF through the so-
lution of FPE equations. Kumar et al. proposed a series of useful methods to solve the
FPEs [96–99]. Nevertheless, these methods are inadaptable to solve a high dimensional
FPE due to the huge computational complexity. For instance, the FPE describing an
orbital problem with six variables is almost impossible to be solved due to the unbear-
able computational load, even using super computing platforms. Until 2016, the direct
solution of the transient FPE for the perturbed two-body problem was just for the first
time obtained in a personal computer with the usage of the tensor decomposition [100].
However, it is still a huge challenge to solve the FPE for higher dimensional dynamical
systems. An alternative method for approximating the time evolution of the PDF, as-
sociated with a high dimensional system, was to adopt the GMM model [101, 102]. It is
worth to mention that the accuracy of the GMM method fully depends on the number of
Gaussian mixtures. To some extent, the GMM method enables to alleviate the computa-
tional efficiency issue. However, if the number of the adopted Gaussian mixtures is too
many, the GMM method would encounter the “curse of dimensionality” issue; otherwise,
its accuracy maybe deteriorates. To improve the computational efficiency, the adaptive
GMM method was further studied [103–105], however, the recomputation of the weights
of Gaussian mixture components is also computational intensive.

Except the aforementioned methods, the combination of linear and nonlinear uncertainty
propagators were occasionally studied [106, 107]. The original inspiration of the hybrid
method arises from the absorption of all individual advantages. For instance, a new
propagator was proposed to express the closed-form PDF by combining both GMM and
STTs methods [106], which inherits the superior accuracy of the GMM method and the
high computational efficiency of the STTs method if it is implemented by the specialized
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technique, such as JT or DA. Furthermore, with the development of artificial intelligence
technology, several machine learning approaches were discussed to improve the accuracy
of orbit propagation problems [108, 109]. The historical orbit data of a RSO can be
employed to train the adopted artificial neural network, such that the trained artificial
neural network can be in turn used to propagate orbit uncertainties in nonlinear space
environments [110,111].

1.3 Sequential filtering techniques

This section introduces the state-of-the-art sequential filtering techniques developed in
the Bayesian framework for accurately estimating the state vector of a RSO. In general,
the Bayesian filtering technique always consists of both state prediction and updating
procedures, where the former step is used to transport the state vector and its associ-
ated PDF in between measurements, while the latter one is employed to correct the a
priori prediction of the state vector by incorporating actual measurements and further
obtains the a posteriori estimated state vector. Therefore, the accuracy of a filter strongly
rides on the magnitudes of error statistical properties output from both prediction and
measurement processes.

It is worth underlying that state uncertainty propagators discussed in section 1.2 relate
to the prediction step of a Bayesian filter, such that they can be directly employed to
construct different filters. Based on the types of adopted state uncertainty propagation
approaches, a variety of relevant filtering techniques have been proposed. We review
mostly used Bayesian filters in what follows, as well as their underlying pros and cons.
Note that, for the solution of space-related OD problems, an elegant sequential filtering
algorithm should be accurate, robust and low computational burden.

1.3.1 Linear Kalman filters

The well-known linear Kalman filter (KF) was first proposed in 1960 by Rudolf E.
Kalman [112,113], who opened up a completely new field in the estimation theory. The-
oretically the KF is an optimal mean square error filter for linear systems, in which both
process and measurement noises are assumed to be zero-mean Gaussian distributions with
known covariance matrices [112–114]. In actual estimation problems, standard deviations
of both process and measurement noises are not easy to precisely determine, such that the
accuracy of the KF is likely to reduce. In such a case, a robust alternative is to minimize
the worst-case estimation error rather than its variance. Based on this idea, an improved
linear filter, called H-∞ filter, was proposed to enhance the robustness of the KF for
time-varying systems or the cases with inaccurate or unknown process and measurement
noises [115, 116]. For more detailed information about linear filters, an outstanding de-
scription was given in [117, 118]. It is worth emphasizing that these linear filters were
broadly adopted in many early space applications due to the simplicity and effectiveness.
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1.3.2 Nonlinear sequential filters

The motion of Earth-orbiting RSOs subjected to the central gravity and perturbations is
extremely nonlinear and time-varying. Meanwhile, the measurement models, describing
the information of range, range rate, angle, angular rate and so on, are always nonlinear
functions of position and velocity vectors of the RSOs. With the consideration of nonlin-
ear behaviors, linear KFs are no longer adequate to precisely describe the state statistics
(i.e., mean and covariance matrix). Many research attempts to improve the estimation
accuracy of common KF filters within limiting the computational burden, including ex-
tended Kalman filter (EKF) [112, 119], unscented Kalman filter (UKF) [73], cubature
Kalman filter (CKF) [120, 121], PC-based Bayesian filter (PCBF) [122], high order ex-
tended Kalman filter (HEKF) [123–125], Gaussian sum filter (GSF) [126], FPE-based
Bayesian filter (FPE-BF) [127] and so on.

For moderately nonlinear systems, the dynamical and measurement equations most often
can be approximated by linearized models. One of the most renowned nonlinear variants
of the KF, called EKF, was firstly put forward based on the linearization assumption
and widely employed to solve nonlinear state estimation problems [31,112,119,128]. The
straightforward rationale of the EKF is to achieve the a priori state prediction using
first order Taylor expansions of nonlinear systems, then, produce the a posterior estimate
of the state vector through the incorporation with the new measurements at each time
sample. The prediction error between the adopted linearized approximation model and
the actual nonlinear dynamics dramatically depends on the local slope of the dynamics.
To guarantee that the linearized model is sufficiently accurate to the actual dynamical
system, high measurement frequency and small initial state uncertainties are requisite
such that the partial derivative of the dynamics relative to both the time and state
remains almost fixed [129]. In such condition, the approximation error generally can
be controlled within a relatively small scope. Otherwise, if the EKF encounters poor
conditions, for instance in systems with low frequency measurements or when only bad
initial state guesses are available, the linearization-based approximation may be inefficient,
thus results in the loss of estimation accuracy, or even divergence [130]. In other words,
large initial state deviations, sparse measurements available, as well as their interactions
remarkably amplify the effect of system nonlinearity, making the EKF inappropriate for
the nonlinear state estimation. Note that if nonlinear systems are not differentiable, the
EKF is very likely to suffer from a large loss of accuracy in the estimation of mean and
covariance matrix due to the derivative-based structure. On the other hand, the EKF is
difficult to implement and tune since the cumbersome derivation of the Jacobian matrices
always depends on the considered dynamical models.

In order to improve the shortcomings of the EKF, two alternatives, including UKF and
CKF, were proposed based on the direct representation of probability distributions ap-
proximated by the full numerical integration of specially selected sampling points. The
UKF adopts a UT transformation to transport state Gaussian distributions with the us-
age of 2n+1 deterministically chosen sigma points [72,131–133]. Analogously, based on a
third-degree spherical-radical cubature rule, the CKF adopts 2n so-called cubature points
to numerically compute Gaussian-weighted multi-dimensional integrals [134]. Compared
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with the CKF, the UKF contains one more central sampling point of the state Gaussian
distribution, which often possesses more weight. However, for systems of dimension more
than 3, the weight of the central sampling point is commonly negative, which always
results in the failure of the UKF due to the non-positive semi-definite covariance matrix.
In other words, the CKF has the better numerical stability property than the UKF when
being employed to solve high-dimensional estimation problems [135]. Although these two
filters are designed to solve the nonlinear estimation problem, they still assume the prop-
agated state distribution being Gaussian. Another sample-based filter, called PCBF, was
proposed to provide non-Gaussian solutions by abolishing the Gaussian error distribution
assumption [122]. It is worth mentioning that, compared with the EKF, the aforemen-
tioned three sample-based filters, i.e., UKF, CKF and PCBF, do not require the estimated
model being differentiable. On the other hand, except the PCBF, both UKF and CKF en-
able to provide a higher accuracy at the cost of a slight increment on the computational
complexity (although generally, on the same order of magnitude) [136, 137], while the
computational cost of the PCBF increases exponentially with the state dimensionality.

From another point of view, along with the development of the STTs concept, the com-
mon EKF has been generalized into the so-called HEKF [123–125]. These filters enable
to extract more nonlinear information from dynamical and measurement models, thus
provide a much better performance, specially in the case of low measurement frequencies
and large initial state deviations. However, the manual derivation of high order STTs
not only requires nonlinear systems to be continuous and differentiable, but also causes
the computational complexity in high-fidelity and/or high-dimensional systems. In other
words, the bottleneck of the HEKF lies in the accurate and efficient computation of the
required high order STTs. With the development of computing hardware performance
and new automatic differentiation and integration techniques, such as DA [138, 139] and
JT [83], the computational efficiency of the STTs has been remarkably improved, making
the HEKF possible into the practical application nowadays. However, the antagonism be-
tween the estimation accuracy and the computational burden still persists in the HEKF
implementation and, in general, with the increase of the expansion order, the estimation
error decreases, but the computational cost increases significantly.

Besides, some specialized filters, such as GSF [126] and FPE-BF [127], that cater to vari-
ous classes of nonlinear estimation problems of interest, have been also put forward along
with the development of other nonlinear uncertainty propagators, i.e., GMM, FPE and
tensor decomposition. However, these filters always inherit the computational inefficiency
from the adopted state propagation approaches, such that they are rarely used in actual
space-related missions.

1.3.3 Particle filter

Particle filter (PF) is another well-known nonlinear recursive Bayesian filter, which was
firstly proposed by Gordon et al. in 1993 with the name of bootstrap filter [140]. The
basic rationale underlying the PF is to represent the state PDF in both prediction and
updating procedures as a weighted set of random samples [141]. Clearly, it provides an

14



1.4 - Research overview and contributions

alternative approach to accurately estimate the nonlinear states and parameters occupy-
ing non-Gaussian uncertainty distributions [142, 143]. The PF uses a MC simulation to
approximate the state PDF after each measurement updating, which is called “particle
evolution”. Clearly, the PF has no restriction on the differentiability of the systems. Note
that, to guarantee the approximation accuracy, the required number of particles has to
increase exponentially with the system dimensionality. Hence, the PF always encoun-
ters “curse of dimensionality” phenomenon, which makes it hard to apply in real-time
estimation missions [144]. To improve the computational efficiency, a JT-based MC prop-
agator was adopted to develop a more excellent filter called Jet Transport particle filter
(JTPF) [145]. Instead of the repetitive numerical integration adopted by the classical
PF, the JTPF applies the JT technology to achieve the particle evolution process, which
contains two steps: 1) Flow expansion: the vector fields of the ODEs are expanded around
a center particle into high order Taylor series and further integrated to obtain the ap-
proximated polynomial of the associated flow; 2) Particle evolution: substitute the initial
deviation of each particle into polynomial results to yield the approximate value of each
particle’s evolution. Clearly, the polynomial integration in the “Flow expansion” step
consumes more time than the numerical integration of one particle, but it is executed
only once in between measurements. Meanwhile once the high order Taylor series ex-
pansion of the flow is obtained, the tedious repetitive numerical integration procedure
for evaluating all particles can be replaced with the elegant “Particle evolution” step,
i.e., faster numerical algebra operation, which enables to significantly save the computa-
tional cost. Consequently, the JTPF costs much less processing time in total than the
conventional PF method, especially when the filter needs a huge quantity of particles.
However, even so, compared with other concise filters, the JTPF still consumes a large
amount of the computational burden. Summarizing, the PF and its variant JTPF over-
come almost all intrinsic limitations of the aforementioned nonlinear filters except the
heavy computational burden.

1.4 Research overview and contributions

In the discussions above, precise and efficient orbit propagation and determination tech-
niques are requisite in current or future advanced space missions, such as the SSA and
GEO SAR, especially when only bad initial state guess or/and sparse measurements are
available. However, the existing propagators and estimators almost can not satisfy both
accuracy and efficiency requirements simultaneously. On the other hand, it is also of
importance to identify sensor malfunctions and maintain strong robustness in the orbit
determination problem. Therefore, this work is mostly devoted to achieving the following
intended contributions:

• Develop a polynomial algebra-based JT framework to automatically implement
polynomial approximation operations of nonlinear systems, including nonlinear func-
tions and general ODE systems.

• Based on the JT technique, nonlinear propagators using high order STTs are ex-
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plored to perform the efficient and accurate orbit propagation of the RSOs in the
high-fidelity space environment.

• Propose a novel JT-based high order extended Kalman filter (JT-HEKF) to ac-
curately and efficiently solve the joint state and parameter estimation problem in
space-related applications.

• Design three superior fault-tolerance strategies to improve the robustness and reli-
ability of the JT-HEKF against sensor malfunctions.

• Put forward a more efficient statistical adaptive order-switching methodology for
further improving the computational efficiency of the JT-HEKF algorithm.

Following is a brief outline of the organization of this dissertation.

• In chapter 2, a JT framework is constructed in the modern computer with the usage
of C plus plus. A series of polynomial operations are defined in the JT framework,
including polynomial storage, addition, subtraction, multiplication, division, differ-
entiation, integration and composition. The tool includes as well useful algorithms,
for instance, the polynomial-based Runge-Kutta integrator and polynomial evalu-
ation. Furthermore, the JT technique provides an efficient and accurate way to
calculate polynomial expansions (such as Taylor and Chebyshev series), up to an
arbitrary order, for practical problems described by a set of nonlinear functions or
ordinary differential equations.

• Based on automatic computation of the STTs in the proposed JT framework, Chap-
ter 3 develops an accurate and efficient nonlinear method for propagating trajectory
uncertainties in the high-fidelity space environment. Without loss of generality, an
illustrative example for the orbit uncertainty propagation in the GEO regime is
performed in two forms, Taylor and Chebyshev expansions, and in different coordi-
nate representations. Except the Earth’s central gravity, the considered vector field
contains other four dominant perturbations: SRP, Earth’s potential and luni-solar
gravitational attractions. Taking into account the size of uncertainty neighborhoods
as well as the expansion order of approximation polynomials and the time step of
integration schemes, abundant combinations of the above factors are simulated and
a series of look-up tables with recommendations on the best options to address the
propagations are given.

• Along with the development of JT-based nonlinear prediction methods, Chapter 4
proposes an augmented JT-HEKF (JT-AHEKF) for simultaneously estimating the
spacecraft state vector and uncertain parameters, either physically related with the
spacecraft or with the measurement procedure. Two different coordinate representa-
tions, including Cartesian and hybrid geostationary orbital elements, are exploited
for dealing with the OD problem in the GEO regime.

• In Chapter 5, three fault-tolerant algorithms are further put forward to suppress
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measurement faults. In the light of the insensitiveness of the proposed JT-HEKFs
to the measurement frequency, the first strategy directly discards the identified
false measurements, being equivalent someway to the decrease of the measurement
frequency. The second and third strategies employ a single scale factor and an adap-
tive scale matrix, respectively, as a multiplier to the measurement noise covariance
matrix in order to alleviate the pollution of false measurements.

• The JT-HEKF generally encounters a dilemma between the estimation accuracy
delivered and the computational burden associated. Targeting to improve this
shortcoming, achieving estimations with high accuracy and computational efficiency,
Chapter 6 investigates a new adaptive order-switching variant of the JT-HEKF via
automatic adjustment of the order within one single filter run. At each filter step,
an innovation-based function, accounting for the filter consistency, is put forward
to judge the necessity of an order-switching operation.

• In Chapter 7, some useful conclusions are highlighted and possible future extension
of this dissertation is introduced.

1.5 Publications and academic activities

The published articles and academic activities carried out during the thesis are summa-
rized below:

Articles

• J. Chen, J. J. Masdemont, G. Gómez, and J. Yuan, Jet transport-based nonlinear
state and parameter estimation for geostationary spacecraft, Acta Astronautica,
164(1), 2019.

• J. Chen, J. J. Masdemont, G. Gómez, and J. Yuan, Analysis of jet transport-based
geostationary trajectory uncertainty propagation, Journal of Guidance, Control,
and Dynamics, 43(6), 2020.

• J. Chen, J. J. Masdemont, G. Gómez, J. Yuan, and Z. Zhu, Rotation–translation
coupling analysis on perturbed spacecraft relative translational motion, Nonlinear
Dynamics, 2020.

• J. Chen, J. J. Masdemont, G. Gómez, and J. Yuan, An efficient statistical adap-
tive order-switching methodology for kalman filters, Communications in Nonlinear
Science and Numerical Simulation, 93(1), 2020.
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Chapter 22
Jet transport technique

This chapter is devoted to introducing a powerful tool, i.e., JT scheme. It is an expert soft-
ware framework constructed on the basis of the modern computer technology. In essence,
JT technique developed in this thesis is composed of polynomial expansion techniques (in
Taylor or Chebyshev basis) and a series of associated algebra defined in the polynomial
space. The polynomial approximation technique employs Taylor or Chebyshev polynomi-
als to fit basic nonlinear functions up to an arbitrary order, such as exponentials, powers,
logarithms, and trigonometric functions. The specific algebra trivially defines not only
polynomial addition, subtraction, multiplication and division operations, but also some
useful algorithms, for instance, complicated polynomial composition, polynomial-based
integrators and advanced MC simulators. In what follows, all these polynomial algebraic
operations are introduced in order to build a tailored JT framework for carrying out the
polynomial-based semi-analytical method in an automatic, accurate and efficient way.

Note that the core concept of JT technique focuses on how to achieve the automatic Taylor
and Chebyshev polynomial approximation representation of a given nonlinear procedure
(i.e., a function mapping or an ODE system) by the modern computer technology, thus
it is also known as differential algebra, automatic differentiation or polynomial algebra.
For brevity, the JT-based n-th order Taylor and Chebyshev approximations of a nonlin-
ear procedure are respectively referred to as JTTNM-n and JTCNM-n methods in the
following discussions.
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Chapter 2. Jet transport technique

2.1 Polynomial storage

Theoretically, a polynomial Pn,d(β(x)), in d variables of an infinite order n, enables
to adequately address the full information of a given nonlinear procedure f(x) over a
bounded domain Ω = [xl,xu] ∈ Rd, where xl ∈ Rd and xu ∈ Rd jointly confine the range
of interest, and the polynomial basis of choice β(x) is a function of the state vector x ∈ Rd.
However, in practical JT implementations, it is impossible and superfluous to store all
terms of designated polynomials in the modern computer due to an enormous demand of
computer’s internal storage and CPU time. As a consequence, a truncated polynomial
Pn,d(β(x)) in a finite expansion order n is preferred to approximate a nonlinear function
f(x) within an acceptable error tolerance Rn(x) in the JT framework, that is

f(x) = Pn,d(β(x)) +Rn(x) , (2.1)

it is apparent that both the approximation error Rn(x) and the needed amount of memory
used for the polynomial storage depend on the selected expansion order n. For instance, a
natural univariate exponential function ex can be expanded as ex = 1+x+ x2

2! + x3

3! +o(x4)
around the expansion point x = 0 by means of the JTTNM-n method. Its second order
polynomial result P2,1(x) = 1 + x + x2

2! possesses second order accuracy and needs to
store three coefficients, while its third order polynomial result P3,1(x) = 1 + x + x2

2! +
x3

3! has better accuracy (third order) but needs to store one more coefficient than the
second order expansion. In other words, the higher expansion order is adopted, the
better approximation accuracy can be obtained, meanwhile the more CPU time and the
larger amount of memory must be consumed. Therefore, there is a trade-off between the
approximation accuracy and CPU time in the practical choice of the expansion order n.

On the other hand, if the JTCNM-n method is employed in the approximation procedure
of a given nonlinear law f(x), the Chebyshev polynomial interpolation, with an assigned
number of Chebyshev nodes (for instance 100), is often carried out in the Chebyshev basis.
Generally, in advance of the interpolation procedure, it requires to convert the range of
state vector Ω = [xl,xu] ∈ Rd into a standard interval Ω̄ = [−1,1] ∈ Rd. Without loss
of generality, using the following linear mapping on each component,

x′i = −2xi
xl,i − xu,i

+ xl,i + xu,i
xl,i − xu,i

, i = 1, · · · , d (2.2)

the polynomial defined on x ∈ Ω can be converted and reconstructed on a unified hyper-
rectangle domain x′ ∈ Ω̄. Note that this tedious transformation is unnecessary in the
JTTNM-n implementation. Besides, the numbers of coefficients and polynomial terms
constituting a full polynomial Pn,d(β(x)) are identical in the JTTNM-n and JTCNM-n
implementations, that is

Nn,d = (n+ d)!
n! d! . (2.3)

The most basic but vital point of both JTTNM-n and JTCNM-n implementations is how
to store and retrieve Taylor or Chebyshev polynomials. Without question, the polynomial
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2.1 - Polynomial storage

storage and retrieval speed is one of the key factors dramatically affecting the execution
efficiency of polynomial algebra [68]. In general, a polynomial of order n in d-dimensional
variables Pn,d(β(x)) can be expressed as

Pn,d(β(x)) =
∑
|γ|≤n

cγβγ(x) , (2.4)

where the multi-index vector γ = (γ1, · · · , γd) is a d-dimensional vector with each compo-
nent γi ∈ [0, n] ∈ N and its Manhattan norm |γ| =

∑d
i=1 γi, βγ(x) = βγ1(x1) · · ·βγd(xd)

represents an arbitrary element of the selected orthogonal basis β(x), corresponding to a
multi-index vector γ, cγ ∈ RNn,d indicates the set of all coefficients defining the polyno-
mial (2.4). In accordance to the form of polynomial (2.4), its storage can be achieved by
archiving both the selected orthogonal basis β(x) and the associated coefficients cγ . An
efficient approach is to store all elements of the adopted orthogonal basis β(x) a priori
by means of a default rule with the usage of the multi-index vector γ. Subsequently,
the storage of polynomials can be simplified into the placement of coefficients cγ in the
Nn,d-dimensional vector C, again in terms of the multi-index vector γ. Clearly, the multi-
index vector γ = (γ1, · · · , γd) used in (2.4) is a substitutive way to represent an arbitrary
element βγ(x) = βγ1(x1) · · ·βγd(xd) since γ uniquely determines the placement of the
element βγ(x) in Taylor or Chebyshev polynomial Pn,d(β(x)).

The purpose of this section is to precisely define the storage rule of the selected orthogonal
basis β(x), and one-to-one correspondence between the element βγ(x) and its coefficient
C[k], that is, the element βγ(x), coefficient index k, and coefficient C[k] must be uniquely
determined and bundled by means of the multi-index vector γ. The default storage rule of
the selected orthogonal basis is defined as follows: firstly, all elements are segmented and
allocated with serial numbers in accordance to the Manhattan norm of its milti-index |γ|.
Generally, for a certain element βγ(x), the lower |γ| the element possesses, the smaller
serial number will be allocated; secondly, the total number of the elements whose order
less than |γ| is calculated by means of (2.3) and denoted as N|γ|−1,d; thirdly, the relative
position kr of a designated element βγ(x) inside the segment occupying the same degree
|γ| is calculated by the reserve lexicographic order with vector access to the multi-index
vector γ [146]; finally, the serial number k = kr +N|γ|−1,d is allocated to the designated
element βγ(x). Follow the rule above, all elements consisting of the selected orthogonal
basis β(x) are sequentially distributed and known a priori. As a consequence, each
element is allocated with its unique serial number k, which is also adopted to determine
the position of the associated coefficient inside the Nn,d-dimensional vector C. On the
other hand, if the coefficient index k is given, the coefficient C[k] can be retrieved from
the coefficient vector C and its associated multi-index vector γ = (γ1, · · · , γd) can be also
uniquely calculated. Note that Algorithm 2.2 and 2.3 explain these detailed procedures.

As an illustrative example, Fig. 2.1 illustrates in detail the storage procedure of a poly-
nomial of order 3 in 2-dimensional variables, expressed in both Taylor and Chebyshev
bases. Clearly, each term contains one selected orthogonal basis element βγ(x) and
its relevant coefficient C[k]. Their one-to-one correspondence relationship can be con-
structed straightforward. For instance, in JTTNM-3 and JTCNM-3 implementations, if
the element x2

1x2 or T2(x1)T1(x2) is considered, it is easy to obtain its multi-index vector
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Algorithm 2.1 Form an auxiliary matrix NM with dimension (d+ 1)× |γ|
1: All terms in the first row of NM are zero;
2: All terms in the second row of NM orderly equal 1, 2, · · · , |γ|;
3: The terms in other rows NM [i][j] can be calculated as

• if k equal zero, NM [i][0] = 1;
• else NM [i][j] = NM [i− 1][j] +NM [i][j − 1].

Algorithm 2.2 Calculate the coefficient index k in terms of the multi-index vector γ
1: Determine the state dimension d and calculate the Manhattan norm of the multi-index

vector |γ|;
2: Using Algorithm 2.1, form an auxiliary matrix NM with dimension (d+ 1)× |γ|;
3: Based on the lexicographic order with vector access to the multi-index vector γ, the

coefficient index k is calculated as follows
• if |γ| equals zero, then k = 0; else retrieve the multi-index vector γ =

(γ1, · · · , γd) from left to right in order to obtain the index i of the last non-
zero term;

• set k = 0, i = i− 1, j = l − i and l = −1;
• Loop, while (i ≥ 0) {l = l + γi+1; i− = 1; k+ = NM [j][l]; j+ = 1} end.

γ = (2, 1) and further calculate the coefficient index k = 7 by means of Algorithm 2.2;
homoplastically, if the coefficient index k = 7 is given, one can compute the multi-index
vector γ = (2, 1) through the usage of Algorithm 2.3 and determine the element x2

1x2 or
T2(x1)T1(x2).

Algorithm 2.3 Calculate the multi-index vector γ using the coefficient index k
1: Determine the state dimension d and use the trial-and-error method to obtain the

maximum integer γmax satisfying (γmax+d−1)!
(γmax−1)!d! < k + 1;

2: Using Algorithm 2.1, form an auxiliary matrix NM with dimension (d+ 1)× |γ|;
3: According to the reserve lexicographic order and the coefficient index k, calculate the

multi-index vector γ = (γ1, · · · , γd) as follows
Loop:

S1: set l equals the state dimension d
S2: for (i = 0; i < l; i = i+ 1){
S3: if k equals zero, set all components γi+1, · · · , γd as zero and return the multi-

index vector γ; end;
S4: if i equals zero, { j = γmax }; else { for (j = 0; k ≥ NM [l][j]; j = j + 1,γi =

γi − j); } end;
S5: γi+1 = j; k = k −NM [l][j − 1]; l = l − 1;
S6: } end; return the multi-index vector γ.
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2.2 - Polynomial algebra

Figure 2.1: One-to-one correspondence among the coefficient index k, multi-index vector
γ = (γ1, γ2), and basis element βγ(x) in JTTNM-3 and JTCNM-3 implementations.

2.2 Polynomial algebra

This section introduces the definition of polynomial algebra for the JT framework. To be
specific, we firstly describe the formulae for basic polynomial operations and differential
polynomial algebra; then, the polynomial approximations to basic nonlinear univariate
functions are investigated via the Taylor expansion approach or Chebyshev interpolation
technique; furthermore, the polynomial composition operation is proposed to approx-
imate multi-variable functions. In order to validate the performance of the proposed
approximation methods, several numerical simulations are provided.

2.2.1 Basic polynomial operations

As the basis of JTTNM-n and JTCNM-n implementations, a set of elementary arith-
metic operations �, including polynomial addition, subtraction, multiplication and com-
position, are trivially defined, generating in this way an algebra in the polynomial space
[Pn,d(βγ(x)),�]. In order to illustrate them in a concise and comprehensible way, we
firstly define two polynomials aPn,d(βγa) and bPn,d(βγb) in d variables of degree n, in
Taylor or Chebyshev basis

aPn,d(βγa) =
∑
|γa|≤n

acγaβγa(x) , bPn,d(βγb) =
∑
|γb|≤n

bcγbβγb(x) , (2.5)

where both aPn,d(βγa) and bPn,d(βγb), identified by two sets of coefficients acγa ,
bcγb ∈

RNdn , are defined in the polynomial space [Pn,d(βγ(x)),�]. Note that if the Taylor basis

23



Chapter 2. Jet transport technique

is adopted,

βγ(x) = xγ =
d∏
i=1

xγii , γ = (γ1, · · · , γd) , (2.6)

otherwise, if the Chebyshev basis is adopted

βγ(x) = Tγ(x) =
d∏
i=1

Tγi(xi) , γ = (γ1, · · · , γd). (2.7)

On the other hand, as discussed above, two vectors aC and bC with dimension Nn,d are
used to store the coefficients acγa and bcγb , thus also employed to identify the polyno-
mials aPn,d(βγa) and bPn,d(βγb). Besides, unless otherwise stated, polynomial results of
elementary arithmetic operations � are expressed as

rPn,d(βγr ) =
∑
|γr|≤n

rcγrβγr (x) . (2.8)

2.2.1.1 Scalar multiplication of polynomials

Assume a given scalar λ ∈ R and a polynomial aPn,d(βγa), the scalar multiplication can
be expressed as rPn,d(βγr ) = λ · aPn,d(βγa), thus polynomial coefficients are

rC[k] = λ · aC[k] , k = 0, · · · ,Nn,d − 1 , (2.9)

where rPn,d(βγr ) indicates the polynomial result of the scalar multiplication, identified
by its coefficient vector rC, as well as the set of coefficients rcγr .

2.2.1.2 Polynomial addition and subtraction

Let two polynomials aPn,d(βγa) and bPn,d(βγb) being two elements in the polynomial
space [Pn,d(βγ(x)),�], identified by two corresponding coefficient vectors aC and bC.
The addition and subtraction operations rPn,d(βγr ) = aPn,d(βγa) ± bPn,d(βγb) can be
again achieved coefficient by coefficient, i.e.,

rC[k] = aC[k]± bC[k] , k = 0, · · · ,Nn,d − 1 . (2.10)

2.2.1.3 Polynomial multiplication

The multiplication of two polynomials is defined as rPn,d(βγr ) = aPn,d(βγa) · bPn,d(βγb),
that is

rPn,d(βγr ) =
∑
|γr|≤n

rcγrβγr (x) =
∑
|γa|≤n

acγaβγa(x) ·
∑
|γb|≤n

2cγbβγb(x) . (2.11)
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In contrast to the scalar multiplication, addition and subtraction discussed above, it is
impossible to address the polynomial multiplication in a unified form for Taylor and
Chebyshev cases. Therefore, a separate discussion will be carried out. Analogously, all
coefficients rcγr , acγa and bcγb are stored into Nn,d-dimensional vectors rC, aC and bC.

Taylor polynomial case

In the Taylor polynomial case, (2.11) can be rewritten in the monomial basis as

rPn,d(xγr ) =
∑
|γr|≤n

rcγrx
γr =

∑
|γa|≤n

acγax
γa ·

∑
|γb|≤n

bcγbx
γb , (2.12)

where

xγa · xγb =
{
xγa+γb , |γa + γb| ≤ n

0, n < |γa + γb| ≤ 2n .

It is clear that each coefficient rcγr will contain the product of coefficients acγa and bcγb .
Therefore, the general formula to calculate rcγr can be obtained through matching those
terms in both sides of (2.12) with the same multi-index vector,

rcγr =
∑
γa≤γr

acγa · bcγr−γa , |γr| = 0, · · · , n , (2.13)

where the multi-index vectors γr,γa ∈ Nd. The detailed procedure to calculate the
coefficient and its associated index k corresponding to γr includes: 1) assign a multi-
index vector γr and seek all multi-index vectors γa satisfying the condition γa ≤ γr (i.e.,
∀i ∈ [1, d] ⊂ N, [γa]i ≤ [γr]i ); 2) retrieve the coefficient of the term identified by the
multi-index vector γa or γr − γa from aC and bC using Algorithm 2.2; 3) compute the
coefficient associated with the multi-index vector γr by means of (2.13), 4) store it inside
the coefficient vector rC through Algorithm 2.3. Note that the full implementation of
polynomial multiplication should go through all possible multi-index vector γr cohering
with |γr| ≤ n.

In order to clearly explain the polynomial multiplication operation, rP2,2(x) = aP2,2(x) ·
bP2,2(x) is taken as an illustrative example. The detailed polynomials can be expressed
as 

aP2,2(x) = a0,0 + a1,0x1 + a0,1x2 + a2,0x
2
1 + a1,1x1x2 + a0,2x

2
2 ,

bP2,2(x) = b0,0 + b1,0x1 + b0,1x2 + b2,0x
2
1 + b1,1x1x2 + b0,2x

2
2 ,

rP2,2(x) = r0,0 + r1,0x1 + r0,1x2 + r2,0x
2
1 + r1,1x1x2 + r0,2x

2
2 ,

(2.14)

then coefficients of the terms whose multi-index vector satisfy |γr| ≤ 2 are calculated. All
feasible multi-index vectors associated with |γr| = 2 contain γr = (2, 0), (1, 1) and (0, 2).
One can obtain three resulting coefficients by means of (2.13) as follows
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r2,0 = a2,0b0,0 + a1,0b1,0 + a0,0b2,0 ,

r1,1 = a1,1b0,0 + a1,0b0,1 + a0,1b1,0 + a0,0b1,1 ,

r0,2 = a0,2b0,0 + a0,1b0,1 + a0,0b0,2 .

