
UNIVERSITAT POLITÈCNICA DE CATALUNYA

MASTER THESIS

Software-defined implementation and
practical evaluation of ARQ schemes over

Visible Light Communications

Author:
Martí Busquets González

Supervisors:
Dr. Joan Bas
Dr. Alexis Dowhuszko

Professor:
Dr. Ana Isabel Pérez

A thesis submitted in fulfillment of the requirements
for the degree of Masters in Telecommunication Engineering

in the

Centre Tecnològic de Telecomunicacions de Catalunya

May 21, 2021

https://www.upc.edu/en?set_language=en
https://www.linkedin.com/in/mart�-busquets-b7986874
http://www.cttc.es/people/jbas/
https://research.aalto.fi/en/persons/alexis-dowhuszko
https://futur.upc.edu/AnaisabelPerezNeira
http://cttc.es/

iii

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Abstract

Masters in Telecommunication Engineering

Software-defined implementation and practical evaluation of ARQ schemes over
Visible Light Communications

by Martí Busquets González

Nowadays, telecommunications systems have become a very powerful technol-
ogy. The ability to be connected to the Internet anywhere on the planet, by simply
unlocking a mobile phone, has revolutionized the in which we all live. 5G is arriv-
ing with a whole new set of applications (e.g., IoT, connected car, smart cities, aug-
mented reality, etc.). In the near future, it will be necessary to implement a more com-
prehensive wireless system to satisfy the requirements of our society. Visible Light
Communications (VLC) is a candidate technology for the next generation of wireless
systems, particularly in those situations where a low-cost solution and the license-free
spectrum require enabling ultra-dense deployments of small cells indoors. The major
shortcoming of VLC is the large drop in power when an element blocks the line-of-
sight between transmitter and receiver. To address this, different Automatic Repeat
Request (ARQ) protocols have been implemented in a software-defined testbed to en-
sure a proper reception of the information. Also, the ARQ signalling was used to en-
able a VLC-based monitoring system, without the need to deploy additional monitor
sensors.

HTTPS://WWW.UPC.EDU/EN?SET_LANGUAGE=EN

v

Acknowledgements
I am using this opportunity to express my gratitude to everyone who supported me
throughout the course of development of this MSc Thesis.
I want to thank my supervisors Dr. Joan Bas and Dr. Alexis A. Dowhuszko, I am
sincerely grateful to them for sharing their knowledge and helping me on a number
of issues related to the project.
I would also like to thank the teachers who have believed in me throughout my years
as a student, who have supported and encouraged me to continue with my studies.
Finally, I want to thank my family and friends who have supported me during all
these years. I would not have made it this far if it were not for you.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Methodology . 3

2 Theoretical background 5
2.1 Modulation techniques . 5

2.1.1 Quadrature Amplitude Modulation (QAM) 6
2.1.2 Pulse Amplitude Modulation (PAM) 7

2.2 Automatic Repeat Request schemes . 8
2.2.1 Stop-and-Wait ARQ . 9
2.2.2 Go-Back-N ARQ . 10

3 Numerical simulations 13
3.1 BER simulations . 13
3.2 BLER simulations . 14
3.3 ARQ simulations . 15

3.3.1 Average frames per transmission 16
3.3.2 Utilization of the channel . 17

4 Real-time simulations 21
4.1 GNU Radio . 21

4.1.1 Block diagram of the VLC transmitter 22
4.1.2 Block diagram of the VLC receiver 24

4.2 BER Simulations . 27
4.3 ARQ Simulations . 28

5 Integration and evaluation 33
5.1 Coaxial cable . 33
5.2 LED/PD in the loop . 34

5.2.1 Performance evaluation of a direct transmission scenario 35
5.2.2 VLC-based indoor monitoring experiment 38

6 Conclusions 41

References 42

A Contributions 45

B GNU Radio software 53

ix

List of Figures

1.1 General overview of the VLC link. The dash line is the light data trans-
mission and the dot line is the automatic request link for frame valida-
tion. 1

1.2 A scheme of the electromagnetic spectrum with indication of wave-
lengths, frequencies and energies. 2

2.1 Every decade, the evolution of mobile wireless communications changes
with the arrival of a new generation. The current trend is on ultra-
densification and sustainability, where VLC can have a notable role . . . 5

2.2 From the left to the right. The constellations and the BER curves for
the BPSK, QPSK and 16-QAM. The symbols are normalized to transmit
unitary power. 7

2.3 From the left to the right. The constellations and the BER curves for
the studied PAM modulations. It is possible to observe a gap of 7 dB
between the 2 and the 4-PAM. 8

2.4 Examples of different events in a Stop-and-Wait ARQ protocol. Left im-
age, the transmission is working properly. Right image, the information
of the second frame was corrupted during the transmission. 10

2.5 Examples of different events in a Go-Back-N protocol in a window equal
to 5. Left image, the transmission is working properly. Right image, the
third frame has arrived corrupted. 11

3.1 2-PAM and 4-PAM theoretical and simulated BER curves in function of
the SNR of a channel . 14

3.2 Overview of the frame structure implemented in the BLER and Stop-
and-Wait ARQ simulations. The length of the frame fields is in bytes.

. 14
3.3 2-PAM theoretical and simulated BLER curves in function of the SNR

of the channel for different frame sizes, in bytes. 15
3.4 4-PAM theoretical and simulated BLER curves in function of the SNR

of the channel for different frame sizes, in bytes. 15
3.5 The average transmissions for each frame versus the SNR of the channel

in 2 and 4-PAM. Notice that in a lower SNR bound the transmission
average grow asymptotically large. 16

3.6 Overview of the frame structure implemented in the Go-Back-N ARQ
simulation. The length of the frame fields is in bytes. 17

3.7 Utilization of the channel (U) at different windows sizes (w) theoretical
and simulated curves for 2-PAM . 18

3.8 Utilization of the channel (U) at different windows sizes (w) theoretical
and simulated curves for 4-PAM . 18

4.1 Overview of a GNU Radio block. On the left side there are two inputs
for bytes. On the right side there are three outputs in total: one for bytes
and two for number of float type. 21

x

4.2 Overview of the frame structure implemented in the GNU Radio simu-
lations. The length of the frame fields is in bytes. 22

4.3 Overview of the transmitter layout in GNU Radio. The process starts
with the creation of random block of bytes, and ends with the signal
going through a simulated digital communication channel. 22

4.4 Overview of the signals generated by the GNU Radio for 2-PAM (left-
hand side panel) and 4-PAM (right-hand side panel). The blue signals
are at the output of the modulator, and the red signals are at the output
of the pulse shape filter. 24

4.5 Overview of the receiver layout in GNU Radio. The block diagram of
the receiver starts with the signal reception from the channel, and ends
with the verification of CRC and the sending of corresponding ARQ
signalling (ACK/NACK). 25

4.6 Overview of the received signals contaminated with noise at the re-
ceiver side generated by the GNU Radio. 2-PAM (left-hand side panel)
and 4-PAM (right-hand side panel). 26

4.7 BER and BLER simulations in GNU Radio for 2-PAM (right-hand side
panel) and 4-PAM (left-hand side panel). 27

4.8 Average transmissions for each frame GNU Radio simulations in 2-
PAM (right-hand side panel) and 4-PAM (left-hand side panel). 28

4.9 Example of a modified Go-Back-N protocol in a window equal to w = 5.
Notice that the process time (Tproc) is higher for the first frame of the
window. 29

4.10 Comparison between theoretical (U) and Go-Back-N modified ARQ chan-
nel utilization (Um) for 2-PAM (right-hand side panel) and 4-PAM (left-
hand side panel). 30

5.1 Overview and picture of the hardware integration. The computers are
connected to the USRPs using Ethernet and the USRPs are connected
among them by coaxial cable. The feedback channel is also with an
Ethernet cable. 33

5.2 BLER curves in 2-PAM and 4-PAM, respectively, obtained in the first
integration test. 34

5.3 Overview and picture of complete hardware integration with the LED
and PD in the loop. 35

5.4 Eb/N0 (left-hand side of the picture) and BLER (right-hand side of the
picture) for the 2-PAM. These curves were obtained with different PD
gains in comparison with the distances. 36

5.5 BLER curves compared with the calculated Eb/N0 for 2-PAM depend-
ing on the distance with different PD gains. 36

5.6 Overview and picture of the hardware integration for monitoring mea-
surements. A person cross the light beams between the mirror, the LED
and the PD. 38

5.7 Time-to-ACK when the light beam between the LED-mirror and the
mirror-PD is blocked by different events. Walking (left-panel), running
(centre-panel), and two-people walking (right-panel). 39

xi

List of Tables

3.1 Overview of all the parameters taken into account in the non-real-time
simulations . 19

4.1 Overview of all the parameters taken into account in the GNU Radio
simulations . 27

4.2 Overview of all the measured times for the GNU Radio to run an ARQ
simulation. Notice that the secondary frames require half of the time to
be processed. 31

5.1 Measured times and calculated channel utilization (U) for a different
sliding windows sizes. 37

5.2 Overview of all the measured and selected values for all the integration
experiments. 37

xiii

Acronyms

ACK Acknowledgement.

AI Artificial Intelligence.

AM Amplitude Modulation.

ANN Artificial Neural Network.

ARQ Automatic Repeat Request.

ASK Amplitude-Shift Keying.

AWGN Additive White Gaussian Noise.

BER Bit Error Rate.

BLER Block Error Rate.

BPSK Binary Phase-Shift Keying.

CRC Cyclic Redundancy Check.

FM Frequency Modulation.

IoT Internet of Things.

LED Light-Emitting Diode.

LoS Line-of-Sight.

NACK Negative-acknowledgement.

PAM Pulse Amplitude Modulation.

PD Photodetector.

PDF Probability Density Function.

PSK Phase-Shift Keying.

QAM Quadrature Amplitude Modulation.

QPSK Quadrature Phase-Shift Keying.

RF Radio Frequency.

RTT Round Trip Time.

SNR Signal-to-Noise Ratio.

xiv

SRRC Square Root Raised Cosine.

USRP Universal Software Radio Peripheral.

UVLC Underwater Visual Light Communication.

VLC Visual Light Communication.

VLP Visible Light Positioning.

Wi-Fi Wireless Fidelity.

1

Chapter 1

Introduction

Visual Light Communication (VLC) is a technology that consists of transmitting infor-
mation in the frequency range of that is visible for the human eye, between 400 and
800 THz (780 - 375 nm). VLC is oriented to high speed data communication, creating a
variation on the instantaneous light intensity that it is undetectable for the human eye.
Radio Frequency (RF) wireless communications systems such as Millimeter-Wave (5G)
and Tera-Hz bands (6G), require advanced digital signal processing [1] to provide a
high speed communications. On the contrary, VLC systems relies on low-cost, energy
efficient Light-Emitting Diodes (LEDs) as transmitters and on Photodetectors (PD) at
the receiver side.

The current technologies, 2G, 3G and 4G utilize the frequencies range to reach up
to 6 GHz [2]. Nevertheless, 5G systems aims to exploit its spectral efficiency by adding
carriers in the Millimeter Wave frequency band (i.e., between 24 and 100 GHz) in ad-
dition to the contemporary frequency bands. Nowadays, investigators are realizing
the growing data rate demands will force to remodel the communications technology
again, as an ultra-high definition video may reach 24 Gb/s and some 3D videos may
arrive to 100 Gb/s [3]. To achieve this future demands, the next generation of wire-
less communication technology, 6G, is expected to support transmission rate 100-1000
times higher than 5G [2], velocities difficult to accomplish in the same frequency range
as the state of the art technologies. With 400 THz of bandwidth, VLC is a very power-
ful technology to achieve these extremely high data rates [4].

Unlike RF systems, VLC transmissions can be blocked by the walls. However, it
supports Line-of-Sight (LoS) and indirect one (diffuse and specular reflections). In an
environment where there may be temporal blockages, it is necessary to implement an
Automatic Repeat Request (ARQ) scheme to ensure the correct reception of the infor-
mation or reallocate the transmission point [5].
Towards this regard, the aim of the MSc Thesis consist on designing a software-defined
VLC link with an ARQ protocol to be able to perform a transmission through a visible
light signal, with the reliance that a possible blockage do not put the transmission in
outage. Instead, the implementation of an ARQ scheme delays the data stream to be
transmitted in a buffer until the connectivity is restored.

FIGURE 1.1: General overview of the VLC link. The dash line is the
light data transmission and the dot line is the automatic request link

for frame validation.

2 Chapter 1. Introduction

At the transmitter side, different modulation schemes have been studied, to send
information through the LED and reach the PD. At the receiver side two ARQ schemes
have been implemented, namely Stop-and-Wait and Go-Back-N to compare and eval-
uate the differences between them.

1.1 Motivation

VLC technology is becoming a very powerful candidate for the next generation of
mobile communications standards (i.e., beyond 5G) [1]. The ultra-high bandwidths
within the frequency range between 400 and 800 THz which, compared to RF band-
width, will allow creating ultra-densification systems capable to reach high data rate
transmissions.

FIGURE 1.2: A scheme of the electromagnetic spectrum with indication
of wavelengths, frequencies and energies. [6]

When the demand for data rate increases exponentially, VLC will support 6G to
provide superior coverage integrating space, air, underwater and terrestrial networks.
New applications will emerge, such as real-time Underwater Visual Light Communi-
cation (UVLC) [7], and the utilization of machine learning with the implementation of
Artificial Neural Network (ANN) strategies either its to equalize the signal to increase
the data rate or extract features of the crossing links to monitor the status of the VLC
system. [8].

With the arrival of 5G, the Internet of Things (IoT) will be a reality, and it will be
necessary massive connectivity with high reliability, high data rate, high positioning
accuracy, low latency, low power consumption and improved security. To address
these challenges, VLC is a promising candidate [9], not only for the low cost or the
existing lighting infrastructure. Also, for the high speed transmission, the integration
with Wireless Fidelity (Wi-Fi) systems [10], the communication security and the offer-
ing of high accuracy localization via Visible Light Positioning (VLP) [11].