(2.15)

Finally, all coefficients of rP2,2(x) can be obtained through the traversal of all possibilities
satisfying the condition |γr| ≤ 2. Based on Algorithm 2.3, the coefficient index k associ-
ated with a certain multi-index vector γr can be calculated, such that the coefficient can
be stored into the vector rC.

Chebyshev polynomial case

In the Chebyshev polynomial case, (2.11) is expressed in the Chebyshev basis

rPn,d(Tγr (x)) =
∑
|γr|≤n

rcγrTγr (x) =
∑
|γa|≤n

acγaTγa(x)
∑
|γb|≤n

bcγbTγb(x) , (2.16)

where TΥ(x),Υ = γr,γa,γb indicates the Chebyshev basis. However, the first attempt to
develop a direct product of Chebyshev polynomials was discarded due to the calculation
complexity of Chebyshev polynomial multiplications [147], limiting, in principle, the ap-
plicability of the nonlinear mapping method based on Chebyshev series expansions [94]. A
new approach converting polynomials from the Chebyshev basis to the monomial basis was
proposed in order to accelerate the multiplication of Chebyshev polynomials [95,148,149].
The detailed procedure can be given as follows: 1) convert polynomials from the Cheby-
shev basis into the monomial basis, rPn,d(Tγr (x)) → rPn,d(xγr ), thus (2.16) can be
rewritten as

rPn,d(Tγr (x)) =
∑
|γa|≤n

acγaTγa(x)
∑
|γb|≤n

bcγbTγb(x)

=
∑
|γa|≤n

ac̄γax
γa

∑
|γb|≤n

bc̄γbx
γb ,

(2.17)

2) implement the polynomial multiplication using the formula (2.13) which was defined
in the polynomial space in the monomial basis (Pn,d(xi),�), and keep polynomial order
up to b1.5n+ 1c, that is,

xγa · xγb =
{
xγa+γb , γa + γb ≤ b1.5n+ 1c,

0, γa + γb > b1.5n+ 1c,
(2.18)

where b1.5n+ 1c indicates the smallest integer bigger than 1.5n+ 1; 3) reverse the basis
transformation and truncation at order n, this is rPb1.5n+1c,d(xγr )→ rPn,d(Tγr (x)). It is
worth mentioning that this improved algorithm for performing the Chebyshev polynomial
multiplication frequently employs the basis transformation, where high order terms in
the Chebyshev basis contribute to low order terms in the monomial basis, such that it is
possible to produce the loss of accuracy. However, it has been proved that this handling
method for truncating the polynomial result at order b1.5n+ 1c enables to minimize the
loss of accuracy in the basis transformation procedure [95].
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2.2.1.4 Polynomial division

The division of two polynomials is defined as rPn,d(βγr ) = aPn,d(βγa)/bPn,d(βγb), which
can be rewritten as

rPn,d(βγr )bPn,d(βγb) = aPn,d(βγa) . (2.19)

It is clear that (2.19) converts the polynomial division into the polynomial multiplication.
Note that if the Chebyshev polynomial division operation is implemented, the transfor-
mation from the Chebyshev basis to the monomial basis is again employed in order to
accelerate the evaluation of the division operation. For space brevity, only the division
operation implemented in the Taylor polynomial case is discussed herein, while that im-
plemented in the Chebyshev polynomial case is similar except the indispensable basis
transformation.

In the Taylor polynomial case, the following equation can be obtained in terms of (2.13),

acγa =
∑
γr≤γa

rcγr · bcγa−γr =
∑
γr<γa

rcγr · bcγa−γr + rcγa · bc0 , |γa| = 0, · · · , n , (2.20)

thus, it is easy to calculate the result of the division between two Taylor polynomials, and
the coefficients of the polynomial result are,

rcγa = 1
bc0

(
acγa −

∑
γr<γa

rcγr · bcγa−γr

)
, |γa| = 0, · · · , n . (2.21)

Note in particular that all terms in the right hand side of (2.21) are obtained either from
the previous calculations (i.e., rcγr with γr < γa) or from the known coefficients acγa and
bcγb . Again, to explain the polynomial division procedure, rP2,2(x) = aP2,2(x)/bP2,2(x)
is taken as an example with the expressions in (2.14). All feasible multi-index vectors
associated with |γr| ≤ 2 are γr = (0, 0), (1, 0), (0, 1), (2, 0), (1, 1) and (0, 2). Using (2.21),
we can obtain the corresponding coefficients as follows

r0,0 = a0,0

b0,0
, r1,0 = a1,0 − r0,0b1,0

b0,0
,

r0,1 = a0,1 − r0,0b0,1
b0,0

, r2,0 = a2,0 − r1,0b1,0 − r0,0b2,0
b0,0

,

r1,1 = a1,1 − r1,0b0,1 − r0,1b1,0 − r0,0b1,1
b0,0

, r0,2 = a0,2 − r0,1b0,1 − r0,0b0,2
b0,0

.

2.2.2 Differential polynomial algebra

Apart from the basic operations, the calculation procedures for the derivatives and inte-
grals of polynomials are also two issues of interest. It is of vital importance to differentiate
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and integrate a given polynomial with respect to one of its variables. Without loss of gen-
erality, only the differentiation and integration of Taylor polynomials are explained in
detail in what follows. Note in particular that, if the differentiation and integration of
Chebyshev polynomials are employed, the differential operations suitable for Taylor poly-
nomials can be easily extended to those suitable for Chebyshev polynomials via a similar
basis transformation procedure adopted in the polynomial multiplication operation.

2.2.2.1 Polynomial differentiation

Given a Taylor polynomial of order n in d-dimensional variables

Pn,d(xγ) =
∑
|γ|≤n

cγx
γ , (2.22)

its partial derivative with respect to the ith variable xi is computed by the usual differ-
entiation law for polynomials,

rPn−1,d(xγ̄) = ∂Pn,d(xγ)
∂xi

=
∑
|γ|≤n

γicγx
γ−γ̃ =

∑
|γ̄|≤n−1

rcγ̄x
γ̄ , (2.23)

where rcγ̄ = γicγ and γ̄ = γ − γ̃. Note in particular that the multi-index vector γ̃ is
employed to identify the position of ith variable xi, its elements are defined as

γ̃j =
{

0 , j 6= i ,
1 , j = i ,

j = 1, · · · , d . (2.24)

Therefore, the detailed procedure for calculating the result of polynomial partial derivative
is: 1) determine the variable xi and associated multi-index vector γ̃ based on (2.24); 2) use
the multi-index vector γ to calculate the coefficient index kγ through Algorithm 2.2 and
retrieve the corresponding coefficient C[kγ ]; 3) compute the new multi-index vector γ̄ =
γ−γ̃ and further obtain the corresponding coefficient index kγ̄ based on Algorithm 2.3; 4)
calculate and store the value of γi ·C[kγ ] into rC[kγ̄ ]; 5) traverse all possible multi-index
vectors γ cohering with |γ| ≤ n one by one and achieve the polynomial differentiation. It
is clear that if a polynomial is differentiated one time relative to one of its variable, its
order is reduced by one.

2.2.2.2 Polynomial integration

A polynomial integration process is another type of differential operations. Similar to
the polynomial differentiation, only the integration operation of Taylor polynomials is
exhibited, while the integration operation of Chebyshev polynomials can be achieved by
combining the basis transformation and integration operation of Taylor polynomials.

Given a multivariate Taylor polynomial of order n− 1, i.e.,
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Pn−1,d(xγ) =
∑

|γ|≤n−1

cγx
γ . (2.25)

Its indefinite integral with respect to the variable xi can be calculated by the common
integration law for polynomials,

rPn,d(xγ̄) =
∫
Pn−1,d(xγ)dxi =

∑
|γ|≤n−1

1
1 + γi

cγx
γ+γ̃ =

∑
|γ̄|≤n

rcγ̄x
γ̄ , (2.26)

with
rcγ̄ = 1

1 + γi
cγ , γ̄ = γ + γ̃ , γ̃j =

{
0 , j 6= i ,
1 , j = i .

As it happens with the polynomial differentiation, the detailed procedure for implementing
the polynomial integration is described as: 1) determine the variable xi and associated
multi-index vector γ̃; 2) use the multi-index vector γ to calculate the coefficient index kγ
through Algorithm 2.2 and retrieve the coefficient C[kγ ]; 3) compute the new multi-index
vector γ̄ and the associated coefficient index kγ̄ based on Algorithm 2.3; 4) calculate and
store the value of 1

1+γi · C[kγ ] into rC[kγ̄ ]; 5) traverse all possible multi-index vector γ
cohering with |γ| ≤ n−1 in order to achieve the full polynomial integration. Observe that,
after one time polynomial integration, the order is increased by 1, which results in the
omission of the terms with original order n since the integration operation is performed
in the polynomial space [Pn,d(βγ(x)),�]. This fact justifies the abandon of the terms
with order n in the polynomial integration formula (2.26) from the perspective of saving
the computational cost.

2.2.3 Polynomial approximation to univariate functions

As a bridge, the polynomial approximation technique of univariate functions, in either
Taylor or Chebyshev basis, is significantly important, enabling to convert the operations
implemented in the function space into those carried out in the polynomial space. Clearly,
all complicated univariate functions consist of several basic functions, such as exponen-
tials, powers, logarithms, trigonometric functions and so on. Therefore, the main work
herein focuses on efficient polynomial representations of basic univariate functions.

In what follows, we will give the detailed procedures for both JTTNM-n and JTCNM-
n implementations to approximate a nonlinear univariate function. In principle, the
JTTNM-n method using Taylor series expansion technique can be considered as a repre-
sentative of a local derivative-based function approximation method, while the JTCNM-n
method employing Chebyshev polynomial interpolation technique can be understood as
a hyper-interpolation-based function approximation approach.
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2.2.3.1 Taylor series expansion technique

Define y = f(x) : Ωx ⊂ R→ R as a univariate function being (n+ 1) times continuously
partially differentiable on a set containing the domain Ωx = [xl, xu]. Clearly, x̄ = xl+xu

2
is the central point of the domain Ωx, thus the nth-order Taylor series expansion of the
function y = f(x) around the central point is

y = f(x̄) + f ′(x̄)δx+ f ′′(x̄)
2! δx2 + · · ·+ f (n)(x̄)

n! δxn +Rn(δx) , (2.27)

where δx = x− x̄ indicates the distance between the mapping point x and the expansion
point x̄. We further denote its nth-order Taylor truncation polynomial as

y ≈ Pn,1(x̄, δx) = a0 + a1δx+ a2δx
2 + · · ·+ anδx

n, and an = f (n)(x̄)
n! . (2.28)

The truncation error is defined as the difference between f(x) and Pn,1(x̄, δx), which can
be obtained in terms of a repeated usage of Rolle’s theorem [150], that is, ∀x ∈ [xl, xu],
∃ ξ(x) ∈ (xl, xu), s.t.

Rn(δx) = f (n+1)(ξ)
(n+ 1)! δx

n+1 , (2.29)

let the supremum norm of f (n+1)(ξ) over the domain Ωx = [xl, xu] being Mn+1, thus the
supremum of the truncation error is

|Rn(δx)| 6 Mn+1

(n+ 1)!δx
n+1 6

Mn+1

(n+ 1)!
(xu − xl)n+1

2n+1 . (2.30)

As a consequence, a nth-order Taylor polynomial of an arbitrary univariate function
can be easily obtained by means of (2.28), meanwhile (2.29) clearly illustrates that the
polynomial truncation error not only rides on the (n+1)th-order derivative f (n+1)(ξ) and
but also on the displacement of the mapping point relative to the expansion point δx.

2.2.3.2 Chebyshev polynomial interpolation technique

As one well-known rigorous computation tool for performing interval arithmetic, the
Taylor series expansion technique is widely adopted to propagate not only the infor-
mation about function values, but also convey much other properties about the function
itself [149, 151]. However, it is very likely to yield fairly poor approximation results, es-
pecially in the margins of a relatively large expansion domain. Besides, if a nonlinear
function is not n + 1 times continuously differentiable over the expansion domain, the
Taylor series expansion method is also not applicable.

In order to overcome these shortcomings, a natural alternative is to employ a better
polynomial approximation instead of the Taylor series expansion method [149]. As a
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hyper-interpolation-based function approximation approach, the Chebyshev polynomial
interpolation technique is therefore investigated in the JT framework. The accuracy and
efficiency of the Chebyshev polynomial interpolation method strongly depend on two
factors, including the number of the interpolating nodes and the type of the selected
orthogonal basis. It is worth to highlight that the selections of these two factors should
satisfy not only the convenient implementation of the basic polynomial algebra, such
as polynomial addition, multiplication, composition and so on, but also the compact
calculation of truncation remainders. In what follows, the Chebyshev basis and 100
interpolation nodes are employed by default in order to refine the implementation of
basic Chebyshev polynomial algebra and calculate truncation errors [152,153].

Given a piecewise differentiable, univariate function y = f(x′) : Ωx′ ⊂ R → R, where
Ωx′ = [xl, xu]. Using the following linear transformation,

x = 2x′

xu − xl
− xl + xu
xu − xl

, (2.31)

the function y = f(x′) can be converted into

y = f(−xl − xu2 x+ xl + xu
2 ) = g(x) , (2.32)

where Ωx = [−1, 1]. The Chebyshev polynomials of the first kind, defined by the following
recurrence relations, are adopted in the interpolation procedure,

T0(x) = 1 , T1(x) = x , Tn+1(x) = 2xTn(x)− Tn−1(x) , (2.33)

furthermore, the n+ 1 zeros of Tn+1(x) are expressed as

x∗i = cos (i+ 1/2)π
n+ 1 , i = 0, · · · , n . (2.34)

The nth-order Chebyshev polynomial can be employed to interpolate the function g(x)
in (2.32) at the n+ 1 zeros of Tn+1(x) as

g(x) = Pn,1(x) +Rn(x) , Pn,1(x) =
n∑
γ=0

′aγTγ(x) , (2.35)

where the pre-superscript (i.e., prime) denotes that the first term of coefficients ′aγ has
to be halved. Assume n > 0, γ, γ̄ 6 n, thus

n∑
i=0

Tγ(xi)Tγ̄(xi) = Kγ̄δγγ̄ , (2.36)

where

Kγ̄ =


n+ 1, γ̄ = 0 ,

1
2(n+ 1), 1 6 γ̄ 6 n ,

, δγγ̄ =
{ 0 γ 6= γ̄ ,

1 γ = γ̄ ,
.
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Clearly, the function g(xi) equals Pn,1(xi) exactly at the interpolating nodes. Using (2.36),
one obtains

n∑
i=0

f(xi)Tγ(xi) =
n∑
γ̄=0

′aγ̄

n∑
i=0

Tγ̄(xi)Tγ(xi) =
n∑
γ̄=0

′aγ̄Kγ̄δγ̄γ = 1
2(n+ 1)aγ , (2.37)

thus the coefficients aγ can be calculated by means of (2.37),

aγ = 2
n+ 1

n∑
i=0

f(xi)Tγ(xi) . (2.38)

Using (2.38), the coefficient ′aγ in (2.35) is further computed as follows,

′aγ =


1

n+ 1

n∑
i=0

f(xi), γ = 0,

2
n+ 1

n∑
i=0

f(xi)Tγ(xi), 1 6 γ 6 n .

(2.39)

It is apparent that the direct computational cost of (2.39) is O(n2) operations. However,
reference [154] shows that an interval arithmetic adaptation technique of fast Fourier
transform enables to accelerate the aforementioned computation to O(n logn) operations.

Similar to the Taylor expansion case, a repeated application of Rolle’s theorem [150] is
again employed to compute the truncation error Rn(x), that is, ∀x ∈ [−1, 1], ∃ ξ(x) ∈
(−1, 1), s.t.

Rn(x) = g(n+1)(ξ)
(n+ 1)! Wn+1,x∗

i
(x) , Wn+1,x∗

i
(x) =

n∏
i=0

(x− x∗i ) = 1
2nTn+1 . (2.40)

Instead of the interpolation interval Ωx = [−1, 1], if Ωx′ = [xl, xu] is taken into considera-
tion, (2.31) must be employed to recalculate the new interpolating nodes x′∗i ∈ Ωx′ using
x∗i ∈ Ωx,

x′
∗
i = −xl − xu2 x∗i + xl + xu

2 , (2.41)

therefore,

Wn+1,x′∗
i
(x′) = (xu − xl)n+1

2n+1 Wn+1,x∗
i
(x) . (2.42)

Using (2.32) and (2.41),

g(n+1)(ξ) = f (n+1)(−xl − xu2 ξ + xl + xu
2 ) = f (n+1)(ξ′) , (2.43)

where ξ′ ∈ Ωx′ . We further get ∀x′ ∈ [xl, xu], ∃ ξ′(x′) ∈ (xl, xu), s.t.

Rn(x′) = f (n+1)(ξ′)
(n+ 1)! Wn+1,x′∗

i
(x′) = f (n+1)(ξ′)

(n+ 1)!
(xu − xl)n+1

2n+1 Wn+1,x∗
i
(x) . (2.44)
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Assume the supermum norm of f (n+1)(ξ′) over Ωx′ being Mn+1, thus the supermum of
the truncation error is,

|Rn(x′)| = f(n+1)(ξ′)
(n+1)!

(xu − xl)n+1

2n+1 Wn+1,x∗
i
(x)

= f(n+1)(ξ′)
(n+1)!

(xu − xl)n+1

22n+1 Tn+1 6
Mn+1

(n+ 1)!
(xu − xl)n+1

22n+1 .

(2.45)

Summarizing, (2.35) displays nth-order Chebyshev interpolation polynomials for approx-
imating basic univariate functions, (2.39) and (2.45) give detailed formulae for calculating
polynomial coefficients and estimating the supremum of the truncation error. In particu-
lar, when the function approximated is piecewise differentiable, the Chebyshev polynomial
interpolation technique is preferable since it enables to achieve the uniform convergence,
while the Taylor series expansion technique is not available. Note in particular that the
remainder of the Chebyshev interpolation polynomial can be obtained in a compact, ex-
plicit and closed formula. A straightforward comparison between (2.30) and (2.45) shows
that the truncation error of the Chebyshev interpolation method associated with expan-
sion order n, roughly speaking, can be scaled down by a factor of 2n with comparison
to that related to the Taylor series expansion method with the same order. In other
words, the Chebyshev interpolation method possesses a much smaller supremum of the
truncation error with respect to the Taylor expansion method.

2.2.4 Polynomial approximation to a multi-variable function

Using the approximation methods proposed in the univariate case, Taylor and Cheby-
shev polynomial approximations of multi-variable functions are achieved in two steps:
firstly perform the resulting polynomial expansion of a univariate function and then do
the polynomial composition operation. As an illustrative example, a bivariate function
sin(x1 + x2) is expanded up to nth-order around the expansion point x = (0, 0) to ob-
tain the resulting polynomial Pn,2(x) within an acceptable error. A general method is
to expand the univariate function sin y around y = 0 as Pn,1(y), then do the polyno-
mial composition between Pn,1(y) and y = P1,2(x) = x1 + x2. In other words, the final
nth-order polynomial Pn,2(x) equals the result of polynomial composition Pn,1 (P1,2(x)).
Apparently, it is easy to compute approximation polynomials of basic univariate functions
through the algorithms proposed in subsection 2.2.3. Therefore, the key issue is how to
perform the algorithm of the polynomial composition operation.

The polynomial composition, denoted as the notation “◦”, is defined to evaluate the
polynomial aPn,d(β(x)) at a d-dimensional polynomial vector x = bPñ,d̃(β(ξ)). Note
that, in the polynomial composition procedure, there is no restriction on the degree and
variable number of two polynomials, i.e., n and d can be respectively less, equal, or bigger
than ñ and d̃. The polynomial composition rule is

aPn,d(β(x)) ◦ [bPñ,d̃(β(ξ))]d → rPn,d(β(ξ)) , (2.46)
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where [·]d indicates d-dimension polynomial vector. Based on the combination of the
aforementioned algebra defined in the polynomial space, (2.46) can be easily achieved
and applied to both Taylor and Chebyshev polynomial cases. Similar to the polynomial
multiplication and division operations, due to the necessity of the basis transformation,
the polynomial composition in the Chebyshev case is a little more complex than that in
the Taylor case. Besides, a key point needs to be emphasized is that, in the composition
procedure of Chebyshev polynomials, the range of x = bPñ,d̃(β(ξ)), calculated over the
domain ξ ∈ Ωξ ∈ [−1, 1]d, should satisfy the condition x ∈ Ωx ∈ [−1, 1]d. However, it is
hard to guarantee this requirement. As such, (2.2) is used to map the polynomial vector
x = bPñ,d̃(β(ξ)) from the generic hyper-rectangle domain Ωx to the standard hyper-
rectangle domain [−1, 1]d. In this process, the key issue is to bound the domain x ∈
[minξ∈Ωξ

bPñ,d̃(β(ξ)),maxξ∈Ωξ
bPñ,d̃(β(ξ))]. Generally speaking, the overestimation in

the x domain often decreases the accuracy of the Chebyshev approximation method.
Some valid approaches aiming at alleviating this issue has been proposed [95,149].

2.2.5 Numerical simulations

The performance and feasibility of automatic Taylor and Chebyshev polynomial approx-
imation methods for approximating basic functions or their composite functions are as-
sessed by numerical simulations. As an illustrative example, both JTTNM-n and JTCNM-
n methods are employed to approximate several basic functions and their composite func-
tions at different expansion orders.

2.2.5.1 Taylor and Chebyshev approximations to basic functions

In this simulation scenario, the newly proposed JTTNM-n and JTCNM-n methods are
implemented at different expansion orders in order to approximate basic univariate func-
tions, which contain y = sin x, y = cosx, y = ex, y = ln(4 + x) and y = 1

4+x . Totally 80
sampling points are evenly distributed on the interval of interest Ωx = [−1, 1], at which
the accuracy of both JTTNM-n and JTCNM-n methods are evaluated.

The absolute error is defined as the difference between the real value, computed by the
basic function itself at the sampling points taken from the expansion interval Ωx = [−1, 1],
and the approximate value, evaluating the polynomial results of both JTTNM-n and
JTCNM-n methods at the same sampling points. To explore absolute error distributions,
both JTTNM-10 and JTCNM-10 methods are respectively adopted to approximate the
selected univariate functions. Figure 2.2 shows the absolute error distribution evaluating
the polynomial result computed by either JTTNM-10 or JTCNM-10 at the preassigned
80 sampling points. The maximum absolute error is defined as the supremum of absolute
errors. The comparison between Fig. 2.2a and Fig. 2.2b exhibits that the maximum
absolute error of the JTCNM-10 method is three orders of magnitude smaller than that
of the JTTNM-10 method. Figure 2.2a also shows that the approximation error of the
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JTTNM-10 method increases as the sampling point drifts away from the expansion point,
such that the maximum absolute error is obtained at the margins of the expansion interval
Ωx = [−1, 1]. Per contra, a JTCNM-10 implementation possesses a much more uniform
error distribution on the expansion interval, as shown in Fig. 2.2b.
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Figure 2.2: Absolute errors of both JTTNM-10 and JTCNM-10 for approximating basic
functions.

0 5 10 15 20 25 30
10

-18

10
-14

10
-10

10
-6

10
-2

10
2

JTTNM: sin x

JTTNM: cos x

JTTNM: e
x

JTTNM: ln(4+x)

JTTNM: 1/(4+x)

JTCNM: sin x

JTCNM: cos x

JTCNM: e
x

JTCNM: ln(4+x)

JTCNM: 1/(4+x)

Figure 2.3: Maximum absolute errors of both JTTNM-n and JTCNM-n vs. the expansion
order n for approximating basic functions.

Furthermore, it is clear that the adopted expansion order n has a significant influence
on the performance of both JTTNM-n and JTCNM-n methods. Figure 2.3 illustrates
maximum absolute errors of both JTTNM-n and JTCNM-n methods versus the expansion
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order n in the approximation of selected univariate functions. The result reveals that
the accuracy of both methods improves as the increase of the expansion order n until
that the approximation error and the computer’s rounding error are of the same order
of magnitude. In this simulation scenario, the critical value of the expansion order is
n = 15. On the other hand, Fig. 2.3 also illustrates that the approximation error of the
JTCNM-n method implemented at the order n 6 15 is much smaller than that of the
JTTNM-n method implemented at the same order. On the contrary, if the adopted order
n > 15, both methods are accurate enough for approximating almost all selected basic
functions since their approximation errors are much less than the computer’s rounding
error. Therefore, if the expansion order n exceeds 15, even if the approximation accuracy
of the JTTNM-n method is a little better than that of the JTCNM-n method, it almost
makes little sense.

2.2.5.2 Taylor and Chebyshev approximations to complicated functions

As stated above, both Taylor series expansion method and Chebyshev polynomial in-
terpolation approach (i.e., JTTNM-n and JTCNM-n methods) have been employed to
approximate five basic univariate functions. In this simulation scenario, the feasibility
of both methods is further validated through the approximation of a more complicated
univariate function esin x

4+cos x . Simulation results are compared with real results obtained
by pointwise numerical calculations at same sampling points, which are uniformly taken
from the interval Ωx = [−1, 1].
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Figure 2.4: Maximum absolute errors of both JTTNM-n and JTCNM-n vs. the expansion
order n for approximating a complicated univariate function esin x

4+cos x
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Figure 2.5: Absolute errors of both JTTNM-10 and JTCNM-10 for approximating a com-
plicated univariate function esin x

4+cos x
.

Figure 2.4 illustrates maximum absolute errors obtained by both JTTNM-n and JTCNM-
n methods implemented at different expansion orders n. The simulation result displays
that the accuracy of the JTCNM-n implementation is much better than that of the
JTTNM-n implementation at all orders less than 30, where the approximation error
reaches the magnitude of the rounding error of the computer calculation. Meanwhile,
the approximation accuracy of both methods increases as the expansion order n also
does. Figure 2.5 exhibits absolute error distributions of both JTTNM-10 and JTCNM-
10. Similar to the conclusion obtained when approximate basic univariate functions, the
JTTNM-10 method possesses a very good accuracy at a small neighborhood around the
expansion point for approximating esin x

4+cos x , while has a much bigger error at the edges of
the expansion interval. Conversely, the approximation error of the JTCNM-10 method
evaluating at the preselected 80 sampling points on the interval Ωx = [−1, 1] is tiny,
which again illustrates the error distribution of the JTCNM-n method is more uniform as
compared to that of the JTTNM-n method. Furthermore, Fig. 2.5 also proves that the
JTCNM-10 method occupies much faster rate of convergence relative to the JTTNM-10
method.

2.3 Polynomial-based flow propagation

Generally, it is difficult to obtain a closed form solution of an ODE system, except per-
haps for solving a simplified dynamical system. As an alternative, numerical integration
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methods, such as Euler’s method and Runge-Kutta methods, are often employed to ac-
curately transport the state along the flow of a complicated vector field. In particular,
these numerical integration methods enable to solve general dynamical systems without
any restriction on their complexity. The unique price to pay for this superior performance
is the high computational cost due to the need of small integral step-sizes adopted in the
numerical integrating process [33]. Besides, in order to extract the statistical information
of an ODE system, a MC simulation has to carry out a mass of repetitive numerical inte-
grals over the same time interval [t0 , t] at different initial random states, which makes it
very inefficient, especially when the number of sampling points is huge. For instance, to
perform accurate covariance analysis of initial trajectory errors, a general MC simulation
often needs to propagate at least hundreds of thousands of satellite trajectories, such that
a great deal of computational burden is requisite. This section is devoted to proposing
a new semi-analytical method for the ordinal computation of the state image under the
flow map in an accurate and efficient way.

To address this methodology, we consider an initial value problem,

ẋ = f (x, t) , x(t0) = x0 , (2.47)

where x0 ∈ Ω0 ⊂ Rd, t ∈ R. The usual numerical integration methods only enable
to propagate one trajectory with the initial state x0 ∈ Ω0 from t0 to t each time and
obtain the solution of (2.47), i.e., xt = Φ (t; t0,x0). On the contrary, instead of the
pointwise propagation of x0, this section is expected to transport an initial state set Ω0
around x0 along the flow of (2.47) from time t0 to t in order to efficiently obtain the
final state set Ωt = Φ (t; t0,Ω0). To achieve this goal, a parameterization method is
employed to represent the state set Ω with the usage of a set of polynomial variables,
which are often referred to as JT variables since they are the basic elements operated in
the JT framework. Thereafter, a set of polynomial-based numerical integration methods
are further proposed to transport the JT state from t0 to t, such that a semi-analytical
polynomial approximation solution of (2.47), parameterizing the final state set Ωt, is
obtained in the JT framework. Finally, a polynomial evaluation method is investigated
to compute the JT state set Ωt at different initial states. Generally, a semi-analytical
polynomial solution is much faster to extract statistical information from an ODE system
than the classical MC method. Therefore, there is a great potential for this semi-analytical
method for solving general ODE systems.

2.3.1 Parameterization method

In principle, a set of state vectors x in a neighborhood N around x̄ can be parameterized
by a JT vector [x] = x̄ + δx, such that the local nature of state vectors x over the
neighborhood N can be represented by the statistical information of the deviation vector
δx. The notation [x] indicates that it is a JT vector, which must be described by a
polynomial vector in its deviation vector δx. We further consider a nonlinear multi-
variable vector field f(x) : Ωx ⊂ Rd → Rd. Using the algebra defined in the polynomial
space [Pn,d(βγ(x)),�] (see subsection 2.2), the function vector f(x) can be parameterized
by a set of nth-order Taylor or Chebyshev polynomials in d-dimensional variables.
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2.3.1.1 Taylor case

The nth-order Taylor expansion (i.e., JTTNM-n) of a d-dimensional multivariable vector
field f(x) can be expressed in the monomial basis

if(x) = iPn,d(δxγ) + iRn,d(δx) =
∑
|γ|≤n

icγδx
γ + iRn,d(δx) , (2.48)

where if(x), i = 1, · · · , d indicates the ith element of the function vector f(x), and

δxγ =
d∏
j=1

δx
γj
j , icγ = 1

γ1! · · · γd!
∂γ if(x)

∂xγ1
1 · · · ∂x

γd
d

. (2.49)

2.3.1.2 Chebyshev case

In contrast to the local approximation achieved by the JTTNM-n, the Chebyshev polyno-
mial interpolation method(i.e., JTCNM-n) attempts a global approximation of the non-
linear multi-variable vector field f(x) over a prescribed neighborhood N . The nth-order
Chebyshev approximation polynomial is

if(x) = iPn,d(Tγ(δx)) + iRn,d(δx) =
∑
|γ|≤n

icγTγ(δx) + iRn,d(δx) , (2.50)

where

Tγ(δx) =
d∏
j=1

Tγj (δxj) ,

and the corresponding coefficient set icγ can be initially computed by means of the
Chebyshev polynomial interpolation at the selected Chebyshev nodes.

2.3.1.3 Comparisons between Taylor and Chebyshev methods

Note that JTTNM-n and JTCNM-n are typical representations of a local derivative-based
method and a hyper-interpolation-based method. As stated above, the JTTNM-n method
adopts a local derivative-based function approximation in the vicinity of the expansion
point, generally selecting the central point of the neighborhood N , while the JTCNM-n
method attempts a hyper-interpolation technique occupying a global convergence over
the whole neighborhood N . Furthermore, the JTCNM-n method only requires the func-
tion approximated being piecewise smooth and continuous, while the JTTNM-n method
requires it possessing (n+ 1)th-order continuous differentiable [94].
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Note that nth-order polynomials in (2.48) obtained by the JTTNM-n method can be
further written as

iPn,d(δxγ) = iPn,d(0) + iTn,d(δx) = ia0 +
∑

1≤|γ|≤n
iaγ1...γdδx

γ1
1 . . . δxγdd , (2.51)

where iTn,d(δx), depending on the deviation vector δx, is the Taylor polynomial repre-
sentation of the ith component of the deviation vector δf , ia0 = if(x̄) is the zeroth-order
term, and iaγ1...γd are coefficients of the Taylor polynomial. In contrast to the JTTNM-n
method, the JTCNM-n method carries out the Chebyshev polynomial interpolation over
a hyper-rectangle neighborhood N , thus the corresponding nth-order polynomial (2.50)
can be expressed as

iPn,d(Tγ(δx)) = iPn,d(Tγ(0)) + iCn,d(Tγ(δx))

= ib0 +
∑

1≤|γ|≤n
ibγ1...γdTγ1(δx1) . . . Tγd(δxd) ,

(2.52)

where iCn,d(Tγ(δx)), again depending on the deviation vector δx, denotes the Chebyshev
expansion of the ith component of the deviation vector δf , b0 = iPn,d(Tγ(0)) is the
zeroth-order term, and ibγ1...γd are coefficients of the Chebyshev polynomial. Note that
if δx = 0, the approximation error of the JTTNM-n method, defined as the difference
between the real value f(x̄) and its approximate value Pn,d(0), only results from the tiny
rounding error. On the contrary, if δx = 0 is taken into consideration in the JTCNM-n
method, the approximation error, defined as the difference between the real value f(x̄)
and its approximate value Pn,d(Tγ(0)), roots in both the high-order truncation error
and rounding error. Clearly, even if both methods adopt the same expansion order, the
approximation errors evaluating at the point x̄ do not coincide, as well as the coefficients
iaγ1...γd and ibγ1...γd .