Nowadays, there are many technologies that monitor the status of an environment.
The surveillance camera systems or infrared sensors are the most used, but there are
also, RF systems taking advantage of Wi-Fi or 4G nodes to sense and interpret the
variations of the electromagnetic waves during propagating. VLC with the LoS re-
striction, can also be a useful tool to monitoring a room or a hallway. Depending on

1.2. Objectives 3

the duration of blockage it can be know if there are one or two persons crossing the
beam, or if the person going through the beam of light is walking or running, and
even the direction it has been followed [12].

1.2 Objectives

The main objective is to implement a VLC link with an ARQ protocol capable to de-
tect and retransmit every data frame whose content becomes corrupted during the
transmission. To reach this point, a solid theoretical background, as well as the use
of software tools for numerical simulations in both real and non-real time are also
required. The specific objectives that stem from the aim of this MSc Thesis can be
outlined as follows:

• Theoretical fundamental: Understand the theoretical background for VLC at the
Physical Layer, with emphasis on the different modulation schemes that can be
used to modulate the intensity of the light emitted by an LED transmitter. More-
over, understand the different ARQ schemes and the advantages or disadvan-
tages between them.

• Numerical simulations (non-real-time): Estimate the performance that is achievable
with different schemes using non-real time simulation tools (e.g., Matlab). Com-
pare the obtained simulations results with the ones provided by the theoretical
background, to have a starting point for the following real time simulations.

• Software defined VLC (real-time): Using GNU Radio and python, create and simu-
late different VLC transmission schemes comparing the obtained figure of merits
with the numerical results to ensure a correct behaviour.

• Universal Software Radio Peripherals (USRPs) and LED/PD: Incorporate to the dif-
ferent simulations in GNURadio with the USRP and the LED/PD in the loop.

• Practical validation: Measurement campaign setup, including hardware require-
ments such as USRPs, LED, PD and driver. Make an adaptation of measure-
ments to figures of merits that are relevant to the VLC transmission link under
study.

1.3 Methodology

In order to reach the objectives, this MSc Thesis has followed the methodologies that
are listed below for each chapter:

• In Chapter 2, a theoretical background has been considered. Different modula-
tion schemes have been studied. Moreover, an important point is the creation of
a ARQ, for this reason a thorough study on different schemes such as Stop-and-
wait and Go-Back-N has been conducted.

• In Chapter 3, different scenarios have been developed in a non-real-time simula-
tion tool. Simulated transmissions with different modulations comparing differ-
ent parameters such as the Bit Error Rate (BER) or the Block Error Rate (BLER)
with their theoretical expressions.

• In Chapter 4, the software defined platform GNU Radio has been used in con-
junction with python programming language to create different blocks to trans-
late the non-real-time simulations to a real-time scenario. In addition to the BER
and BLER, other relevant performance parameters have been measured to de-
termine the efficiency of the ARQ link.

4 Chapter 1. Introduction

• In Chapter 5, GNU Radio has been combined with the required hardware (i.e.,
USRPs, LED, PD and LED driver), to create a actual VLC transmission. New
functionalities have been implemented, such as automatic gain control to com-
pensate the distance-dependent channel attenuation and stream synchroniza-
tion to tackle the variable delay that the data symbols experience during the
propagation on the VLC channel.

• Finally, Chapter 6 presents the experimental results. The different measures col-
lected in the previous chapters are summarized and compared to the theoretical
ones. Future improvements are also discussed.

5

Chapter 2

Theoretical background

This chapter summarizes the key theoretical concepts that were utilized to develop
the communication of digital information over a VLC link. Digital communications
deals with the transmission and reception of a stream of bits over a channel. Although
there are different types of channels, such as copper wires or optical fibres, the focus
of this MSc Thesis is on the use of a wireless communication channel.
Wireless channels have had many applications along history. Modern mobile commu-
nications stated in the 1980s with analog communications (1G), and then it evolved
to digital communications on the following mobile generations, from 2G to the future
5G and 6G [13].

FIGURE 2.1: Every decade, the evolution of mobile wireless communi-
cations changes with the arrival of a new generation. The current trend
is on ultra-densification and sustainability, where VLC can have a no-

table role

2.1 Modulation techniques

In order to transmit information, there are different options to vary the properties
of a periodic waveform known as wireless carrier signal. This process is known as
modulation, and it can take place either in the analog or digital domains. Analog
modulation schemes are impressed on the carrier signal and need less processing re-
sources. For example, in Amplitude Modulation (AM) the amplitude of the carrier is
modified, whereas in Frequency Modulation (FM) the frequency of the carrier signal
is varied according to the information to be transmitted.
Modern systems use digital modulations, where the input information is mapped and
converted into a sequence of digital symbols which are used to modulate some prop-
erties of the carrier. This methodology increases the resources that are needed to per-
form the digital signal processing in transmission and reception, but the results are

6 Chapter 2. Theoretical background

immensely better. Two examples of digital modulation schemes are Phase-Shift Key-
ing (PSK), which conveys data by the variation of the phase in a constant frequency
carrier, and Amplitude-Shift Keying (ASK), which uses the amplitude of the carrier as
a parameter to be modified according to the digital data that wants to be transmitted.
Each modulation scheme has a different performance, measured by the BER that de-
termines the number of bit errors divided by the total number of transferred bits. This
parameter depends on the Signal-to-Noise Ratio (SNR) that experiences the commu-
nication channel. Depending on many factors (i.e., noise, interference, distortion, bit
synchronization problems, multipath fading, etc.) the quality of the communication
channel may be affected and the SNR may be reduced. When this happens, bit errors
are more frequent and the BER performance of the digital communication channel is
increased. On the other hand, when there is no interference and the strength of the
noise that is present in the digital channel is much weaker than the transmitted data-
carrying signal, the SNR increases and the bit errors are less likely. In other words, the
BER decrease and the transmission of information is more reliable.

2.1.1 Quadrature Amplitude Modulation (QAM)

Nowadays QAM is widely used in digital telecommunication systems. The Quadra-
ture Amplitude Modulation (QAM) scheme consists of two carrier waves at the same
frequency with a different phase shift. This condition is known as orthogonality or
quadrature, and consists of setting the phase shift between both carriers at precisely
90o. The In-Phase and Quadrature components of the data-carrying signals are then
used to modulate the amplitude of these two waves. In reception, the signal can be
decoded thanks to the orthogonality property.

Binary Phase-Shift Keying (BPSK) is the simplest QAM scheme. It uses only two
symbols with a 180o separation between them. Since the two symbols of BPSK are
considerably separated, the decision threshold is at the farthest distance of all possible
QAM schemes. This makes BPSK one of the most robust modulation schemes, and
even with a low SNR it is possible to reach an acceptable BER as shown in

BER =
1
2

erfc

(√
Eb

N0

)
, (2.1)

where Eb/N0 is the SNR and erfc(x) is the Gauss complementary error function.
Nevertheless, with only 1 symbol per bit is unsuitable for high data-rate applications.

4-QAM, also known as Quadrature Phase-Shift Keying (QPSK), is the following
modulation order that could be implemented in QAM schemes. QPSK uses two or-
thogonal carriers, both modulated by amplitude. For this reason, at reception both
carriers can be demodulated independently, and the decision thresholds are the same
as BPSK. Although the two modulations follow the same BER probability of (2.1), the
accommodation of two bits per symbol makes the bit rate of QPSK two times faster
that BPSK.

There are many others QAM methods, such as, 16-QAM, 64-QAM and 256-QAM.
However, the higher order modulation scheme that has been considered in this MSc
Thesis is the 16-QAM, which transports two bits In-Phase and Quadrature carriers,
totalizing 4 bits per symbol. This increment has two consequences: On one hand, it
makes the decision thresholds more closely packed, incrementing the probability of
having a symbol wrongly detected as started in

2.1. Modulation techniques 7

BER ≈ 3
8

erfc

(√
6Eb

15N0

)
. (2.2)

On the other hand, the bits of information can be accommodated in fewer symbols,
and the data rate increase.

FIGURE 2.2: From the left to the right. The constellations and the BER
curves for the BPSK, QPSK and 16-QAM. The symbols are normalized

to transmit unitary power.

It is important to highlight that these modulation schemes have been studied to
understand their properties, advantages and disadvantages. The QAM schemes are
not suitable for VLC transmission due to a LED transmitter is not able to deal with
quadrature subcarriers (i.e., coherent communication scheme), as the only parameter
that it can be varied is the intensity of the light that is emitted.

2.1.2 Pulse Amplitude Modulation (PAM)

PAM is a signal waveform in which the bit stream information is encoded on the am-
plitude of a series of signal pulses. At the receiver side, an equivalent demodulator
decides which amplitude corresponds to each received sequence of samples.

2-PAM, is the baseline. It consists of two symbols modulated in +1 and −1. Bit "1"
is mapped as symbol +1 and bit "0" is mapped as symbol −1. In terms of data rate
and BER probability, this modulation is approximating to BPSK (2.1).

4-PAM is a higher-order modulation in which the four possible symbols (that can
accommodate 2 bits) are modulated in +3/

√
5, +1/

√
5, −1/

√
5 and −3/

√
5. The

bits are mapped in pairs. Bit "00" is map as symbol +3, bit "01" is map as symbol
+1, bit "11" is map as symbol −1, and bit "10" is map as symbol −3. Notice that
this mapping is not chosen randomly. It corresponds to Gray mapping, where two
successive symbols only differs in one bit. This may reduce the BER formula in

BER ≈ 3
8

erfc

(√
Eb

5N0

)
. (2.3)

8 Chapter 2. Theoretical background

FIGURE 2.3: From the left to the right. The constellations and the BER
curves for the studied PAM modulations. It is possible to observe a gap

of 7 dB between the 2 and the 4-PAM.

As these modulations interact only with the signal amplitude, it is perfectly suit-
able to implement a VLC link in baseband. Using LEDs, the intensity is directed re-
lated to the signal strength. At this point, it is important the time-varying intensity
modulation that is introduced does not create undesired effects to a human’s vision,
such as blinking.

2.2 Automatic Repeat Request schemes

As it is well known, a wireless link transmission is far away from being perfect. Noise,
interferences and other factors make data transmission process variable in a stochastic
way. The BER is based on that, if its value is equal to zero, it means a perfect channel
communication, with no errors. Instead, if the measured value is 0.5, it means the
channel is strongly affected by the noise, with no chances to infer the transmitted bits
from the received signal samples correctly.
ARQ is an error control method that ensures the proper reception of the transmitted
data. At the transmitter side, all the information to be transmitted is divided in frames
of constant length that are sent it through the digital communication channel. At the
receiver side, every frame is processed to detect if all the bits arrived correctly and,
if so, notify the transmitter about the status of the received data frame. To achieve a
proper functionality many elements are introduced.

Cyclic Redundancy Check (CRC) is the code in charge of detecting errors at the
receiver side. The simplest error detecting code uses only one parity bit. However, a
CRC scheme relies on a bigger number of bits to add redundancy to the system and be
able to ensure the detection of errors (n-CRC), been n the number of bits of the CRC
codeword. The code is calculated with the division of the frame data bits (payload)
and a fixed polynomial [14]. In this computation, the quotient is discarded, and the
remainder becomes the useful data to be appended in the frame. This result is added
to the end of the frame and transmitted with the payload. In reception, the system
computes the same polynomial division with the received frame. Then, if the remain-
der of this calculation is 0, no error has been detected. However, when there are errors

2.2. Automatic Repeat Request schemes 9

in the frame, the result is different from 0 and the received frame is discarded.

Acknowledgements (ACKs) and Negative-acknowledgements (NACKs) are the
messages sent by the receiver to notify whether the current data frame has been prop-
erly received or not. If a frame arrives and the result of the CRC calculation is correct,
the system notify an ACK. Nevertheless, if the computation is incorrect, and it is im-
possible to recover the correct information, the receiver notifies the transmitter with
an NACK. This allows the transmitter to know which information has been received
properly and which part of the message needs to be retransmitted.

In a ARQ protocol, there is one more possibility to take into account. This situation
takes place when the actual value of the channel can not be predicted reliable when
a large interference event occurs. This could happen in a VLC system due to, e.g.,
an unexpected obstacle can blockage the light beam. These problems may generate a
total frame lost, and the receiver never detect the presence of a frame. Therefore, since
no frame transmission is detected, it never sends an ACK or NACK.
As the transmitter always expects a frame confirmation, a timer, known as timeout,
needs to be implemented. The system sends the frame and waits an amount of time.
If in this time the transmitter does not receive the correct ACK or NACK referring to
this frame, it considers the frame as lost and triggers the retransmission of it. The cor-
rect period to wait for the frame defined as a reliable upper bound from the estimated
Round Trip Time (RTT), where RTT is the average time that it takes when a frame is
sent until its ACK is received.

At this point, it is possible to introduce another parameter to measure the perfor-
mance of the transmission. At the transmitter side, all the data information is divided
into frames to be sent. That is why, in addition to the BER, other value to be taken into
account is the BLER. This ratio for uncoded signals is obtained by the probability of
receiving all the bits in a frame

BLER = 1− (1− BER)L, (2.4)

where L is the number of symbols that are accommodated in each frame.

2.2.1 Stop-and-Wait ARQ

Stop-and-Wait is the simplest ARQ mechanism. As the name states, it transmits a
frame and waits until an ACK is received. During the waiting period, the system do
not transmit any more frames. This is why Stop-and-Wait ARQ is inefficient compared
to other ARQ schemes [15].

10 Chapter 2. Theoretical background

FIGURE 2.4: Examples of different events in a Stop-and-Wait ARQ pro-
tocol. Left image, the transmission is working properly. Right image,
the information of the second frame was corrupted during the trans-

mission.