2.3.2 Design of polynomial-based integrators

To perform a JT-based numerical integration, all arithmetic operations of the usual nu-
merical propagator must be replaced with their polynomial counterparts in the JT frame-
work. Using the parameterization method, an initial state set and the vector field of
an ODE system ẋ = f(x, t) could be expressed as a JT vector consisting of nth-order
Taylor or Chebyshev polynomials. At this point, it is worth to remark a particularity
of JT-based numerical integrators with adaptive step-size control, such as Runge-Kutta-
Fehlberg procedures in polynomial form.

The Runge-Kutta (RK) methods implemented in the JT scheme (JTRK) are the only
ones considered in this thesis. These methods can be divided in two categories, including
fixed or variable integral step-size cases. In general, a RK with variable integral step-
size, such as the well-known RK45 and RK78 of respective orders 5 and 8, gives a better
performance but, some tips have to be taken in the integral step-size control when doing
JT counterparts. In what follows the implementation of a JTRK78 algorithm is discussed.
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2.3 - Polynomial-based flow propagation

Other implementations, like the one of JTRK45, can be performed using the analogous
error estimation and integral step-size control strategy.

It is worth mentioning that the nth-order polynomial Pn,d(∗) in (2.51) and (2.52) can
be trivially regarded as a JT variable, where the asterisk ∗ indicates either Taylor or
Chebyshev basis. Therefore, for the sake of simplification, the notation of JT variables
[x]n∗ can be used to represent the nth-order polynomial Pn,d(∗). To explain the polynomial
integration procedure of an ODE system (2.47), a well approximated JT state vector [xj ]n∗
is assumed being known at time tj . For a given time step h, two estimates of the real
state x(tj+1) at tj+1 = tj +h, are provided by both 7th and 8th-order JTRK algorithms,
respectively

[x̌j+1]n∗ = [xj ]n∗ + hφ7(tj , [xj ]n∗ , h), [x̂j+1]n∗ = [xj ]n∗ + hφ8(tj , [xj ]n∗ , h). (2.53)

The rationale underlying a RK method with variable integral step-size control is that
when the two estimates are close enough (this is, a suitable norm of their difference is
below a selected threshold value ε), the propagation with integral step-size h is considered
successful, while when they differ dramatically, the integral step-size must be adjusted
and recomputed. A trade-off between a fixed accuracy threshold and the computational
burden, requires also to look for the maximum integral step-size suitable to obtain a
good estimate of the real state x(tj+1) when the estimators differ, as well as for the
computation of x(tj+2) at time tj+2 that will follow in the propagation. Note that, at
time tj+1, the difference between the two estimates of the state vector are in the Taylor
polynomial form,

[x̌j+1]nT − [x̂j+1]nT =
∑
|γ|≤n

cjγδx
γ =

∑
|γ|≤n

cjγ1...γd
δxγ1

1 . . . δxγdd , (2.54)

or in the Chebyshev polynomial form,

[x̌j+1]nC − [x̂j+1]nC =
∑
|γ|≤n

cjγTγ(δx) =
∑
|γ|≤n

cjγ1...γd
Tγ1(δx1) . . . Tγd(δxd) . (2.55)

The classical pointwise propagation algorithm estimates this difference considering some
norm of the d-dimension coefficient vector cj0...0, but in our case the differences (2.54) and
(2.55) are nth-order polynomials in d variables and all terms must be taken into account.
Assuming that an acceptable error threshold vector is ε = (ε1 . . . εn), each component
corresponding to the threshold for the coefficients of the polynomial terms occupying
order |γ|. We further define a norm by1

Cj|γ| = max
|γ|
‖cjγ1...γd

‖, ‖cjγ1...γd
‖ = max

1≤i≤d
|cji,γ1...γd

|. (2.56)

The condition for a successful integral step-size h at time tj would be Cj|γ| < ε|γ| for
|γ| ≤ n. In order to further determine the optimal integral step-size for a given accuracy
threshold ε, let us first introduce

1Other definitions of Cj
|γ| like scaled Euclidean norms or average of absolute values among components

could be also considered.
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∆(t,x, h) = x(t+ h)− x(t)
h

. (2.57)

Since the JTRK7 integrator has a 7th-order local truncation error, thus

−∆(tj ,xj , h) + φ7(tj , [xj ]n∗ , h) = N7(tj)h7 +O(h8). (2.58)

Analogously, the JTRK8 integrator has an 8th-order accuracy,

−∆(tj ,xj , h) + φ8(tj , [xj ]n∗ , h) = N8(tj)h8 +O(h9). (2.59)

Subtracting the estimates given by (2.53), and using (2.58-2.59), one gets

[x̌j+1]n∗ − [x̂j+1]n∗ = h (φ7 − φ8) = N7(tj)h8 +O(h9). (2.60)

Neglecting the O(h9) term, the estimate of the leading coefficient is obtained as follows

N7(tj) '
[x̌j+1]n∗ − [x̂j+1]n∗

h8 , (2.61)

and, in terms of (2.56), we have the following estimation for the size of different orders of
N7(tj)

N j
7,|γ| =

Cj|γ|

h8 , |γ| ≤ n. (2.62)

Let us now assume a new optimal integral step-size hN at time tj+1. According to (2.62)
together with the successful condition, we get

Cj+1
|γ| = h8

NN
j+1
7,|γ| ≤ ε|γ|, |γ| ≤ n. (2.63)

Expanding N7(tj+1) around tj yields N7(tj+1) = N7(tj + hN ) = N7(tj) + O(hN ), such
that (2.63) can be written as

Cj+1
|γ| = h8

NN
j
7,|γ| +O(h9

N ) ≤ ε|γ|, |γ| ≤ n. (2.64)

Then, neglecting the term O(h9
N ), and substituting (2.62) into (2.64), we obtain

hN,|γ| ≤ 8

√
ε|γ|

N j
7,|γ|

= h 8

√
ε|γ|

Cj|γ|
, |γ| ≤ n. (2.65)

Clearly, there are n + 1 values hN,|γ| which correspond to |γ| = 1, · · · , n. The value of
hN advised for the next integral step is the minimum one of these n+ 1 values. Usually
hN is multiplied by a safety factor of 0.9 (in practice, this avoids re-computations of the
integral step-size and increases performance).
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2.3 - Polynomial-based flow propagation

2.3.3 Semi-analytical polynomial propagation

An appealing application of the JT technique is to provide an arbitrary high-order poly-
nomial representation of the flow of an ODE system w.r.t. the initial state deviation
vector δx0. Let us consider an initial value problem,{

ẋ = f (x, t) ,

x(t0) = [x0] ,
(2.66)

where the d-dimensional initial state is defined as a JT vector [x0] = x̄0 + δx0, intended
to describe a set Ω0 around the nominal state x̄0, δx0 describes initial state uncertainties.
The aim is to integrate the usual ODE system (2.66) from epoch t0 to t with the usage of
a variable step-size JTRK78 method (see in subsection 2.3.2), or by means of any other
numerical integrator, such that the initial JT state vector can be transported along the
flow of the dynamical system, i.e., Φ (t; t0, x̄0 + δx0). Consequently, at time t, the state
set Ωt : x(t) = Φt (t; t0, x̄0 + δx0) can be represented by a set of n-th Taylor expansion
polynomials. This is,

[x(t)] = x̄t + δxt = x̄t + Tn,d(δxγ0 ) = x̄t +
∑

1≤|γ|≤n

cγ1...γdδx
γ1
0,1 . . . δx

γd
0,d , (2.67)

with

x̄t = Φt (t; t0, x̄0) , δxt = Tn,d(δxγ0 ) , cγ1...γd = 1
γ1! · · · γd!

∂γΦt

∂δxγ1
0,1 · · · ∂δx

γd
0,d

where cγ1...γd indicates the coefficients of Taylor expansion polynomials. It is worth to
mention that δxt = Tn,d(δxγ0 ) indicates the so-called STTs [79], which is too complex to be
calculated manually if the ODE system at issue possesses high dimensionality. Compared
with the hard manual calculation, the JT technique enables to accelerate its computation
significantly. In principle, for a given uncertainty region, the polynomial approximation
result is capable of reaching the arbitrary desired accuracy by adjusting expansion orders.
Besides, if n = 1, (2.67) degrades into the linear approximation.

On the other hand, instead of using the Taylor expansion method, if a Chebyshev in-
terpolation technique is employed in the JT implementation, the state set Ωt : x(t) =
Φt (t; t0, x̄0 + δx0) can be represented as follows,

[x(t)] = x̄t + δxt = Cn,d(Tγ(0)) + Cn,d(Tγ(δx0))

= Cn,d(Tγ(0)) +
∑

1≤|γ|≤n
cγ1...γdTγ1(δx0,1) . . . Tγd(δx0,d) ,

(2.68)

where cγ1...γd indicates the coefficients of Chebyshev interpolation polynomials.
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2.3.4 Polynomial evaluation

Note that, using the polynomial composition operation (2.46), a polynomial Pn,d(δx)
can be easily evaluated at polynomials δx = Pñ,d̃(δx̃). Observe that if the polyno-
mial results in (2.67) and (2.68) are evaluated at real vectors instead of at polyno-
mials, the JT state vector [x(t)] enables to produce the relevant approximate value of
x(t) = Φt (t; t0, x̄0 + δx0) for each deviation vector δx0. Based on these semi-analytical
polynomial solutions, an interesting application is to develop an Advanced Monte Carlo
method for improving the computational efficiency of the classical MC simulation. Tra-
ditionally, in order to extract statistical information from a complicated ODE system,
the classical MC simulation carries out several hundreds or thousands of different realiza-
tions, each time with the usage of different random samples. Based on the discussion in
subsection 2.3.3, the complicated numerical integration procedure of an ODE system can
be approximated by polynomials, such that the classical MC simulation for a designated
system can be converted into the polynomial evaluation at the same initial random state.
Compared with the classical MC simulation, this advanced MC simulation possesses much
higher computational efficiency since the evaluation of polynomials at the real vector is
much faster than the numerical integration procedure.

In order to minimize the number of power computations and accelerate the evaluation of
polynomials at real numbers, either the usual Horner’s method or its modification into
multivariate case is adopted in accordance with the variable dimension d [68]. In other
words, when d = 1, the usual Horner’s method is preferable, otherwise, its variant suitable
to multiple variable case is adopted. For an nth-order univariate polynomial

Pn,1(δx) =
n∑
i=0

aiδx
i = a0 + a1δx+ a2δx

2 + · · ·+ anδx
n , (2.69)

the renowned Horner’s method enables to employ the minimum number of operations
to calculate the value of the polynomial. It extracts as many δx as possible as common
factor to obtain the following unified polynomial form

Pn,1(δx) = a0 + δx (a1 + δx (· · ·+ δx (an−1 + anδx))) , (2.70)

then, the calculation procedure starts from the innermost parenthesis to the outermost
one. In the multivariate case, the variant of Horner’s method is further investigated
to evaluate nth-order polynomials. In principle, a polynomial Pn,d(δx) of order n in
d variables can be regarded as a univariate polynomial Pn,1(δx1) whose coefficients are
polynomials Pn,d−1(δx�) without variable δx1, i.e.,

Pn,d(δx) = Pn,1(δx1) =
n∑
i=0

Pn,d−1(δx�)δxi1 , with δx = [δx1 , δx�] , (2.71)

therefore, the Horner’s method is used to evaluate the polynomial Pn,d(δx) at δx1. The
same procedure is again employed to evaluate the polynomial coefficients by the powers
of δx1 at the second variable δx2 and further obtains the corresponding polynomial coef-
ficients. The Horner’s method is recursively employed until there is only one remaining
variable, thus the usual Horner’s method is used. Similarly, the real calculation procedure
starts from the innermost parenthesis to the outermost one.
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2.3 - Polynomial-based flow propagation

2.3.5 Numerical simulations

This subsection validates the feasibility and performance of both JTTNM-n and JTCNM-
n methods for computing the semi-analytical polynomial solution of an ODE system. An
advanced MC simulation using the polynomial results computed by both JTTNM-n and
JTCNM-n methods are employed to efficiently and accurately propagate the trajectory
uncertainties. As an illustrative example, the dimensionless dynamics of a satellite orbit-
ing the Earth in a Kepler orbit is considered,

˙̆r = v̆ ,

˙̆v = − r̆
r̆3 ,

(2.72)

where r̆ = [x̆ , y̆]T and v̆ = [v̆x , v̆y]T respectively indicate the satellite position and
velocity vectors in the orbital plane, and r̆ denotes the Euclidean norm of the position
vector r̆. The units are normalized in such a way that the semi-major axis a, the Earth
gravitational parameter µ, and the orbital angular velocity Ω =

√
µ/a3 are equal to 1,

thus the related dimensionless time t̆, orbital angular velocity ω̆, position vector r̆ and
velocity vector v̆ are defined as,

t̆ = Ωt, ω̆ = ω

Ω , r̆ = r

a
, v̆ = v

aΩ . (2.73)

Furthermore, the initial nominal dimensionless state is chosen as
x̆ = 0.828 ,
y̆ = 0.478 ,
v̆x = −0.501 ,
v̆y = 0.917 .

(2.74)

In these units the nominal Kepler orbital period is T = 2π. The variable step-size JTRK78
algorithm is employed to integrate the ODE system (2.72) forward. The polynomial
results, computed by implementing both JTTNM-n and JTCNM-n methods at different
order n from 1 to 8, are employed to map a set of initial state vectors, taken from an
uncertainty circle with radius δr̆ = 0.005. To assess the performance of both JTTNM-n
and JTCNM-n methods, the results computed by a multiple pointwise integration of same
samples (i.e., a MC simulation) are considered as the reference values. Note in particular
that the uncertainty circle adopted herein is a rather large uncertainty set, which has been
exaggerated for illustrative purposes. The evolution of this initial state uncertainty circle
is investigated by propagating 80 sampling points uniformly distributed on the boundary.

To be more specific, in the illustrative simulation example, both JTTNM-n and JTCNM-
n methods implemented at expansion order n = 1, 2, 8 are employed to transport a series
of initial state vectors along the flow of the ODE system (2.72) from t = 0 to t = 0.25T ,
0.5T , 0.75T . The relevant polynomial results are evaluated at the preselected 80 sampling
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points on the boundary of the initial state uncertainty circle, such that the evolved sets
x̆t at time t = 0.25T , 0.5T , 0.75T can be obtained. In order to assess the performance,
the true state set x̆rt is computed by a repetitive pointwise numerical integration. The
approximation error is defined as ε = x̆t− x̆rt = [εx̆, εy̆, εv̆x , εv̆y ]T . Thus the dimensionless
position and velocity errors are denoted as

εr̆ =
√
ε2
x̆ + ε2

y̆, εv̆ =
√
ε2
v̆x

+ ε2
v̆y
. (2.75)

Furthermore, for a MC simulation with sample of cardinality N , the root-mean square
error (RMSE, ε̄Υ) is defined as

ε̄NΥ =

√√√√ 1
N

N∑
j=1

(
εjΥ

)2
, (2.76)

where εjΥ, with Υ = r̆, v̆ indicate the dimensionless position and velocity errors of the
j-th MC run.

For the sake of clarity, Figs. 2.6a and 2.7a respectively display the approximate results
computed by the JTTNM-n and JTCNM-n methods implemented at expansion order
n = 1, 2, 8, as compared against the evolved state set x̆rt computed by a multiple pointwise
forward integration of the samples (black line). To further exhibit the accuracy, the state
sets obtained at the evolution time t = 0.75T are enlarged and reported in Figs. 2.6b
and 2.7b. The results reveal that both JTTNM-8 and JTCNM-8 methods are accurate
enough to approximate the real orbit propagation results, which can be computed by a
classical MC simulation.

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

MC

JTTNM-1

JTTNM-2

JTTNM-8
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Figure 2.6: Results of JTTNM-1, JTTNM-2, JTTNM-8, and classical MC methods for
propagating an initial state uncertainty circle with radius δr̆ = 0.005.

To analyze the effects of the propagation time t and the expansion order n on the perfor-
mance of both JTTNM-n and JTCNM-n methods, Figs. 2.8 and 2.9 display the RMSEs in
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Figure 2.7: Results of JTCNM-1, JTCNM-2, JTCNM-8, and classical MC methods for
propagating an initial state uncertainty circle with radius δr̆ = 0.005.
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Figure 2.8: RMSEs in dimensionless position and velocity computed by the JTTNM-n
method versus the expansion order n.

dimensionless position and velocity at time t = 0.25T , 0.5T , 0.75T versus the expansion
order n = 1, · · · , 8. The simulation results indicate that for a fixed expansion order n, the
accuracy of both methods is on the same order of magnitude and always reduces as the
propagation time grows. In general, a longer propagation time results in much more in-
tegration steps and associated polynomial operations, such that a larger truncation error
is accumulated. Besides, for a selected propagation time t, the RMSEs in dimensionless
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Figure 2.9: RMSEs in dimensionless position and velocity computed by the JTCNM-n
method versus the expansion order n.

position and velocity computed by both JTTNM-n and JTCNM-n implementations sig-
nificantly decrease when the expansion order n increases. Tables 2.1 and 2.2 give the
detailed RMSEs in dimensionless position and velocity at propagation time t = 0.75T ,
corresponding to different expansion orders from n = 1 to 8. The results again validate
that both methods almost enable to yield one order of magnitude accuracy gain via the
increase of the expansion order by 1. Note in particular that the RMSEs in dimensionless
position and velocity computed by the JTTNM-8 method are 1.3×10−8 (0.10 m) and
1.9×10−8 (1.28×10−4 m/s), while those obtained by the JTCNM-8 method are 1.2×10−8

(0.11 m) and 2.1×10−8 (1.41× 10−4 m/s). These tiny dimensionless errors indicate that
the advanced MC methods based on the JTTNM-8 and JTCNM-8 are sufficient to achieve
an accurate Keplerian orbit propagation of a pretty large initial state uncertainty set.

Table 2.1: RMSEs in dimensionless position and velocity computed by the JTTNM-n at
propagation time t = 0.75T , implemented at expansion orders from n = 1 to 8.

RMSE JTTNM-1 JTTNM-2 JTTNM-3 JTTNM-4 JTTNM-5 JTTNM-6 JTTNM-7 JTTNM-8

εr̆ 1.4×10−2 3.1×10−3 1.2×10−4 4.5×10−5 4.5×10−6 6.0×10−7 1.2×10−7 1.3×10−8

εv̆ 2.4×10−2 8.7×10−4 3.8×10−4 2.5×10−5 5.1×10−6 7.6×10−7 8.1×10−8 1.9×10−8

Finally, to compare the computational efficiency of different methods, all codes are written
in C plus plus compiled with gcc version 5.5.0 and implemented with a laptop processor
Intel(R) Core(TM) i5-7300HQ under Linux (note that this is the default computer config-
uration to perform all simulations in what follows). Therefore, the CPU time consumed
in either the advanced MC simulation or the classical MC simulation enables to reveal
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2.3 - Polynomial-based flow propagation

Table 2.2: RMSEs in dimensionless position and velocity computed by the JTCNM-n at
propagation time t = 0.75T , implemented at expansion orders from n = 1 to 8.

RMSE JTTNM-1 JTTNM-2 JTTNM-3 JTTNM-4 JTTNM-5 JTTNM-6 JTTNM-7 JTTNM-8

εr̆ 4.9×10−2 2.2×10−3 2.6×10−4 4.8×10−5 5.6×10−6 8.0×10−7 1.8×10−7 1.2×10−8

εv̆ 5.0×10−2 7.3×10−4 1.1×10−4 3.2×10−5 5.7×10−6 4.6×10−7 1.5×10−7 2.1×10−8
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Figure 2.10: Ratio of CPU time versus the number of samples, indicating the computational
efficiency of the JTTNM-n relative to a classical MC simulation.

the computational efficiency. Figures 2.10 and 2.11 respectively display the ratio of the
CPU time, which is defined as the computational cost consumed in the advanced MC
simulation using either the JTTNM-n or the JTCNM-n divided by that consumed in the
classical MC simulation. The simulation results in Figs. 2.10 and 2.11 show several inter-
esting conclusions: 1) For both JTTNM-n and JTCNM-n methods, the ratio of the CPU
time decreases as the number of sampling points increases, that is, the computational
efficiency of both JTTNM-n and JTCNM-n methods significantly enhances when the
number of sampling points also does; 2) The computational efficiency of both JTTNM-n
and JTCNM-n methods decrease as the expansion order increases; 3) For a MC simulation
with sample of cardinality N = 106, the ratio of CPU time is between 10−2 and 10−3 in
both JTTNM-n and JTCNM-n cases, which indicates that both methods achieve at least
two orders of magnitude of computational efficiency improvement; 4) At point A (i.e.,
N = 280 in Fig. 2.10 and N = 360 in in Fig. 2.11), the advanced MC simulation based on
either the JTTNM-1 or the JTCNM-1 occupies the same computational efficiency with a
classical MC simulation, while at point B (i.e., N = 1200 in Fig. 2.10 and N = 2100 in
Fig. 2.11), the computational efficiency of the advanced MC simulation using either the
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JTTNM-8 or the JTCNM-8 method is identical to that of a classical MC simulation.
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Figure 2.11: Ratio of CPU time versus the number of samples, indicating the computational
efficiency of the JTCNM-n relative to a classical MC simulation.

2.4 Remarks and conclusions

This chapter introduces and constructs a useful polynomial operation tool, i.e., JT tech-
nique. This tool defines a series of polynomial operations in the modern computer, such
as polynomial storage, addition, subtraction, multiplication, division, differentiation, in-
tegration and composition, as well as some useful algorithms, for instance, the JTRK78
algorithm and polynomial evaluation. Then, based on Taylor series expansion and Cheby-
shev polynomial interpolation technique, both JTTNM-n and JTCNM-n methods are
developed to approximate practical state propagation problems addressed by a set of
nonlinear functions or ordinary differential equations.

It is worth to mention that the JTTNM-n method adopts a local derivative-based function
approximation in the vicinity of the expansion point, thus displays the better accuracy
at the expansion point than at the margins of the expansion interval. On the contrary,
the JTCNM-n method attempts a hyper-interpolation technique occupying a global con-
vergence over the whole expansion domain, thus possesses a uniform error distribution.
Besides, the JTTNM-n method requires the nonlinear functions approximated to be n+1
times continuously differentiable over the expansion domain, while the JTCNM-n method
only requires it to be piecewise smooth and continuous.
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In order to validate the effectiveness and performance, both JTTNM-n and JTCNM-n
methods are carried out to approximate some usual basic functions, composition func-
tions and orbit propagation of a spacecraft Keplerian motion. The results show that
both JTTNM-n and JTCNM-n methods enable to achieve an accurate approximation to
general nonlinear functions and the solution of an ODE system. In particular, as the
expansion order increases, the approximation error decreases, while the required com-
putation time significantly increases. Besides, both JTTNM-n and JTCNM-n methods
possess higher computational efficiency relative to the classical MC method in the orbit
propagation problem, especially when the number of sampling trajectories is huge.
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orbit uncertainty
propagation

The Geostationary Earth Orbit regime, capable of maintaining a spacecraft nearly fixed
in an ECEF frame, is the best option to provide continuous observations, broadcast and
communication services, on the Earth’s surface. However, the growing amount of con-
trolled satellites and uncontrolled debris aggravates the congestion and increases collision
risks. Moreover, new emerging applications of GEO satellites requiring an unprecedented
accuracy are being considered. Examples are the future GEO SAR mission [11] and the
GEO signal-based mezzo-scale sea altimetry measurement [13]. Therefore, an accurate
and efficient orbit propagation procedure for predicting GEO trajectories is not only jus-
tified from the point of view of collision avoidance analysis, but also for an efficient orbit
prediction and estimation.

In this chapter, both JTTNM-n and JTCNM-n methods are employed to accurately prop-
agate the state uncertainties of geostationary satellite trajectories under four dominant
perturbations: SRP, Earth’s non-spherical gravity potential, and luni-solar gravitational
attractions. The feasibility of both methods is validated by implementing the orbit prop-
agation in three coordinate representations, and in two polynomial forms: Taylor and
Chebyshev expansions, i.e., JTTNM-n and JTCNM-n methods. Taking into account the
size of the uncertainty neighborhood, as well as the expansion order and the time step-size
of JTRK integrators, a large quantity of combinations of the above factors are simulated,
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Chapter 3. Analysis of high order orbit uncertainty propagation

and a series of look-up tables with recommendations on the best option to address the
GEO trajectory propagation are given.

3.1 Dynamical models

In general, the accuracy and efficiency of trajectory propagation methods closely depend
on the choice of coordinate representations. Many types of coordinate representations
have been widely investigated to describe near-Earth satellite orbits: classic Cartesian
coordinates, Keplerian orbital elements, synchronous orbit elements, modified equinoctial
elements, GEO orbit elements, Hill’s variables, cylindrical coordinates, and Deprit’s ideal
elements [155–158]. The traditional Cartesian coordinates (i.e., inertial position and ve-
locity vectors) are capable of easily modelling the dominant perturbations in the GEO
region and intuitively providing physical insight into the dynamics. However, the fast
changes of these coordinates over time obscure the beneficial characteristic that GEO
spacecrafts remain almost steady in the ECEF frame, which results in small integra-
tion step-sizes and heavy computational costs. Keplerian orbital elements overcome this
shortcoming and mitigate the computational cost by increasing integration time step-
sizes but, unfortunately, they encounter poor definitions in the case of low-inclination or
low-eccentricity orbits. Similarly, coordinate representations including synchronous or-
bit elements, modified equinoctial elements, Hill’s variables and Deprit’s ideal elements
are likely to encounter the singularities when they are employed to describe GEO or-
bits. To avoid this issue, only Cartesian coordinates, GEO orbit elements, and cylindrical
coordinates are employed in what follows.

3.1.1 Cartesian dynamic model

The motion of a spacecraft near the Earth is governed by a set of three second order
ODEs in Cartesian coordinates (CAC),

ẍ = −µx
r3 + ax,

ÿ = −µy
r3 + ay,

z̈ = −µz
r3 + az,

(3.1)

where af = (ax, ay, az)T indicates the total perturbation acceleration described in the
Earth-centered inertial reference frame (ECI), r = (x, y, z)T is the spacecraft position
vector, r = |r| indicates its Euclidean norm, and µ = GMe is the gravitational coefficient
of the Earth. We can also write these equations in a compact and unified form as [31],

r̈ = −µr
r3 + af . (3.2)
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3.1 - Dynamical models

3.1.2 Cylindrical coordinates

Cylindrical coordinates (CYC) are another alternative to describe GEO orbits without
singularities. It consists of the distance ρ from the z-axis, the azimuth angle ϕ, and the
height z along the z-axis, together with their time derivatives (ρ̇, ϕ̇, ż). The equations of
motion are [64] 

dρ

dt
= ρ̇,

dϕ

dt
= ϕ̇,

dz

dt
= ż,

dρ̇

dt
= ρϕ̇2 − µ

r3 ρ+ aρ,

dϕ̇

dt
= −2 ρ̇ ϕ̇

ρ
+ aϕ

ρ
,

dż

dt
= − µ

r3 z + az,

(3.3)

where af = (aρ, aϕ, az)T are the components of the total perturbation acceleration pro-
jected into the reference frame CYC with unit axes along the radial, azimuthal, and axial
directions (RAA).

3.1.3 GEO dynamical model

In [157] Tombasco introduced a novel non-dimensional GEO element set (GES) in terms
of the classical Keplerian elements. It consists of the Earth-fixed sub-spacecraft longitude
λ, the longitudinal drift rate δā, two eccentricity vector components (ex, ey), and two
equinoctial elements (Q1, Q2) defined by

λ , (ω + Ω + θ)−GA (t) ,

δā ,
a−An
An

,

ex , e cos (ω + Ω) ,

ey , e sin (ω + Ω) ,

Q1 , tan
(
i

2

)
sin (Ω) ,

Q2 , tan
(
i

2

)
cos (Ω) ,

(3.4)

here, {a, e, i, ω,Ω, θ} refer to the classical Keplerian elements, δā is non-dimensional value
of the semi-major axis deviation with respect to a nominal GEO semi-major axis An =
42164.2 km, and the time dependent function GA(t) stands for the Greenwich sidereal
angle at t, i.e., GA (t) = GA(t0) + ωe (t− t0), where ωe = 7.292115 × 10−5 rad/s is
the average angular speed of the Earth’s rotation. Using the Poisson brackets method,
Tombasco deduced the GEO dynamic model in terms of the GEO element set [157], that
can be written as
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λ̇ = h

r2 + r

h
[Q2 sin s−Q1 cos s] ah − ωe,

δ ˙̄a = 2 (δā+ 1)2

han

[
(ex sin s− ey cos s) ar + p

r
aθ

]
,

ėx = r

h

{p
r

sin s · ar +
[
ex +

(
1 + p

r

)
cos s

]
aθ

+ey [Q1 cos s−Q2 sin s] ah} ,

ėy = r

h

{
−p
r

cos s · ar +
[
ey +

(
1 + p

r

)
sin s

]
aθ

−ex [Q1 cos s−Q2 sin s] ah} ,

Q̇1 = r

2h
(
1 +Q2

1 +Q2
2
)

sin s · ah,

Q̇2 = r

2h
(
1 +Q2

1 +Q2
2
)

cos s · ah,

(3.5)

where the components of the perturbation acceleration af = (ar, aθ, ah)T are given in
the local vertical local horizontal reference frame (LVLH), r is the radial distance of the
spacecraft to the center of the Earth, s is the spacecraft sidereal angle, p is the semi-latus
rectum of the orbit, and h is the modulus of the angular momentum. Using the definitions
of r, s, p, and h, they can be written in terms of GEO elements as

r =
An (δā+ 1)

(
1− e2

x − e2
y

)
1 + ex cos s+ ey sin s ,

s = λ+GA (t) = ω + Ω + θ,

p = an (δā+ 1)
(
1− e2

x − e2
y

)
,

h = √
pµ .

(3.6)

3.1.4 Coordinate transformations

To project perturbation accelerations among the aforementioned frames swimmingly, it is
necessary to study the coordinate transformation matrices. The direction cosines matrices
between the frames: ECI and LVLH, ECEF and ECI, and RAA and ECI, are respectively
expressed as,

T LI =


I · i I · j I · k

J · i J · j J · k

K · i K · j K · k

 , (3.7)

T IF =


cos (ωet) − sin (ωet) 0

sin (ωet) cos (ωet) 0

0 0 1

 , (3.8)
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3.1 - Dynamical models

T IC =


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 , (3.9)

where I, F , L and C respectively indicate the ECI, ECEF, LVLH and RAA reference
frames, I,J ,K represent the unitary vectors defining the ECI frame, while i, j,k are
along the unitary vectors defining the LVLH frame. Note that i, j,k can be computed by

i = r

‖r‖
, k = r × v

‖r × v‖
, j = k × i. (3.10)

Note that the perturbation accelerations in the equations of motion (3.2), (3.3) and (3.5)
can be easily computed using the satellite’s Cartesian position, but in order to propagate
trajectories in the other two sets of coordinate representations, the perturbations must be
described as a function of GES elements and CYC coordinates. The conversion procedure
is straightforward: at a certain epoch GES elements or CYC coordinates must be trans-
formed into CAC coordinates, then compute the considered perturbation acceleration,
and finally project it into the LVLH or RAA reference frames. The transformation rela-
tion from GES elements into CAC coordinates can be addressed as the following explicit
functions (see Appendix A.1)

x = r

1 +Q2
1 +Q2

2

[
2Q1Q2 sin s+

(
1−Q2

1 +Q2
2
)

cos s
]
,

y = r

1 +Q2
1 +Q2

2

[
2Q1Q2 cos s+

(
1 +Q2

1 −Q2
2
)

sin s
]
,

z = 2 r
1 +Q2

1 +Q2
2

[Q2 sin s−Q1 cos s] ,

ẋ = µ

h (1 +Q2
1 +Q2

2) [2Q1Q2 (cos s+ ex)

+
(
−1 +Q2

1 −Q2
2
)

(sin s+ ey)
]
,

ẏ = µ

h (1 +Q2
1 +Q2

2) [−2Q1Q2 (sin s+ ey)

+
(
1 +Q2

1 −Q2
2
)

(cos s+ ex)
]
,

ż = µ

h (1 +Q2
1 +Q2

2) [Q1 (sin s+ ey) +Q2 (cos s+ ex)] .