As it is shown in the Fig. 2.4, the Stop-and-Wait protocol can handle different
events. When the frames are correctly received, the transmitter receives an ACK and
sends the following frame. When the frame is wrongly received, the transmitter is
notified by a NACK and sends the same frame again until it receives the correct ACK.
Finally, the possibility of failure in the reception of the frame is considered. The trans-
mitter waits the equivalent of 2RTT (Fig. 2.4). Then, it sends the same frame as if a
NACK signal has been received.
To measure the performance of this protocol, it is possible to monitor different param-
eters. For instance, the average number of transmissions for each frame as

Mtx =
1

1− BLER
. (2.5)

It consists of the number of times that the same frame needs to be transmitted to
arrive correctly.
The utilization, or efficiency, of the channel (U), consists in the percentage of time that
the ARQ protocol is transmitting useful information (data information, retransmis-
sions are not considered) divided by the total time out of the communication. The
channel utilization can be calculated for an ideal case, with a perfect channel without
errors as

Umax =
Ttx

RTT
=

Ttx

2Tprop + Ttx
, (2.6)

where the result it is considered the maximum efficiency a channel can reach.
For a non-ideal case the BLER is added to the equation as

U =
Ttx(1− BLER)

RTT
=

Ttx(1− BLER)
2Tprop + Ttx

, (2.7)

where the channel affects the transmission and cause random errors.

2.2.2 Go-Back-N ARQ

Go-Back-N is a more complex ARQ mechanism. This protocol tries to reduce the wait-
ing period by increasing the number of frames sent on a continuous basis. When the

2.2. Automatic Repeat Request schemes 11

system needs to transmit, it generates a sliding window containing a given number
of frames (w) to be sent. When these frames reach the receiver, an ACK is generated
for every one of them. In the Go-Back-N ARQ protocol, a frame sequence number is
included in each frame and each feedback message, in order to ensure that the cor-
rect frame has been received. When the transmitter has been notified, the window is
moved to transmit the following frames. That is the reason why this mechanism it is
also known as sliding window protocol.

FIGURE 2.5: Examples of different events in a Go-Back-N protocol in a
window equal to 5. Left image, the transmission is working properly.

Right image, the third frame has arrived corrupted.

Two different scenarios have been considered in Fig. 2.5. On the Left-Hand side,
the transmission works properly and there are no errors (NACKs). When the trans-
mitter receives the correct signal, the sliding window moves to the following position
to transmit the next frames. On the Right-Hand side of the figure, the third frame is re-
ceived with errors and, by means of the CRC, this situation is detected. However, the
fourth and fifth frames are received properly. As the receiver is waiting for the third
frame, any other identification number is discarded. Therefore, the same NACKs ask-
ing for the correct frame is generated until it arrives properly at reception.

The utilization of the channel for Go-Back-N ARQ increase compared with Stop-
and-Wait ARQ, thanks to the sliding windows [16]. In a theoretical case, for a perfect
channel, according to

Umax =
wTtx

RTT
=

wTtx

2Tprop + Ttx
, if wTtx < RTT, (2.8)

where efficiency increase with the window size. Reaching a point where the win-
dows is optimum, wopt = RTT/Ttx. When this point is reached, wTtx > RTT , the
efficiency is maximum, U = 1, and the channel is the most used as possible.

In a non-ideal case scenario, the channel alterations generate errors in reception.
As the BLER increases, the frames need more transmissions to be received properly.
This increases the total time of the communication for the same amount of information

12 Chapter 2. Theoretical background

and consequently, the utilization of the channel is reduced. Therefore, in this scenario
the efficiency of the channel can be written as

U =
wTtx(1− BLER)

RTT
=

wTtx(1− BLER)
2Tprop + Ttx

, if wTtx < RTT (2.9)

until an optimum windows if reached. However, after this point the channel still
depends on the channel, U = 1 − BLER, when wTtx > RTT. The purpose of this
protocol is to find the optimum wopt following

wopt =
RTT
Ttx

=
2Tprop + Ttx

Ttx
. (2.10)

Notice that with a lower wopt the system may have a waiting period such that the
channel efficiency is not optimal. On the other hand, with a higher wopt, the channel
may be fully used but the required processing resources to transmit continuously are
higher than necessary.

13

Chapter 3

Numerical simulations

This chapter presents the numerical simulations in a non-real-time software (i.e., Mat-
lab) to obtain the first figures of merits and compare them with their theoretical ones.
The simulations have been focused on Pulse Amplitude Modulation (PAM), because,
as explained in Chapter 2, the QAM schemes are not suitable for the implementation
of an intensity modulation VLC link.

Different simulations have been carried out. For the two modulations, 2-PAM and
4-PAM, simulations at the bit level to calculate the BER, and at the frame level to cal-
culate the BLER, have been done. To continue, ARQ simulations have been designed
to understand the evolution of the efficiency of the channel in the Stop-and-Wait and
Go-Back-N ARQ protocols.

In all the simulations, artificial Gaussian noise has been added to the transmitted
signal to emulate a Additive White Gaussian Noise (AWGN) channel. The Gaussian
noise samples have an Probability Density Function (PDF) equal to the normal distri-
bution

P(x) =
1

σ
√

2π
e−(x−µ)2

/
2σ2

, (3.1)

where µ is the mean, and σ is the standard deviation.

3.1 BER simulations

The bit level simulation, consists of emulating a bit stream mapped as symbols, passing
them through an AWGN channel model. This channel adds a Gaussian noise into the
symbols array. As a statistic, if the vector of bits to be simulated is longer, more ac-
curate is the obtained simulated result. When this noise is added, the receiver side is
simulated comparing the noise contaminated symbols with the initial clean ones.

14 Chapter 3. Numerical simulations

FIGURE 3.1: 2-PAM and 4-PAM theoretical and simulated BER curves
in function of the SNR of a channel

For the 2-PAM, the symbols generated to execute the simulations are +1 and −1.
As there have a unitary amplitude, there is no inconvenience to transmit them without
any alteration. However, in the case of the 4-PAM, the constellation symbols are +3,
+1,−1 and−3. These symbols do not have unitary energy and need to be normalized,
according to the mean symbol energy. Therefore, in the case of the 4-PAM, to achieve a
transmission with unitary energy, the normalized symbols are (+3,+1,−1,+3)/

√
5.

Once the signal arrives at reception, the opposite operation is realized to recuperate
the original symbols.

3.2 BLER simulations

The simulation at frame level consist of transmitting the information with frames of
constant length, L. First, the designed program takes L− 32 data bits. Following, the
32-CRC is calculated and added after the payload. As the CRC codeword has a length
of 32 bits, the total frame length is L.

FIGURE 3.2: Overview of the frame structure implemented in the BLER
and Stop-and-Wait ARQ simulations. The length of the frame fields is

in bytes.

Once the frame is constructed, the bits are mapped into symbols according to the
modulation scheme that is used. At this point, AWGN samples are added to the re-
ceived signal. To continue, the signal is demapped with the proper demodulator and
converted to bits.
Finally, the bits of the frame are verified by the CRC check. If the remainder of the
calculation is equal to 0, the frame has been received properly. Otherwise, the frame
has been corrupted by the Gaussian noise, and it is counted as an error.

3.3. ARQ simulations 15

FIGURE 3.3: 2-PAM theoretical and simulated BLER curves in function
of the SNR of the channel for different frame sizes, in bytes.

FIGURE 3.4: 4-PAM theoretical and simulated BLER curves in function
of the SNR of the channel for different frame sizes, in bytes.

These simulations have been done with different frame lengths, ranging from L =
25 to L = 100 bytes. Notice that according to (2.4), the BLER depends on the frame
length. With more bits per frame, the probability of receiving at least one bit in error
increases. This is the reason why, for L = 25 bytes, it is needed a lower SNR to obtain
a better BLER. Instead, for L = 50 and L = 100 bytes, the required SNR is higher to
achieve the same BLER.

3.3 ARQ simulations

To simulate at the data link layer, different scripts have been prepared. First, Stop-
and-Wait ARQ protocol has been implemented. It has the same basis as the BLER

16 Chapter 3. Numerical simulations

simulation, but with a difference in the behaviour after a frame has been received.
When the frame is decoded, the system simulates the emission of a notification signal
going through the channel, towards the transmitter. To simplify the design, these sig-
nals, ACKs and NACKs are not contaminated by the noise such that they are received
without any errors. Once the signals reach their destination, if the received notifi-
cation is an ACK, the simulation continues with the transmission of the next frame.
However, if the notification is negative, the system performs the transmission of the
same frame again.

3.3.1 Average frames per transmission

At this point, according to 2.4, the average transmission frames in a total communica-
tion is estimated with the aid of numerical simulations. If the channel is more unstable
generates more errors, the number of transmissions for each frame becomes higher.
However, if the channel noise is constant and weak, then the number of transmission
is close to one.

FIGURE 3.5: The average transmissions for each frame versus the SNR
of the channel in 2 and 4-PAM. Notice that in a lower SNR bound the

transmission average grow asymptotically large.

For this simulation, the timeout event have not been considered for two reasons.
First, the script has been implemented in only one computer that takes the two roles,
transmitter and receiver. The timeout requires listening continuously to handle the
reception of the frame or notify when the designed timer expires. Also, another pro-
cess is required to handle the main part of the simulation. To solve this problem, there
are elements called threads. A thread is a process of sequences chain tasks that can
be executed by an operative system. These sequences can be executed in parallel,
asynchronously, to carry out more than one task at the same time. Threads can be
implemented in advanced software such as Matlab, but it has been found that using
them slows down the simulation and alters the results.
The second reason is due to the configuration of the modelled AWGN channel. It is
designed to add AWGN, but do not have properties to cause multipath or symbol de-
lays. Therefore, the frames are always detected, and the timeout is not necessary.

3.3. ARQ simulations 17

These problems are solved in the following chapter with real time simulations.

3.3.2 Utilization of the channel

To continue, a simulation for the Go-Back-N protocol has been designed. The basis
is similar to the previous script. Here, a new parameter has been introduced, the
sliding window size (w). As explained in section 2.2.2, this protocol takes advantage
of the pauses in transmission to increase the number of frames sent continuously. This
number of frames is controlled with the value that, the sliding window takes. As the
frames can now be received in a continuous form, it may happen that one of them was
not detected or out of order. Consequently, the composition of the frame implements
an identification number to let the receiver known witch frame is receiving.

FIGURE 3.6: Overview of the frame structure implemented in the Go-
Back-N ARQ simulation. The length of the frame fields is in bytes.

As it was shown in Fig. 2.5, the frames are sent in function of the windows value.
Once the reception process the frames, it sends the corresponding notifications back.
At transmitter side, the window increments one position for every received ACK. In
case a NACK is received, the window stops and the system sends all the frames from
this position again.

To design this simulation a new problem as arisen. According to 2.9, the propaga-
tion time (Tprop), and the frame transmission time (Ttx) have to be taken into account.
In Matlab, the protocol is running in a non-real-time simulation and due to that, these
times are negligible. The propagation time does not exist as the simulations runs in
the same computer, and the frame transmission time are very fast and difficult to mea-
sure.
To try to solve this problem, the variables have been fixed before the simulation, and
the system generates delays and timers with the aim of being as accurate as possible.
The transmission data rate have been fixed to Rb = 1 Mbps. So the time to generate a
frame and be transmitted is calculated as Ttx = L/Rb = 100 Bytes /1 Mbps = 0.8 ms,
been L the total frame length. For the propagation time, the time it takes for a frame to
travel all the way from the transmitter to the receiver, it has been fixed to Tprop = 0.5 ms.

These solutions have helped to run the simulations to obtain the channel utilization
(U), for the two different modulation schemes under analysis. Although the simula-
tion is not entirely accurate, the obtained figures have been helpful to understand the
protocols and preparing for the change towards real-time simulations.

18 Chapter 3. Numerical simulations

FIGURE 3.7: Utilization of the channel (U) at different windows sizes
(w) theoretical and simulated curves for 2-PAM

FIGURE 3.8: Utilization of the channel (U) at different windows sizes
(w) theoretical and simulated curves for 4-PAM

Fig. 3.7 and Fig. 3.8 have been obtained for 2-PAM and 4-PAM schemes, respec-
tively, with different window sizes. Note that when w = 1, a unique frame is trans-
mitted continuously, and the Go-Back-N protocol ends up being the Stop-and-Wait
scheme.
In these figures, it is necessary to highlight some values. As it is shown in the equa-
tion 2.8, the maximum utilization of the channel Umax, is achieved when the BLER
is near to zero, and it depends on the values that parameters w, Tprop and Ttx take.
In these cases, for the fixed values enumerated above, the maximum efficiency is
Umax = 0.8w/(1 + 0.8) = 4w/9. Following this case, for Stop-and-Wait ARQ, w = 1
and, due to that, the utilization channel is never 1. However, if the windows size is
increase the Umax increases with it, reaching the value expressed after (2.8) when the
windows reach its optimum value wopt = 3. Notice that, at this point, w = 5, 10 and

3.3. ARQ simulations 19

further, are useless. The simulation require more computational process and the Umax
is saturated in its highest possible value.

Before finishing this chapter, a table that summarizes the different parameters that
have been used for the numerical simulations is presented. Note that the payload
length, was changed according to the ARQ protocol that was evaluated. More pre-
cisely, LP = 96 for Stop-and-Wait ARQ, and LP = 94 for Go-Back-N ARQ allowing
the two bytes for the header, LH. For the sliding windows, different values have been
used to simulate different scenarios, in which w = 1 corresponds for Stop-and-Wait
ARQ, whereas the remaining ones were used for Go-Back-N.
All the frame length values are used for the following chapters. However, the time
values have been used to help the simulations and may be subject to change.

Symbol Parameter Value Unit
L Total frame length 100 Bytes
LPR Preamble length 22 Bytes
LP Payload length 94, 96 Bytes
LC CRC length 4 Bytes
LH Header length 0, 2 Bytes
Rb Data bit rate 1 Mbps
Ttx Frame transmission time 0.8 ms
Tprop Propagation time 0.5 ms
RTT Round Trip Time 1.8 ms
w Sliding windows 1, 2, 5, 10, ...

TABLE 3.1: Overview of all the parameters taken into account in the
non-real-time simulations

21

Chapter 4

Real-time simulations

This chapter presents the simulations in a real-time software such as GNU Radio [17].
This development toolkit is a free software that, with the help of signal processing
blocks, can implement software-defined radios or, in this case, software-defined VLC
systems. The simulation results in this chapter have been obtained without any exter-
nal hardware. However, in Chapter 5 the software is integrated with the hardware to
achieve the main objective of this MSc Thesis.
The GNU Radio real-time simulations obtained here are compared with the ones of
Chapter 3, as well as with ones that have been predicted according to the theoretical
background. Aim of this is to ensure a good functioning and a smooth integration
with the hardware.

4.1 GNU Radio

GNU Radio is composed by processing blocks. Every block has its own function and
processes the data in parallel with the others. The set of blocks, connected by wires,
forms the layouts.

FIGURE 4.1: Overview of a GNU Radio block. On the left side there are
two inputs for bytes. On the right side there are three outputs in total:

one for bytes and two for number of float type.

Fig. 4.1, shows a sample GNU Radio block. The magenta rectangles on the left side
indicate the inputs 0 and 1 for a byte stream. The rectangles on the right side indicate
the outputs, magenta for bytes, output 0, and orange for numbers of type float, out-
puts 1 and 2. Also, different variables can be declared, such as Frame Length, to assign
the same value in different parts of the system.

To carry out the real-time simulations, a block system has been created. The sim-
plest ones are pre-designed blocks available in GNU Radio. However, for a specific
functionality, the software does not have the desired blocks. In these cases, GNU Ra-
dio allows to create custom blocks in C++ or in Python. In order to complement the
system, different Python blocks have been created.

22 Chapter 4. Real-time simulations

At this point, different elements have been taken into account. The simulations
have been designed to resemble as closely as possible an actual digital communica-
tion transmission. First, a preamble has been added before the frame. The preamble,
or sync-word, is a sequence of symbols which remains constant in the communication
link. The preamble is added at the transmitter side and used at the receiver side to
identify the start of the frame and have reference points to deal with the synchroniza-
tion problems.

FIGURE 4.2: Overview of the frame structure implemented in the GNU
Radio simulations. The length of the frame fields is in bytes.

Secondly, a pulse shape filter has been utilized in transmission. The purpose of
this filter is to make the transmit signal better suited for the communication channel,
trying to fit as much as possible the frequency response bandwidth. A signal con-
veying the 2-PAM or 4-PAM symbols may have a very abrupt amplitude variations
between consecutive sampling times. This, in the frequency spectrum, leads to a very
large bandwidth, that is unfeasible to support in a bandwidth-limited communication
channel. To mitigate this effect, a Square Root Raised Cosine (SRRC) filter has been
implemented for pulse-shaping purposes in the VLC transmitter.

4.1.1 Block diagram of the VLC transmitter

The transmitter side is in charge of converting the data bytes into bits. After that, the
obtained sequence of bits should be accommodated into data blocks, with a CRC that
should be appended before the whole frame is sent through the channel. In addition,
for the ARQs simulations, the VLC transmitter is also responsible for processing the
ACKs and NACKs and, according to the signal event, proceed to (re-)transmit a new
(the previous) data frame.

FIGURE 4.3: Overview of the transmitter layout in GNU Radio. The
process starts with the creation of random block of bytes, and ends with
the signal going through a simulated digital communication channel.

In Fig. 4.3, the layout shows all the pre-designed and custom blocks at the trans-
mitter side. Hereafter, all of them have been explained to understand the proper func-
tionality of the system. The Python code, for the custom designed blocks, have been
added in the Annex B of this MSc Thesis.

4.1. GNU Radio 23

The Random Source and the Throttle blocks are pre-designed by GNU Radio. The first
one generates random bytes to simulate data bits for transmission. The second one is
responsible for regulating the speed at which these bytes are sent.

The Transmitter is a custom designed block. Two inputs are implemented to re-
ceive the data bytes at the input 0, and the notifications signals at the input 1. De-
pending on the ongoing modulation, if only the BER or the BLER are calculated, and
the ARQ protocols are disabled, the input 1 is inactive. The block has a buffer to save
the frames in case a retransmission is needed. In the input 0, the block receives a byte
stream of constant length, LP. If an ARQ protocol is activated, the block waits for a
notification signal from input 1. If this notification signal is an ACK, the script discard
the last frame and ask for a new one. If the notification signal is a NACK, the script
searches into the buffer to retransmit the data frame that was signalled as wrongly
received. In the possible event of not receiving any notification, a fixed timeout is im-
plemented to ensure that a retransmission is triggered in such circumstance.
Finally, in all the cases, the script obtains the next right frame, calculates the CRC, ap-
pends it after the payload bytes and sends the frame.

The Preamble block is a custom designed block. The received byte frame is con-
verted to bits, and the constant preamble is added at the beginning of the bit stream.
At the input, the length of the frames was set to L = 100 bytes. At the output, the
frame has been converted into bits L = 100 ∗ 8 = 800 bits, and the preamble was
added. Finally, the total length becomes LT = L + LPR = 800 + 176 = 976 bits.

The Modulator M-PAM block is a custom designed block. Depending on the se-
lected modulation index, the block modulates the payload input bits into 2-PAM sym-
bols, or 4-PAM normalized symbols. The preamble is always modulated with a 2-PAM
to increase the options of detection. Notice that at the output of this block, different
symbol lengths can be possible for the data frame. When using a 2-PAM, the mod-
ulation is one bit per symbol, so the length does not change. However, for 4-PAM,
the modulation scheme accommodates two bits per symbol, so the length of the data
frame is reduced to half its original size.

The pulse-shaping filter is a custom designed block. It is in charge of applying
the SRRC to the input sequence of symbols to control the bandwidth and make the
signal more suitable for the transmission. For the filter parameters, different values
have been assigned, all of them can be found in the Table 4.1. The pulse-shaping filter
is convolutioned with the input sequence of symbols and applies an oversampling
factor of OSF = 5, to improve the resolution of the time-domain signal and mitigate
the aliasing.

24 Chapter 4. Real-time simulations

FIGURE 4.4: Overview of the signals generated by the GNU Radio for
2-PAM (left-hand side panel) and 4-PAM (right-hand side panel). The
blue signals are at the output of the modulator, and the red signals are

at the output of the pulse shape filter.

These signals are 2-PAM on the left-hand, and 4-PAM on the right-hand of the Fig.
4.4. The blue signals are the symbols generated by the Modulator M-PAM, converting
the bit stream in to a real-valued digital wave. The red signals are the symbols pro-
cesses by the shape filter, oversampled and ready to be transmitted. In the 4-PAM it is
possible to notice that the symbols never reach the values of +3 and −3. This is due
to the normalization of the symbols, to transmit the signal with unitary power.

To finish the transmission layout, the Channel Model is a pre-designed block to
modify the signal according to the proposed channel model. This block adds AWGN,
as well as a time offset so better simulate a real channel. The last block, known as the
Virtual Sink, only moves the channel to the Source Sink at the receiver side without
any more alteration.

4.1.2 Block diagram of the VLC receiver

The receiver side is in charge of receiving the signal, finding the position of the pream-
ble and synchronizing the received signal samples to frame level. In addition, for the
ARQs simulations, the VLC receiver block is also responsible for creating the notifica-
tion signals and send them to the transmitter.

4.1. GNU Radio 25

FIGURE 4.5: Overview of the receiver layout in GNU Radio. The block
diagram of the receiver starts with the signal reception from the chan-
nel, and ends with the verification of CRC and the sending of corre-

sponding ARQ signalling (ACK/NACK).

The Preamble detection is the most complex block to be designed. It is in charge of
listening the channel and identifying when a frame has arrived. To achieve this goal,
the original preamble is oversampled and convolved twice with the pulse-shaping fil-
ter. The intention of this is to have a preamble as similar as possible to the received
one.
When the signal arrives, first it goes thought a matched-filter. Then, this outcome is
correlated with the modified preamble to find its most likely position in the received
signal samples. If the correlation result is higher than a threshold, then a frame is
detected. At this point, all the samples in the buffer are processed and oversampled
again with a second oversampling factor, OSF2, to obtain more resolution in the syn-
chronization. The processed samples are analysed to obtain the position where the
preamble correlation output has its maximum energy.
Once this position is obtained, the preamble and the frame are synchronized. The
received signal samples of the preamble are also used to estimate the attenuation of
the channel. This calculated attenuation is used to scale the received signal samples,
trying to compensate them to its original power.
Finally, the frame samples are sent to the following block and the other receives sam-
ples are discarded.

26 Chapter 4. Real-time simulations

FIGURE 4.6: Overview of the received signals contaminated with noise
at the receiver side generated by the GNU Radio. 2-PAM (left-hand side

panel) and 4-PAM (right-hand side panel).

The Demodulator M-PAM is a custom designed block. It receives the signal carrying
of the information, without the preamble, and demaps the symbols to the corresponding
bits. Depending on the modulation, the symbols are demodulated in one or in two bits
per symbols. Also, in the case of the 4-PAM, the block denormalizes the signals, scal-
ing the received signals samples with a factor

√
5 to retrieve the original ones.

The obtained bits are packed to bytes and send for its CRC verification.

The Check CRC and the UDP Sink blocks work together. The first one is a cus-
tom designed block. It receives a byte stream and realize the CRC division to check
whether its transmission has been successful or not. For a bit-level simulation, a pre-
defined text file of information is sent. Then, this block compares the received bytes
with the file content to obtain the BER curves. The BLER and ARQ simulations are at
a frame level, so the block check the CRC of the same received frame.
For the ARQ simulations, notification signals are generated, and the UDP Sink block
is responsible for sending them to the transmitter UDP Source block.

In the GNU Radio simulations, many values have been assigned, and they can be
observed in Table 4.1. The different lengths of the frame were kept constant, having
usually a payload length of LP = 96, and a header length of LH = 0. In exception to
the Go-Back-N simulation, where the payload length was set to LP = 94, the header
was LH = 2, and the sliding windows took different values verifying w > 1.
The filter values have been chosen to have a unitary power and to avoid large process-
ing times. This is the reason why the number of components is only NTAPS = 31, to
minimize the transmitted signal length and to reduce the detection and synchroniza-
tion time at the receiver.

4.2. BER Simulations 27

Symbol Parameter Value Unit
L Total frame length 100 Bytes
LPR Preamble length 22 Bytes
LP Payload length 94, 96 Bytes
LC CRC length 4 Bytes
LH Header length 0, 2 Bytes
Rb Sample rate 1 Mbps
Rs Symbol rate 250 Kbps
OSF Oversampling factor 5
OSF2 Oversampling factor 2 7
β Roll-off factor (SRRC filter) 0.35
NTAPS Number of filter components 31
FG Filter gain (SRRC filter) 0.447
w Sliding window size 1, 2, 5, 10, ...

TABLE 4.1: Overview of all the parameters taken into account in the
GNU Radio simulations

4.2 BER Simulations

To check that the software-defined transceiver implemented in GNU Radio is pre-
pared for an integration with the hardware, different simulations have been carried
out and the obtained simulation results have been compared with the theoretical ones.
The same GNU Radio layout that was described in Section 4.1, adapted to perform dif-
ferent kinds of simulations. First, it has been verified that the BER and the BLER have
a properly functioning.

FIGURE 4.7: BER and BLER simulations in GNU Radio for 2-PAM
(right-hand side panel) and 4-PAM (left-hand side panel).

To perform these simulations, the UDP blocks that are used to convey the ARQ
signalling have been disabled as there is no need to have a feedback communication
link.

28 Chapter 4. Real-time simulations

For the BER simulation, the transmitter block obtains the information to send of a pre-
viously established file. This is due to the fact that there is no possible way to compare
the bits with only the received frame, unless there is a pre-defined stream of bytes
to make the bit-by-bit comparison for the BER computation. However, for the BLER
simulation, there is no need to rely on a predefined file to be transmitted. This is be-
cause due to the implementation of the CRC, the receiver can verify whether any of
the bits of the data frame has been corrupted by just checking the last 4 bytes.
Once the layout was programmed, the curves have been measured with different
simulations varying the noise power in the Channel Model block.

4.3 ARQ Simulations

The last set of simulations that were carried out before the hardware integration were
the ones related to the ARQ protocols. For this purpose, the UDP blocks where ac-
tivated to implement a feedback link between the receiver and the transmitter. Note
that the encapsulation of ARQ signalling messages over UDP took the role of a virtual
link, since the two layouts were running in the same computer. The destination IP
address fixed in the blocks was the one of the network interface card of the desktop
computer in which GNU radio was running. Therefore, the system sent the notifica-
tion signals to itself to perform the ARQ simulations.

The first simulation for this section is the Stop-and-Wait ARQ scheme. The sliding
window size parameter in the Transmitter block was set to w = 1, for a bursty trans-
mission pattern of frames in which only one frame per window was sent. The figure
of merit that was used to study the performance of this ARQ scheme was the average
number of transmissions needed for each frame until it was properly received in the
destination.

FIGURE 4.8: Average transmissions for each frame GNU Radio sim-
ulations in 2-PAM (right-hand side panel) and 4-PAM (left-hand side

panel).

To measure the average (re-)transmissions needed per frame, the transmitter counts
every sent frame. Then, when an ACK arrives, another counter in incremented. If the
notification is a NACK, the same frame is retransmitted but only the total counter is

4.3. ARQ Simulations 29

updated. When the transmission finishes, the total frame counter is divided by the
ACK counter to obtain the average. Notice that in the low Eb/N0 region, the mean
number of retransmissions that is needed grows asymptotically large. This has been
a problem in the simulations, due to the fact that the probability to obtain only one
successful frame is very low.

For the Go-Back-N ARQ simulation setting, a problem was identified which com-
plicated its implementation in practice. Usually, in an application-specific implemen-
tation of this ARQ protocol, the processing time in the receiver side is very low due
to the use of an asynchronous processing strategy. Therefore, the frames that arrive in
the receiver can be processed at the time of arrival, in parallel, and there is no need for
a buffer.
In GNU Radio, this methodology is not possible. Though the different blocks work in
parallel, the signal processing in the same block is always working synchronously. The
possibility to implement threads in Python and use different computer cores has been
considered, but the mismatch between Python and GNU Radio libraries has made this
implementation unfeasible during the time span of this MSc Thesis.

At this point, a modified Go-Back-N protocol has been implemented. As expected,
the first window frame to be sent is the one that takes the longer processing time in
the receiver (i.e., preamble correlation, frame synchronization). Then, the main goal of
this ARQ protocol is to reduce the processing time of the remaining frames, by sending
them in a continuous manner with a sliding window. The rest of the window frames
take a shorter processing time as the preamble and the synchronization have already
been performed.