(3.11)

Besides, the explicit conversion formulae from CYC to CAC coordinates is expressed as
(see Appendix A.2){

x = ρ cosϕ, y = ρ sinϕ, z = z,

ẋ = ρ̇ cosϕ− ρϕ̇ sinϕ, ẏ = ρ̇ sinϕ+ ρϕ̇ cosϕ, ż = ż .
(3.12)
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Chapter 3. Analysis of high order orbit uncertainty propagation

3.2 Analysis of dominant perturbation accelerations

3.2.1 Perturbation modelling

The dominant perturbations considered in the precise GEO orbit propagation problem
include SRP, Earth’s non-spherical gravity, and luni-solar gravitational attraction. The
detailed models can be found in [31, 159]. For convenience, their brief formulae are re-
viewed in what follows.

3.2.1.1 Solar radiation pressure perturbation

The adopted SRP acceleration model is expressed in the ECI reference frame as [31]

ap,I = −νP Cr
A

m

r�
r3
�
AU2 , (3.13)

where r� indicates the relative position vector from the spacecraft to the Sun, r� = |r�|
represents the Euclidean norm of the relative position vector r�, P = 4.56×10−6 Nm−2 is
the solar radiation pressure at a distance of 1 AU, ν is a shadow function (its computation
is also given in [31]). In particular, the shape of the spacecraft is assumed as a sphere.
The radiation pressure coefficient Cr, the mass m, and the cross-sectional area A are
related to the individual spacecraft properties.

3.2.1.2 Luni-solar gravitational perturbation

The gravitational acceleration of a point mass M (Moon or Sun) on the spacecraft can
be expressed in the ECI reference frame as

aM,I = GM

(
rM − r
|rM − r|3

− rM
|rM |3

)
, (3.14)

where rM and r represent the Earth-centered coordinates of the mass M and of the
spacecraft, respectively. The position vector rM can be computed by the method given
in [31] or using any other kind of ephemerides. Note in particular that M = s indicates
the solar gravity, while M = m indicates the lunar gravity.

3.2.1.3 Earth’s non-spherical gravity perturbation

The Earth’s potential has a significant impact on the evolution of GEO spacecraft trajec-
tories. Its detailed computation is given in [31]. For convenience, a brief summary is given
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3.2 - Analysis of dominant perturbation accelerations

in what follows. In the ECEF reference frame, the Earth’s gravitational acceleration can
be written as

ag,F =
(∑
n,m

ax,nm ,
∑
n,m

ay,nm ,
∑
n,m

az,nm

)
. (3.15)

The components ax,nm, ay,nm, and az,nm can be expressed as

ax,nm = µ

2R2
⊕
{(−CnmVn+1,m+1 − SnmWn+1,m+1) +

(n−m+ 2)!
(n−m)! (CnmVn+1,m−1 + SnmWn+1,m−1)},

ay,nm = µ

2R2
⊕
{(−CnmWn+1,m+1 + SnmVn+1,m+1) +

(n−m+ 2)!
(n−m)! (−CnmWn+1,m−1 + SnmVn+1,m−1)},

az,nm = µ

R2
⊕
{(n−m+ 1) (−CnmVn+1,m − SnmWn+1,m)} ,

(3.16)

where µ is the gravitational coefficient of the Earth, R⊕ is the Earth’s equatorial radius,
and Cnm, Snm are geopotential coefficients given by the Earth gravity model EGM96S.
Note that in the following numerical simulations, 0 ≤ m ≤ n ≤ 5 is considered. Besides,
the case m = n = 0 corresponds to the gravitational acceleration of an ideal spherical
Earth. The values of Vnm and Wnm satisfy the recurrence relations

Vmm = (2m− 1)
{
xR⊕
r2 Vm−1,m−1 −

yR⊕
r2 Wm−1,m−1

}
,

Wmm = (2m− 1)
{
xR⊕
r2 Wm−1,m−1 + yR⊕

r2 Vm−1,m−1

}
,

Vnm =
(

2n− 1
n−m

)
zR⊕
r2 Vn−1,m −

(
n+m− 1
n−m

)
R2
⊕
r2 Vn−2,m,

Wnm =
(

2n− 1
n−m

)
zR⊕
r2 Wn−1,m −

(
n+m− 1
n−m

)
R2
⊕
r2 Wn−2,m,

(3.17)

where r denotes the spacecraft distance with respect to the Earth’s mass center. To
compute Vnm and Wnm, the following initial values are required:

V00 = R⊕
r
, W00 = 0, Vm−1,m = 0, Wm−1,m = 0 . (3.18)

3.2.2 Perturbation analysis

In both JTTNM-n and JTCNM-n implementations, the higher expansion order employs,
the smaller approximation error obtains, but the more CPU time consumes. Targeting
towards an intensive and accurate propagation, the trade-off between accuracy and CPU
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Chapter 3. Analysis of high order orbit uncertainty propagation

time must be analyzed in order to explore the optimal expansion order in the approxima-
tion of perturbations, that is, to find the lowest expansion order satisfying a prescribed
accuracy threshold. In the assessment of propagation accuracy, the simulation results
computed by both JTTNM-n and JTCNM-n methods are compared against those calcu-
lated by a classical MC simulation with a cardinality of N = 104. Note that the samples
can be generated by means of a Latin Hyper-square generator. The maximum absolute
error (MAE, Em) is defined as

Em = max
1≤i≤N

|af,i − arf,i| , (3.19)

where arf,i indicates the true perturbation acceleration computed by a numerical method
at the i-th sampling point, while af,i indicates its approximate value computed by eval-
uating the polynomial result of either JTTNM-n or JTCNM-n at the same sampling
point.

The nonlinearity measure for algebraic functions, such as models of dominant pertur-
bations, has been described by a nonlinearity index [64], which shows that the region
encountering the fastest position variation along the expected orbit is the unique place
to explore the optimal expansion order. During this process, an uncertainty cube shaped
domain about the GEO satellite position is taken into account. The prescribed accuracy
threshold adopted equals to εat = 10−11 m/s2, which is three orders of magnitude smaller
than the smallest one among the dominant perturbations in the GEO regime, i.e., the SRP
acceleration [31], such that the truncation error smaller than this particular threshold is
practically negligible. Based on this accuracy threshold, the relation between the optimal
expansion order and the size of the uncertainty domain is explored straightforward. First,
a Latin Hyper-square generator is employed to produce a set of samples in terms of the
size of the position uncertainty domain. Then, the metric MAE is adopted to assess the
approximation accuracy of both JTTNM-n and JTCNM-n methods. Finally, the choice
of the lowest order for a given position uncertainty domain requires that the MAE should
be always less than the prescribed accuracy threshold εat.

Figures 3.1a and 3.1b respectively illustrate the optimal expansion order adopted by
either the JTTNM-n or the JTCNM-n for approximating four dominant GEO perturba-
tions when different sizes of position uncertainty domains are considered. It is clear that
both JTTNM-n and JTCNM-n methods provide almost the same performance when an
uncertainty domain is small. The performance difference appears when the nonlinear ap-
proximation polynomial must be employed, as shown by the “difference” mark in Fig. 3.1,
which reveals that the JTCNM-2 still possesses a good accuracy for approximating the
Earth’s non-spherical gravity over 131 ≤ Ω ≤ 137 km, while the JTTNM-2 is no longer
accurate enough. Figure 3.1 also gives a variety of useful recommendations about the
choice of optimal expansion orders for both JTTNM-n and JTCNM-n methods in terms
of the magnitude of the uncertainty domain. For instance, the SRP acceleration is al-
most constant when ∆ ≤ 113 km. As a consequence, for the SRP acceleration, one can
take the measure on the central point of the uncertainty domain, a constant value, when
∆ ≤ 113 km, while the first order polynomial must be applied when ∆ ∈ (113, 300] km.
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Figure 3.1: Optimal expansion orders for approximating four dominant GEO perturbations
vs. the size of the position uncertainty domain.

3.3 Geostationary orbit propagation

3.3.1 Selection of fixed step integrator

Generally, due to the slow-varying vector field in the GEO region, the integration step-size
of the JTRK integrator varies slightly in the accurate propagation of GEO trajectories.
Therefore, fixed step JTRK integrators are preferred on account to a higher computational
efficiency when compared to variable step integrators. Although for all that, variable
step JTRK integrators are useful to provide a suitable value for exploring the optimal
integration step-sizes that keep the required accuracy at the least computational cost.
The optimal integration step-size is defined as the largest integration step-size adopted in
a particular implementation within the allowable accuracy threshold, meanwhile its slight
change would not affect the performances of JTTNM-n and JTCNM-n methods. An a
priori study of the optimal integration step-sizes is carried out by considering different
coordinate representations and fixed step JTRK integrators. Unless otherwise stated, the
initial conditions given in Table 3.1 are employed in the following simulations. Table 3.2
displays the optimal integration step-sizes employed in both fixed step integrators JTRK4
and JTRK8 for integrating three dynamical models respectively formulated in CAC, CYC
and GES coordinates. In a general way, the JTRK8 is more efficient than the JTRK4,
such that it will be adopted in all the following simulations.

3.3.2 Polynomial-based orbit propagation

To provide an accurate and efficient nonlinear orbit propagation in the GEO regime,
the optimal combination of the expansion methods and coordinate representations are
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Table 3.1: Nominal initial values of spacecraft states and parameters

r0 Nominal value v0 Nominal value Parameter Nominal value
x0 24487.8 km vx0 -2.50298 km/s S 74 m2

y0 34324.4 km vy0 1.78568 km/s m 3300 kg
z0 0 km vz0 0 km/s Cr 1.3

Note: Epoch 15 November 2015, 0:0:0 UTC.

Table 3.2: Selection of integration step-sizes.

Method Integrator Coordinate representations
CAC CYC GES

JTTNM-n JTRK4 150 754 1623
JTRK8 1554 7240 10800

JTCNM-n JTRK4 150 754 1623
JTRK8 1503 7200 10800

Note: the unit of the integration step-size is seconds (s).

explored. Both JTTNM-n and JTCNM-n methods are considered to test the propagation
of an initial state set. The performance comparisons between coordinate representations
and between expansion methods are described in all cases by means of the RMSE, MAE,
CPU time and the standard deviation (SD) of the RMSEs. Note that the adopted CPU
time measure contains the initialization and propagation of both JTTNM-n and JTCNM-
n implementations.

3.3.2.1 Evaluation metrics

To assess the accuracy of the newly proposed methods, true state vectors xri computed
by a classical MC simulation with a cardinality of N samples (i.e., point-wise numerical
integration) are considered as the reference values. The approximate state vectors xi
are obtained by evaluating the polynomial results of either JTTNM-n or JTCNM-n at
the same sampling points. The estimation error vector of the i-th sample is defined as
εi = xi − xri = [εx,i, εy,i, εz,i, εvx,i, εvy,i, εvz,i]T , thus the position and velocity errors can
be further expressed as εir =

√
ε2
x,i + ε2

y,i + ε2
z,i and εiv =

√
ε2
vx,i

+ ε2
vy,i

+ ε2
vz,i

.

In addition, the RMSEs (ε̄Υ) and MAEs (EmΥ ) in position and velocity can be defined as

ε̄Υ =

√√√√ 1
N

N∑
i=1

(
εiΥ
)2
, EmΥ = max

1≤i≤N
|εiΥ| . (3.20)

where Υ = r, v. The standard deviation of the RMSEs is another alternative option to
measure the uniformity of the convergence,
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3.3 - Geostationary orbit propagation

σΥ =

√√√√ 1
N − 1

N∑
i=1

(εiΥ − ε̄Υ)2 , (3.21)

where i indicate the i-th sampling trajectory.

As underlined in Chapter 2, all codes are written in C plus plus compiled with gcc ver-
sion 5.5.0 and implemented with a laptop processor Intel(R) Core(TM) i5-7300HQ under
Linux. Therefore, the CPU time is an elegant measure for assessing the computational
efficiency of the proposed methods.

3.3.2.2 Comparison between Taylor and Chebyshev implementations

In the following, JT-based orbit propagations from different initial state vectors are im-
plemented using both Taylor and Chebyshev expansions. The goal is to explore the pros
and cons of the JTTNM-n and JTCNM-n methods. The simulation is conducted by
propagating an uncertainty position set Ωr : ur(0) = (ux, uy, uz) = (50, 50, 50) km in the
GEO regime for a given time interval of 2 days. Without loss of generality, the equations
of motion formulated in CAC coordinates are adopted.
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Figure 3.2: MAEs in position and velocity vs. the expansion order for propagating an
initial set Ωr : ur(0) = (ux, uy, uz) = (50, 50, 50) km using both JTTNM-n and JTCNM-n
for 2 days.

Figure 3.2 shows the MAEs in position and velocity versus the expansion order n, calcu-
lated by both JTTNM-n and JTCNM-n methods. Clearly, in a natural way, the accuracy
improves with the increase of the expansion orders up to a certain value, for instance,
order 4 in this test case. In particular, the JTCNM-n method is more accurate than the
JTTNM-n one. In order to clarify this conclusion, a detailed comparison between the real
state vectors computed by a MC simulation with a cardinality of 104 samples and the
approximate state vectors obtained by the evaluation of the polynomial results of both

63



Chapter 3. Analysis of high order orbit uncertainty propagation

JTTNM-3 and JTCNM-3 methods at the same initial states. The resulting position and
velocity error distributions are reported in Figs. 3.3 and 3.4, which again display that the
JTCNM-3 method delivers a better position and velocity accuracy relative to the JTTNM-
3 method, especially on the margins of the uncertainty domain. In essence, the JTTNM-n
method is a local expansion method, and for a particular dynamics, its accuracy mostly
depends on the expansion order and on the distance between the mapped point and the
expansion point. However, the JTCNM-n method employs a hyper-interpolation tech-
nique occupying a global convergence over the uncertainty domain, its accuracy mostly
depends on the expansion order and on the a priori information of the size of the uncer-
tainty domain. As expected, the JTCNM-3 method provides an uniform convergence over
the whole uncertainty domain and performs quite well, even on the margins, in a much
more subtle fashion. In contrast, the JTTNM-3 method yields a sensational approxima-
tion in the vicinity of the central point, and gradually loses accuracy as the mapping
point drifts away from the expansion point and gets close to the distal sections of the
uncertainty domain (shown by the blue points on the margin of plots in Figs. 3.3 and
3.4).

u
x
(km)u

y
(km)

u
z
(k

m
)

-50

50
50

0
0

0

-50 -50

50

0

1

2

3

4

5

6

7

8

9

10 m

(a) JTTNM-3

u
x
(km)u

y
(km)

u
z
(k

m
)

-50

50
50

0
0

0

-50 -50

50

0

1

2

3

4

5

6

7

8

9

10 m

(b) JTCNM-3

Figure 3.3: Position error distribution of both JTTNM-3 and JTCNM-3 for propagating
an initial set Ωr : ur(0) = (ux, uy, uz) = (50, 50, 50) km for 2 days.

Table 3.3: Performance comparison between both JTTNM-3 and JTCNM-3.

ε̄r (m) ε̄v (m/s) Em
r (m) Em

v (m/s) σr (m) σv (m/s) t (s)

JTTNM-3 1.46 1.14×10−4 9.36 9.06×10−4 1.94 1.6×10−4 6.75
JTCNM-3 0.62 5.48×10−5 1.46 1.58×10−4 0.28 2.85×10−5 8.51

Note: ε̄r, ε̄v, Em
r , Em

v respectively indicate RMSEs and MAEs in position and velocity,
σr and σv are SDs of the RMSEs, t is the CPU time. Propagation results of Ωr(0) =
(ux, uy, uz) = (50, 50, 50) km for 2 days.

Apart from the above illustration, the overall performance comparison between both
JTTNM-3 and JTCNM-3 methods, including RMSE, MAE, SD and CPU time, are re-
ported in Table 3.3. It is clear that the JTCNM-3 method has smaller RMSEs, MAEs
and SDs in the test case, at the cost of a slight increase in CPU time. The influence
of the size of the uncertainty domain on the accuracy of both JTTNM-3 and JTCNM-3
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Figure 3.4: Velocity error distribution of both JTTNM-3 and JTCNM-3 for propagating
an initial set Ωr : ur(0) = (ux, uy, uz) = (50, 50, 50) km for 2 days.

Table 3.4: Influence of the size of the initial uncertainty domain on the performances of
JTTNM-3 and JTCNM-3.

Ωr(0) ε̄r (m) ε̄v (10−5 m/s) σr (m) σv (10−5 m/s)

3 km JTTNM-3 0.0010 0.0073 0.0003 0.0020
JTCNM-3 0.0010 0.0073 0.0003 0.0020

5 km JTTNM-3 0.0011 0.0080 0.0004 0.0030
JTCNM-3 0.0010 0.0073 0.0004 0.0030

10 km JTTNM-3 0.0030 0.0239 0.0029 0.0244
JTCNM-3 0.0016 0.0121 0.0005 0.0050

25 km JTTNM-3 0.0916 0.7160 0.1211 1.0084
JTCNM-3 0.0393 0.0348 0.0177 0.1756

50 km JTTNM-3 1.4562 11.378 1.9391 16.135
JTCNM-3 0.6222 5.4751 0.2849 2.8457

Note: ε̄r and ε̄v, σr and σv respectively indicate the RMSEs in position and velocity, as
well as the associated SDs.

methods is shown in Table 3.4, where five different sizes of initial uncertainty domains
are considered: 3, 5, 10, 25, and 50 km. Table 3.4 clearly illustrates that the JTTNM-3
method possesses the same accuracy as the JTCNM-3 method when the size of the initial
uncertainty is less than 5 km. In this case, the JTTNM-3 method should be preferred due
to somewhat less CPU time needs while providing the same accuracy. However, when
the size of the initial uncertainty is bigger than 5 km, the JTCNM-3 not only possesses
a much smaller RMSEs, but also smaller SDs in position and velocity, showing that the
JTCNM-3 method outperforms the JTTNM-3 method. Besides, Fig. 3.5 shows the CPU
time consumed in both JTTNM-n and JTCNM-n implementations at different expansion
orders and concluding that the JTTNM-n method has a higher computational speed,
although its accuracy is somewhat worse than that of the JTCNM-n method.
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Figure 3.5: The CPU time vs. the expansion order for both JTTNM-n and JTCNM-n.
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Figure 3.6: Position error distribution of the ADS-based JTTNM-3 and normal JTCNM-3
for propagating an initial set Ωr : ur(0) = (ux, uy, uz) = (50, 50, 50) km for 2 days.

Due to the lower CPU consumption of the JTTNM-n method, it is of interest to explore
the possibility of replacing the JTCNM-n method with multiple implementations of the
JTTNM-n method with the aim of obtaining similar accuracy and CPU cost when large
initial uncertainty domains are considered. The ADS technique [91, 92] tailored for the
JTTNM-n method is adopted to test this idea with prescribed position and velocity
errors less than 1.5 m and 1.5×10−4m/s. The polynomial evaluation results, obtained by
the ADS-based JTTNM-3 method and normal JTCNM-3 method, are compared against
that of a classical MC simulation. Figures 3.6 and 3.7 displays position and velocity
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Figure 3.7: Velocity error distribution of the ADS-based JTTNM-3 and normal JTCNM-3
for propagating an initial set Ωr : ur(0) = (ux, uy, uz) = (50, 50, 50) km for 2 days.

error distributions. Note that just only one split occurs on the component ux in the
implementation of the ADS-based JTTNM-3 method. Table 3.5 again exhibits the overall
performance comparison of both ADS-based JTTNM-3 and JTCNM-3 methods, including
RMSE, MAE, SD and CPU time. The results illustrate that the ADS-based JTTNM-3
method outperforms the JTCNM-3 method since it possesses smaller RMSEs, MAEs and
SDs in position and velocity.

Table 3.5: Performance comparison between ADS-based JTTNM-3 and JTCNM-3.

ε̄r (m) ε̄v (m/s) Em
r (m) Em

v (m/s) σr (m) σv (m/s) t (s)

ADS JTTNM-3 0.12 1.07×10−5 0.83 8.98×10−5 0.15 1.43×10−5 11.1
JTCNM-3 0.62 5.48×10−5 1.46 1.58×10−4 0.28 2.85×10−5 8.51

Note: ε̄r, ε̄v, Em
r , Em

v respectively indicate RMSEs and MAEs in position and velocity, σr

and σv are SDs of RMSEs, t is the CPU time. Propagation results of Ωr(0) = (ux, uy, uz) =
(50, 50, 50) km for 2 days.

These two discussions show that the JTCNM-3 method has smaller RMSEs, MAEs and
SDs in position and velocity than the JTTNM-3 method in the test case with a large
uncertainty domain, but at the cost of a slight increase of the CPU time. The inverse
conclusion is obtained when comparing the JTCNM-3 with the ADS-based JTTNM-
3. Therefore, there is a trading-off among the selection of these three methods. In
addition, more attention should be paid to the feature of the dynamics, such as the
continuity of the vector field. For instance, if the vector fields were not n + 1-th order
continuous differentiable, a JTCNM-n method would be the necessary choice, at least
near the discontinuity points.
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Chapter 3. Analysis of high order orbit uncertainty propagation

3.3.3 Comparison between different coordinate representations

The coordinate representation has also a remarkable impact on the propagation accuracy
and efficiency of both JTTNM-n and JTCNM-n methods. The preferred choice is the
one enabling to describe the dynamics in a near linear way, without neglecting nonlinear
terms. The goal is to seek the optimal coordinate representation for the JT-based set
propagation of GEO trajectories. Without loss of generality, the JTTNM-n method is
adopted. The implementation for propagating an initial uncertainty domain, described
by ur(0) = (50, 50, 50) km and uv(0) = (5, 5, 5) m/s, is carried out through a forward
integration for 2 days of the GEO dynamics formulated in CAC, CYC and GES coordi-
nates.
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Figure 3.8: MAEs in position and velocity vs. the expansion order for propagating an
initial set Ωr : ur(0) = (ux, uy, uz) = (50, 50, 50) km, uv(0) = (uvx , uvy , uvz ) = (5, 5, 5) m/s
using three different coordinate representations.

The MAEs and CPU time are employed to carry out the performance comparisons among
the JTTNM-n implementations of the three aforementioned models. Figure 3.8 shows the
MAEs in position and velocity computed by the JTTNM-n implementations of the CAC,
CYC and GES dynamical models versus the expansion order n. The results illustrate that
the equations of motion formulated in the GES coordinates possess the best performance
at all expansion orders, followed by far by the one formulated in CYC coordinates, while
the one formulated in CAC coordinates is the worst. Using the JTTNM-n with the same
expansion order n, the accuracy of both CYC and GES representations are much better
than that of the CAC representation, since all CAC coordinates vary quickly along the
nominal trajectory. Besides, the approximation error decreases when the expansion order
n increases. Figure 3.9 shows the CPU time that a JTTNM-n method spends in the
propagation of a specific initial set for two days. We can see the way the CPU time
consumed in the implementations in all three coordinate representations increases when
the expansion order n also does. On the other hand, the CPU time consumed in the CYC
and GES implementations is less than that consumed in the CAC implementation, due
to larger integration step-sizes they can use. Figure 3.9 also reveals that, for the same
expansion order n, the forward integration of the CAC dynamical model is almost three
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times slower than that of the CYC and GES dynamical models. In summary, the GES
coordinate representation should be preferred in practical GEO applications due to both
the high computational efficiency and the small approximation error.

1 2 3 4 5

Order n

0

2

4

6

8

10

cp
u

 t
im

e 
(s

)

CAC

CYC

GES

Figure 3.9: The CPU time vs. the expansion order for the JTTNM-n implementation of
three different models.

3.4 Remarks

Using the JT technique, this chapter studies the propagations of geostationary trajectory
uncertainties subjected to the four dominant perturbations towards efficient orbit determi-
nation purposes. The results presented correspond to several simulation scenarios based
on different coordinate representations, expansion orders, and uncertainty neighborhoods.

It can be concluded that the JTCNM-n method has a better accuracy and a more uni-
form error distribution than the JTTNM-n method implemented at the same expansion
order, but at the cost of a little more CPU time. Furthermore, the improved JTTNM-n
method, by means of using an automatic domain splitting technique, has been compared
with the JTCNM-n method under the restrictions of a prescribed accuracy. The com-
parison reveals that it is possible for the JTTNM-n method to reach the same prescribed
performance of the JTCNM-n method through the usage of an automatic domain split-
ting technique, except for a slight increase of the CPU time. In addition, as a global
approximation method, the accuracy of the JTCNM-n method strongly depends on the
size of the uncertainty domain, thus, an a priori information about this domain is neces-
sary. On the contrary, the JTTNM-n method is a local approximation method and is not
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Chapter 3. Analysis of high order orbit uncertainty propagation

going to be affected by the size of the uncertainty domain. Its accuracy in the vicinity of
the central point is fairly good even in some divergent situations. Therefore, a trading-off
should be done for selecting the expansion forms according to many factors, such as the
accuracy, CPU time, and the feature of the dynamics.

The performance comparisons among the JT-based propagation of orbit uncertainties
using the equations of motion formulated in CAC, CYC and GES coordinates show that
the model formulated in the GES coordinates is preferred in practical GEO missions due to
its low computational cost and high accuracy. The CPU time consumed in the propagation
of the GES representation is a little less than that of the CYC representation and three
times less than that of the CAC representation. Furthermore, the propagation accuracy
of the GES representation is somewhat better than that of the CYC representation and
much better than that of the CAC representation.
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Chapter 44
Jet transport-based joint

orbit and parameter
estimation

To simultaneously estimate spacecraft orbits and uncertain parameters, either physically
related with the spacecraft or with the measurement procedure, this chapter applies the
developed JTTNM-n method into the state prediction step of a Bayesian filtering frame-
work, thus proposes a novel augmented high order extended Kalman filter in the JT
framework (JT-AHEKF-n). Two different model representations, including Cartesian
coordinates and GEO elements, are used in the implementation of the JT-AHEKF-n esti-
mators and the main dominant perturbations in the GEO regime are taken into considera-
tion. The performance and sensitivity analyses of the proposed JT-AHEKF-n estimators
are assessed by means of numerical simulations and compared with those of the classical
EKF approach.

4.1 Augmented high order extended Kalman filter

Consider a general nonlinear discretized dynamical system,

xk+1 = Φx,k+1 (tk+1; tk,xk + δxk,pk + δpk) +wk , (4.1)

71



Chapter 4. Jet transport-based joint orbit and parameter estimation

where xk ∈ Rd and pk ∈ Rl respectively indicate nominal spacecraft state and parameter
vectors at time tk, δxk ∈ Rd, δpk ∈ Rl represent initial uncertainty deviation vectors,
and wk ∈ Rd is the process noise vector, assumed as a Gaussian white noise process, i.e.,
E{wk} = 0, E{wkwT

k } = Qx
k ∈ Rd×d, k ∈ N. In the above equalities E{ · } denotes

the expectation operator. The initial state estimates are assumed to be a multivariable
Gaussian distribution with mean x+,0 and covariance E{(x0−x+,0)(x0−x+,0)T } = P x+,0.
Moreover, it is reasonable to suppose that spacecraft physical parameters, or uncertain
parameters related to the ground tracking station, only depend on time or on parameters
themselves, such that the discretized parameter equation can be expressed as

pk+1 = Φp,k+1 (tk+1; tk,pk + δpk) + vk , (4.2)

where vk ∈ Rl denotes the process noise vector, assumed again to be a Gaussian white
noise process, i.e., E{vk} = 0, E{vkvTk } = Qp

k ∈ Rl×l. The process noise vectors
wk and vk are further assumed to be non-correlated, i.e. E{wk,vk} = 0. Clearly,
the parameter vector can be merged into the spacecraft state vector, thus forming an
augmented state vector X = [x,p] ∈ Rd+l. It is worth to mention that the full state
covariance matrix P+,0 ∈ R(d+l)×(d+l) consists of the state covariance sub-matrix P x

+,0 ∈
Rd×d, the parameter covariance sub-matrix P p

+,0 ∈ Rl×l, and the covariance sub-matrix
P xp

+,0 ∈ Rd×l associated to the state and parameter vectors, i.e.,

P+,0 =
(
P x+,0 P xp+,0
P px+,0 P p+,0

)
, with P px+,0 = (P xp+,0)T . (4.3)

Furthermore, (4.1) and (4.2) are augmented as

Xk+1 = Φk+1 (tk+1; tk,Xk + δXk) + ŵk , (4.4)

where ŵk = [wT
k ,v

T
k ]T ∈ Rd+l indicates the process noise vector, while the full covariance

matrix of the process noise Qk ∈ R(d+l)×(d+l) is a block diagonal matrix consisting of
Qxk ∈ Rd×d and Qpk ∈ Rl×l, this is

Qk =
(
Qxk 0
0 Qpk

)
. (4.5)

We assume that the measurement vector at time tk+1 can be obtained from the ground
tracking station. The nonlinear measurement equation is written as

zk+1 = Ξk+1 (tk+1; tk,Xk+1) + uk+1 , (4.6)

where zk+1 ∈ Rm represents the measurement vector, and the measurement noise vector
uk+1 ∈ Rm is still assumed to be a Gaussian white noise with zero mean E{uk+1} = 0
and covariance E{uk+1u

T
k+1} = Rk+1 ∈ Rm×m. The process and measurement noises

are assumed to be non-correlated, i.e., E{wk,uk} = 0, E{vk,uk} = 0.

We consider a nonlinear filtering problem with the dynamics (4.4) and measurement (4.6),
the detailed recursive process of a JT-AHEKF-n can be described as:
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4.1 - Augmented high order extended Kalman filter

Prediction step: If the state vector X+,k and the associated state error covariance matrix
P+,k are given at time tk, using (2.67), the a priori estimates of the state mean X−,k+1
and measurement mean z−,k+1, as well as the state error covariance matrix P−,k+1 at
time tk+1, are predicted by means of expanding the state transition function Φk+1 and
the measurement function Ξk+1 around the state mean X+,k at time tk, up to order n,

Xi
−,k+1 = E{Φi

k+1 (tk+1; tk,X+,k + δXk) + ŵi
k}

= Xi
k+1 +

∑
1≤|γ|≤n

aiγ1...γd+l
E
{
δXγ1

k,1 · · · δX
γd+l
k,d+l

}
,

zj−,k+1 = E{Ξj
k+1 (tk+1; tk,X−,k+1) + ujk+1}

= zjk+1 +
∑

1≤|γ|≤n
bjγ1...γd+l

E
{
δXγ1

k,1 · · · δX
γd+l
k,d+l

}
,

P i1i2
−,k+1 = E{[Φi1

k+1 (tk+1; tk,X+,k + δXk)−Xi1
−,k+1 + ŵi1

k ]·

[Φi2
k+1 (tk+1; tk,X+,k + δXk)−Xi2

−,k+1 + ŵi2
k ]} ,

=
∑

1≤|γ|≤n

∑
1≤|γ̃|≤n

ai1γ1...γd+l
ai2γ̃1...γ̃d+l

E
{
δXγ1+γ̃1

k,1 · · · δXγd+l+γ̃d+l
k,d+l

}
−δmi1

k+1δm
i2
k+1 +Qi1i2

k+1 ,

(4.7)

where

|γ| =
d+l∑
i=1

γi , |γ̃| =
d+l∑
i=1

γ̃i ,

δmi
k+1 = Xi

k+1 −Xi
−,k+1 , Qi1i2

k = E
{
ŵi1
k ŵ

i2
k

}
,

1 ≤ i, i1, i2 ≤ d+ l , 1 ≤ j ≤ m, δXk = [δxTk , δpTk ]T ,

Xi
k+1 = Φi

k+1 (tk+1; tk,X+,k) , zjk+1 = Ξj
k+1 (tk+1; tk,X−,k+1) ,

aiγ1...γd+l
= 1
γ1! · · · γd+l!

∂γΦi
k+1

∂Xγ1
k,1 · · · ∂X

γd+l
k,d+l

, bjγ1...γd+l
= 1
γ1! · · · γd+l!