FIGURE 4.9: Example of a modified Go-Back-N protocol in a window
equal to w = 5. Notice that the process time (Tproc) is higher for the first

frame of the window.

30 Chapter 4. Real-time simulations

To evaluate the performance of this modified version of the Go-Back-N protocol, it
is possible to adapt the figure of merit in (2.9) to obtain

Um =
wTtx(1− BLER)

RTT
=

wTtx(1− BLER)
2Tprop + Ttx + Tproc0

+ (w− 1)Tproc
, (4.1)

which is valid only if wTtx < RTT is verified. Notice that the largest processing time
(Tproc0

) is always present here. On the other hand, the other processing time (Tproc0
) is

present depending on the window size.
In Stop-and-Wait ARQ (w = 1), this problem is present too because the value Tproc
takes also affect on the overall transmission time. However, the problem has not been
noticed in the simulations since the data frame was unique in the sliding window
and due to that processing time did not delay any other frames. New figures have
been obtained to compare the differences between the theoretical (U) and modified
Go-Back-N ARQ channel utilization (Um).

FIGURE 4.10: Comparison between theoretical (U) and Go-Back-N
modified ARQ channel utilization (Um) for 2-PAM (right-hand side

panel) and 4-PAM (left-hand side panel).

Notice that, with an increase of the window size, in the high Eb/N0 regions, the
difference is more relevant in the theoretical (U) case. For the modified ARQ scheme,
according to (4.1), there is an influence of the windows size in the denominator. This
effect mitigates the effect of the windows size in the figure of merit that was used to
evaluate performance of this ARQ scheme.

Finally, these calculations have been done with measured times obtained in the
GNU Radio simulations. As the transmitter and the receiver layout was executed in
the same computer, the propagation time was negligible in practice. To make the effect
of this parameter more visible in the simulations, a delay has been added explicitly in
the transmission chain.

4.3. ARQ Simulations 31

Symbol Parameter Value Unit
Tproc0

First frame processing time 12 ms
Tproc Non-first frame processing time 6 ms
Ttx Frame transmission time 0.8 ms
Tprop Propagation time 0.5 ms

TABLE 4.2: Overview of all the measured times for the GNU Radio to
run an ARQ simulation. Notice that the secondary frames require half

of the time to be processed.

33

Chapter 5

Integration and evaluation

This chapter aims at merging together all the previous simulations with the hardware
integration. To begin with, the USRPs have been added. These devices, are designed
to connect a host computer through a high speed link. With this connection, the com-
puter uses a software, usually open source (e.g., GNU Radio), to transmit and/or
receive information. At the transmitter side, the desktop computer sends the infor-
mation and the USRP transforms it to an optical signal with the aid of a LED lamp
(with a LED driver). At the receiver side, these optical signals are optical-to-electrical
converted with a PD and, after that, the USRP is in charge of transforming them into
digital information to be read by the GNU Radio.

5.1 Coaxial cable

The first integration is designed with a coaxial cable. The purpose is to observe how
the implemented GNU Radio system behaves in a controlled channel. As the LED
and PD channel is more unstable and attenuating. This test is a previous check before
going forward.

FIGURE 5.1: Overview and picture of the hardware integration. The
computers are connected to the USRPs using Ethernet and the USRPs
are connected among them by coaxial cable. The feedback channel is

also with an Ethernet cable.

For this implementation, as it is shown in Fig. 5.1, the transmitter computer is con-
nected with a high speed link to the USRP. At the same time, this one is connected to
the other USRP with a coaxial cable, creating the communication channel. Afterwards,
the receiver computer also uses a high-speed link to read the incoming information.
Finally, the feedback channel that is needed for the ARQ protocols is implemented
with an Ethernet cable connecting directly the two computers.

Before this test, a pre-designed block for the reception and detection of the frame
was chosen. However, with the analysis of this system, the block began to behave
incoherently and inconsistently. The source code was searched to understand how it
works, but even with this support it was impossible to understand the behaviour of

34 Chapter 5. Integration and evaluation

the block. Finally, the Preamble detection block show in Fig. 4.5 was implemented.

The implemented block relies on the preamble detection to synchronize the frame.
In the channel created by the coaxial cable, this was a problem. The block was de-
signed to always listen to the channel looking for the preamble, and when the USRPs
are turned on and the transmission is stopped, the receiver always collects samples of
noise. As the correlation calculation is slower than the reception of samples, the block
buffer was quickly full of useless noise, which makes the preamble detection process
very unreliable.
To solve this problem, the first implementation was to change the python library in
charge of the correlation. The scipy library is five times faster than the numpy library
with this calculation. However, as the problem still remained, the calculation time was
not fast enough.
Finally, the solution was to implement a low-pass filter to limit the noise, such that
only when the total power of the received signal exceeded a pre-defined threshold,
the received samples were correlated with the expected preamble samples; otherwise,
the samples were tagged as noise and discarded.

FIGURE 5.2: BLER curves in 2-PAM and 4-PAM, respectively, obtained
in the first integration test.

5.2 LED/PD in the loop

Finally, the integration with the LED and PD in the loop was carried out. For this
purpose, the coaxial cable was replaced with a LED with a driver at the transmitter
side. In reception, a PD was connected into the USRP to capture the variations of the
intensity of the received light beam. The LED driver has been designed by another
student in his MSc Thesis, and the details of its implementation can be found in [18].
The LED driver was in charge of converting the electric waves coming from the USRP
into a more suitable signal to drive the current of the LED. The LED interpreted these
signals as a variation in the light intensity, changing the light fast enough to become
imperceptible for the human eye.

At the receiver side, two PD have been tested. Firstly, the PDA8A [19] model from
Thorlabs that had a fixed gain that did not give the flexibility to regulate the received
power. This was a notable drawback of this PD model as it greatly limited the distance

5.2. LED/PD in the loop 35

between transmitter and receiver. Secondly, the PDA36A [20] from Thorlabs, with an
adjustable gain, that could be tuned according to the desired coverage distances. This
is the reason why the chosen PD for the last integration was the PDA36A, which was
able to reach longer distances when the regulated gain was properly increased. How-
ever, it is important to highlight that the augments of the gain reduces the electrical
response bandwidth of the PD and, consequently, this may reduce the achievable data
rate of the VLC link.

5.2.1 Performance evaluation of a direct transmission scenario

The complete hardware integration results were measured in a room, where the LED
was placed in a fixed position in one extreme of the room, while the PD was arranged
on a movable table to give flexibility in the selection of the separation from the trans-
mitter. The measurements were carried out by sending N = 10 000 frames between
computers in each transmission. For every distance, the BLER and ARQ protocols
with different sliding window sizes were tested.

FIGURE 5.3: Overview and picture of complete hardware integration
with the LED and PD in the loop.

In Fig. 5.3, it is possible to see the designed system. The feedback link between the
receiver desktop computer and the transmitter desktop computer was finally imple-
mented with the aid of a UDP cable to ensure the correct reception of the signalling
frames. The option to implement another optical wireless link (possible on infrared)
link for the feedback communication was discarded because, if a blockage occurs, the
two links are compromised and the ARQ protocol would become unreliable. Note
that this is the reason why, in a practical system implementation, it would be recom-
mended to use another communication media, such low-power radio standards like
Bluetooth or ZigBee for the feedback link.

The procedure followed in the measurements started studying the figure of merits
with short distances and small gains in the PD. After that, the distance started to in-
crease gradually until the communication became unfeasible. At this point, the gain at
reception was increased by 10 dB and the process was continued, until the maximum
gain of 30 dB in the PD was achieved. With the collected results, different figures of
merits have been obtained.

36 Chapter 5. Integration and evaluation

FIGURE 5.4: Eb/N0 (left-hand side of the picture) and BLER (right-hand
side of the picture) for the 2-PAM. These curves were obtained with

different PD gains in comparison with the distances.

FIGURE 5.5: BLER curves compared with the calculated Eb/N0 for 2-
PAM depending on the distance with different PD gains.

Fig. 5.4 shows the behaviour of the Eb/N0 and the BLER for different distances.
In the right-hand side picture, the BLER that was obtained was acceptable for all the
possible PD gains when the distances were less than 10 meters. However, with the in-
crease of 0.4 meters in each new measurement, the value grew asymptotically, making
a very clear distance threshold for every PD gain. Also, in the left-hand side of the Fig
5.4, it is possible to appreciate an increment of approximately 10 dB for every time the
PD gain was changed.
In Fig. 5.5, the same behaviour can be observed. That is, for a low Eb/N0 values, the
BLER easily goes higher than expected and the transmission is unfeasible. However,
with the increase of the Eb/N0 (i.e., decrease of distance), there is a clear separation
distance breakpoint after which the transmission behaves correctly.

5.2. LED/PD in the loop 37

In the same experiments, the total time of the transmission was measured for dif-
ferent sliding windows sizes. In the Table 5.1, the utilization of the channel has been
calculated and compared with the theoretical presented in (4.1).

Window size LED/PD LED/PD Theoretical
Total time (s.) Efficiency (U) Efficiency (U)

1 140.92 0.042 0.056
2 75.04 0.079 0.083
5 61.58 0.096 0.119
10 55.80 0.106 0.139
100 53.13 0.111 0.163

TABLE 5.1: Measured times and calculated channel utilization (U) for a
different sliding windows sizes.

Note that, in the first increments of the sliding window size, the total time and the
efficiency are significantly improved (i.e., the total time is reduced in half at w = 2).
However, if the windows continues increasing, the improvement in every step be-
comes less noticeable.
Another thing to highlight is the poor impact of the sliding windows size for this sys-
tem; for example, by increasing the window size 100 times a maximum efficiency of
U = 0.111 can be obtained. This is due to the processing time in reception. To avoid
an overload, the transmitter needs to wait a long time period to send the following
frames and, consequently, the channel is unused most of the time.

Finally, in the process of these experiments, some values have been adjusted or
further improved for better performance. Notice that, the propagation time Tprop, has
been modified to be more in line with the reality of this direct light transmissions.

Symbol Parameter Value Unit
Tproc0

First frame processing time 14 ms
Tproc Non-first frame processing time 5 ms
Ttx Frame transmission time 0.8 ms
Tprop Propagation time 1 µs
Rb Sample rate 1 Mbps
w Sliding window size 1, 2, 5, 10
TO1 ARQ protocol Timeout (w = 1) 25 ms
TOw ARQ protocol Timeout (w > 1) (w− 1)Tproc + TOw1 ms

TABLE 5.2: Overview of all the measured and selected values for all the
integration experiments.

Table 5.2 summarizes the used equation for the timeout in the Stop-and-Wait (w =
1) and the Go-Back-N modified (w > 1) protocols. In the case of Stop-and-Wait ARQ
protocol, the total timeout was fixed TO1 = 25 ms. However, with the increase of the
sliding window size, all the frames in a window took a longer time to arrive, although
the total transmission and the frame mean time were lower. This is the reason why
the timeout implements an equation to calculate the required time depending on the
sliding window size.

38 Chapter 5. Integration and evaluation

5.2.2 VLC-based indoor monitoring experiment

Other application for the VLC transmissions is the monitoring of the environment.
In many buildings where LEDs are already installed, the infrastructure could be ex-
ploited to implement transmissions for monitoring through the light.
With the help of the ARQ protocol, the time an obstacle is blocking the light beam can
be measured. Recollecting this information for many events, it may be possible to find
patterns for each one of them, knowing when a person pass by walking or running.
Using this same principle, it could also be sensed when two persons pass by the light
beam at the same time. It would also be possible to detect the direction in which the
moving persons are crossing [12].

The last part of this MSc Thesis was focused in collecting information for different
events. A circuit has been designed, where a person crosses the light beam walking,
running or walking jointly with another person.

FIGURE 5.6: Overview and picture of the hardware integration for
monitoring measurements. A person cross the light beams between the

mirror, the LED and the PD.

As it is shown in Fig. 5.6, the experimental layout was implemented with a mirror.
The first beam exit from the LED and was reflected in the mirror towards the PD. The
intention was to analyse the behaviour of the system when the light is reflected by
a mirror and also, to have two beams of light to pass through. Considering that the
person always crosses the two beams depending on its velocity, the time gap between
the two blockages is different.
It is necessary to highlight that, in these experiments, the timeout at the transmitter
side was very related to the resolution of the results. When a blockage occurred, the
timeout was able to control how long the system had to wait until the frame was
transmitted again. When the timeout was high, the retries took longer and the col-
lected information was lower. In these gaps between retransmissions, the person was
moving between beams, releasing one beam and blocking the other. Because of that,
it had to adjust as much as possible to match the frame plus ACK time.

5.2. LED/PD in the loop 39

FIGURE 5.7: Time-to-ACK when the light beam between the LED-
mirror and the mirror-PD is blocked by different events. Walking (left-
panel), running (centre-panel), and two-people walking (right-panel).

Fig. 5.7summarizes the different time-to-ACK that were obtained in the monitored
events. The peaks in the figures corresponds to the time frames that were not able to
be received correctly due to blockages. When finally the obstacle stopped blocking the
corresponding beam, the retransmitted frame arrived correctly and the transmission
flow was able to be continued smoothly. In the experiments, the person crossed the
two beams, waited approximately for ten seconds, and returned to its started point
again in the reverse direction. This routine is repeated twice for each experiment,
giving as result that the same beam is crossed four times.
The patterns between the three figures can be perfectly seen. In the second figure,
when a person crosses running, it is possible to appreciate a lower time of blockage,
as the peaks are smaller. Also, a lower time gap between the two consecutive beams
can be appreciated in this situation. In the last figure, two persons have cross the
beam together, making a bigger obstacle and, consequently, increasing the time for
the blocked frame to be properly received.

41

Chapter 6

Conclusions

The use of ARQ protocols is very helpful in VLC to prevent data loss due to the chan-
nel blockages. These unexpected obstructions, that are likely to happen in a VLC link,
cause the loss of synchronization due to that, the receiver needs to spend time re-
sources to recover from this loss of timing. To solve this problem, a hybrid system that
uses the wide-area coverage of 4G or 5G synchronization signals may be used, helping
in the areas where VLC has disadvantages.

On other hand, the advantage of VLC to be used in an existing infrastructure using
LEDs may solve some blockages problems. For example, when a full-blockage event
takes place, the ARQ protocol notifies it to the transmitter, and this may decide to use
another LED in the room as an alternative point of transmission [5].
This so-called Joint Transmission Coordinated Multi-Point scheme represents an al-
ternative to the Hybrid-ARQ protocols used nowadays for radio communications. In
these protocols, when a frame is erroneous, it is sent with an error control coding with
variable code rate (redundancy) to ensure its correct reception. As it has been studied,
when an object blocks the light beam the SNR asymptotically decreases turning the
channel useless. Therefore, these hybrid protocols are not suitable for VLC schemes
but, the ARQ signalling that is generated in such circumstance can be used to trigger
the process of finding an alternative transmission point.

Another element to note in experiments that were carried out, is the lower impact
of the Go-Back-N ARQ protocol. Usually, the sliding window of ARQ protocols are
implemented in environments where the propagation time is high, helping to fill the
gaps when the information is travelling. In the VLC transmissions, this time is short,
and the optimum sliding window is close to one.
Finally, the monitoring measurements carried out in the last chapter of the MSc Thesis
have become an interesting topic of study, which paved the way for the writing on a
conference paper [12], which has been submitted for evaluation to the Global Com-
munications Conference, which will be held in Madrid in Dec. 2021.

As a future line of research, it is interesting to note that further studies are required
in the field of VLC monitoring. With a higher resolution system, the events between
the beam of light can be more easily determined. If a lot of information is extracted
from these events, an Artificial Intelligence (AI) system may be capable to read them
and find additional patterns. At some point, it may be able to find elements to identify
the gait of each person and, therefore, identify the person crossing the beam.

43

Bibliography

[1] W. Jiang, B. Han, M. Habibi, and H. Schotten, “The road towards 6G: A compre-
hensive survey,” IEEE Open Journal Communications Society, vol. 2, pp. 334–366,
Feb. 2021.

[2] P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G wireless communications: Vision and
potential techniques,” IEEE Network, vol. 33, pp. 70–75, Jul./Aug. 2019.

[3] A. S. Cacciapuoti, K. Sankhe, M. Caleffi, and K. R. Chowdhury, “Beyond 5G:
THz-based medium access protocol for mobile heterogeneous networks,” IEEE
Communications Magazine, vol. 56, pp. 110–115, Jun. 2018.

[4] N. Chi, Y. Zhou, Y. Wei, and F. Hu, “Visible light communication in 6G,” IEEE
Vehicular Technology Magazine, vol. 15, pp. 93–102, Dec. 2020.

[5] A. A. Dowhuszko and A. I. Pérez-Neira, “Achievable data rate of coordinated
multi-point transmission for visible light communications,” 2017 IEEE 28th An-
nual International Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), pp. 1–7, 2017.

[6] ESA / AOES Medialab, “The electromagnetic spectrum,” https://sci.esa.int/s/
8OQPZpw, 2012.

[7] M. C., . Zou, L. Zhang, and N. Chi, “Demonstration of a 2.34 Gbit/s real-time
single silicon-substrate blue led-based underwater vlc system,” IEEE Photonics
Journal, vol. 12, pp. 1–12, Feb. 2020.

[8] P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou, and
W. Popoola, “Visible light communications: 170 Mb/s using an artificial neu-
ral network equalizer in a low bandwidth white light configuration,” Journal of
Lightwave Technology, vol. 32, pp. 1807–1813, May. 2021.

[9] S. Singh, G. Kakamanshadi, and S. Gupta, “Visible light communication-an
emerging wireless communication technology,” 2015 2nd International Conference
on Recent Advances in Engineering Computational Sciences (RAECS), pp. 1–3, 2015.

[10] C.-M. Lee, P.-H. Chen, and Z.-A. Chen, “Visible light communication system with
arq applied to smart mobile device,” 2017 International Conference on Applied Sys-
tem Innovation (ICASI), pp. 280–283, 2017.

[11] H. Yang, W. Zhong, C. Chen, and A. Alphones, “Integration of visible light com-
munication and positioning within 5G networks for internet of things,” IEEE Net-
work, vol. 34, pp. 134–140, Sept. 2020.

[12] J. Bas, J. A. Ortega, M. Busquets, and A. Dowhuszko, “Indoor monitoring system
based on ARQ signaling generated by a visible light communication link,” IEEE
Global Communications Conference, vol. 1, pp. 1–6, Dec. 2021. Under evaluation.

[13] X. Li, A. Gani, R. Salleh, and O. Zakaria, “The future of mobile wireless commu-
nication networks,” International Conference on Communication Software and Net-
works, vol. 1, pp. 554–557, Feb. 2009.

https://sci.esa.int/s/8OQPZpw
https://sci.esa.int/s/8OQPZpw

44 BIBLIOGRAPHY

[14] I. O. for Standardization, “IEEE International Standard for Information technol-
ogy – Telecommunications and information exchange between systems – Local
and metropolitan area networks – Specific requirements – Part 2: Logical Link
Control,” ISO/IEC 8802-2:1998 ANSI/IEEE Std 802.2, 1998 edition (Incorporating
ANSI/IEEE Stds 802.2c-1997, 802.2f-1997, and 802.2h-1997), pp. 1–256, 1998.

[15] O. Hasan and S. Tahar, “Performance analysis and functional verification of the
stop-and-wait protocol in hol,” Journal of Automated Reasoning, vol. 1, pp. 1–33,
Sept. 2008.

[16] E. G. Varthisa and D. I. Fotiadis, “A comparison of stop-and-wait and go-back-n
arq schemes for ieee 802.11e wireless infrared networks,” Computer Communica-
tions, vol. 1, pp. 1015–1025, Jul. 2005.

[17] Gnuradio community, “GNU Radio,” https://gnuradio.org, 2001.

[18] J. A. Ortega, “Design and practical evaluation of an led driver circuit for a
software-defined visible light communication system,” Master’s thesis, Univer-
sitat Politècnica de Catalunya, 2021.

[19] PDA8A Operating Manual - Silicon Amplified Detector, ThorLabs, 12 2018, rev B.

[20] PDA36A(-EC) Si Switchable Gain Detector, ThorLabs, 7 2017, rev E.

https://gnuradio.org

45

Appendix A

Contributions

As the outcome of this project, in collaboration with the supervisors of this MSc Thesis,
the following paper has been submitted to the IEEE Global Communications Confer-
ence, 2021.

J. Bas, J. A. Ortega, M. Busquets, and A. Dowhuszko, "Indoor monitoring system
based on ARQ signaling generated by a visible light communication link", IEEE Global
Communications Conference, pp. 1–6, Dec. 2021. Under evaluation.

Indoor monitoring system based on ARQ signaling
generated by a Visible Light Communication link

Joan Bas∗, Jose Antonio Ortega †, Martı́ Busquets†, and Alexis A. Dowhuszko‡
∗Centre Tecnológic de Telecomunicacions de Catalunya (CTTC/CERCA), 08860 Castelldefels, Spain

†Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain
‡Department of Communications and Networking, Aalto University, 02150 Espoo, Finland

Email: joan.bas@cttc.es; {jose.antonio.ortega,marti.busquets}@estudiantat.upc.edu; alexis.dowhuszko@aalto.fi

Abstract—Visible Light Communications (VLC) is a candidate
technology that complements the benefits of radio communication
networks, particularly in those situations where a low-cost solu-
tion using license-free spectrum is required to enable ultra-dense
deployments of small cells indoors. However, the main drawback
that VLC has when compared to wireless communications on RF
bands is that, in presence of obstacles between the transmitter
and the receiver, full-blockage events are likely to happen as the
power received on higher-order reflections is much weaker than
the power of the blocked line-of-sight link. In this paper, we take
advantage of this phenomenon and study the effect that different
activities performed by people in the service area to-be-monitored
have on the Automatic Repeat Request (ARQ) signaling of the
VLC link. Based on the presented experimental studies, it is
possible to conclude that different relevant events are able to be
detected correctly according to the statistics of the ARQ signaling
that is collected from the ongoing VLC transmission.

Index Terms—Visible Light Communications; Automatic Re-
peat Request; Indoor sensing; Activity recognition; Software-
defined demonstration; Line-of-sight blockage.

I. INTRODUCTION

Visible Light Communication (VLC) systems encode data
into fast changes on the intensity of a visible light source,
which are imperceptible to the human eye. Unlike conventional
Radio Frequency (RF)-based wireless systems that require
advanced digital signal processing, particularly when using
Millimeter-Wave (5G) and Tera-Hertz (6G) RF bands [1], a
VLC system utilizes low-cost, mass-produced, energy-efficient
LEDs as transmitter [2]. At the receiver side, a VLC system
relies on a Photodetector (PD) that senses the changes on
the intensity of the light signal to estimate the data symbols
that were transmitted. Apart from data communication and
illumination services [3], VLC technology can also be used to
monitor the status of the indoor environment by sensing the
effect that people create on the received optical signal [4].

Nowadays, there is a wide range of technologies that could
be used to monitor the status of an indoor environment.
Apart from well-known camera based-surveillance systems
and infrared sensors, there are also RF-based solutions that
take advantage of the ubiquitous availability of Wi-Fi and
4G/5G nodes to sense the variations that the RF signals
experience during propagation [5]. Most of these RF-based
solutions require a wireless-enabled device on the target object
to perform active monitoring, but there are also radio commu-
nication systems that carry out a passive sensing of the effect

that moving obstacles (like people) create on the Received
Signal Strength Indicator (RSSI) and/or Channel State Infor-
mation (CSI) of an ongoing wireless data transmission [6]. We
note that both RSSI and CSI signaling belong to the PHY-
layer of the wireless communication standard and that, so far,
no passive monitoring solution has studied in detail the effect
that people’s activities create on the Data Link-layer signaling
of an active wireless link (e.g., ARQ messages and events).

Automatic Repeat Request (ARQ) is an error control mech-
anism that wireless communication systems use to ensure the
delivery of packetized data in the correct sequence. In an ARQ
scheme, Cyclic Redundancy Check (CRC) is used to detect
whether the received packet is in error or not. Therefore, when
the Signal-to-Noise-plus-Interference power Ratio (SNIR) of
the wireless link falls below the sensitivity threshold of the
terminal, the payload of the received packet will be likely
corrupted (even after forward error correction decoding). In
this situation, a Negative Acknowledgment (NACK) is feed-
back to the transmitter, and the re-transmission of the wrongly
received packet is scheduled. If the transmitter does not receive
a positive Acknowledgement (ACK) before the time-out timer
expires, the packet is also re-transmitted [7]. ARQ is used
by the MAC protocol of Wi-Fi to detect collisions in the
contention-based (shared) radio channel, and can be combined
with forward error correction coding of variable rates to max-
imize the chances of a reliable communication when multiple
re-transmissions are triggered due to deep fading and/or strong
interference events in mobile networks (4G/5G) [8]. Note that
when the frequency of the wireless carrier moves beyond RF
bands into the VLC bands, the presence of full-blockage events
become more likely, and the ARQ signaling can also be used
for indoor monitoring purposes.

In this paper, we study the effect that different people’s
activities create on the ARQ signaling of an ongoing VLC data
link. In the experimental setting, a Phosphor Converted LED
and a silicon PIN-based PD were used in the VLC transmitter
and receiver, respectively. Both LED and PD were pointing
to a large white wall, resembling the indirect illumination
scenario presented in [9]. When people passed by the (direct)
LED-wall link and (indirect) wall-PD link at different paces,
a different pattern of ARQ signaling (i.e., ACKs, NACKs, and
time-outs) was generated. These representative ARQ signaling
patterns were studied in detail for different people’s activities,

Fig. 1: Overview of the VLC link based on single-carrier M -PAM
symbols and a Stop-and-Wait ARQ scheme. The statistics of the
ACKs, NACKs, and time-out events in the transmitter are used to
identify the presence of people carrying out different activities.

showing notable variations that pave the way for using this
information to train advanced machine learning classifiers.

The rest of this paper is organized as follows: Section II
explains the software-defined VLC system that was imple-
mented, whereas Section III provides the details of the ARQ
signaling scheme and the geometry of the different people’s
activity recognition problems that we aim to solve. Section IV
explains the demonstration setting and carries out the analysis
of the ARQ signaling that was collected on the different
experiments. Finally, conclusions are drawn in Section V.

II. IMPLEMENTATION DETAILS OF THE VLC LINK

The block diagram of the software-defined VLC link that
was implemented to collect the ARQ signalling is shown in
Fig. 1. It consists of a software-defined single-carrier M -PAM
transmitter that generates a real-valued baseband signal, one
LED driver that adapts the output voltage of the USRP to
the input current of an LED array with 7 LUXEON Rebel
Plus LXML-PWC1-0100 (cool-white) white LEDs [10], and
a Thorlabs PDA100A2 detector with switchable gain Tran-
simpedance Amplifier (TIA) [11] that interfaces the (weak)
current coming from the silicon PIN diode to the input voltage
that the USRP needs to obtain the received signal samples.

A. Signal processing in the VLC transmitter and receiver

The VLC transmitter divides the input byte stream into pay-
load packets of length Lpl bytes. After that, a known preamble
sequence of length Lp bytes is added at the beginning, and
CRC of length Lcrc bytes is computed (based on the payload
bytes) and appended after the payload. Finally, a guard band of
Lg bytes is also added at the end of the packet to guarantee a
minimum separation between consecutive packets (see Fig. 2)

The bytes of each VLC packet are divided into symbols
and, after that, each of them are first mapped into points
of an M -PAM constellation. Then, samples are pulse-shaped
using a Square-Root Raised-Cosine (SRRC) filter. Finally, the
signal is sent to the LED driver, which interfaces the output
of the USRP to the electric current that is needed to control
accordingly the intensity of the light emitted by the LED array.

The optical signal that reaches the sensitive area of the
PD generates a current that, after being amplified by the

Fig. 2: Overview of the frame structure that was implemented in
the software-defined VLC system that relies on the collected ARQ
signaling to monitor the status of the indoor environment. The length
of the frame fields is in bytes.