∂γΞj
k+1

∂Xγ1
k,1 · · · ∂X

γd+l
k,d+l

.

Note that aiγ1...γd+l
, bjγ1...γd+l

in (4.7) indicate the coefficients of Taylor expansions of
Φi
k+1 and Ξj

k+1, respectively. Besides, Xi
−,k+1, P i1i2

−,k+1 indicate the components of the
mean and covariance matrix , while zj−,k+1 denotes the components of the mean of the
measurement vector. Besides, although the estimated parameter vector p has been merged
into the augmented state X, it is worth to mention two special cases for its prediction.
In the first case the estimated parameter vector p is assumed to be constant, this is, (4.2)
is invariable and degraded into

pj−,k+1 = pj+,k . (4.8)

To reduce the dimension of the estimation problem and save the computational cost, it
is not necessary to propagate the parameter vector in this case, which will be further
discussed when the position vector of the ground tracking station is estimated. In the
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Chapter 4. Jet transport-based joint orbit and parameter estimation

second case, the parameter equation (4.2) is considered to be nonlinear, such that the full
equations (4.7) are employed.

Update step: Using the a priori estimates of the state mean X−,k+1 and measurement
mean z−,k+1, the components of the measurement error covariance matrix Pzz,k+1 and
the ones of the cross correlation matrix PXz,k+1 between the state and measurement
vectors are computed by

P j1j2
zz,k+1 = E{[Ξj1

k+1 (tk+1; tk,X−,k+1)− zj1
−,k+1]·

[Ξj2
k+1 (tk+1; tk,X−,k+1)− zj2

−,k+1} ,

=
∑

1≤|γ|≤n

∑
1≤|γ̃|≤n

bj1
γ1...γd+l

bj2
γ̃1...γ̃d+l

E
{
δxγ1+γ̃1
k,1 · · · δxγd+l+γ̃d+l

k,d+l

}
−δnj1

k+1δn
j2
k+1 ,

P ij
Xz,k+1 = E{[Φi

k+1 (tk+1; tk,X+,k + δXk)−Xi
−,k+1 + ŵi1

k ]·

[Ξj
k+1 (tk+1; tk,X−,k+1)− zj−,k+1 + ujk+1]}

=
∑

1≤|γ|≤n

∑
1≤|γ̃|≤n

aiγ1...γd+l
bjγ̃1...γ̃d+l

E
{
δxγ1+γ̃1
k,1 · · · δxγd+l+γ̃d+l

k,d+l

}
−δmi

k+1δn
j
k+1 ,

(4.9)

where 1 ≤ i ≤ d + l, 1 ≤ j, j1, j2 ≤ m, δnjk+1 = zjk+1 − z
j
−,k+1. P j1j2

zz,k+1 indicates
the components of the measurement error covariance matrix and P ij

Xz,k+1 denotes the
components of the cross-covariance matrix between the state and measurement vectors.

Thus, the innovation covariance matrix Pνν,k+1 is further defined as

P j1j2
νν,k+1 = P j1j2

zz,k+1 +Rj1j2
k+1, 1 ≤ j1, j2 ≤ m, (4.10)

where Rj1j2
k+1 = E{uj1

k+1u
j2
k+1} represents the components of the measurement noise co-

variance matrix Rk+1.

When a new measurement zrk+1 is obtained at time tk+1, the measurement innovation
vector νk+1 is defined as,

νk+1 = zrk+1 − z−,k+1 , (4.11)

and finally, the updated mean X+,k+1 and error covariance matrix P+,k+1 at time tk+1
can be obtained from

Kk+1 = PXz,k+1 (Pvv,k+1)−1
,

X+,k+1 = X−,k+1 +Kk+1νk+1 ,

P+,k+1 = P−,k+1 −Kk+1Pvv,k+1K
T
k+1 ,

(4.12)

where Kk+1 is the Kalman filter gain.
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Note that the proposed nonlinear JT-AHEKF-n filter is based on the JTTNM-n method
and implemented in the JT scheme. Its main advantages contain: 1) nonlinear information
extraction of the dynamical and measurement models in the filtering process; 2) save
computation time. Apparently, the JT-AHEKF-n filter is a generalization of the EKF in
which only first-order Taylor expansion polynomials are used to approximate the functions
Φk+1 (tk+1; tk,x+,k + δxk) and Ξk+1 (tk+1; tk,x−,k+1), so, one can easily derive the EKF
algorithm by taking n = 1 in (4.7) and (4.9). Since the JT-AHEKF-n filter (excluding JT-
AHEKF-1) enables to extract the nonlinear information from the system, the distribution
of the augmented state vector is no longer Gaussian at t = tk+1, even if it was Gaussian
at t = tk. However, reference [123] showed that it is accurate enough to assume the state
distribution being Gaussian in the proposed JT-AHEKF-n filter for OD applications.
Under the Gaussian assumption, Isserlis’s formula [160] provides an analytical way to
compute the associated expectation values in the implementation of the JT-HEKF-n.

Finally, a brief summary of the JT-AHEKF-n implementation is given in Algorithm 4.1.

Algorithm 4.1 JT-AHEKF-n algorithm
1: Initialize the state X+,0, state covariance matrix P+,0, expansion order n, process

and measurement noise covariance matrices Q, R, final time tf , tk = 0, k = 0;
2: k is increased by 1;
3: Use (4.7) to predict the a priori estimates of the state mean X−,k+1 and measurement

mean z−,k+1, as well as the state error covariance matrix P−,k+1 at time tk+1;
4: Incorporate the new measurement zrk+1 into the update step (4.9)-(4.12), thus obtain

the a posterior estimates of the state meanX+,k+1 and state covariance matrix P+,k+1
at time tk+1;

5: Execute steps from 2 to 4 until tk = tf .

4.2 Joint orbit and parameter estimation

The purpose of this chapter is to investigate how parameters can be estimated jointly with
the spacecraft state. The nature of the parameters can be very different, from physical
ones related with the spacecraft to the uncertain ones associated with the measurement
procedure. Without loss of generality, and in order to show the behavior of the developed
JT-AHEKF-n method, here only two illustrative cases are presented: one physically
affected by the time-varying area-to-mass ratio, and another one related with an uncertain
position of the tracking station.

4.2.1 Equations of motion

To accurately predict the motion of GEO satellites, the dynamical models formulated
in the Cartesian coordinates and GEO elements are adopted in the OD procedures (see
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in subsections 3.1.1 and 3.1.3). The dominant perturbations considered contain SRP,
Earth’s non-spherical gravity, and luni-solar gravitational attraction, whose formulae are
shown in subsection 3.2.1.

4.2.2 Measurement model

Currently, optical telescopes are typically exploited to measure the topocentric right as-
cension (RA, α) and declination (δ) of space objects orbiting the Earth. As a passive data
collection technique, optical telescopes enable to efficiently track numerous objects sur-
reptitiously. The recent development of more powerful wide-field-of-view optical sensors
possess sub-arcsecond observation accuracy for the near-geosynchronous objects [156].
In particular, the state-of-the-art accuracy of the most sophisticated optical sensors
enables to reach 20 milli-arcseconds [161]. In the following simulations, the measure-
ment errors on the topocentric RA (α) and declination (δ) are assumed to be Gaussian
white noises with the same standard deviation 66.6 milli-arcseconds (corresponding to
σm = 3.232 × 10−7 rad and 14 m in the GEO regime). The position of the ground
tracking station is known by specifying its east longitude Λ, geodetic latitude φ, and
an elevation H above the WGS84 ellipsoidal surface. The local sidereal time of the
ground tracking station is so = Λ + GA(t). After the coordinate transformation, the
position vector of the ground tracking station in the ECI frame can be expressed as
ro = (xo, yo, zo) = (Rc cosφ cos so, Rc cosφ sin so, Rs sinφ) , where ro indicates the iner-
tial position vector of the tracking station, while Rc and Rs are two intermediate values
depending on the equatorial radius of the Earth, Re, flattening, f , and height of the
tracking station, H. At time t, the spacecraft inertial position vector is denoted as
r = (x, y, z), thus the relative position vector from the ground tracking station to the
spacecraft can be expressed as % = r − ro = (x − xo , y − yo , z − zo). Therefore, the
measurement model is written as,

α = arctan
(
y − yo
x− xo

)
+ u1 ,

δ = arcsin
(
z − zo
||%||2

)
+ u2 ,

(4.13)

where z = (α, δ)T ∈ R2 represents the measurement vector.

It is worth mentioning that, in practice, the real angular measurement vector, i.e., right
ascension and declination, is provided by optical telescopes or radars. To simulate such a
measurement vector in the following discussions, a numerical simulator is employed: firstly
a true nominal trajectory is generated through the forward integration of a higher fidelity
dynamical model from time t0 to tk, with consideration of 10×10 EGM96S gravity model,
SRP, albedo, solar and lunar gravitational perturbations; then, the measurement vector
including topocentric RA (α) and declination (δ) at time tk is obtained by evaluating the
measurement model at the nominal trajectory; finally, the measurement simulator adds
some Gaussian white noises into the aforementioned values of RA (α) and declination (δ)
and forms the sequential measurement vectors.
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4.2.3 Case A: spacecraft state and physical parameter estimation

Although many spacecraft physical parameters are pre-designed and precisely manufac-
tured for concrete missions, still some of them must be determined or adjusted during
practical missions, and need to be estimated in real time. Examples of such ones could
be the spacecraft mass and the illuminated cross sectional area. The uncertainty on the
mass mainly originates from inaccurate operations of the propulsion system, while the
uncertainty on the illuminated cross sectional area can be affected by the shape and at-
titude of the spacecraft, as well as the relative position between the spacecraft and the
Sun.

In general, the modelling error of the SRP acceleration is the largest dynamical error
source in the GEO regime [162]. Moreover, due to maneuvers, the area-to-mass ratio
η = A/m changes with time and needs refitting. In this case study the simulation is
assumed inside a period of time without maneuvers, but a time-varying η is employed
because the non-spherical GEO spacecraft is rotating with respect to the Sun in a diurnal
basis, and so, its cross sectional area varies accordingly. The nonlinear variation law
considered in the simulation is assumed to be

η̇ = η0 sin(ωet) , (4.14)

where ωe stands for the average angular speed of the Earth’s rotation.

4.2.4 Case B: spacecraft state and tracking station position esti-
mation

For usual data collection techniques, underlying systematic biases and unmodeled ob-
servation errors significantly degrade the measurement quality. These factors limit the
accuracy improvement of the OD tasks, especially in the GEO regime, where one arc-
second of the angular measurement error results in approximately 200 meters of the
observational error in the spacecraft position. Therefore, the precise estimation of these
systematic biases and unmodeled observation errors, as well as the offset to remove them,
is of significant interest and importance. In particular, an accurate estimation of the
height of a removable ground tracking station is very meaningful, since it is difficult to
be precisely determined via GPS services.

In this case study the uncertain position of a ground tracking station and spacecraft orbit
are jointly estimated. In general, the position of the ground tracking station is provided
by specifying its east longitude Λ, geodetic latitude φ, and an elevation H above the
WGS84 ellipsoidal surface, and then, the position vector has to be converted into the
ECI frame. Unlike the case study A, the parameters are now invariable and (4.2) can be
simplified into (4.8). Therefore, assuming that the height of the ground tracking station
is denoted by H and its corresponding uncertainty by δH, the parameter equation can
be expressed as

Hk+1 = Hk + δHk + vk . (4.15)
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4.2.5 Evaluation metrics

The performance of the proposed JT-AHEKF-n filter can be evaluated by the estimation
error, the error dispersion and the computational cost. The estimation error vector at time
tk is generally defined as the difference between the estimated state and parameter vectors
(i.e., x+,k, p+,k), computed by the JT-AHEKF-n, and the true state and parameter
vectors (i.e., xrk, prk), obtained by the numerical integration of the state and parameter
equations. Thus the state and parameter errors can be expressed as

εx,k = x+,k − xk = (εx,k, εy,k, εz,k, εvx,k, εvy,k, εvz,k)T , (4.16)

and
εp,k = p+,k − pk . (4.17)

Using the state error vector εx,k, the estimation errors in position and velocity can be
written as

εr,k =
√
ε2
x,k + ε2

x,y + ε2
x,z , εv,k =

√
ε2
vx,k

+ ε2
vy,k

+ ε2
vz,k

. (4.18)

To assess the accuracy of the JT-AHEKF-n filter, the RMSEs in position, velocity and
parameter at the filtering steady stage t ∈ [tks , tke ] are defined as

εΥ =

√√√√ 1
ke − ks + 1

ke∑
k=ks

ε2
Υ,k , Υ = r, v, p , (4.19)

where tks and tke respectively indicate the start and end time of the filtering steady stage.
Besides, a MC simulation with a cardinality of N samples is further employed to assess
the performance of the proposed filters. The RMSEs in position and velocity for a MC
simulation are defined as

ε̄Υ =

√√√√ 1
N

N∑
i=1

(
εiΥ
)2
, Υ = r, v, p , (4.20)

where εiΥ indicates the RMSE of the i-th MC run at the filtering steady stage t ∈ [tks , tke ].
Furthermore, the SD of the RMSEs is also a vital important metric to measure the error
dispersion,

σΥ =

√√√√ 1
N − 1

N∑
i=1

(εiΥ − ε̄Υ)2 , Υ = r, v, p . (4.21)

Furthermore, to compare the performance between two JT-AHEKF-n implementations at
different expansion orders n1 and n2, two elegant statistical indices are defined as follows,

τn2
n1

= n2 ε̄Υ

n1 ε̄Υ
, ζn2

n1
= n2σΥ

n1σΥ
, (4.22)
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where nε̄Υ and nσΥ denote the RMSEs and its SDs computed by the JT-AHEKF-n al-
gorithm accounting for the expansion order n. Note that τn2

n1
reveals the ratio of the

RMSEs computed by the JT-AHEKF-n2 and JT-AHEKF-n1. If 0 < τn2
n1

< 1, the JT-
AHEKF-n2 algorithm features a better accuracy than the JT-AHEKF-n1 algorithm, oth-
erwise is worse. The ratio ζn2

n1
shows the ratio of the SDs of the RMSEs computed

by two MC simulations of both JT-AHEKF-n2 and JT-AHEKF-n1 implementations. If
ζn2
n1

< 1, the estimation errors computed by the JT-AHEKF-n2 algorithm possess the
smaller error dispersion than those obtained by the JT-AHEKF-n1 algorithm, showing
that the JT-AHEKF-n2 algorithm delivers more consistent filtering results. That is, the
JT-AHEKF-n2 algorithm outperforms the JT-AHEKF-n1 algorithm. Besides, the com-
putational efficiency of the proposed JT-AHEKF-n filter is still assessed by the CPU time
consumed since all simulations are performed in the same computing environment.

4.3 Numerical simulations

The performance of a JT-AHEKF-n filter includes the computational burden, estimation
error and its dispersion. The computational burden can be measured through the CPU
time-keeping if all codes are carried out in the identical computing environment. The
estimation error can be addressed by the RMSEs in position, velocity and parameters.
To assess the error dispersion of the JT-AHEKF-n filter, the sensitivity analyses with re-
spect to initial state deviations, measurement acquisition frequencies, and the observation
geometry between the spacecraft and the ground tracking station (i.e., ∆Λr = λ−Λ) are
discussed. Besides, for reasons of space and clarity, only the sensitivity analysis results
for case study A are given, the same conclusions are also valid for case study B.

4.3.1 Spacecraft physical parameter estimation

In this study case all the equations of the spacecraft physical parameter vector, state
vector and measurement vector are considered to be nonlinear. The estimation perfor-
mances of the JT-AHEKF-n implemented in both Cartesian and GEO representations
with the same simulation conditions, are assessed by a series of numerical simulations.
Table 4.1 shows the true initial spacecraft state vector and parameters, as well as the
true position vector of the considered ground tracking station. It is worth mentioning
that the simulations considering small initial state and parameter deviations are omitted
since both usual EKF and JT-AHEKF-n proposed herein are capable of achieving the
joint GEO orbit and parameter estimation in an accurate way. The relative large errors
are assumed in the initial spacecraft state vector and the area-to-mass ratio. The initial
deviation of the area-to-mass ratio η is assumed to be 0.1 m2/kg off from the true value
given in Table 4.1, and its initial standard deviation is taken as ση = 0.1 m2/kg. The
initial state deviations are of 100 km in the position vector components, and of 0.5 m/s2

in the velocity vector components. The adopted initial covariance matrix is

79



Chapter 4. Jet transport-based joint orbit and parameter estimation

P+,0 =
(
P x

+,0 0
0 σ2

η

)
, P x

+,0 =
(

1010 I3×3 0
0 0.25 I3×3

)
. (4.23)

Table 4.1: True initial values of spacecraft state, parameters, and the ground tracking
station position

Parameter Nominal value Initial state Nominal value
Epoch 15 November 2015, 0:0:0 UTC x0 24487.8 km
η = A/m 74/3300 m2/kg y0 34324.4 km

Cr 1.3 z0 0 km
Λ 42.0516528◦ ẋ0 -2.50298 km/s
φ 0.7293472◦ ẏ0 1.78568 km/s
H 1620 m ż0 0 km/s

The total simulation time is 4 days, provided that 7 measurements can be done per night
(10 hours), separated by regular time intervals. Let the angular measurement noise be a
Gaussian white noise with standard deviation σm = 3.232× 10−7 rad. The measurement
noise covariance matrix R is

R =
(
σ2
m 0
0 σ2

m

)
. (4.24)
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Figure 4.1: Case A: Profiles of estimation errors in position, velocity and area-to-mass ratio
with a measurement frequency 7 times/night. Implemented in the GEO representation.

Figures 4.1 and 4.2 exhibit the estimation errors in position, velocity and area-to-mass
ratio for a joint GEO orbit determination and parameter estimation problem, respectively
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implemented in the Cartesian and GEO representations. Both figures show that the JT-
AHEKF-2 filter outputs a better accuracy than the JT-AHEKF-1 one (i.e., the classic
EKF filter). For both JT-AHEKF-2 and JT-AHEKF-3 filters, the estimation errors in
position and velocity are respectively less than 10 m and 5 × 10−4 m/s. The estimation
error of the area-to-mass ratio converges to 2× 10−4 m2/kg, which is around 0.1% of the
initial deviation of the area-to-mass ratio. In contrast, the JT-AHEKF-1 filter produces
the worse estimation errors in position, velocity, and area-to- mass ratio: respectively,
100 m, 3 × 10−3 m/s and 3 × 10−3 m2/kg. In essence, the JT-AHEKF-1 fails in the
estimation of the area-to-mass ratio, as is shown in the bottom line sub-figures of Figs. 4.1
and 4.2. Both sub-figures illustrate that the estimation error of the area-to-mass ratio
is almost 14% of the initial deviation of the area-to-mass ratio, so the filter does not
work properly. From this simulation, it follows that one can at least obtain one order
of magnitude accuracy gain replacing the EKF (i.e., the JT-AHEKF-1 filter) by the JT-
AHEKF-2 filter. Furthermore, due to the normality hypothesis, the expectations of the
third order terms vanish, thus no accuracy gain is obtained replacing the JT-AHEKF-2
by the JT-AHEKF-3.
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Figure 4.2: Case A: Profiles of estimation errors in position, velocity and area-to-mass ratio
with a measurement frequency 7 times/night. Implemented in the Cartesian representation.

Comparing Fig. 4.1 with Fig. 4.2, it follows that the accuracy of both representations is
of the same order of magnitude but, in general, the accuracy of GEO representation is a
little better than that of the Cartesian representation if the algorithms are convergent (i.e.,
JT-AHEKF-2 and JT-AHEKF-3). This phenomenon originates from the more accurate
prediction achieved by the GEO representation in the state prediction step. Although the
Cartesian representation behaves better than the GEO representation in the JT-AHEKF-
1 implementation, it makes no sense since the first order algorithm is essentially failing.
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Another important issue to be pointed out here is related with the computational ef-
ficiency. Table 4.2 shows the computational cost of the simulations corresponding to
Figs. 4.1 and 4.2 (without including the computational cost for generating the measure-
ments). It underlines that the implementation of the GEO representation is much faster
than that of the Cartesian one, because the GEO elements vary much slower than the
classical Cartesian ones in the GEO regime. Thus, a larger integration step-size can be
adopted in the prediction process, resulting in less computation time and in a higher
efficiency. Therefore, one can conclude that the GEO representation possesses a better
performance (including a superior estimation accuracy and less computational burden)
than the Cartesian representation. This conclusion is also validated in the case study
B. But, for brevity, in what follows we only show the results of the GEO representation
for the case study B, while the ones corresponding to the Cartesian representation are
omitted.

Table 4.2: Computation time (s)

Coordinate representation JT-AHEKF-n
n = 1 n = 2 n = 3

GEO elements 24 44 114
Cartesian coordinates 144 149 197

4.3.1.1 Sensitivity analysis relative to the observational geometry

The geometry of a GEO spacecraft relative to the ground tracking station is of impor-
tance in the estimation process of spacecraft state and area-to-mass ratio. Obviously, the
GEO spacecraft must be in the visible region from the ground tracking station. With the
consideration of a fixed position of the ground tracking station, the relative observational
geometry is generally described by the difference in longitude between the spacecraft and
the tracking station, denoted by ∆Λr. To study the influence of the relative observational
geometry on the performance of the JT-AHEKF-n, a MC simulation considering 25 uni-
form sampling points in the interval ∆Λr ∈ [−60◦, −60◦] is carried out. Apart from the
different initial longitude of the spacecraft, same initial conditions and measurements are
used.

Table 4.3 provides a deep insight into the result of the sensitivity analysis of the JT-
AHEKF-n relative to the observational geometry, which displays the RMSEs in spacecraft
position, velocity and area-to-mass ratio computed by the JT-AHEKF-1 and JT-AHEKF-
2. The estimation results of the JT-AHEKF-3 filter are omitted, since no accuracy im-
provement is obtained relative to the JT-AHEKF-2 filter. It is clear that the accuracy of
the JT-AHEKF-2 filter is better than that of the JT-AHEKF-1 filter, also the SD of the
RMSEs computed by the JT-AHEKF-2 filter at the steady stage t ∈ [48, 96] h is much
smaller than that calculated by the JT-AHEKF-1 filter. For the sake of intuition, Fig. 4.3
exhibits all the error curves obtained in the MC simulation, which again shows that the
results computed by the JT-AHEKF-2 filter possess a small error dispersion. Therefore,
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it concludes that the accuracy of the JT-AHEKF-1 filter is more strongly dependent on
the observational geometry than the one of the JT-AHEKF-2 filter, being less robust.

Table 4.3: Case A: Sensitivity analysis relative to the observational geometry

Filter Metrics
Υ = r Υ = v Υ = η

(m) (10−4 m/s) (10−4 m2/kg)

JT-AHEKF-1 1ε̄Υ 36.7 27.6 7.96

1σΥ 24.1 421.9 438.5

JT-AHEKF-2 2ε̄Υ 7.88 6.45 1.50

2σΥ 2.08 76.8 81.7

Ratio
τ2
1 = 2ε̄Υ/1ε̄Υ 0.215 0.234 0.188

ζ2
1 = 2σΥ/1σΥ 0.086 0.182 0.186
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Figure 4.3: Case A: Sensitivity analysis relative to the observational geometry with a
measurement frequency of 7 times/night. Implemented in the GEO representation.

4.3.1.2 Sensitivity analysis relative to initial state deviations

To analyze the sensitivity of the JT-AHEKF-n algorithms with respect to initial state
deviations, a MC simulation is carried out with the consideration of 2000 initial state
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vectors generated around the initial nominal state, subjected to a multivariable Gaussian
distribution with a large standard deviation. Table 4.4 displays the RMSEs and the
associated SDs computed by means of the JT-AHEKF-1 and JT-AHEKF-2. Note that
the JT-AHEKF-2 filter outputs a better accuracy than the JT-AHEKF-1 filter and at
least one order of magnitude accuracy gain can be obtain in position, velocity and area-
to-mass ratio by adjusting the order n from 1 to 2. Meanwhile, Table 4.4 also shows that
a tiny value of the ratio ζ2

1 is obtained, revealing that the RMSEs in position, velocity and
area-to-mass ratio computed by the JT-AHEKF-2 filter possess a smaller error dispersion
than those calculated by the JT-AHEKF-1 filter. In other words, the performance of
the JT-AHEKF-2 filter displays a much more insensitive with respect to initial state
deviations. Besides, Fig. 4.4 detailedly exhibits the profiles of 25 MC runs occupying
the largest estimation errors, where the nonlinearities play a prominent role. The results
again prove that the JT-AHEKF-2 filter outperforms the JT-AHEKF-1 one since the
JT-AHEKF-2 filter possesses not only lower RMSEs but also a smaller error dispersion.

Table 4.4: Case A: Sensitivity analysis relative to initial state deviations

Filter Metrics
Υ = r Υ = v Υ = η

(m) (10−4 m/s) (10−4 m2/kg)

JT-AHEKF-1 1ε̄Υ 296.9 79.0 101.2

1σΥ 117.7 317.6 315.5

JT-AHEKF-2 2ε̄Υ 7.76 7.25 1.82

2σΥ 0.176 71.8 77.4

Ratio
τ2
1 = 2ε̄Υ/1ε̄Υ 0.026 0.092 0.018

ζ2
1 = 2σΥ/1σΥ 0.001 0.226 0.245

Furthermore, to explore the influence of more measurement information on the perfor-
mance of the JT-AHEKF-n method, the relative distance from the spacecraft to the
ground tracking station is assumed to be available. Therefore, the measurement model
should be expressed as

α = arctan
(
y − yo
x− xo

)
+ u1 ,

δ = arcsin
(
z − zo
||%||2

)
+ u2 ,

||%||2 =
√

(x− xo)2 + (y − yo)2 + (z − zo)2 + u3 .

(4.25)

The standard deviation of the measurement noise in the relative distance is supposed to be
1 meter. A MC simulation is implemented to assess the influence of the supplemented rel-
ative distance information on the performance of the JT-AHEKF-n method. To compare
the results with those displayed in Fig. 4.4, the JT-AHEKF-n is fed with the identical
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Figure 4.4: Case A: Sensitivity analysis relative to initial state deviations with a measure-
ment frequency of 7 times/night. Implemented in the GEO representation.

Table 4.5: Case A: Sensitivity analysis relative to initial state deviations incorporating the
relative distance information

Filter Metrics
Υ = r Υ = v Υ = η

(m) (10−3 m/s) (10−4 m2/kg)

JT-AHEKF-1 1ε̄Υ 204.5 288.0 83.2

1σΥ 77.5 1953.0 2147.0

JT-AHEKF-2 2ε̄Υ 1.22 0.80 0.18

2σΥ 0.07 11.64 12.27

Ratio
τ2
1 = 2ε̄Υ/1ε̄Υ 0.006 0.003 0.002

ζ2
1 = 2σΥ/1σΥ 0.001 0.006 0.006

measurements (excluding the relative distance information), and initialized with same
initial values of the state and area-to-mass ratio. Figure 4.5 shows that the supplement of
the measurement information about the relative distance deteriorates the performance of
the JT-AHEKF-1 filter, while improve the performance of the JT-AHEKF-2 filter. The
comparison between Tables 4.4 and 4.5 further reveals this phenomenon, that is, the sup-
plement of the measurement information about the relative distance worsens the original
divergent algorithm diverging more severely (i.e., for JT-AHEKF-1), but it enhances the
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estimation accuracy of the original convergent methods (i.e., for JT-AHEKF-2).
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Figure 4.5: Case A: Sensitivity analysis relative to initial state deviations with a measure-
ment frequency of 7 times/night. Implemented in the GEO representation and incorporating
the relative distance information.

4.3.1.3 Sensitivity analysis relative to the measurement acquisition frequency

Note that the magnitude of measurement acquisition frequencies is a main factor that
affects the performance of the JT-AHEKF-n method. To illustrate this influence, three
different measurement acquisition frequencies are considered, including 7, 14 and 21 times
per night. In principle, a high measurement acquisition frequency is in favor of the ac-
curacy improvement of the JT-AHEKF-n, especially for the JT-AHEKF-1 since the lin-
earization of the state equations always tends to lose accuracy for long integration time
spans (i.e., in the low frequency acquisition case). In contrast, the high order nonlin-
ear approximation of the state equations already achieves a highly precise uncertainty
propagation over long time intervals, such that the high order JT-AHEKF-n can not
significantly improve the accuracy through the increase of the measurement frequency.

Figures 4.6 and 4.7 respectively display the simulation results with measurement frequen-
cies of 14 and 21 times per night, separated by regular time intervals. The comparison
among Figs. 4.1, 4.6, and 4.7 illustrates that a high measurement acquisition frequency
benefits for the accuracy improvement in the JT-AHEKF-n implementations at all orders.
Note in particular that the low order JT-AHEKF-n filter can obtain a larger accuracy
gain than the high order ones. This is, high order JT-AHEKF-n algorithms have a
stronger robustness when the tracking sensors encounter the functional degradation (i.e.,
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Figure 4.6: Case A: Profiles of estimation errors in position, velocity and area-to-mass ratio
with a measurement frequency 14 times/night. Implemented in the GEO representation.

0 12 24 36 48 60 72 84 96
10

-4

10
-2

10
0

10
2

10
4

JT-AHEKF-1

JT-AHEKF-2

JT-AHEKF-3

0 12 24 36 48 60 72 84 96
10

-6

10
-4

10
-2

10
0

10
2

0 12 24 36 48 60 72 84 96

Time (h)

10
-6

10
-4

10
-2

10
0

Figure 4.7: Case A: Profiles of estimation errors in position, velocity and area-to-mass ratio
with a measurement frequency 21 times/night. Implemented in GEO representation.
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when the measurement acquisition frequency decreases significantly). Finally, it is worth
to underline that the corresponding sensitivity analyses implemented in the Cartesian
representation produce similar results, but they omitted here for brevity.

4.3.2 Tracking station position estimation

The preceding discussions indicate that the JT-AHEKF-n algorithms are capable of simul-
taneously estimating the spacecraft state and area-to-mass parameter. In this subsection
the feasibility of the JT-AHEKF-n algorithms for estimating the underlying systematic
biases or unmodeled observational errors is discussed. Clearly, these factors always lead
to a significant degeneration of the measurement quality. Therefore, the estimation and
compensation of uncertain biases in the measurement equations is of importance to im-
prove the accuracy of the OD tasks. In general, GPS services enable to provide very
accurate values of the longitude Λ and geodetic latitude φ of a ground tracking station,
but not so accurate for the height H. Consequently, the estimation of the underlying
height deviation of a ground tracking station is specially meaningful in cases where the
tracking stations are mobile. In the following simulation, both the spacecraft state x and
an uncertain height H of the ground tracking station are jointly estimated. The true ini-
tial state and parameters of the spacecraft, as well as the precise position of the tracking
station, are again given in Table 4.1.

Assuming that the initial estimation error of the ground tracking station height is 50 m
off from the true height given in Table 4.1, that is, δH0 = 50 m, and that the standard
deviation of the initial height error is taken as σH = 50 m. The initial state deviations are
of 100 km in all position components, and of 0.5 m/s in velocity components. No error
on the longitude and latitude of the tracking station is considered. The adopted initial
covariance matrix is,

P+,0 =
(
P x

+,0 0
0 σ2

H

)
, P x

+,0 =
(

1010 I3×3 0
0 0.25 I3×3

)
. (4.26)

The measurement acquisition frequency is taken again as 7 times per night separated
by regular time intervals. The measurement equations (4.13) are still adopted and the
associated measurement noise covariance matrix is (4.24). The accuracy comparison of
the first, second and third orders JT-AHEKF-n filters, for estimating the spacecraft state
and the uncertain height of the ground tracking station, are shown in Fig. 4.8. The
result shows that the nonlinear JT-AHEKF-n algorithms (n > 1) work very well in the
estimation process of both spacecraft state and height of the ground tracking station.
The estimation errors in position and velocity computed by the JT-AHEKF-2 and JT-
AHEKF-3 filters are respectively around 5 m and 3×10−4 m/s, meanwhile the estimation
error of the uncertain height converges to 2 m, which is around 4% of the initial height
deviation δH0 = 50 m. Again, the JT-AHEKF-1 filter produces the worse estimation
errors in position, velocity, and height, respectively: 70 m, 0.003 m/s and 5 m (10%). In
principle, the JT-AHEKF-2 and JT-AHEKF-3 algorithms are capable of extracting more
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nonlinear information from the dynamical system to improve the estimation accuracy, at
least one order of magnitude, relative to the JT-AHEKF-1 filter. In addition, the results
implemented in the Cartesian representation produce the same conclusions as in the GEO
representation, but they are omitted for brevity.
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Figure 4.8: Case B: Profiles of estimation errors in position, velocity and height of the
ground tracking station with a measurement frequency 7 times/night. Implemented in the
GEO representation.