TIA, is sampled at a regular sampling time Ts. These signal
samples go first through a SRRC matched-filter with the
same roll-off factor used in the pulse-shaping filter of the
VLC transmitter. Afterwards, the energy of the received signal
samples is computed to identify whether there is an ongoing
transmission or not, due to the bursty data traffic pattern
that the implementation of an ARQ scheme generates at the
PHY-layer. Therefore, when the energy of the received signal
samples is higher than a pre-defined threshold, the most likely
position of the preamble is estimated from the received sample
sequence. After the position of the preamble is detected, the
received signal samples that correspond to the payload and
CRC of the VLC frame are demodulated. Finally, the CRC
for the received payload bytes is computed and compared with
the received CRC bytes, to check whether the received packet
is corrupted or not. Note that when implementing an ARQ
sheme, the outcome of this CRC verification process is used
to issue ACKs (or NACKs) to inform to the transmitter that
the current data packet was properly received (or not).

B. Modelling the elements of the VLC channel

An LED is composed of a PN junction which, after the
application of a forward voltage, experiences a reduction on
the potential barrier of the junction such that the movement of
injected minority carriers (i.e., electrons and holes) is induced.
This movement results in electron-hole recombination events
which emit photons centered on different wavelengths accord-
ing to the specific semiconductor materials that were used to
manufacture the LED chip.

There are different LED technologies that could be used to
generate white light with various Correlated Color Tempera-
tures (CCTs) and suitable illuminance (or luxes) for different
indoor environments. In this paper, we consider the Phosphor-
Converted (PC) white LED technology due to the low-cost,
implementation simplicity, and good ability that it has to
render colors accurately [9]. As shown in Fig. 3a, a PC-LED
consists of a Blue-Chip and a Yellow-phosphor layer, whose
interaction generates white light with a CCT that depends on
the balance between the blue and yellow light is emitted [3].

In order to model the electrical response of an LED, it is
necessary to find an equivalent DC model that attains the form
of the well-known Shockley equation, i.e.,

Id = Is

[
exp

(
Vd
N Vt

)
− 1

]
, (1)

Fig. 3: a) The CCT of the white light emitted by a PC-LED depends on
the photons coming from the Blue Chip and Yellow-phosphor layer.
b) Equivalent small-signal circuit of a commercial LED used to model
its frequency response. Here, Rs, Cd, and rd are the series resistance,
diffusion capacitance, and diffusion resistance, respectively.

where Vd is the voltage on the PN junction, N is the parameter
known as the emission coefficient, Vt = 25.8 mV is the typical
thermal voltage at a room temperature of 300 K, and Is is the
reverse current of the LED.

The DC constant signal model of an LED consists of a
series resistance Rs and a diffusion capacitance Cd, which take
different values according to the forward biasing conditions
that are set. In order to determine these values, some of the
parameters of the Shockley equation are needed to match the
voltage and current pairs that are measured from the LED elec-
trical response. In order to determine the emission coefficient
N and the the reverse current Is of a given LED sample under
analysis, we use curve fitting methods to minimize the Mean
Square Error (MSE) between measured (Vled,Iled) pairs with
the ones predicted in (1). For further information about the
details of this process, please refer to [12].

On the other hand, in order to study the AC response of the
LED at different electrical frequencies, the small-signal model
should be considered instead. For this purpose, the diffusion
capacitance Cd and resistance rd of the LED should be
determined, such that the measured frequency response in the
electrical domain can accurately match the one approximated
by the equivalent circuit in Fig. 3b.

To carry out the practical validation of VLC-based moni-
toring system using ARQ signaling, an ad hoc LED driver (or
VLC transmitter front-end) was designed and implemented to
interface the voltage signal that comes from the USRP to the
current that modulates the intensity of the light emitted by
the PC-LEDs. The LED driver was designed to maximize the
excursion of the output AC signal at different DC-bias levels,
maximizing as much as possible the bandwidth of the input
signal (i.e., the cutoff frequency at 3 dB). The LED driver was
based on a high-power MOSFET transistor, and included a
pre-emphasis circuit that aimed at compensating the strong
attenuation that the high-frequency components of the data-
carrying signal experience due to the low-pass response of
the Yellow-phosphor layer of the PC-LED. Fig. 4 shows the
electrical response of the LED driver (red lines), as well as

Fig. 4: Frequency response of the LED driver when connected to seven
PC-LEDs at 100 mA of DC current. Red lines: Electrical response
(iled vs. vin). Blue lines: Optical response (vpd vs. vin). Solid lines:
Measured values. Dashed lines: Polynomial approximation. Cutoff
frequencies at 3 dB are shown for electrical and optical responses.

the optical response (blue lines) that includes the low-pass
response of the yellow phosphor (measured at the PD output).

III. VLC-BASED MONITORING USING ARQ SIGNALING

When compared to RF communications, VLC systems
suffer from more notable line-of-sight blockage when an
obstacle (such as a person) is placed between the transmitter
and receiver. According to the pace that this person takes
when moving across the VLC services area, different ARQ
signaling profiles will be generated. In this section, we first
give the details of the ARQ scheme that was implemented.
After that, we present the geometry of the sensing problem
that was considered, which justifies the ARQ statistics that
were collected when a person performed different activities.

A. Principles of Stop-and-Wait ARQ

Though different types of ARQ can be found in the litera-
ture, the most popular ones are the Stop-and-Wait ARQ, the
Go-Back-N ARQ, and Selective Repeat ARQ. In this paper we
focus on the Stop-and-Wait scheme, the most basic form of an
ARQ protocol, which transmits one data block at a time and
waits until a positive (ACK) or negative (NACK) confirmation
of the reception of the data packet is signaled to the transmitter.

When the ARQ signaling is received by the transmitter,
there are three possible scenarios: (a) The frame was success-
fully received with no errors (ACK), so the transmitter can
send the following data block; (b) The data block that was
received had errors (NACK), so the transmitter must re-send
the same data block that was hold in a buffer, aiming at having
better luck in the new attempt; (c) The data packet is never
detected at the intended receiver and, due to that, the (N)ACK
is never issued. To solve this problem, the Stop-and-Wait ARQ
scheme implements a waiting time period known as time-out,
giving enough time to receive the (N)ACK signaling under

Fig. 5: Transmission time (time-to-ACK) for different data frames
when the VLC link implements the Stop-and-Wait ARQ. ACKs are
plotted in green dashed-dotted lines, whereas NACKs and time-outs
are shown with red dotted and blue continuous lines, respectively.

normal working conditions. If the (N)ACK confirmation is not
received before the time-out timer expires, the data block is
considered lost, and a re-transmission process is triggered.

We note that in presence of a normal working conditions,
where no obstacle is placed between the VLC transmitter and
receiver, ACKs are mainly received. However, in presence of
a partial VLC link blockage, the SINR of the received signal
will be reduced, and NACKs will start to appear according the
probability of bit error that the VLC link has. Finally, in case
of full-blockage, the preamble of the VLC frame will not be
detected and, due to that, no (N)ACKs will be issued by the
receiver; in this situation, the time-out timer of the transmitter
will expire continuously until the VLC link can be recovered.
This effect can be visualized in the central part of Fig. 5,
where blue lines show the presence of time-out events during
the whole duration of the full-blockage event.

B. Geometry of the Indoor Monitoring based on ARQ

As it has been previously stated, communications based on
light suffer from blockage in presence of obstacles between
the transmitter and the receiver. This fact causes a deep fading
to the transmitted frames making difficult their detection at
the receiver side. This initial inconvenient is an advantage for
monitoring a point-to-point link. Specifically, it is measured
the variations in the time-out of ARQ to determine: i) if it has
cut the link a person or two, ii) the direction of walking, and
iii) if the person is walking or running when it cuts the link.
Toward this regard, the scenario for monitoring consists on
an indirect communication from a LED to a Photodetector
through a wall (See Fig. 6). The LED and Photodetector
are rotated an angle θLED and θPD respectively. They are
separated from the wall a distance of y, and between them x
m. The LED has a exposition angle ψ that focus the light from
the LED to the wall in these angular region. On the contrary,
the reflection of the light from the wall to the Photodetector
is diffuse. That means that the angle in which the light is
reflected from the wall does not match with its incident one.

Fig. 6: VLC link geometry for ARQ indoor monitoring. θled and
θpd represent the rotation angles of the LED and Photodetector
respectively, whereas Ψ is the aperture emission angle of the LED.

As a result, the size of the second link (i.e. from the wall
to the Photodetector) it is expected to be much larger than
the first one (i.e. from the LED to the wall). To determine
the blocking region of these two links, denoted as ∆xk, we
have moved a panel from outside of the two links to their
center until the VLC receiver does not detect any transmitted
data. Thus, if the time-out duration is denoted as Tout and
the average speed in which it is cut the k-th link is vk, then
the expected number of time-outs of the k-th, NTout,k, link
will be: NTout,k=∆xk/(Tout · vk) being the index k equal to
one, i.e. k = 1, for the link between the LED and the wall,
and two, i.e., k = 2, for the link between the wall and the
Photodetector. Next, it is possible to define the ratio between
the number of time-outs of both links, denoted as ζ, as ζ =
NTout,2/NTout,1.

This relationship will indicate if its possible to detect the
direction, number of persons that cut a link or if the person
moves low or fast when cuts the link for a particular setting
of the scenario (See Fig. 6). If the value of ζ is close to one,
then the time-outs of both links will be quite similar. In this
case, it will not be possible to infer any conclusions from
them. On the contrary, it will permit us to monitor the link by
means of VLC technology. However, the value of ζ depends
on several parameters such as the distance of the panel to the
LED and Photodetector, the cutting speed in both link (i.e. it
could be different), the exposition angle of the LED, and if
the Photodetector use lens or not to name a few of them. As
a result, it has been considered the number of time-outs as a
random variable, which can be characterized by a probability
density function. Then, the conditional probabilities of the
number of time-outs, NTout,k, will be equated as:

p(NTout |NTout,k) = f(NTout,k,Φ) (2)

being Φ, the parameters that define the number of time-outs of
the link k-th. Then, if dNTout

, represents the decision frontier
of the number of time-outs of the two links, then the error
probability in choosing the link wall-Photodetector (link 2)
instead of the link LED-wall (link 1) is:

p(l2|NTout
= NTout,1) =

∫ ∞

dNTout

p(NTout
|NTout,1)dNTout

(3)

(a) Illuminated area of the LED over the wall for an
exposition angle of ψ = 12 deg.

(b) Illuminated area of the LED over the wall for an
exposition angle of ψ = 50 deg.

(c) Illuminated area of the LED over the wall for an
exposition angle of ψ = 120 deg.

Fig. 7: Illuminated area of the LED over the wall when its exposition angles are : ψ = {12,50,120} deg.

where in (3) has been assumed that the number of time-outs of
link wall-Photodetector is much larger than the corresponding
ones for the link LED-wall. Similarly the error probability for
choosing the link 1 instead of the link 2 will be:

p(l1|NTout = NTout,2) =

∫ dNTout

0

p(NTout |NTout,2)dNTout

(4)
Finally, after introducing the VLC based monitoring sys-

tems, the next section details the obtained experimental results.

IV. EXPERIMENTAL RESULTS

This section presents the practical results that have been ob-
tained. Initially, it is explained the settings of the experimental
tests and next the performance of the obtained practical results.

A. Setting

Table I summarizes space and temporal metrics using in
the VLC system for indoor monitoring. The rotation angle
of the LED and Photodetector are θLD−wall=60 deg. and
θwall−PD=45 deg. Regarding the exposition angle of the LED,
Fig. 7 shows the illuminated are at the wall when the ex-
position angle is ψ ∈ [12,50,120] deg. From all of them we
have considered the exposition angle of the LED is ψ=50 deg.
since for this configuration the blockage distances from the
center of the LED-wall and wall-PD links are quite different.
Toward this regard, Table II shows such blockage distance
when the panel is separated at ∆y ∈ [28.5,38.5,48.5,58.5]
cm from the LED and Photodetector (See section III-B). Note
that the larger the separation distance from the panel to the
LED/Photodetector, ∆y, the greater the blockage distance,
denoted as ∆x. Furthermore the blockage distance of the link
between the wall to Photodetector is much bigger that the
corresponding one for the link between the LED and wall. As
a result, if the velocity in which it is cut the two links does not
vary too much, it will be possible to infer valid conclusions
about the implemented activities from the number of ARQ’s
time-outs and/or NACKs.

Finally, after introducing the settings of the VLC indoor
sensing communication system, the following section shows
the main performance results in activity monitoring from ARQ
patterns.

TABLE I: Parameters of the VLC experimentation scenario and numerology
of the single-carrier M -PAM frame.

Symbol VLC Link Parameter Value Unit
dled-wall Distance LED to wall 1 m
dwall-pd Distance wall to Photodetector 1 m
dled-pd Distance between LED and Photodetector 2.5 m
fs USPR sampling rate 1× 106 Sa/s
TF Frame durationn 0.576 ms
Tout Time-out duration 25 ms

TABLE II: Blockage distance to the centers of LED-wall and wall-PD links,
including their ratio for different separations. Distances are in centimeters
(cm). The aperture angle of the LED emission is ψ = 50 deg.