4.4 Remarks and conclusions

This chapter studies augmented JT-AHEKF-n filtering algorithms for the simultaneous
estimation of spacecraft state and additional parameters in the GEO regime. These
parameters describe either the spacecraft physical features or the position information of
the ground tracking station. The effectiveness of the proposed nonlinear estimators has
been validated considering two case examples.

The comparison between two adopted dynamical models, formulated in Cartesian coor-
dinates and GEO elements, reveals that the model formulated in GEO elements not only
possesses better estimation accuracy, but also needs of less computational cost than the
one formulated in Cartesian coordinates. Letting aside the performance comparisons be-
tween two coordinate representations, the simulations also confirm that both dynamical
models are effective to achieve a real-time joint estimation via the proposed JT-AHEKF-n
method.
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The performance comparison among the JT-AHEKF-n implementations at different or-
ders is also investigated. The results show that higher order filters provide a superior
estimation accuracy, and usually, just by tuning the order of the JT-AHEKF-n from 1 to
2, one order of magnitude accuracy gain can be easily obtained in two case studies con-
sidered. Furthermore, a series of detailed sensitivity analyses of the proposed nonlinear
filters with respect to the observational geometry, magnitudes of initial estimation errors
and measurement acquisition frequencies, has been carried out. It concludes that the JT-
AHEKF-n filters (i.e. with n > 1) output a smaller estimation error dispersion relative
to the classical EKF, pointing to that high order JT-AHEKF-n filters are more robust
than the usual EKF. Finally, it should be mentioned that the proposed JT-AHEKF-n
method could be suitable to achieve the needs of future applications related with high
precise geostationary or geosynchronous orbit determination.
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Chapter 55
Autonomous orbit
determination and

fault-tolerant designs

With the fast development of the space technology, an increasing number of artificial
satellites have been launched and deployed in near Earth orbits. This is a really big
number relative to the small number of ground observation stations for actively tracking
them implying that the satellite OD task is very likely to encounter a data starved issue.
In other words, OD techniques for current or future space missions inevitably have to
employ increasingly sparse observations provided by either ground observation stations or
on board measuring sensors [48]. Note that the usage of sparse space-based measurements
is appealing due to both its autonomy improvement and reduced loads on measuring
equipment, motivating the exploration of advanced OD algorithms.

The tasks developed in this chapter contain: 1) the autonomy improvement of the OD
procedure; 2) the robustness enhancement of the OD procedure with respect to the mea-
surement faults. To achieve these two tasks, the augmented JT-AHEKF-n developed
in Chapter 4 can be degraded into the standard JT-HEKF-n algorithm if no parame-
ter should be estimated. This chapter further employs the JT-HEKF-n to achieve au-
tonomous satellite orbit estimation via the usage of sparse inter-satellite relative measure-
ment information. Three fault-tolerant algorithms are further put forward to suppress
measurement faults. In the light of the insensitiveness of the proposed JT-HEKF-n to
the measurement frequency, the first strategy directly discards the identified false mea-
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surements, being someway equivalent to the decrease of the measurement frequency. The
second and third strategies employ a single scale factor and an adaptive scale matrix,
respectively, as a multiplier to the measurement noise covariance matrix in order to al-
leviate the pollution of faulty measurements. The effectiveness of the JT-HEKF-n are
firstly demonstrated with respect to diverse initial state deviations and measurement er-
rors, while the behavior exploration of fault-tolerant nonlinear filters are compared with
the standard JT-HEKF-n method considering different measurement faults.

5.1 Standard high order extended Kalman filter

Considering a general nonlinear discretized dynamical system,{
xk+1 = Φk+1 (tk+1; tk,xk) +wk,

zk+1 = Ξk+1 (tk+1; tk,xk+1) + uk+1,
(5.1)

where k ∈ N, x ∈ Rd and z ∈ Rm indicate the state and measurement vectors, with Φ and
Ξ defining the state transition and the measurement functions. wk ∈ Rd and uk ∈ Rm
are uncorrelated zero mean Gaussian random noise sequences, i.e. E{wk} = E{uk} = 0,
E{wk ·wT

k } = Qk, E{uk ·uTk } = Rk, E{wk ·uTk } = 0. Qk ∈ Rd×d and Rk ∈ Rm×m are
the symmetric real matrices addressing the process and measurement noises respectively.

A detailed recursive process of a JT-HEKF-n algorithm can be obtained by simplifying
the derivation of the augmented JT-AHEKF-n algorithm of section 4.1 without the con-
sideration of an uncertain parameter vector:
Prediction step: If the state vector x+,k and the associated state error covariance matrix
P+,k are given at time tk, the a priori estimates of the state mean x−,k+1 and measure-
ment mean z−,k+1, as well as the state error covariance matrix P−,k+1 at time tk+1, are
predicted by means of expanding the state transition function Φk+1 and the measurement
function Ξk+1 around the state mean x+,k at time tk, up to order n,

xi−,k+1 = E{Φi
k+1 (tk+1; tk,x+,k + δxk) +wi

k}

= xik+1 +
∑

1≤|γ|≤n
aiγ1...γd

E
{
δxγ1
k,1 · · · δx

γd
k,d

}
,

zj−,k+1 = E{Ξj
k+1 (tk+1; tk,x−,k+1) + ujk+1}

= zjk+1 +
∑

1≤|γ|≤n
bjγ1...γd

E
{
δxγ1
k,1 · · · δx

γd
k,d

}
,

P i1i2
−,k+1 = E{[Φi1

k+1 (tk+1; tk,x+,k + δxk)− xi1−,k+1 +wi1
k ]·

[Φi2
k+1 (tk+1; tk,x+,k + δxk)− xi2−,k+1 +wi2

k ]} ,

=
∑

1≤|γ|≤n

∑
1≤|γ̃|≤n

ai1γ1...γd
ai2γ̃1...γ̃d

E
{
δxγ1+γ̃1
k,1 · · · δxγd+γ̃d

k,d

}
−δmi1

k+1δm
i2
k+1 +Qi1i2

k+1 ,

(5.2)
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where

1 ≤ i, i1, i2 ≤ d , 1 ≤ j ≤ m, |γ| =
d∑
i=1

γi , |γ̃| =
d∑
i=1

γ̃i ,

xik+1 = Φi
k+1 (tk+1; tk,x+,k) , zjk+1 = Ξj

k+1 (tk+1; tk,x−,k+1) ,

δmi
k+1 = xik+1 − xi−,k+1 , Qi1i2

k+1 = E
{
wi1
k+1w

i2
k+1
}
,

aiγ1...γd
= 1
γ1! · · · γd!

∂γΦi
k+1

∂xγ1
k,1 · · · ∂x

γd
k,d

, bjγ1...γd
= 1
γ1! · · · γd!

∂γΞj
k+1

∂xγ1
k,1 · · · ∂x

γd
k,d

.

Update step: Using the a priori estimates of the state mean x−,k+1 and measurement
mean z−,k+1, the components of the measurement error covariance matrix Pzz,k+1, and
the ones of the cross correlation matrix Pxz,k+1 between the state and measurement
vectors are

P j1j2
zz,k+1 = E{[Ξj1

k+1 (tk+1; tk,x−,k+1)− zj1
−,k+1]·

[Ξj2
k+1 (tk+1; tk,x−,k+1)− zj2

−,k+1]},

=
∑

1≤|γ|≤n

∑
1≤|γ̃|≤n

bj1
γ1...γd

bj2
γ̃1...γ̃d

E
{
δxγ1+γ̃1
k,1 · · · δxγd+γ̃d

k,d

}
−δnj1

k+1δn
j2
k+1 ,

P ij
xz,k+1 = E{[Φi

k+1 (tk+1; tk,x+,k + δxk)− xi−,k+1 +wi
k]·

[Ξj
k+1 (tk+1; tk,x−,k+1)− zj−,k+1 + ujk+1]}

=
∑

1≤|γ|≤n

∑
1≤|γ̃|≤n

aiγ1...γd
bjγ̃1...γ̃d

E
{
δxγ1+γ̃1
k,1 · · · δxγd+γ̃d

k,d

}
−δmi

k+1δn
j
k+1 ,

(5.3)

where 1 ≤ i ≤ d, 1 ≤ j, j1, j2 ≤ m, δnjk+1 = zjk+1 − z
j
−,k+1.

When a new measurement zrk+1 is obtained at time tk+1, the measurement innovation
vector νk+1 is defined as,

νk+1 = zrk+1 − z−,k+1 . (5.4)

Furthermore, the innovation covariance matrix Pνν,k+1 is further defined as

P j1j2
νν,k+1 = P j1j2

zz,k+1 +Rj1j2
k+1, 1 ≤ j1, j2 ≤ m. (5.5)

where Rj1j2
k+1 = E{uj1

k+1u
j2
k+1} indicate the components of the measurement noise covari-

ance matrix Rk+1. Finally, the updated mean x+,k+1 and error covariance matrix P+,k+1
at time tk+1 can be obtained from

Kk+1 = Pxz,k+1 (Pvv,k+1)−1
,

x+,k+1 = x−,k+1 +Kk+1νk+1 ,

P+,k+1 = P−,k+1 −Kk+1Pvv,k+1K
T
k+1 ,

(5.6)
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where Kk+1 is the Kalman filter gain.

A brief summary of the JT-HEKF-n filtering algorithm is arranged in Algorithm 5.1.

Algorithm 5.1 JT-HEKF-n algorithm
1: Initialize the state x+,0, state covariance matrix P+,0, expansion order n, process and

measurement noise covariance matrices Q, R, final time tf , tk = 0, k = 0;
2: k is increased by 1;
3: Use (5.2) to predict the a priori estimates of the state mean x−,k+1 and measurement

mean z−,k+1, as well as the state error covariance matrix P−,k+1 at time tk+1;
4: Incorporate the new measurement zrk+1 into the update step (5.3)-(5.6), thus obtain

the a posterior estimates of the state mean x+,k+1 and state covariance matrix P+,k+1
at time tk+1;

5: Execute steps from 2 to 4 until tk = tf .

5.2 Fault-tolerant variants of the JT-HEKF-n filter

5.2.1 Fault measurement detection

The key point in the design of a fault-tolerant variant of the JT-HEKF-n algorithm is to
timely detect false measurements and alleviate their pollution on the filtering performance.
The comparison between the real and theoretical values of the innovation covariance
matrix provides an intuitive and effective approach to identify faults. In principle, if a
measurement fault occurs, the measurement estimation error must exceed the theoretical
one, causing a mismatch.

Using the measurement innovation sequence {νk+1} and the innovation covariance matrix
Pνν,k+1, the normalized innovations squared (NIS) is defined as [163]

qk+1 = νTk+1P
−1
νν,k+1 νk+1 , (5.7)

thus, the time-average NIS can be further expressed as

q̄k+1 = 1
L

k+1∑
j=k−L+2

qj , (5.8)

where L is the width of a moving window, guaranteeing that the detection of the test
statistics is sufficient [164]. The appropriate value of L can be taken between 1 and k+ 1.
Note that L is herein set to 3 in order to save the computational cost.

If there are no measurement faults, the time-averaging NIS function has a χ2 distribution
with m degrees of freedom, m being the dimension of the measurement innovation vector.
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The fault detection is done by means of a statistical analysis of the time-average NIS
function q̄k+1. Two hypotheses are presented as follows,

• H0 : the filter does not encounter a measurement fault.

• H1 : the filter encounters a measurement fault.

For a given level of significance, i.e. α = 99%, the criterion is defined as

P (q̄k+1 > χ2
m,α) = α , (5.9)

where the threshold value χ2
m,α is given by the chi-square probability distribution function

with the known values of m and α [163]. If q̄k+1 > χ2
m,α, the hypothesis H1 is accepted,

proving that a measurement malfunction occurs in the JT-HEKF-n implementation, oth-
erwise H0 holds true and the JT-HEKF-n is assumed to work well.

5.2.2 False measurement-discarding based JT-HEKF-n filter

In general, the usage of high-order JTTNM-n method enables to extract more nonlin-
ear information from the dynamics and achieve a good state prediction accuracy over
large integration time intervals, such that the performance of a high order JT-HEKF-n
implementation is only slightly affected by the decrease of the measurement frequency.
This appealing behavior will be detailedly discussed and tested in section 5.4. Note in
particular that it is the rationale underlying the adaptive false measurement-discarding
based JT-HEKF-n filter (JT-DHEKF-n). In this procedure, when the chi-square test
(5.9) detects and identifies a false measurement at time tk, the state updating step would
be canceled. That is, the propagation time interval is enlarged, and the state vector
at time t = tk+1 is predicted instead of at time t = tk. This is equivalent to reduce
the measurement frequency of the JT-HEKF-n method. This strategy is elegant since it
makes the JT-DHEKF-n method robust against measurement faults with a slight loss of
the accuracy. The JT-DHEKF-n implementation is very close to the one of the standard
JT-HEKF-n method. Their unique difference lies at the fault detection mechanism before
the updating step. The detailed implementation is given in Algorithm 5.2.

5.2.3 Single and multiple scale factor based JT-HEKF-n filter

When false measurements last over a pretty long time interval, the high order JTTNM-
n method employed in the JT-DHEKF-n implementation could fail to approximate the
dynamical model. To reduce the dependence of the estimation accuracy on the dura-
tion of measurement faults, both a single scale factor and an adaptive scale matrix are
successively introduced aiming to systematically correct Kalman gains. In what follows,
these two new fault-tolerant filtering algorithms are respectively denoted by JT-SHEKF-n
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Algorithm 5.2 JT-DHEKF-n algorithm
1: Initialize the state x+,0, state covariance matrix P+,0, expansion order n, process and

measurement noise covariance matrices Q, R, final time tf , tk = 0, k = 0;
2: k is increased by 1;
3: Use (5.2) to predict the a priori estimates of the state mean x−,k+1 and measurement

mean z−,k+1, as well as the state error covariance matrix P−,k+1 at time tk+1;
4: Acquire a new measurement zrk+1 at time tk+1, calculate the measurement innovation
νk+1 using (5.4), as well as the innovation covariance matrix Pνν,k+1 via (5.3) and
(5.5);

5: Compute the time-averaging NIS function using (5.8) and, for a given level of signif-
icance, perform the test hypothesis (5.9). If H0 is true, jump to step 6; otherwise,
cancel the updating process and jump to step 2;

6: Incorporate the new measurement zrk+1 into the update step (5.3)-(5.6), thus obtain
the a posterior estimates of the state mean x+,k+1 and state covariance matrix P+,k+1
at time tk+1;

7: Execute steps from 2 to 6 until tk = tf .

(single scale factor based JT-HEKF-n) and JT-MHEKF-n (multiple scale factors based
JT-HEKF-n).

In absence of measurement faults, the true innovation covariance matrix νk+1ν
T
k+1 un-

derestimates the one computed in (5.5), i.e., Pνν,k+1, thus

νk+1ν
T
k+1 ≤ Pνν,k+1 , (5.10)

and in presence of measurement malfunctions, νk+1ν
T
k+1 mismatches Pνν,k+1, that is,

νk+1ν
T
k+1 > Pνν,k+1.

To assure the robustness of the JT-SHEKF-n in the case of measurement malfunctions,
a single scale factor λk+1 should be introduced as a corrective term into the innovation
covariance matrix,

Pνν,k+1 = Pzz,k+1 + λk+1Rk+1 . (5.11)

The single scale factor is determined in terms of the condition (5.10), requiring that

νk+1ν
T
k+1 ≤ Pzz,k+1 + λk+1Rk+1 , (5.12)

so, it is given by

λk+1 = max
i=1,··· ,m

[
νk+1ν

T
k+1 − Pzz,k+1

]
i

[Rk+1]i
, (5.13)

where [A]i denotes the i-th diagonal element of the matrix A. Note that, in this case, the
Kalman gain becomes

Kk+1 = Pxz,k+1 [Pzz,k+1 + λk+1Rk+1]−1
. (5.14)
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If there are no malfunctions in the measurement system, the single scale factor is very
close to one, since the real and theoretical innovation covariance matrices already fulfill
the condition (5.10). However, in case of measurement faults, according to (5.13) and
(5.14), measurement faults produce an increase of the scale factor and a decrease of the
Kalman gain.

In the above procedure, the single scale factor not only performs the correction of the
most mismatched term in the real and computed innovation covariance matrices Pνν,k+1,
but also modifies the remaining terms. However, not all the terms require to be corrected
since it is very likely that some of the sensors will work well even that some others fail.
Note that the redundant correction of the proper terms in the innovation covariance
matrix also leads to the accuracy loss. To avoid this defect, it is better to introduce a
suitable diagonal matrix Gk+1, instead of a single scale factor λk+1, as a multiplier factor
of the measurement noise covariance matrix Rk+1. The measurement noise scale matrix
Gk+1 is determined requiring that

1
L

k+1∑
i=k−L+2

νiν
T
i = Pzz,k+1 +Gk+1Rk+1 , (5.15)

where L is the width of the phase moving window, which usually takes values between 2
and 5. L = 3 is set by default to smooth the filtering process. From the above requirement,
it follows that

Gk+1 =
[

1
L

k+1∑
i=k−L+2

νiν
T
i − Pzz,k+1

]
R−1
k+1 . (5.16)

For a given sensor experiencing measurement malfunctions, its accuracy may be worse
than its design performance, but it is not reasonable to assume that it would be better.
Therefore, in the case of certain measurement malfunctions, the corresponding terms in
Gk+1 become larger than one, while in the normal operation case of the measurement sys-
tem, the diagonal components ofGk+1 should be one. However, due to the approximation
and rounding errors in the computation of (5.16), it is possible to cause the measurement
noise scale matrix Gk+1 to be off-diagonal, or its diagonal components to be less than
one. To avoid these issues, a new measurement noise scale matrix is defined as

G∗k+1 = diag {max (1, Gk+1,11) ,max (1, Gk+1,22) , · · · ,max (1, Gk+1,mm)} . (5.17)

Besides, in the case of measurement faults, the measurement noise scale matrix G∗k+1
must be further used to correct the original Kalman gain, i.e.,

Kk+1 = Pxz,k+1
[
Pzz,k+1 +G∗k+1Rk+1

]−1
. (5.18)

Note that the scale matrix G∗k+1 amplifies the variance of the measurement noise in
presence of measurement faults in some sensors. This leads to a smaller Kalman gain
related to the corresponding sensors. This operation effectively reduces the weights of
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false measurements and avoids their pollution in the state estimation , further ensuring
the robustness of the JT-MHEKF-n against measurement malfunctions.

The detailed JT-SHEKF-n and JT-MHEKF-n implementations are in Algorithm 5.3.

Algorithm 5.3 JT-SHEKF-n and JT-MHEKF-n algorithms
1: Initialize the state x+,0, state covariance matrix P+,0, expansion order n, process and

measurement noise covariance matrices Q, R, final time tf , tk = 0, k = 0;
2: k is increased by 1;
3: Use (5.2) to predict the a priori estimates of the state mean x−,k+1 and measurement

mean z−,k+1, as well as the state error covariance matrix P−,k+1 at time tk+1;
4: Acquire a new measurement zrk+1 at time tk+1, calculate the measurement innovation
νk+1 using (5.4), as well as the innovation covariance matrix Pνν,k+1 via (5.3) and
(5.5);

5: Compute the time-averaging NIS function using (5.8) and, for a given level of signifi-
cance, perform the hypothesis test (5.9). If H0 is true, keep the Kalman gain in (5.6)
unchanged; otherwise, compute the single scale factor or the adaptive scale matrix via
(5.13) or (5.16). Then, replace the original Kalman gain in (5.6) with the corrected
one calculated by (5.14) or (5.18);

6: Incorporate the new measurement zrk+1 into the update step (5.3)-(5.6), thus obtain
the a posterior estimates of the state mean x+,k+1 and state covariance matrix P+,k+1
at time tk+1;

7: Execute steps from 2 to 6 until tk = tf .

5.3 Model description

5.3.1 Equations of motion

To improve the autonomy of the spacecraft OD problem, the newly proposed nonlinear
filters employ the space-based inter-satellite relative measurement information. In such
cases, the orbit of the beacon is accurately described by its ephemeris, while the uncertain
orbit of the estimated satellite is the one to be determined. The dynamical model adopted
in this chapter must be convenient to address orbits with different altitudes, thus the one
formulated in the Cartesian coordinates has been adopted (see in subsection 3.1.1). Be-
sides, the dominant perturbations considered contain SRP, Earth’s non-spherical gravity,
and luni-solar gravitational attraction, whose formulations are shown in subsection 3.2.1.
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5.3.2 Measurement model

Conventional space-based autonomous OD methods often acquire the measurement infor-
mation from some nature beacons using certain special sensors, such as X-ray sensors [165],
magnetometers [166], gravity gradiometers [167], and thermal sensors [168]. Although it
significantly lessens the dependence on ground facilities, a worse OD accuracy is often
obtained due to the inferior measurement performance of these special sensors, and, gen-
erally, it has been considered as an aided approach. However, certain highly valuable
space missions require a much more reliable and autonomous sensing method, that is,
a stronger anti-interference signal ability, and a less dependency on ground facilities.
A novel array signal detection technique has been proposed to determine the angles-of-
arrival of signal propagation paths in the body-fixed frame attached to the signal receiving
satellite [169,170]. A space-based optical (SBO) sensor is another alternative to produce
similar orientation information relative to beacon satellites [171–173]. In what follows we
avoid the discussion about the detection mechanisms of antenna arrays or SBO sensors,
nowadays being a hot research field, and assume that the relative angle information is
being acquired directly via the inter-satellite relative tracking framework.

Assuming that the relative right ascension α and declination β between two satellites can
be measured, thus the measurement model is

α = arctan yb − y
xb − x

,

β = arcsin zb − z√
(xb − x)2 + (yb − y)2 + (zb − z)2

,
(5.19)

where the position vector rb(t) = [xb, yb, zb]T is determined using the accurate ephemeris
of the beacon satellite at time t, and the position vector of the observed satellite r(t) =
[x, y, z]T is predicted through the forward polynomial integration of (3.2).

The measurement accuracy is a key factor of the OD procedure. According to ESA’s
“Assessment Study for Space Based Space Surveillance Demonstration System”, the gen-
eral random observational angular noise of spacecraft-based sensors is of the order of 0.64
arc-sec [171]. Besides, the root mean square residual of typical angular observations in
Gaia mission is about 0.2-0.3 milli-arc-sec. Therefore, observational noises of both 0.64
arc-sec and 0.2 arc-sec in angular measurement are considered in the following simulations
since they may be achieved in current or near future space missions.

5.4 Numerical simulations

The proposed standard JT-HEKF-n, together with three fault-tolerant algorithms, i.e.,
JT-DHEKF-n, JT-SHEKF-n, and JT-MHEKF-n, will be tested in autonomous GEO
OD problems. To improve the autonomy of the OD procedure, an inter-satellite relative
angular measurement procedure is considered to provide the relative right ascension α and
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declination β. Without loss of generality, two observation configurations are employed.
The feasibility and effectiveness of the standard JT-HEKF-n, implemented at different
expansion orders n, are firstly illustrated by various numerical simulations using different
magnitudes of initial state deviations, measurement noises and measurement acquisition
periods. Secondly, three scenarios, with different types of measurement faults, have been
considered to test the robustness of the introduced fault-tolerant variants. It is worth to
mention that some metrics proposed in subsection 4.2.5, such as RMSE, SD of RMSEs
and CPU time, are again employed to evaluate the performance of the proposed standard
JT-HEKF-n filter and its three fault-tolerant variants.

5.4.1 Autonomous nonlinear orbit determination

In this case study, the effects of filter orders, initial state deviations, measurement noises,
and measurement acquisition frequencies on the performance of the standard JT-HEKF-
n are explored. The GEO satellite SES-6 (TLE number 39172) is used as the beacon,
while the GEO satellite Hispasat-1D (TLE number 27528) is regarded as the estimated
satellite, as is shown schematically in Fig. 5.1. The orbit of the beacon is accurately
described by its ephemeris, and the orbit of the estimated satellite is the one that must
be determined. The accurate initial state vectors and area-to-mass ratios of two satellites
are given in Table 5.1. To observe the beacon with the usage of the sensors installed on the
estimated satellite, it requires that the angle formed by connecting the Sun, beacon and
estimated satellites must be less than 80◦ [174]. The visible tracklets of SES-6 observed
by Hispasat-1D are displayed in Fig. 5.2, which shows that a continuous visible tracklet
of 12 hours per day is available. In the simulations, the measurement noise is described
as a zero mean normal distribution with a standard deviation σm = 0.64 arc-sec [171],
thus the measurement noise covariance matrix is set as R = diag[σ2

m, σ
2
m].

i
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Figure 5.1: Schematic representation of the GEO-GEO observation configuration.

The first simulation is employed to analyze the effect of the adopted order n on the per-
formance of the standard JT-HEKF-n for achieving the autonomous orbit determination.
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Table 5.1: State and area-to-mass ratio at initial epoch July 4th 2019, 03:20:00.000 UTC.

TLE x0 (km) y0 (km) z0 (km) vx0 (m/s) vy0 (m/s) vz0 (m/s) η (m2/kg)
39172 15631.6 −39276.4 −11.6 2862.9 1119.6 0.86 0.02000
27528 22170.3 −35886.3 −93.1 2614.6 1615.4 −12.5 0.02242
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Figure 5.2: Visible tracklets of the GEO-GEO observation configuration.

In this case study, the initial state error δx+,0 has been taken equal to 100 km for all
position components, and 5 m/s for all velocity components. The initial state covariance
matrix is set as P+,0 = δx+,0 ·δxT+,0. The process noise can be represented by a zero mean
Gaussian distribution with a standard deviation 5×10−10m/s2. The total simulation time
is set as 6 days, and the measurement acquisition period is set as one hour within visible
tracklets. Using all these parameters, the JT-HEKF-n is implemented at expansion orders
n = 1, 2, 3. Figure 5.3 exhibits the profiles of estimation errors in position and velocity,
showing that JT-HEKF-2 and JT-HEKF-3 algorithms enable to provide an almost same
estimation accuracy and achieve one order of magnitude accuracy gain relative to the
JT-HEKF-1. Table 5.2 reveals the RMSEs in position and velocity over the time interval
t ∈ [96, 144] h, computed by the JT-HEKF-n at order n = 1, 2, 3. To be specific, at
the filtering steady stage t ∈ [96, 144] h, JT-HEKF-2 and JT-HEKF-3 algorithms enable
to obtain the RMSEs of about 21 m in position and 1.4 × 10−3 m/s in velocity, while
the JT-HEKF-1 produces worse results, i.e., the RMSEs are approximately of 735 m in
position and 0.054 m/s in position. Again, Table 5.2 reveals that one order of magnitude
accuracy gain is obtained by adjusting the order from 1 to 2, but no significant accuracy
improves by switching the order from 2 to 3. One key point should be underlined is
that the convergence rate of both JT-HEKF-2 and JT-HEKF-3 is somewhat slow since
only one measurement per hour is available (a pretty low measurement frequency), as
shown in Fig. 5.3. Even so, compared to the divergent result obtained by the JT-HEKF-1
(i.e., EKF), it shows that both JT-HEKF-2 and JT-HEKF-3 perform very well since they
enable to achieve good orbit determination under these poor conditions. To verify the
reliability of this last conclusion, a MC simulation considering 2000 runs of JT-HEKF-1
and JT-HEKF-2 is carried out and the results of 25 runs with largest estimation errors
are given in Fig. 5.4, from which it follows that the JT-HEKF-2 clearly again outperforms
the JT-HEKF-1 since it possesses a smaller error dispersion.

The estimation failure of the JT-HEKF-1 can be analyzed by a filter consistency test.
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Figure 5.3: Profiles of estimation errors in position and velocity with measurement ac-
quisition period 1 hour and measurement noise 0.64 arc-sec in the GEO-GEO observation
configuration.

Table 5.2: RMSEs in position and velocity of the JT-HEKF-n at the steady stage t ∈
[96, 144] h and the associated CPU time.

JT-HEKF-1 JT-HEKF-2 JT-HEKF-3
ε̄r (km) 0.7350 0.0210 0.0210
ε̄v (m/s) 0.0538 0.0014 0.0014

CPU time (s) 21.69 31.75 125.98

In principle, if 95% of the innovations νk are bounded by ±2
√
Pvv,k, one can assume

that the filter is consistent and performs correctly, otherwise the filter is inconsistent and
does not. Figure 5.5 shows that more innovations than expected (i.e., > 5%) fall outside
the ±2

√
Pvv,k bound in the JT-HEKF-1 implementation, revealing its divergence in the

OD application. On the contrary, both JT-HEKF-2 and JT-HEKF-3 filters work much
better, since more than 95% of the innovation values lie within the ±2

√
Pvv,k bound. The

last line of Table 5.2 gives the CPU time consumed in the JT-HEKF-n implementation at
orders n = 1, 2 , 3. Clearly, the computation time increases when the expansion order also
does. Therefore, from the perspective of the computation time and estimation accuracy,
the JT-HEKF-2 filter seems to be the best option.

To further analyze the sensitivity of the filtering performance with respect to initial state
deviations, both JT-HEKF-1 and JT-HEKF-2 filters are further employed to estimate the
GEO trajectory whose initial state vectors are taken from four Gaussian error distribution
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Figure 5.4: Accuracy profiles of 25 MC runs with the worst estimation errors obtained by
JT-HEKF-1 and JT-HEKF-2 implementations. Measurement acquisition period 1 hour and
measurement noise 0.64 arc-sec.
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Figure 5.5: Innovation and innovation standard deviation bounds of the JT-HEKF-n im-
plemented at orders n = 1 (top), 2 (middle), and 3 (bottom).
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with different standard deviations. For each case, 2000 random samples are generated
around the true initial state in terms of the specified initial state error distribution. Then,
25 samples with largest estimation errors are chosen, assuring this way that the worst
circumstances, where the nonlinearity plays a prominent role, are investigated. Table 5.3
shows the position and velocity RMSEs of both JT-HEKF-1 and JT-HEKF-2 at the
steady state (i.e., t ∈ [96, 144] h). Clearly, in all study cases, the JT-HEKF-2 achieves
a better accuracy than the JT-HEKF-1. Besides, the RMSEs in position and velocity of
the JT-HEKF-1 gradually increase when the initial state standard deviation also does,
while the JT-HEKF-2 enables to maintain its accuracy even if the initial state standard
deviation remarkably increases. Note in particular that the JT-HEKF-1 diverges when
the initial state standard deviation are too large (i.e., σ̂r = 2000 km, σ̂v = 50 m/s).
However, quite good RMSEs in position and velocity can be still obtained with the usage
of a JT-HEKF-2 filter. The tiny ratio of RMSEs computed by both JT-HEKF-1 and
JT-HEKF-2 further shows that approximately one order of magnitude accuracy gain can
be obtained in these cases. On the other hand, Table 5.3 also gives the ratio of SDs of
the RMSEs computed by both JT-HEKF-1 and JT-HEKF-2 filters, which reveals that a
smaller error dispersion can be obtained by a JT-HEKF-2 filter.

Table 5.3: Sensitivity analysis of the JT-HEKF-n with respect to initial state deviations.
(σ̂r km, σ̂v m/s) indicates the standard deviation of the Gaussian distribution describing
the initial spacecraft state vector. The unit of nε̄Υ and nσΥ are kilometers and meters per
second. The - symbol indicates filtering divergence.

Metric (σ̂r km, σ̂v m/s)
(50, 2) (100, 5) (200, 10) (2000, 50)

JT-HEKF-1
1ε̄r 0.1269 0.7270 4.3060 -
1ε̄v 0.0091 0.0510 0.2871 -
1σr 0.1043 0.5868 3.4243 -
1σv 0.1592 0.9062 5.3463 -

JT-HEKF-2
2ε̄r 0.0245 0.0297 0.0290 0.0370
2ε̄v 0.0017 0.0020 0.0020 0.0025
2σr 0.0138 0.0194 0.0152 0.0244
2σv 0.0275 0.0347 0.0318 0.0433

Ratio

2
1τr 0.1931 0.0409 0.0067 -
2
1τv 0.1868 0.0392 0.0069 -
2
1ζr 0.1323 0.0331 0.0044 -
2
1ζv 0.1727 0.0383 0.0059 -

Another key point is the sensitivity analysis of the JT-HEKF-n with respect to the mea-
surement noise and acquisition period. Five different measurement acquisition periods
(10, 20, 60, 120, 180 minutes), and two levels of measurement noises (0.2 and 0.64 arc-
sec) have been considered in the simulations. As in the preceding MC simulation, 2000
samples are generated around the true initial state, with σ̂r = 100 km and σ̂v = 5 m/s.
Table 5.4 gives the position and velocity RMSEs computed by both JT-HEKF-1 and JT-
HEKF-2 filters, as well as the associated ratios at the steady state (i.e., t ∈ [96, 144] h).
From which it follows that the position and velocity estimation errors of the JT-HEKF-
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1 increase when the measurement acquisition period also does. A larger measurement
acquisition period produces a worse first-order state prediction in the JT-HEKF-1, thus
deteriorates its estimation accuracy. In contrast, the nonlinear state prediction used in
the JT-HEKF-2 is accurate enough and almost not affected by the choice of measure-
ment acquisition periods (less than 180 minutes), such that the JT-HEKF-2 keeps good
estimation properties even in the case of using large measurement acquisition periods. Ap-
parently, the JT-HEKF-2 is more robust relative to the measurement acquisition period
than the JT-HEKF-1. In particular, it provides the theoretical basis for the design of the
fault-tolerant filter introduced in section 4.1, which implies a decrease of the measurement
frequency (i.e., discarding the fault measurements) when it is used.

Table 5.4: Position and velocity RMSEs in the sensitivity analysis of the JT-HEKF-n with
respect to the measurement noise and acquisition period. The units of nε̄r and nε̄v are
kilometers and meters per second.

Metric Measurement acquisition period (min)
10 20 60 120 180

0.2

1ε̄r 0.2816 0.4935 0.7206 1.4538 2.8543
1ε̄v 0.0205 0.0361 0.0505 0.1046 0.2012
2ε̄r 0.0080 0.0118 0.0085 0.0084 0.0122
2ε̄v 0.0005 0.0008 0.0006 0.0006 0.0009
2
1τr 0.0284 0.0239 0.0118 0.0057 0.0042

Measurement 2
1τv 0.0244 0.0222 0.0119 0.0057 0.0044

noise (arc-sec)

0.64

1ε̄r 0.2986 0.5014 0.7270 1.4549 2.8564
1ε̄v 0.0220 0.0367 0.0510 0.1047 0.2013
2ε̄r 0.0268 0.0369 0.0297 0.0261 0.0416
2ε̄v 0.0018 0.0026 0.0020 0.0018 0.0032
2
1τr 0.0898 0.0736 0.0409 0.0179 0.0145
2
1τv 0.0818 0.0708 0.0392 0.0171 0.0158

Table 5.4 also shows that there is no performance improvement in the JT-HEKF-1 imple-
mentation when decreasing the measurement noise from 0.64 to 0.2 arc-sec. This result,
in principle not expected, is due to the poor state prediction provided by the JT-HEKF-1
in the case of a large initial state error. In contrast, the nonlinear prediction employed in
the JT-HEKF-2 is more accurate, such that the estimation accuracy can be improved by
decreasing the measurement noise. This fact shows that only when the state prediction is
accurate enough, the measurement accuracy improvement has a significant influence on
the performance of the JT-HEKF-n algorithm.

Table 5.5 gives the results for the SDs of the position and velocity RMSEs, and the
associated ratios at the filter steady stage t ∈ [96, 144] h considering measurement noises
of 0.2 and 0.64 arc-sec. The tiny ratios reveal that a smaller error dispersion is obtained
by the JT-HEKF-2 when compared with the JT-HEKF-1. A lower measurement noise
produces a smaller estimation error dispersion if the state prediction is accurate enough,
for instance when the JT-HEKF-2 is used. Furthermore, the estimation error dispersion
of the JT-HEKF-2 remains fixed when the measurement acquisition period enlarges.

105



Chapter 5. Autonomous orbit determination and fault-tolerant designs

Table 5.5: SDs of the position and velocity RMSEs in the sensitivity analysis of the JT-
HEKF-n with respect to the measurement noise and acquisition period. The units of nσr

and nσv are kilometers and meters per second.

Metric Measurement acquisition period (min)
10 20 60 120 180

0.2

1σr 0.2749 0.4789 0.5861 1.4185 2.6339
1σv 0.3829 0.6688 0.9011 1.9810 3.7844
2σr 0.0018 0.0011 0.0046 0.0030 0.0009
2σv 0.0079 0.0112 0.0094 0.0087 0.0115
2
1ζr 0.0065 0.0023 0.0078 0.0021 0.0003

Measurement 2
1ζv 0.0206 0.0167 0.0104 0.0043 0.0030

noise (arc-sec)

0.64

1σr 0.2879 0.4818 0.5868 1.4217 2.6359
1σv 0.4033 0.6762 0.9061 1.9842 3.7871
2σr 0.0063 0.0066 0.0194 0.0075 0.0062
2σv 0.0264 0.0357 0.0347 0.0261 0.0340
2
1ζr 0.0218 0.0137 0.0331 0.0052 0.0023
2
1ζv 0.0655 0.0523 0.0383 0.0131 0.0089
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Figure 5.6: Schematic representation of the MEO-GEO observation configuration.

Note that similar results can be obtained when other measurement performance and orbit
determination configurations are employed. Figure 5.6 illustrates an observation config-
uration where a medium earth orbit (MEO) satellite, named as PRN18 (TLE number
22877) is chosen as the beacon, while the same GEO satellite Hispasat-1D (TLE number
27528) is regarded as the estimated satellite. Table 5.6 shows the initial state vectors and
area-to-mass ratios. The visible tracklets are displayed in Fig. 5.7, which shows that a
continuous tracklet of 14 hours per day is available. The simulations consider a time inter-
val of 6 days with a measurement acquisition period of 1 hour. The measurement noise is
described as a zero mean normal distribution with a standard deviation σm = 0.2 arc-sec.
Figure 5.8 shows that the estimation errors computed by the JT-HEKF-2 and JT-HEKF-3
almost coincide, of about 20 m in position and 0.001 m/s in velocity. On the contrary, the
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JT-HEKF-1 produces much worse estimation errors in both position and velocity: 100 m
and 0.01 m/s. Again, as in the GEO-GEO configuration and due to the same arguments,
the JT-HEKF-2 is also preferred to solve the autonomous orbit determination.

Table 5.6: State and area-to-mass ratio at initial epoch July 3rd 2019, 07:20:00.000 UTC.

TLE x0 (km) y0 (km) z0 (km) vx0 (m/s) vy0 (m/s) vz0 (m/s) η (m2/kg)
22877 −7475.1 −25354.9 −3691.9 2264.2 −273.9 −3108.0 0.02000
27528 22170.3 −35886.3 −93.1 2614.6 1615.4 −12.5 0.02242
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Figure 5.7: Visible tracklets of the MEO-GEO observation configuration.
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Figure 5.8: Profiles of estimation errors in position and velocity with measurement ac-
quisition period of 1 hour and measurement noise 0.2 arc-sec in the MEO-GEO observing
configuration.
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5.4.2 Autonomous fault-tolerant orbit determination

To assess the performances of three fault-tolerant filters, different types of measurement
faults have been considered, including measurement faults with a continuous constant
bias, a random bias and an instantaneous zero output. The remaining simulation param-
eters are identical to the ones employed in subsection 5.4.1 for the GEO-GEO configura-
tion. In particular, χ2

m,α = 9.21 is taken in the fault detection procedure, corresponding
to degrees of freedom m = 2 and the reliability level α = 99% [163]. For comparison
purposes, same simulations also have been done using the standard JT-HEKF-n. Finally,
MC simulations based on repetitive implementations of the standard JT-HEKF-n and its
three fault-tolerant variants are carried out to assess the sensitivity with respect to initial
state deviations.

5.4.2.1 Measurements with a continuous constant bias

In this study case, the behaviors of the standard JT-HEKF-2 and its three fault-tolerant
variants are investigated when a constant measurement bias is added to the declination.
The simulation is performed during a time interval of six days (144 hours). The measure-
ment bias of 8× 10−5 rad (almost twenty times the nominal measurement noise) is active
inside the time interval t ∈ [70.8, 76.8] h, that is, the fault lasts for 6 hours. In this way
the measurement model in this time interval becomes

α = arctan ȳb − ȳ
x̄b − x̄

+ u1,

β = arcsin z̄b − z̄√
(x̄b − x̄)2 + (ȳb − ȳ)2 + (z̄b − z̄)2

+ u2 + 8× 10−5 .
(5.20)

The position and velocity estimation errors for the JT-HEKF-2, JT-DHEKF-2, JT-
SHEKF-2 and JT-MHEKF-2 are displayed in Fig. 5.9. Obviously, the results obtained by
a standard JT-HEKF-2 are unreliable in the case of a continuous constant bias fault inside
the time interval t ∈ [70.8, 76.8] h due to the filter inconsistency. In fact, the detractive
influence of measurement faults on the standard JT-HEKF-2 is not only important over
the period in which the faults happened, but also lasts for a much longer time span. In
contrast, the fault-tolerant JT-DHEKF-2, JT-SHEKF-2 and JT-MHEKF-2 enable to pro-
duce an excellent estimation accuracy without being affected from continuous constant
measurement faults. Therefore, it can be concluded that the JT-DHEKF-2, JT-SHEKF-2
and JT-MHEKF-2 outperform the JT-HEKF-2 when the measurement is polluted by a
continuous constant bias.

From the perspective of quantitative analysis, the position and velocity RMSEs com-
puted by four newly proposed filters at steady state t ∈ [96, 144] h are given in Table 5.7.
The results show that the JT-DHEKF-2, JT-SHEKF-2 and JT-MHEKF-2 perform better
than the JT-HEKF-2 and stand robust against constant measurement faults. More con-
cretely, when the measurements are false, the JT-DHEKF-2 completely guards against
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Figure 5.9: Profiles of estimation errors in position and velocity computed by the JT-HEKF-
2, JT-DHEKF-2, JT-SHEKF-2 and JT-MHEKF-2 in the case of a constant measurement bias
inside the time interval t ∈ [70.8, 76.8] h.

Table 5.7: RMSEs in position and velocity of the JT-HEKF-2, JT-DHEKF-2, JT-SHEKF-
2, and JT-MHEKF-2 at the steady stage t ∈ [96, 144] h in the case of a constant measurement
bias and the associated CPU time.

RMSE JT-HEKF-2 JT-DHEKF-2 JT-SHEKF-2 JT-MHEKF-2
ε̄r (km) 0.0915 0.0283 0.0294 0.0256
ε̄v (m/s) 0.0069 0.0021 0.0021 0.0018

CPU time (s) 36.30 36.43 36.51 36.53

the deteriorative effects of constant measurement faults, since it discards them during the
associated state prediction steps. The JT-SHEKF-2 decreases the Kalman filter gain via
the increment of the single scale factor and, in this way, suppresses the pollution from
measurement faults. The JT-MHEKF-2 stands robust, and keeps a better estimation
result for the whole process by independently increasing the related diagonal elements
of the measurement noise scale matrix. In principle, an increment of the related diago-
nal element in the measurement noise scale matrix results in a decrement of the related
element in the Kalman gain, so as to isolate and correct the negative effect of the inno-
vation sequences stemming from measurement faults. Compared with the usage of the
single scale factor used in the JT-SHEKF-2, the measurement noise scale matrix generally
makes the JT-MHEKF-2 more advantageous. Table 5.7 clearly exhibits such an advan-
tage, that is, the JT-MHEKF-2 affords a better estimation result than the JT-SHEKF-2.
This table also displays the CPU time consumed in the implementation of four consid-
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ered filters, showing that three fault-tolerant algorithms only have a slight increase of
the computational burden relative to the standard JT-HEKF-n. Summarizing, the JT-
DHEKF-2, JT-SHEKF-2 and JT-MHEKF-2 outperform well the JT-HEKF-2 in the case
of a continuous constant measurement bias.

In order to illustrate that the robustness of the JT-DHEKF-2, JT-SHEKF-2 and JT-
MHEKF-2 does not depend on the choice of the initial state, a MC simulation considering
1000 different initial state vectors, generated around the initial nominal state in terms
of the initial error distribution, is carried out. The 10 cases with the worst estimation
accuracy are shown in Fig. 5.10. From this figure it follows that the results of these 10
runs are consistent, that is, the results obtained by three fault-tolerant filters are not
affected by the selection of initial state deviations.
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Figure 5.10: 10 MC runs with the worst estimation accuracy for the JT-HEKF-2, JT-
DHEKF-2, JT-SHEKF-2 and JT-MHEKF-2 in the case of a constant measurement bias
inside the time interval t ∈ [70.8, 76.8] h.

5.4.2.2 Measurements with a continuous random bias

A second type of failures considered consists in adding a Gaussian random bias, with mean
8 × 10−5 rad and a standard deviation 8 × 10−5 rad, to the declination measurements
inside the time interval t ∈ [70.8, 76.8] h. These failures can be due, for instance, to a
random bias in the orientation error of the optical sensor. In this case, and during the
time interval t ∈ [70.8, 76.8] h, the measurement model is,
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z1 = arctan ȳb − ȳ

x̄b − x̄
+ u1 ,

z2 = arcsin z̄b − z̄√
(x̄b − x̄)2 + (ȳb − ȳ)2 + (z̄b − z̄)2

+ u2 + v ,
(5.21)

where v indicates the random bias polluting the measurements.

0 24 48 72 96 120 144
10

-3

10
-1

10
1

10
3

JT-HEKF-2

JT-DHEKF-2

JT-SHEKF-2

JT-MHEKF-2

0 24 48 72 96 120 144

Time (h)

10
-4

10
-2

10
0

10
2

random bias

random bias

Figure 5.11: Position and velocity errors of the JT-HEKF-2, JT-DHEKF-2, JT-SHEKF-
2 and JT-MHEKF-2 in the case of a random measurement bias inside the time interval
t ∈ [70.8, 76.8] h.

Table 5.8: RMSEs in position and velocity of the JT-HEKF-2, JT-DHEKF-2, JT-SHEKF-
2, and JT-MHEKF-2 at the steady stage t ∈ [96, 144] h in the case of a random measurement
bias and the associated CPU time.

RMSE JT-HEKF-2 JT-DHEKF-2 JT-SHEKF-2 JT-MHEKF-2
ε̄r (km) 0.0965 0.0283 0.0293 0.0256
ε̄v (m/s) 0.0073 0.0021 0.0021 0.0017

CPU time (s) 36.39 36.50 36.52 36.59

Figure 5.11 illustrates the estimation errors in position and velocity computed using
the standard JT-HEKF-2, as well as the fault-tolerant JT-DHEKF-2, JT-SHEKF-2 and
JT-MHEKF-2. Again, the standard JT-HEKF-2 fails to accurately estimate the GEO
trajectory due to a random bias fault in the declination measurements. The effect of a con-
tinuous random measurement bias is significant on the JT-HEKF-2 algorithm, even when
the measurement fault disappears. On the contrary, the fault-tolerant JT-DHEKF-2,
JT-SHEKF-2 and JT-MHEKF-2 are almost not affected over the whole estimation pro-
cedure. The RMSEs in position and velocity and the CPU time are given in Table 5.8,
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Figure 5.12: 10 MC runs with the worst estimation accuracy for the JT-HEKF-2, JT-
DHEKF-2, JT-SHEKF-2 and JT-MHEKF-2 in the case of a random measurement bias inside
the time interval t ∈ [70.8, 76.8] h.

which again reveal the robustness improvement of the JT-DHEKF-2, JT-SHEKF-2 and
JT-MHEKF-2, relative to the JT-HEKF-2, at the cost of a slight increase of the compu-
tational burden. Also in this case, 1000 MC runs have been done to test the influence
of initial state deviations. The worst 10 simulation results are shown in Fig. 5.12, which
shows that three fault-tolerant filters are still very robust when dealing with a random
measurement bias.

5.4.2.3 An instantaneous zero output measurement

The last measurement failure considered consists in setting an instantaneous zero out-
put to the declination measurement at a certain epoch (t = 70.8 h). In this way, the
measurement at t = 70.8 h is given by z1 = arctan ȳb − ȳ

x̄b − x̄
+ u1,

z2 = u2.
(5.22)

The estimation errors for the satellite position and velocity computed by the adopted four
filters are displayed in Fig. 5.13. Similar to the previous two cases, the JT-DHEKF-2, JT-
SHEKF-2 and JT-MHEKF-2 are capable of affording accurate estimation results, even if
they confront with an instantaneous zero measurement output. However, the performance
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Figure 5.13: Position and velocity errors for the JT-HEKF-2, JT-DHEKF-2, JT-SHEKF-2
and JT-MHEKF-2 in the case of a zero sensor output at t = 70.8 h.
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Figure 5.14: 10 MC runs with the worst estimation accuracy for the JT-HEKF-2, JT-
DHEKF-2, JT-SHEKF-2 and JT-MHEKF-2 in the case of a zero sensor output at t = 70.8 h.
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Table 5.9: RMSEs in position and velocity of the JT-HEKF-2, JT-DHEKF-2, JT-SHEKF-
2, and JT-MHEKF-2 at the steady stage t ∈ [96, 144] h in the case of an instantaneous zero
sensor output and the associated CPU time.

RMSE JT-HEKF-2 JT-DHEKF-2 JT-SHEKF-2 JT-MHEKF-2

ε̄r (km) 0.7407 0.0291 0.0286 0.0247
ε̄v (m/s) 0.0534 0.0021 0.0020 0.0017

CPU time (s) 36.67 36.81 36.85 36.93

of the JT-HEKF-2 is clearly affected from the fault, it fails giving accurate estimation
results after t = 70.8 h and finally diverges. Table 5.9 displays the RMSEs in position and
velocity obtained in this case. As in the previous cases, the JT-MHEKF-2 again achieves
the best estimation accuracy. Figure 5.14 gives the results of the sensitivity analysis, with
respect to initial state deviations, displaying once more the good accuracy and robustness
of the JT-DHEKF-2, JT-SHEKF-2 and JT-MHEKF-2.

5.5 Remarks and conclusions

This chapter proposes a standard JT-HEKF-n for the autonomous orbit determination
problem using the inter-satellite relative line of sight information. To validate the proce-
dure, various scenarios have been considered and the results obtained indicate that the
JT-HEKF-n enables to outperform the usual EKF. In fact, at least one order of magni-
tude accuracy gain is obtained by replacing the JT-HEKF-1 with the JT-HEKF-2. Also,
large initial state deviations and long measurement acquisition periods generally tend to
deteriorate the estimation performance of the usual EKF, or even make it to diverge.
However, the JT-HEKF-n takes the advantage of the accurate nonlinear mapping in the
synthesis of the filter, mitigating the sensitivity with respect to the sizes of initial state
deviations and measurement acquisition periods. As a conclusion, an autonomous orbit
determination problem can be perfectly addressed by the JT-HEKF-2, even when only a
poor initial state guess or a sparse measurement is available. That is, the performance
of the JT-HEKF-2 is quite robust and insensitive relative to initial state deviations and
measurement acquisition periods.

Three fault-tolerant variants of the JT-HEKF-n, that keep good estimation characteristics
in the case of measurement faults, have also been developed. An efficient measurement
fault detection strategy has been first introduced using an innovation-based chi-square
test. To deal with measurement faults, the JT-DHEKF-n completely guards against the
deteriorative effects, just discarding false measurements and cancels the state updating
steps. Besides, both JT-SHEKF-n and JT-MHEKF-n decrease the Kalman gain via
the increment of the single scale factor, and the scale factor matrix, respectively. They
suppress and correct the negative effect of measurement faults in the filter procedure.

In order to validate the effectiveness of fault-tolerant filters, various simulation scenarios,
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with three different type of measurement faults, have been tested and compared against
the results of a standard JT-HEKF-n. The comparisons show that three fault-tolerant
variants have a superior estimation performance when measurement malfunctions are the
points at issue. The JT-MHEKF-n possesses the best estimation performance due to the
usage of multiple scale factors, and in contrast, the estimation accuracy of the standard
JT-HEKF-n deteriorates, or even diverges in the case of measurement faults. Moreover,
MC simulations have been carried out to stress consistent results of the proposed JT-
HEKF-n and its three fault-tolerant variants with respect to initial state deviations.
Finally, a further discussion on the required CPU time also indicates that the robustness
of fault-tolerant algorithms significantly improve just at a slight increase on the cost of
the computational burden.
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Chapter 66
An efficient nonlinear

statistical adaptive
order-switching filter

As discussed in Chapters 4 and 5, based on the usage of the Taylor expansion technique,
the common EKF has been extended into its high order forms in the JT framework, such
as the standard JT-HEKF-n and augmented JT-AHEKF-n. Furthermore, to avoid the
pollution of false measurements and guarantee the robustness of the standard JT-HEKF-
n, the fault-tolerant JT-DHEKF-n, JT-SHEKF-n and JT-MHEKF-n have been integrally
discussed. These filters are capable of extracting more nonlinear information from the
dynamical and measurement models to provide a much better performance, especially in
the case of sparse measurements and poor initial state guesses. From the perspective of
the estimation accuracy, high order filters are preferred to solve OD problems. However,
all variants of the EKF using high order state transition tensors are likely to encounter
the heavy computational cost, especially when the system dimension is large. Note in
particular that the antagonism between the estimation accuracy delivered and the com-
putational burden associated always persists and, in general, the estimation error can be
reduced by increasing the order of the filter, but the computational cost likewise increases
in a significant way.

At present, the computational speed has been remarkably improved via the usage of
automatic differentiation and integration techniques, such as the DA [138,139] and JT [83,
159] softwares, making nowadays possible the practical applications of these high order
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variants. However, the continuous usage of a high order variant of the EKF in a whole
estimation process is quite uneconomic. A high order filter always possesses a superior
estimation accuracy but, if possible, for instance in a steady regime, a low order filter is
much preferable due to its light computational burden.

Targeting to solve the OD problem with a high accuracy and computational efficiency,
this chapter investigates a new adaptive order-switching variant of the standard JT-
HEKF-n (named JT-OSHEKF). Note that this order-switching strategy is general and of
straightforward application into other variants of the EKF. The rationale underlying the
JT-OSHEKF filter is to design an adaptive switching strategy for automatically tuning
the order of a JT-HEKF-n within one single run. At each filter step, an innovation-based
function, accounting for the filter consistency, is put forward and estimated to determine
the necessity of an order-switching operation. The JT technique is again used to accelerate
the calculations by means of an advanced polynomial algebra proposed in Chapter 2, but
it is decoupled from the adaptive filter algorithm.

6.1 Order-switching based JT-HEKF-n filter

The simulations in Chapters 4 and 5 exhibit that the JT-HEKF-1 algorithm often loses the
estimation accuracy, or even diverges, when it encounters some hard situations with one or
more of the following factors: strong system nonlinearities, sparse measurements, or large
initial state deviations. In these cases, a high order JT-HEKF-n achieves much better
estimations at the cost of increasing the computation time. This section is devoted to
designing an effective order-switching strategy in terms of a filter consistency test within
one single standard JT-HEKF-n implementation. Using this adaptive order-switching
strategy, a new JT-OSHEKF filter is developed. It automatically employs a high order
prediction process to deal with adverse simulation conditions, while it uses a low order
prediction approach to handle the general mild simulation conditions. The main aim of
developing the JT-OSHEKF filter is to solve OD problems within an allowable accuracy
at the lowest computational cost.

6.1.1 Design of the adaptive order-switching strategy

The filter consistency not only implies the convergence of the estimates towards the true
values, but also assesses the filter optimality [163]. The JT-OSHEKF filter algorithm is
called consistent only if it satisfies the following statistical properties: 1) the estimates
are unbiased, and 2) the actual innovation vector matches the innovation covariance
matrix computed inside the JT-OSHEKF filter. Note that the NIS value is a common
criterion adopted to test the filter consistency, since it enables to simultaneously verify
both aforementioned properties [163].

The improvements of the JT-OSHEKF relative to the JT-HEKF-n can be summarized
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as the following two parts: 1) the filter consistency test; 2) the design of an adaptive
order-switching strategy. In the filter consistency test, the formulae (5.4) and (5.5) define
the measurement innovation vector νk+1 and its associated innovation covariance matrix
Pνν,k+1 as follows

νk+1 = zrk+1 − z−,k+1 , Pνν,k+1 = Pzz,k+1 +Rk+1 , (6.1)

where zrk+1 and z−,k+1 respectively indicate the real and predicted measurement vectors,
Pzz,k+1 and Rk+1 respectively represent the measurement error covariance matrix and
measurement noise covariance matrix. Furthermore, the NIS and time-average NIS can
be further defined as

qk+1 = νTk+1P
−1
νν,k+1 νk+1 , q̄k+1 = 1

L

k+1∑
j=k−L+2

qj , (6.2)

where L is the width of a moving window, indicating the sensitivity of an order-switching
strategy relative to the result of the current chi-square test. An empirical analysis indi-
cates that appropriate values of L can be taken between 2 and 5. By default, this value
is set to 3 in the following illustrative example.

In order to design an adaptive order-switching strategy, two hypotheses are presented:

• H0 : the JT-OSHEKF filter is consistent;

• H1 : the JT-OSHEKF filter is not consistent.

Under the H0 hypothesis, the time-average NIS q̄k+1 is chi-square distributed with m
degrees of freedom (this is χ2

m, where m indicates the dimension of the measurement
vector). If a level of significance α is selected (assume α = 99%), then the threshold value
χ2
m,α is obtained by means of

P (q̄k+1 > χ2
m,α) = α , (6.3)

in terms of the probability values of chi-square distributions. At each estimation step, if
q̄k+1 > χ2

m,α the hypothesis H1 is accept, requiring the JT-OSHEKF algorithm to increase
the order n for satisfying the filter consistency condition; otherwise, if q̄k+1 ≤ χ2

m,α, the
hypothesis H0 holds true showing the filter is consistent. Of course, in this latter situation
one needs to further test whether the JT-OSHEKF filter enables to reduce the order with
the consideration of improving the computational efficiency. Similarly, the following two
hypotheses are put forward:

• H̄0 : the JT-OSHEKF filter can reduce the order n;

• H̄1 : the JT-OSHEKF filter needs to keep the order n unchanged.

Note that a very rigorous interval [χ2
m,αl

, χ2
m,αu ] around E(q̄k+1) = m should be preset

before testing H̄0 and H̄1. It is worth to mention that the choices of αl = 10% and
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αu = 75% used in this chapter depend on an empirical analysis. In essence, they should
be always less than the α value adopted in the foregoing test of H0 and H1. If the
statistical value q̄k+1 ∈ [χ2

m,αl
, χ2

m,αu ], it means that the current filter consistency is quite
good. Therefore, the hypothesis H̄0 is assumed to be true, which recommends the JT-
OSHEKF filter to reduce the order n by one at the next estimation step, otherwise the
order n is unchanged.

In general, the increment of the order in the JT-OSHEKF implementation enables to
improve its convergence, even so, it is almost impossible to completely avoid the filter
divergence issue. For instance, when the measurement is too sparse, the JT-OSHEKF
filter is very likely to lose efficacy. Under these adverse circumstances, the JT-OSHEKF
filter is possible to get stuck in an endless loop due to the unbounded increment of the
order of a JT-OSHEKF filter. To avoid this situation, in the case of filter inconsistency
a special index is proposed

Πn2
n1

=
∥∥q̄n2
k+1 − q̄

n1
k+1
∥∥

q̄n1
k+1

, (6.4)

where the adaptive order-switching strategy takes n1 and n2 consecutively from the vec-
tor [1, 2, 4, 6, . . . , nmax] containing potential orders to be used, and nmax is a prescribed
positive even number. If Πn2

n1
< % = 5%, it indicates that the JT-OSHEKF filter is not

only inconsistent at orders n1 and n2, but also that it is not possible to improve the
filter consistency through the increment of the order. Therefore, from the perspective of
improving the computational efficiency, the increment of the order is ceased meanwhile
the lower order n1 will be adopted at the next estimation step. If Πn2

n1
≥ 5%, it makes

sense that the filter consistency can be improved by means of increasing the order from
n1 to n2. In this case order n2 will be adopted.

6.1.2 Detailed implementation of a JT-OSHEKF-n filter

Similar to the implementations of the other variants, such as JT-HEKF-n and JT-
AHEKF-n filters, the JT technique is again employed to accelerate the evaluation of
the high order Taylor expansions adopted in the prediction and updating steps of a JT-
OSHEKF filter.

In the implementation of the developed JT-OSHEKF filter, it is necessary to check the
filter optimality and automatically tuning the order to satisfy the filter consistency at
each step. The detailed implementation of a JT-OSHEKF filter is summarized in Algo-
rithm 6.1.

Algorithm 6.1 JT-OSHEKF algorithm
1: Initialize state x+,0, state covariance matrix P+,0, process and measurement noise

covariance matrices Q, R, final time tf , tk = 0, k = 0;
2: Initialize the expansion order vector nv = [1, 2, 4, 6, . . . , nmax], where nmax is selected

empirically as well as the order n = nv[i], i = 1;
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3: Initialize αl = 10%, αu = 75%, α = 99% and determine χ2
m,αl

, χ2
m,αu , χ2

m,α in terms
of the probability tables of chi-square distributions;

4: k is increased by 1;
5: Use (5.2) to predict the a priori estimates of the state mean x−,k+1 and measurement

mean z−,k+1, as well as the state error covariance matrix P−,k+1 at time tk+1;
6: Acquire a new measurement zrk+1 at time tk+1, calculate measurement innovation
νk+1 using (5.4), meanwhile compute the innovation covariance matrix Pνν,k+1 and
cross-covariance matrix Pxz,k+1 via (5.3) and (5.5);

7: Execute the order-switching strategy in terms of a chi-square test:
1) Calculate the time-average NIS q̄k+1 using (6.2);
2) Test the hypotheses H0 and H1:

– If q̄k+1 < χ2
m,α (H0 holds true), then test the hypotheses H̄0 and H̄1;

∗ If q̄k+1 ∈ [χ2
m,αl

, χ2
m,αu ] (H̄0 holds true), meanwhile if n > 1, set

i = i− 1 and n = nv[i], otherwise set n = 1;
∗ If q̄k+1 /∈ [χ2

m,αl
, χ2

m,αu ] (H̄1 holds true), keep the order n unchanged;
– If q̄k+1 ≥ χ2

m,α (H1 holds true), set i = i+ 1, n = nv[i], use tk−1, x+,k−1,
P+,k−1 to recompute q̄k+1 using (6.2) and calculate Πn2

n1
using (6.4).

Judge
∗ If Πn2

n1
> 5%, return to 2) in Step 7 ;

∗ If Πn2
n1
≤ 5% or n = nmax, keep the order n unchanged; (Generally,

the estimation loses accuracy in this case).
8: Update Kk+1, x+,k+1, P+,k+1 using (5.3)-(5.6);
9: Execute steps from 4 to 8 until tk = tf .

6.2 Model description

To validate the feasibility and assess the performance of the proposed JT-OSHEKF algo-
rithm, the space-based autonomous geosynchronous OD problem based on a GEO-GEO
observation configuration is taken as an illustrative example. Consider a pair of geosyn-
chronous satellites, referred as GeoSat-A and GeoSat-B, where the GeoSat-A is assumed
to be a beacon satellite with given accurate ephemeris, while the orbit of GeoSat-B has
to be estimated from the information measured relative to the GeoSat-A.

6.2.1 Equations of motion

For a spacecraft operating in GEO orbits, the equations of motion formulated in the
Cartesian coordinates are (see in subsection 3.1.1)

{
ẋ = vx, ẏ = vy, ż = vz,

v̇x = −µx
r3 + ap,x, v̇y = −µy

r3 + ap,y, v̇z = −µz
r3 + ap,z,

(6.5)
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where µ = 3.986004418× 105 km3/s2 is the Earth’s gravitational constant, r = [x, y, z]T ,
v = [vx, vy, vz]T , and ap = [ap,x, ap,y, ap,z]T respectively denote the satellite position,
velocity, and perturbation acceleration vectors, r =

√
x2 + y2 + z2 indicates the distance

from the center of the Earth to the satellite. Besides, the dominant perturbations consid-
ered contain SRP, Earth’s non-spherical gravity, and luni-solar gravitational attraction,
whose formulae are shown in subsection 3.2.1.

6.2.2 Measurement model

To solve the space-based autonomous OD problem, the relative measurement information
is employed to update the a priori estimates of spacecraft state vectors. Instead of the
pure relative direction measurement model adopted in the Chapter 4 and 5, both inter-
satellite relative distance and angular information are considered in this chapter, whose
purpose is to further display the validity of the proposed JT-HEKF-n and JT-OSHEKF
considering different types of the measurements. Denoting by α and β the relative right
ascension (RA) and declination, and by ∆r the relative range between GeoSat-A and
GeoSat-B, the measurement model can be expressed as

α = arctan ∆y
∆x ,

β = arcsin dz√
∆x2 + ∆y2 + ∆z2

,

∆r =
√

∆x2 + ∆y2 + ∆z2 ,

(6.6)

being
∆x = xA − xB , ∆y = yA − yB , ∆z = zA − zB ,

and where rA = [xA, yA, zA]T , rB = [xB , yB , zB ]T indicate the position vectors of GeoSat-
A and GeoSat-B.

6.3 Numerical simulations

To compare the accuracy and efficiency of the proposed JT-OSHEKF algorithm with
those computed by the standard JT-HEKF-n filter, a pair of geosynchronous satellites,
i.e., GeoSat-A and GeoSat-B, are considered to construct an inter-satellite observation
configuration, whose initial orbit elements and area-to-mass ratios η = A/m are given
in Table 6.1. It is worth to mention that the metrics proposed in subsection 4.2.5, such
as RMSE and CPU time, are again employed here to evaluate the performance of the
JT-OSHEKF filter. The process noise wk and the measurement noise uk are assumed to
be uncorrelated zero mean white noises, whose covariance satisfy

Qk = diag{03×3, QvI3×3} , Rk = diag{σ2
α, σ

2
β , σ

2
dr} , (6.7)
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Table 6.1: Initial states and area-to-mass ratio of GeoSat-A and GeoSat-B.

x (km) y (km) z (km) vx (m/s) vy (m/s) vz (m/s) η (m2/kg)
GeoSat-A 15631.6 −39276.4 −11.6 2862.9 1119.6 0.86 0.02000
GeoSat-B 22170.3 −35886.3 −93.1 2614.6 1615.4 −12.5 0.02242

where, Qv = 10−8 m/s2, σα = σβ = 0.64 arc-sec, σdr = 10−3 km.

In what follows, two simulation scenarios considering different magnitudes of initial state
deviations and measurement frequencies are explored. The results computed by the adap-
tive JT-OSHEKF filter are compared against those computed by the standard JT-HEKF-1
and JT-HEKF-2 implemented with same simulation conditions.

6.3.1 Case study A: adverse simulation scenario

In the first case study (A), the initial position and velocity of GeoSat-B are assumed to be
100 km and 0.01 km/s off from the true state vector given in Table 6.1. Therefore, the ini-
tial covariance matrix is taken as a diagonal matrix, i.e., P0,+ = diag{104 I3×3, 10−4 I3×3}.
A total simulation time of 6 days with 12 measurements per day, evenly distributed in
a continuous visible tracklet of 12 hours is considered. Figure 6.1 illustrates the esti-
mation errors in position and velocity computed by the JT-HEKF-1, JT-HEKF-2 and
JT-OSHEKF. The results clearly reveal that both JT-OSHEKF and JT-HEKF-2 per-
form very well for estimating GEO orbits and they deliver almost the same estimation
accuracy at the filter steady stage t ∈ [48, 144] h: about 4.9 m in position and 0.0004 m/s
in velocity. Furthermore, Fig. 6.2 displays the information about the standard deviations
of the diagonal components of the state error covariance matrix computed in the JT-
HEKF-1, JT-HEKF-2 and JT-OSHEKF implementations, where σr =

√
σ2
x + σ2

y + σ2
z

and σv =
√
σ2
vx + σ2

vy + σ2
vz . Comparing with the position and velocity errors shown in

Fig. 6.1 and the associated calculation using the diagonal elements of the filter-calculated
state error covariance matrix shown in Fig. 6.2, it can be easily concluded that the JT-
HEKF-1 filter significant overestimates the state errors at the initial estimation stage,
such that it produces a quite bad estimation both in position and velocity.

Table 6.2: Case study A: RMSEs in position and velocity over t ∈ [48, 144] h and the
required CPU time.

Filters ε̄r (km) ε̄v (m/s) CPU time (s)
JT-HEKF-1 0.1994 0.0146 24.3
JT-HEKF-2 0.0049 0.0004 38.7
JT-OSHEKF 0.0049 0.0004 26.1

Table 6.2 shows the RMSEs in position and velocity at the filter steady stage t ∈
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Figure 6.1: Comparison of position and velocity errors for case study A.
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Figure 6.2: Comparison of standard deviations of position and velocity errors for case study
A.
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[48, 144] h, as well as the CPU time consumed in the JT-HEKF-1, JT-HEKF-2 and JT-
OSHEKF implementations. It is worth to remark that the CPU time of the JT-OSHEKF
implementation is just a little more than that of the JT-HEKF-1 implementation, but
much less than the one required by the JT-HEKF-2 implementation. Meanwhile, Ta-
ble 6.2 also indicates that the JT-OSHEKF performs as well as the JT-HEKF-2, keeping
two orders of magnitude accuracy improvement with respect to the JT-HEKF-1, which
further clearly reveals the importance of considering the nonlinearity of the dynamical
and measurement models. As a conclusion, by means of the design and usage of the
adaptive order-switching strategy, the JT-OSHEKF possesses the advantages of both JT-
HEKF-1 and JT-HEKF-2, that is, a high computational efficiency and superior estimation
accuracy.

Note that there is only one order-switching procedure carried out in this simulation sce-
nario A, it happens at t = 4 h. So, the adaptive order-switching behaviors should be
further tested with the re-consideration of the case study A by means of designedly mis-
matching the actual innovation and the filter-calculated innovation covariance matrix.
This has been carried out by considering a noise of 10−5 rad in the angular measurement
at t = 53 h with all other simulation conditions remaining the same. Note that the epoch
t = 53 h is inside the filter steady stage. The simulation results of the JT-OSHEKF,
implemented with and without this angular measurement noise, are compared in Fig. 6.3.
Due to the addition of the angular measurement noise, the NIS of the JT-OSHEKF im-
plementation at t = 53 h exceeds the threshold χ2

3,99%, as it can be seen by the upper
subgraph in Fig. 6.4. Therefore, two additional order switches appear in the noisy case:
one at t = 53 h, switching from order 1 to 2 and another one at t = 56 h, switching back
from order 2 to order 1, as it is displayed in the lower subgraph of Fig. 6.4.

To further analyze the influence of initial state deviations on the performance of the JT-
OSHEKF, a MC simulation considering 1000 samplings is carried out. The initial state
vectors are taken from a multivariable Gaussian distribution with the state mean the same
as the true state and with standard deviations of 100 km in position components and of
0.01 km/s in velocity components. The results showed in a consistent way that both JT-
OSHEKF and JT-HEKF-2 have the same filter accuracy, which is much better than that
of the JT-HEKF-1. In other words, the performance of the JT-OSHEKF is independent
on initial state deviations. For brevity, Fig. 6.5 displays the simulation results of 10
MC runs with the largest RMSEs in position and velocity inside the filter steady stage
t ∈ [48, 144] h, which essentially describe the behavior of the most adverse simulation
scenarios in the case study A.

6.3.2 Case study B: mild simulation scenario

In the second case study (B), the mild simulation scenario, considered a smaller initial
state deviation and a higher measurement frequency, is employed to further display the
performance of both JT-HEKF-n and JT-OSHEKF methods. The smaller initial state
deviation is assumed as an offset of 20 km in position components and 0.001 km/s in ve-
locity components. Meanwhile, 36 measurements evenly distributed over each continuous
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Figure 6.3: Comparison of position and velocity errors for case study A with and without
an angular measurement noise at t = 53 h.
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Figure 6.5: Sensitivity analysis relative to initial state deviations for case study A.

visible tracklet (again of 12 hours) are employed, that is, 20 minutes apart per measure-
ment. Figure 6.6 exhibits the magnitude of position and velocity errors for the case study
B. Again, this figure shows that there is no much performance difference between both
JT-OSHEKF and JT-HEKF-2. Besides, with the consideration of a small initial state
deviation and high measurement frequency, the accuracy of the JT-HEKF-1 improves
significantly, which is almost identical to those obtained by the JT-OSHEKF and JT-
HEKF-2 at the filter steady stage t ∈ [48, 144] h. The unique difference is that the rates
of convergence of the JT-OSHEKF and JT-HEKF-2 are much faster than that of the
JT-HEKF-1. From the perspective of quantitative analysis, Table 6.3 gives the RMSEs
in position and velocity at the filter steady stage t ∈ [48, 144] h, as well as the CPU
time consumed in the JT-HEKF-1, JT-HEKF-2 and JT-OSHEKF implementations. The
results of the RMSEs in position and velocity again prove that the estimation accuracy
of the JT-HEKF-1, JT-HEKF-2 and JT-OSHEKF is almost the same. The comparison
between the results in Tables 6.2 and 6.3, indicates the JT-HEKF-1 improves its accuracy
significantly, while the accuracy of the JT-HEKF-2 and JT-OSHEKF keeps constant since
the results obtained in both case studies are optimal.

Table 6.3: Case study B: RMSEs in position and velocity over t ∈ [48, 144] h and the
required CPU time.

Filters ε̄r (km) ε̄v (m/s) CPU time (s)
JT-HEKF-1 0.0056 0.0005 25.8
JT-HEKF-2 0.0049 0.0004 63.3
JT-OSHEKF 0.0049 0.0004 26.9
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Figure 6.6: Comparison of position and velocity errors for case study B.
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Figure 6.7: Comparison of the position and velocity error estimators for case study B.

On the other hand, Table 6.3 also evidences the significant amount of the CPU time
consumed in the JT-HEKF-2 implementation (even compared with that cost in the case
study A) due to the number of updating operations (i.e., the usage of a high measurement
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Figure 6.8: Sensitivity analysis relative to initial state deviations for case study B.

frequency), while the computational burden of the JT-OSHEKF and JT-HEKF-1 is low
and just rises slightly. It is apparent that the JT-OSHEKF filter again maintains the
individual advantages of both JT-HEKF-1 and JT-HEKF-2 in the case study B, through
the adaptive adjustment of the order within one single run, that is, the JT-OSHEKF
enables to implement the OD process as quick as the JT-HEKF-1 and as accurate as the
JT-HEKF-2. Figure 6.7 shows that all these filters, i.e., JT-HEKF-1, JT-HEKF-2 and
JT-OSHEKF, are capable of providing a conservative state error prediction in between
measurements. This fact accounts for the accuracy improvement of the JT-HEKF-1 in
the case study B, that is, first order method is only suitable to approximate the dynamics
when initial state deviations are small and the propagation time is short.

Finally, similar to the case study A, the sensitivity analysis of the JT-OSHEKF with
respect to initial state deviations is performed by means of a MC simulation with 1000
sampling points, where initial state vectors are taken from a multivariable Gaussian dis-
tribution with the state mean the same as the true state and a standard deviation of
20 km in position components and of 0.001 km/s in velocity components. The results of
the 10 samples with the largest RMSEs in position and velocity at the filter steady stage
t ∈ [48, 144] h are shown in Fig. 6.8 and evidence that the analysis of behaviors we did
for the particular case study B is, in fact, general.
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6.4 Remarks and conclusions

This chapter proposes a new adaptive high order extended Kalman filter based on the
design of a special order-switching strategy (JT-OSHEKF). The purpose is to ease the
opposite balance between the estimation accuracy and the computational burden resulting
from common high order extended Kalman filters. In other words, the JT-OSHEKF is
designed to carry out a precise estimation at the lowest computational cost. To this aim,
an innovation-based function, accounting for the filter consistency, is first introduced to
determine the need of an order-switching operation at each estimation step. Moreover,
further than that, an adaptive order-switching strategy is put forward to automatically
adjust the order within one filter run by means of two innovation-based chi-square tests.

In order to validate the effectiveness of the proposed JT-OSHEKF algorithm, various
simulation scenarios are tested in an autonomous orbit determination problem and com-
pared with the standard JT-HEKF-n filter. The results indicate that the new proposed
JT-OSHEKF algorithm significantly improve the performance by means of adaptive order-
switching operations within one single filter run. To be more specific, in the illustrative
examples, the computational complexity of the JT-OSHEKF represents a slight increase
relative to the JT-HEKF-1, but its accuracy and rate of convergence are identical to
those of the JT-HEKF-2. Besides, a Monte Carlo simulation verified that, within the
same measurement accuracy premises, the performance of the JT-OSHEKF is insensible
with respect to initial state deviations. Finally, it is worth to emphasize that, although the
performance of the JT-OSHEKF has been discussed in an orbit determination problem,
it can be easily generalized into any engineering estimation problem where the system
nonlinearity or dimensionality are relevant in the robustness and efficiency of the filter.
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Chapter 77
Conclusions

7.1 Main Conclusions

This dissertation is devoted to investigating accurate and efficient spacecraft orbit propa-
gation and determination methods by means of using either high order Taylor or Cheby-
shev polynomial approximations. To this end, a series of high order propagators and
estimators have been developed, as well as the required software to implement them in an
efficient and accurate way. The main contributions and conclusions of this dissertation
are be summarized as follows:

• Accurate and efficient high order orbit propagators

In Chapter 3 (i.e., the work published in [90]) high order nonlinear state map-
ping methods JTTNM-n and JTCNM-n have been developed using Taylor series
expansion and Chebyshev interpolation technique in the JT framework. Both meth-
ods are validated by implementing the GEO orbit propagation with the usage of
three coordinate representations. Besides the Earth’s central Keplerian gravity, the
considered vector field contains four main dominant perturbations: solar radiation
pressure, Earth’s potential and luni-solar gravitational attractions. Taking into ac-
count the size of uncertainty neighborhoods as well as the polynomial order and
integration time step-size, abundant combinations of these above factors are simu-
lated and a series of look-up tables with recommendations on the best options to
address orbit propagations are given. This part of the work not only verifies the
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feasibility of the proposed nonlinear propagators, but also provides valuable infor-
mation on how to choose suitable polynomial forms for subsequent investigation of a
progressive JT-based high order extended Kalman filter (JT-HEKF) and a JT-based
augmented high order extended Kalman filter (JT-AHEKF).

It can also be concluded that the JTCNP-n method has a better accuracy and a
more uniform error distribution than the JTTNP-n method implemented at the
same expansion order, but at the cost of a little more CPU time. Furthermore, the
improved JTTNP-n method based on an automatic domain splitting technique has
been proved capable to achieve a better accuracy than the JTCNP-n method just
with a slight decrease of the computational efficiency. The performance comparison
among the equations of motion formulated in Cartesian, cylindrical coordinates
and GEO hybrid elements shows that the GEO model is preferred in practical GEO
missions due to its low computational cost and high accuracy. Generally, the CPU
time spent in the propagation of the GEO model is a little less than that of the
cylindrical dynamical model and three times less than that of the Cartesian model.
Meanwhile, the propagation accuracy of the GEO model is somewhat better than
that of the cylindrical dynamical model and much better than that of the Cartesian
model.

• Joint nonlinear orbit and parameter estimation using high order Taylor
approximation

In Chapter 4 (i.e., the work published in [159,175]) a novel augmented JT-AHEKF-
n for simultaneously estimating the spacecraft orbit and uncertain parameters, ei-
ther physically related with the spacecraft or with the measurement procedure, has
been put forward through applying JTTNM-n method into the state prediction step
of a Bayesian filtering framework. Two different model representations, formulated
in the Cartesian coordinates and in GEO elements, are used and four dominant
perturbations in the GEO regime are taken into consideration. The simulation re-
sults underline that the dynamical model formulated in GEO elements not only
possesses a better estimation accuracy, but also needs of less computational burden
than the Cartesian one. Letting aside the performance comparison between two co-
ordinate representations, numerical simulations also confirm that both coordinate
representations are effective to achieve a real-time joint estimation via the proposed
JT-AHEKF-n.

The performance comparison among different order JT-AHEKF-n methods shows
that a higher order filter enables to provide a better estimation accuracy, and usu-
ally, just by tuning the order from 1st to 2nd, the JT-AHEKF-n obtains one order
of magnitude accuracy gain in the case studies considered. Besides, one can con-
clude that the JT-AHEKF-n filters (i.e., n > 1) output a smaller estimation error
dispersion relative to the classical EKF, pointing to the fact that the JT-AHEKF-n
is more robust than the usual EKF.

• Three fault-tolerant nonlinear orbit determination techniques
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In Chapter 5 (i.e., the work published in [176]) the JT-HEKF-n filter is employed
to achieve the autonomous satellite orbit estimation via the usage of sparse inter-
satellite relative measurement information. Three fault-tolerant algorithms are put
forward to suppress measurement faults. In the light of the insensitiveness of the
proposed JT-HEKF-n relative to the measurement frequency, the first strategy di-
rectly discards the identified false measurements, being someway equivalent to the
decrease of the measurement frequency. The second and third strategies employ a
single scale factor and an adaptive scale matrix, respectively, as a multiplier to the
measurement noise covariance matrix to avoid the pollution of false measurements.

In order to validate the effectiveness of fault-tolerant filters, various simulation
scenarios, with three different type of measurement faults, have been tested and
compared against a standard JT-HEKF-n filter. The comparison shows that three
fault-tolerant variants have a superior estimation performance when measurement
malfunctions are the points at issue. In contrast, the accuracy of the standard JT-
HEKF-n deteriorates, or even diverges, in the case of false measurements. Moreover,
a Monte Carlo simulation has been carried out to stress the robustness of the pro-
posed JT-HEKF-n and its three fault-tolerant variants with respect to initial state
deviations. A further discussion on the required CPU time indicates that fault-
tolerant filters enable to obtain the robustness relative to false measurements at the
cost of a slight increase of the computation time.

• A statistical adaptive order-switching filter for orbit determination

In Chapter 6 (i.e., the work published in [177]) a new adaptive high order extended
Kalman filter based on the design of a special order-switching strategy has been
proposed in the JT framework (JT-OSHEKF). The improvement further eases the
opposite balance between the estimation accuracy delivered and the computational
burden associated to the JT-HEKF-n filter and achieves the orbit determination
with higher accuracy and computational efficiency. The rationale underlying the
JT-OSHEKF is to design an adaptive switching strategy for automatically tuning
the order of a JT-HEKF-n within one single run. At each filter step, an innovation-
based function, accounting for the filter consistency, is put forward and estimated
to determine the necessity of an order-switching operation. Note that this order-
switching strategy is general and of straightforward application into other variants
of the EKF.

The performance of the JT-OSHEKF filter is tested in various simulation scenar-
ios, considering an autonomous orbit determination problem and comparing with
the standard JT-HEKF-n. The results indicate that the developed JT-OSHEKF
filter significantly improves the performance by means of using the adaptive order-
switching strategy within one single filter run. To be more specific, in the illustrative
examples, the computational complexity of the JT-OSHEKF represents a slight in-
crease relative to the JT-HEKF-1, but its accuracy and rate of convergence are
identical to those of the JT-HEKF-2.
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Finally, it is worth to emphasize that, although this dissertation discussed all high order
propagators, estimators and associated variants either in orbit propagation problems or
in orbit determination problems, the proposed methodology can be easily generalized and
applied in general engineering prediction or estimation problems where the system non-
linearity or the state dimensionality are relevant, for sake robustness and computational
efficiency.

7.2 Future work

There are several open questions and research lines related to the work explored in this
dissertation that deserve further investigations, the key ones are listed as follows:

Polynomial expansion form. Both Taylor and Chebyshev polynomials have been
adopted and the associated polynomial algebras have been addressed in Chapter 2. Al-
though both of them are accurate enough to develop the high order orbit propagators
and estimators, their shortcomings are obvious. For instance, the Taylor series expansion
often encounters the loss of accuracy when large state deviations are considered or the
approximated systems are not continuous and differentiable, while the Chebyshev inter-
polation technique may be adequate for non-smooth systems, but always possesses very
low computational efficiency when the dimensionality of the system is large. From the
perspective of the computational accuracy and efficiency, the accuracy might be enhanced
at specific levels using other interval algebraic methods, such as Fourier series expansion.
Therefore, the JT software developed in this Ph.D project is expected to further contain
other efficient and precise approximation techniques.

Fault-tolerant variants of the standard high order extended Kalman filter. A
thorough analysis of three measurement fault-tolerant design of the standard high order
extended Kalman filter has been carried out. However, this dissertation does not explore
any fault-tolerant strategy to avoid the loss of accuracy or divergence in the case of the
abrupt change of the system dynamics, for instance, an unknown impulse maneuver. In
practical engineering missions, a special fault-tolerant design is of vital importance to keep
the robustness of the filter relative to sudden change of the system dynamics. Another
interesting point is to design fault diagnosis and tolerant strategies considering possible
faults in both, dynamical models and measurement procedures.

Applications and missions. Finally, this dissertation focused on the applications of
the JT technique into the orbit propagation and determination problems. However, a
growing interest has been focused on the usage of JT technique into other applications
and missions, such as bounded relative motion design [178], perturbed Lambert prob-
lem analysis [179], high order optimal feedback control problem [180]. As an automatic,
efficient, and accurate polynomial approximation technique implemented in modern com-
puters, JT technique deserves a further investigation about its potential applications.
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Appendix

This appendix details the necessary steps for deducing explicit transformation formulae
from GES and CYC elements into CAC coordinates.

Appendix A.1: Conversion formula from GES to CAC

This sub-appendix gives a detailed conversion from GES elements into CAC coordinates.
We firstly define the perifocal reference frame as follows: its origin is centered at the
focus of the orbit, x axis is directed from the focus to the periapse, z axis is normal to
the orbital plane along the direction of the angular momentum vector and the direction
of y axis is given by the right-hand rule. In the derivation process, the Keplerian element
set {a, e, i, ω,Ω, θ} is used as a bridge. The satellite position and velocity vectors can be
expressed in the perifocal reference frame as

r = [r cos θ, r sin θ, 0]T , (1)

v =
[
−µ
h

sin θ, µ
h

(e+ cos θ), 0
]T

. (2)

The direction cosine matrix between the ECI and the perifocal reference frames can be
obtained using Keplerian elements,

T Ip =


cos Ω cosω − sin Ω sinω cos i − cos Ω sinω − sin Ω cosω cos i sin Ω sin i

sin Ω cosω + cos Ω sinω cos i − sin Ω sinω + cos Ω cosω cos i − cos Ω sin i

sinω sin i cosω sin i cos i

 . (3)
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According to the definition of the GEO elements [157], we obtain,

sin Ω = Q1√
Q2

1 +Q2
2
, cos Ω = Q2√

Q2
1 +Q2

2
, 1− cos i = 2(Q2

1 +Q2
2)

1 +Q2
1 +Q2

2
,

cos2 Ω + sin2 Ω cos i = 1−Q2
1 +Q2

2
1 +Q2

1 +Q2
2
, sin2 Ω + cos2 Ω cos i = 1 +Q2

1 −Q2
2

1 +Q2
1 +Q2

2
,

(4)

and using, s = ω + Ω + θ, we have, ω + θ = s− Ω.

Based on the above equations, the satellite position and velocity vectors can be trans-
formed into the ECI reference frame through the direction cosine matrix T Ip . For instance,
the x component of the satellite’s position vector is

x = r · [cos Ω cos(ω + θ)− sin Ω sin(ω + θ) cos i]

= r ·
(
cos2 Ω cos s+ sin Ω cos Ω sin s− sin Ω cos Ω sin s cos i+ sin2 Ω cos s cos i

)
= r ·

[
cos Ω sin Ω sin s (1− cos i) + cos s

(
cos2 Ω + sin2 Ω cos i

)]
= r

1 +Q2
1 +Q2

2

[
2Q1Q2 sin s+ (1−Q2

1 +Q2
2) cos s

]
,

(5)

where r is given by (3.6). The same procedure is carried out to compute other components
of the satellite position and velocity vectors, obtaining the following explicit functions

x = r

1 +Q2
1 +Q2

2

[
2Q1Q2 sin s+

(
1−Q2

1 +Q2
2
)

cos s
]
,

y = r

1 +Q2
1 +Q2

2

[
2Q1Q2 cos s+

(
1 +Q2

1 −Q2
2
)

sin s
]
,

z = 2 r
1 +Q2

1 +Q2
2

[Q2 sin s−Q1 cos s] ,

ẋ = µ

h (1 +Q2
1 +Q2

2) [2Q1Q2 (cos s+ ex)

+
(
−1 +Q2

1 −Q2
2
)

(sin s+ ey)
]
,

ẏ = µ

h (1 +Q2
1 +Q2

2) [−2Q1Q2 (sin s+ ey)

+
(
1 +Q2

1 −Q2
2
)

(cos s+ ex)
]
,

ż = µ

h (1 +Q2
1 +Q2

2) [Q1 (sin s+ ey) +Q2 (cos s+ ex)] .

(6)
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Appendix A.2: Conversion formula from CYC to CAC

This sub-appendix gives a detailed derivation of the explicit relation between CYC and
CAC coordinates, which is quite straightforward{

x = ρ cosϕ, y = ρ sinϕ, z = z,

ẋ = ρ̇ cosϕ− ρϕ̇ sinϕ, ẏ = ρ̇ sinϕ+ ρϕ̇ cosϕ, ż = ż .
(7)

137





Bibliography
[1] G. Maral and M. Bousquet, Satellite communications systems: systems, techniques

and technology. John Wiley & Sons, 2011. (Cited on page 1.)

[2] S. K. Shrivastava, Orbital perturbations and stationkeeping of communication satel-
lites, Journal of Spacecraft and Rockets, vol. 15, no. 2, pp. 67–78, 1978. (Cited on
page 1.)

[3] Q. Lu, W. Bell, P. Bauer, N. Bormann, and C. Peubey, An evaluation of FY-3A
satellite data for numerical weather prediction, Quarterly Journal of the Royal Mete-
orological Society, vol. 137, no. 658, pp. 1298–1311, 2011. (Cited on page 1.)

[4] P. Gong, X. Li, and W. Zhang, 40-year (1978–2017) human settlement changes in
China reflected by impervious surfaces from satellite remote sensing, Science Bulletin,
vol. 64, no. 11, pp. 756–763, 2019. (Cited on page 1.)

[5] K. Tomiyasu and J. L. Pacelli, Synthetic aperture radar imaging from an inclined
geosynchronous orbit, IEEE Transactions on Geoscience and Remote Sensing, no. 3,
pp. 324–329, 1983. (Cited on pages 1 and 2.)

[6] L. Kou, X. Wang, and M. Xiang, Effects on three-dimensional geosynchronous circular
sar imaging by orbit errors, Journal of the Indian Society of Remote Sensing, vol. 42,
no. 1, pp. 1–12, 2014. (Cited on pages 1 and 3.)

[7] L. Kou, X. Wang, M. Xiang, J. Chong, and M. Zhu, Effect of orbital errors on the
geosynchronous circular synthetic aperture radar imaging and interferometric process-
ing, Journal of Zhejiang University SCIENCE C, vol. 12, no. 5, pp. 404–416, 2011.
(Cited on pages 1 and 3.)

[8] J. A. Kennewell and B. N. Vo, An overview of space situational awareness, Proceedings
of the 16th International Conference on Information Fusion, IEEE, 2013, pp. 1029–
1036. (Cited on page 2.)

[9] M. Jiang, W. Hu, C. Ding, and G. Liu, The effects of orbital perturbation on geosyn-
chronous synthetic aperture radar imaging, IEEE Geoscience and Remote Sensing

139



BIBLIOGRAPHY

Letters, vol. 12, no. 5, pp. 1106–1110, 2015. (Cited on pages 2 and 3.)

[10] S. N. Madsen, C. Chen, and W. Edelstein, Radar options for global earthquake
monitoring, IEEE International Geoscience and Remote Sensing Symposium, vol. 3,
pp.1483–1485, IEEE, 2002. (Cited on page 2.)

[11] R. M. Fuster, M. F. Usón, and A. B. Ibars, Interferometric orbit determination for
geostationary satellites, Science China Information Sciences, vol. 60, no. 6, pp.1-11,
2017. (Cited on pages 2 and 53.)

[12] G. Wadge, A. M. Guarnie, S. Hobbs, and D. Schul, Potential atmospheric and ter-
restrial aplications of a geosynchronous radar, 2014 IEEE Geoscience and Remote
Sensing Symposium, pp.946–949, IEEE, 2014. (Cited on page 2.)

[13] S. Ribo, J. C. Arco, E. Cardellach, S. Oliveras, A. Rius, and C. Buck, Preliminary re-
sults of digital satellite TV opportunity signals scattered on the sea-surface, Workshop
on Reflectometry using GNSS and Other Signals of Opportunity, Purdue University,
West Lafayette, USA, October 10-11, 2012. (Cited on pages 2 and 53.)

[14] A. Moussessian, C. Chen, W. Edelstein, S. Madsen, and P. Rosen, System concepts
and technologies for high orbit SAR, IEEE MTT-S International Microwave Sympo-
sium Digest, IEEE, 2005. (Cited on page 2.)

[15] K. Tomiyasu, Synthetic aperture radar in geosynchronous orbit, Proceedings of IEEE
Antennas and Propagation Society International Symposium, 1978. (Cited on page 2.)

[16] JPL NASA, Global earthquake satellite system: a 20-year plan to enable earthquake
prediction, Technology Report JPL, pp. 400–1069, 2003. (Cited on page 2.)

[17] W. N. Edelstein, S. N. Madsen, A. Moussessian, and C. Chen, Concepts and tech-
nologies for synthetic aperture radar from MEO and geosynchronous orbits, Enabling
Sensor and Platform Technologies for Spaceborne Remote Sensing, International So-
ciety for Optics and Photonics, vol. 5659, pp. 195–203, 2005. (Cited on page 2.)

[18] D. Bruno, S. E. Hobbs, and G. Ottavianelli, Geosynchronous synthetic aperture
radar: Concept design, properties and possible applications, Acta Astronautica,
vol. 59, no. 1-5, pp. 149–156, 2006. (Cited on page 2.)

[19] S. Hobbs, C. Mitchell, B. Forte, R. Holley, B. Snapir, and P. Whittaker, System
design for geosynchronous synthetic aperture radar missions, IEEE Transactions on
Geoscience and Remote Sensing, vol. 52, no. 12, pp. 7750–7763, 2014. (Cited on
page 2.)

[20] Z. Sun, J. Wu, J. Pei, Z. Li, Y. Huang, and J. Yang, Inclined geosynchronous
spaceborne–airborne bistatic SAR: Performance analysis and mission design, IEEE

140



BIBLIOGRAPHY

Transactions on Geoscience and Remote Sensing, vol. 54, no. 1, pp. 343–357, 2015.
(Cited on page 2.)

[21] A. M. Guarnieri, A. Broquetas, A. Recchia, F. Rocca, and J. Ruiz-Rodon, Advanced
radar geosynchronous observation system: Argos, IEEE Geoscience and Remote Sens-
ing Letters, vol. 12, no. 7, pp. 1406–1410, 2015. (Cited on page 2.)

[22] A. M. Guarnieri and C. Hu, Geosynchronous and geostationary SAR: face to face
comparison, Proceedings of EUSAR 2016: 11th European Conference on Synthetic
Aperture Radar, VDE, pp. 1–4, 2016. (Cited on page 2.)

[23] W. Tian, C. Hu, T. Zeng, and Z. Ding, Several special issues in GEO SAR system,
8th European Conference on Synthetic Aperture Radar, VDE, pp. 1–4, 2010. (Cited
on page 2.)

[24] F. K. Li, D. N. Held, J. C. Curlander, and C. Wu, Doppler parameter estimation for
spaceborne synthetic-aperture radars, IEEE transactions on Geoscience and Remote
Sensing, vol. GE-23, no. 1, pp. 47–56, 1985. (Cited on page 2.)

[25] R. F. Hanssen, Radar interferometry: data interpretation and error analysis, Nether-
lands: Kluwer Academic Publishers, 2002. (Cited on page 3.)

[26] T. Kelso, Analysis of the iridium 33-cosmos 2251 collision, AIAA/AAS Astrodynam-
ics Specialist Conference, Pittsburgh, Pennsylvania, August, 2009. (Cited on page 3.)

[27] S. Veniaminov, I. Oleynikov, and E. Melnikov, Indices of growth of danger for space
activities from orbital debris and the related mitigation measures, Kinematics and
Physics of Celestial Bodies, vol. 32, no. 5, pp. 227–232, 2016. (Cited on page 3.)

[28] R. J. Rovetto and T. Kelso, Preliminaries of a space situational awareness ontology,
26th AIAA/AAS Space Flight Mechanics meeting, Napa, California, 2016. (Cited on
pages 3 and 6.)

[29] N. Bobrinsky and L. Del Monte, The space situational awareness program of the
European space agency, Cosmic Research, vol. 48, no. 5, pp. 392–398, 2010. (Cited
on page 4.)

[30] R. D. Coder and M. J. Holzinger, Multi-objective design of optical systems for space
situational awareness, Acta Astronautica, vol. 128, pp. 669–684, 2016. (Cited on
page 4.)

[31] O. Montenbruck and E. Gill, Satellite orbits: models, methods and applications,
Springer Science & Business Media, 2012. (Cited on pages 6, 8, 13, 54, 58, and 60.)
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