Distance Blockage Distance Blockage Distance Ratio
Panel, ∆y Link LED-wall, ∆x1 Link wall-PD, ∆x2 ζ

28.5 6.2 15.5 2.5
38.5 9 24.5 2.72
48.5 10.5 33 3.14
58.5 11.5 35 3.04

B. Performance analysis

This section shows the results in activity monitoring from
ARQ signaling. Specifically, it has been monitoring the fol-
lowing use cases from ARQ pattern: i) a person cuts the links
between the LED-wall and wall-PD walking, ii) a person cuts
the two links running, iii) a person with crutches cuts the
links walking, and iv) two people cuts the two links walking.
Towards this regard, Fig. 8 shows their corresponding time-
to-ACK. From there it is possible to distinguish the four ARQ
use cases. Specifically, if a person walks then the duration of
his/her time-to-ACK augments respect its running case (See
Fig. 8a and 8b). For the cases of a person with crutches and
two persons walking (See Fig. 8c and 8d), the time-to-ACK
increases notably respect to the other two cases. However, the
pattern of their time-to-ACK is quite different since the speed
of the person with crushes trend to be much more irregular
than in the case of two persons. Next, Fig. 9 shows the CDF
of the number of time-outs, Nto, and NACKs, Nnacks, when
a person cuts the links LED-wall and wall-PD walking. From
there it is possible to obtain several conclusions. Firstly, the
number of time-outs of the link between the LED and wall
is lower than the corresponding one from the link between
the wall and Photodetector. Nevertheless, if it is measured the
number of NACKs, it happens just the opposite. The reason
of that is because the blocking region of the first link is much
lower than the second one (See Table II). Consequently, it is
expected that the dominant blockage effect for the first link

Fig. 8: Time-to-ACK when the links between the LED-wall and wall-
PD are cut by (a) a person walking, (b) running, (c) a person walking
with crutches, and (d) two person walking

will be full-blockage, whereas in the second one, the dominant
one will be the partial-blockage. In practical terms, it means
that in the full-blockage case the VLC receiver is not able
to detect the preamble sequence. Then, the transmitter does
not obtain any feedback from the VLC receiver and time-out
signaling is activated. On the contrary, in the partial-blockage,
the receiver is able to detect the preamble. However, the
attenuation is so high that some received symbols may be
incorrectly demapped. In this situation the receiver activates
the NACK procedure to inform the VLC transmitter that the
frame has been incorrectly received. Note that in both cases
the frames are re-transmitted but the concept for which they
are re-transmitted is different. By doing so, it can be used
the signalling of ARQ to determine the monitored activity’s
direction.

Another interesting result is that the distance between
the CDFs of the number of time-outs for the two links is
much larger than their corresponding CDF for the number of
NACKs. So, it means that there will be less error probability
in classifying the activity when it is measured the number of
time-outs instead of the number of NACKs.

V. CONCLUSIONS

This paper studied the effect that different people’s activ-
ities generates on the ARQ signaling of an ongoing VLC
transmission. The geometry of the scenario consists on an
indirect communication between a LED and Photodetector
through a wall. As a result, the dominant blockage effect
that experiments both links is different. In the first link the
dominant blockage is the full-blockage whereas in the second
one the most important one is the partial-blockage. Thus, the
concept for which the frames are re-transmitted is different.
By doing so, it is possible to detect if a person or two cuts
the links, if they walk or run, if they bring or not crutches and
the link that has been cut. The obtained results pave the way
for deriving future machine learning algorithms that improve
the classification of the different activities.

Fig. 9: CDF of the time-outs and NACKs for the link LED-wall and
wall-Photodetector

REFERENCES

[1] W. Jiang, B. Han, M. Habibi, and H. Schotten, “The road towards 6G:
A comprehensive survey,” IEEE Open J. Commun. Society, vol. 2, pp.
334–366, Feb. 2021.

[2] D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based
indoor visible light communications: State of the Art,” IEEE Commun.
Surv. & Tut., vol. 17, no. 3, pp. 1649–1678, 3Q 2015.

[3] A. Dowhuszko, M. Ilter, and J. Hämäläinen, “Visible light communica-
tion system in presence of indirect lighting and illumination constraints,”
in Proc. IEEE Int. Conf. Commun., June 2020, pp. 1–6.

[4] ——, “Visible light communications for indoor monitoring
(VLADIMIR),” Public deliverable of ATTRACT final conference,
pp. 1–5, Sept. 2020, [Online]. Available: https://attract-eu.com/wp-
content/uploads/2019/05/VLADIMIR.pdf.

[5] F. Zafari, A. Gkelias, and K. Leung, “A survey of indoor localization
systems and technologies,” IEEE Commun. Surv. Tut., vol. 21, no. 3, pp.
2568–2599, Apr. 2019.

[6] S. Yousefi, H. Narui, S. Dayal, S. Ermon, and S. Valaee, “A survey
on behavior recognition using WiFi channel state information,” IEEE
Commun. Mag., vol. 55, no. 10, pp. 98–104, Oct. 2017.

[7] R. Cam and C. Leung, “Throughput analysis of some ARQ protocols in
the presence of feedback errors,” IEEE Trans. Commun., vol. 45, no. 1,
pp. 35–44, Jan. 1997.

[8] S. Lindner, J. D. Kroening, P. N. Tran, C. Petersen, and A. Timm-
Giel, “Analytic study of packet delay from 4g and 5g system arqs using
signal flow graphs,” in 2020 IEEE 91st Vehicular Technology Conference
(VTC2020-Spring), 2020, pp. 1–5.

[9] A. Dowhuszko, M. Ilter, P. Pinho, R. Wichman, and J. Hämäläinen,
“Effect of the color temperature of LED lighting on the sensing ability
of visible light communications,” in Proc. IEEE Int. Conf. Commun.
Workshops, June 2021, pp. 1–6.

[10] Lumileds, “LUXEON Rebel — General purpose white,”
Apr. 2016, DS64 LUXEON Rebel General Purpose Product
Datasheet, [Online]. Available: https://www.lumileds.com/wp-
content/uploads/files/DS64.pdf.

[11] Thorlabs, “PDA100A2 Si switchable gain detec-
tor – User guide,” May 2019, [Online]. Available:
https://www.thorlabs.com/drawings/e10b5a31b41beb6f-17B4555E-
A230-2E4C-BB120B00C3A97F91/PDA100A2-Manual.pdf.

[12] E. F. Schubert, Light-Emitting Diodes, 2nd ed. Cambridge University
Press, 2006.

53

Appendix B

GNU Radio software

For a better understanding of this MSc Thesis. It is possible to find attached on the
following pages the code designed in Python for the correct implementation of the
system in GNU Radio.

54 Appendix B. GNU Radio software

"""
Tx
Transmitter Block

"""

import zlib
import math
import numpy as np
from gnuradio import gr
import time
import threading
import json
from scipy.io import savemat
from datetime import datetime

class blk(gr.basic_block):
def __init__(self , packet_length = 96, windows = 2):

gr.basic_block.__init__(
self ,
name=’Create CRC’,
in_sig =[np.uint8 , np.uint8],
out_sig =[np.uint8]

)
self.packet_len = packet_length - 1
self.crc_len = 4

self.tx_count = 0
self.frame_count = 1
self.timeout_count = 0
self.noindex_count = 0

self.ack_required = 0
self.init_time = time.time()
self.tx_time = self.init_time

self.configure_flag = 0
self.configure_count = 0
self.set_output_multiple(self.packet_len + self.crc_len)

#Go And Back
self.current_windows = 0
self.max_windows = windows
self.rtt_w1 = 0.025
self.rtt = (self.max_windows - 2) * 0.006 + self.rtt_w1
self.max_packets = 10000

self.ack_recv = 0
self.window_time = np.zeros((self.max_windows , self.

max_packets))

def forecast(self , noutput_items , ninput_items_required):
ninput_items_required [0] = self.packet_len
ninput_items_required [1] = 0

def general_work(self , input_items , output_items):
data_len = len(input_items [0])
ack_len = len(input_items [1])

nowTime = time.time()
total_time = nowTime - self.init_time
frame_time = nowTime - self.tx_time

Appendix B. GNU Radio software 55

if self.configure_flag == 1:
self.init_time = time.time()
self.configure_flag = 2

elif self.configure_flag == 3:
print("Transmission is completed")
self.configure_flag = -1
return 0

elif self.configure_flag == -1:
return 0

if self.ack_required == 1 and ack_len > 0:
self.analize_acks(input_items [1])
self.consume(1, ack_len)
return 0

if self.ack_required == 1 and frame_time >= self.rtt:
self.timeout_count = self.timeout_count + 1
self.current_windows = 0
self.ack_required = 0
self.ack_recv = 0

elif self.ack_required == 1:
return 0

#Send new packet
if self.current_windows == self.max_windows:

self.ack_required = 1
return 0

w_data = input_items [0][: self.packet_len]
w_data [0:2] = np.array ([self.frame_count + self.

current_windows], dtype=np.uint16).view("uint8")
output_items [0][: self.packet_len] = w_data
output_items [0][self.packet_len:self.packet_len + self.

crc_len] = self.get_crc(w_data)

self.tx_time = time.time()
self.tx_count = self.tx_count + 1
self.current_windows = self.current_windows + 1
return self.packet_len + self.crc_len + 1

def analize_acks(self , input_ack):
for idx in range(0, len(input_ack), 2):

ack = np.array(input_ack[idx:idx + 2], dtype=np.uint8).
view("uint16")[0]

if ack == self.max_packets:
self.configure_flag = 3

if ack == self.frame_count:
self.sum_acks(ack)
self.frame_count = self.frame_count + 1
self.consume(0, self.packet_len)

elif ack > 0:
self.noindex_count = self.noindex_count + 1

else:
self.sum_acks (0)

def sum_acks(self , ack):
self.required_w1 = 0
self.ack_recv = self.ack_recv + 1
if self.ack_recv == self.max_windows:

self.ack_recv = 0
self.current_windows = 0
self.ack_required = 0

56 Appendix B. GNU Radio software

def get_crc(self , input):
crc_int32 = zlib.crc32(input)
crc_np = np.array ([crc_int32], dtype="int32")
return crc_np.view("uint8")

Appendix B. GNU Radio software 57

"""
Tx
Preamble Block

"""

import numpy as np
from gnuradio import gr
import pmt

class blk(gr.basic_block):

def __init__(self , pream = np.zeros (176) , payload_length = 0):
gr.basic_block.__init__(

self ,
name=’Preamble ’,
in_sig =[np.uint8],
out_sig =[np.uint8]

)
self.pream = pream
self.pream_len = len(pream)
self.payload_len = payload_length
self.output_len = self.payload_len + self.pream_len
self.set_output_multiple(self.output_len)

def forecast(self , noutput_items , ninput_items_required):
ninput_items_required [0] = self.payload_len

def general_work(self , input_items , output_items):
output_items [0][: self.pream_len] = self.pream
output_items [0][self.pream_len:self.output_len] = input_items

[0][: self.payload_len]
self.consume(0, self.payload_len)
return self.output_len

58 Appendix B. GNU Radio software

"""
Tx
Modulator M-PAM Block

"""

import numpy as np
from gnuradio import gr
import math

class blk(gr.basic_block):
def __init__(self , m_pam = 2, preamble_length = 176,

payload_length = 800):
gr.basic_block.__init__(

self ,
name=’Modulator M-PAM’,
in_sig =[np.uint8],
out_sig =[np.complex64]

)
self.m_pam = m_pam
self.bits_per_sym = int(self.m_pam / 2)
self.preamble_len = preamble_length
self.payload_len = payload_length
self.sym_len = self.payload_len / self.bits_per_sym
self.set_output_multiple(self.preamble_len + self.sym_len)

def forecast(self , noutput_items , ninput_items_required):
ninput_items_required [0] = self.preamble_len + self.

payload_len

def general_work(self , input_items , output_items):
pream = input_items [0][: self.preamble_len]
pream_syms = np.where(pream > 0, 1, -1)

if self.m_pam == 2:
bits = np.array(input_items [0][self.preamble_len:self.

preamble_len + self.payload_len])
payload_syms = np.where(bits > 0, 1, -1)
output_items [0][0: self.preamble_len] = pream_syms
output_items [0][self.preamble_len:self.preamble_len +

self.sym_len] = payload_syms
self.consume(0, self.preamble_len + self.payload_len)
return self.preamble_len + self.sym_len

elif self.m_pam == 4:
bits = np.array(input_items [0][self.preamble_len:self.

preamble_len + self.payload_len])
b = np.resize(bits , (self.sym_len , self.bits_per_sym))
idx00 = np.argwhere ((b[:, 0] == 0) & (b[:, 1] == 0))
idx01 = np.argwhere ((b[:, 0] == 0) & (b[:, 1] == 1))
idx10 = np.argwhere ((b[:, 0] == 1) & (b[:, 1] == 0))
idx11 = np.argwhere ((b[:, 0] == 1) & (b[:, 1] == 1))

idx00 = np.squeeze(idx00)
idx01 = np.squeeze(idx01)
idx10 = np.squeeze(idx10)
idx11 = np.squeeze(idx11)

payload_syms = np.zeros(self.sym_len , dtype=np.complex64)
payload_syms[idx00] = 3 / math.sqrt (5)
payload_syms[idx01] = 1 / math.sqrt (5)
payload_syms[idx10] = -3 / math.sqrt (5)
payload_syms[idx11] = -1 / math.sqrt (5)

output_items [0][0: self.preamble_len] = pream_syms

Appendix B. GNU Radio software 59

output_items [0][self.preamble_len:self.preamble_len +
self.sym_len] = payload_syms

self.consume(0, self.preamble_len + self.payload_len)
return self.preamble_len + self.sym_len

return 0

60 Appendix B. GNU Radio software

"""
Tx
Pulse -Shape Filter Block

"""

import numpy as np
from gnuradio import gr
import math
from datetime import datetime

class blk(gr.basic_block):
def __init__(self , root_cosine_filter = np.zeros (200),

preamble_length = 0, payload_length = 0):
gr.basic_block.__init__(

self ,
name=’Shape filter ’,
in_sig =[np.complex64],
out_sig =[np.complex64]

)
self.oversampling_factor = 5
self.root_cosine = root_cosine_filter
self.packet_len = preamble_length + payload_length
self.set_output_multiple(self.packet_len * self.

oversampling_factor + self.root_cosine.size * 2)
self.count = 0

def forecast(self , noutput_items , ninput_items_required):
ninput_items_required [0] = self.packet_len

def general_work(self , input_items , output_items):
real = np.array(input_items [0][: self.packet_len]).real
real_ovsam = self.oversampling_input(real)
real_out = np.convolve(self.root_cosine , real_ovsam)
len_out = len(real_out)
output_items [0][: len_out] = real_out
self.consume(0, self.packet_len)
return len_out

def oversampling_input(self , input_p):
input_sup = np.zeros(input_p.size * self.oversampling_factor)
input_sup [:: self.oversampling_factor] = input_p
return input_sup

Appendix B. GNU Radio software 61

"""
Rx
Preamble detection Block

"""

import zlib
import numpy as np
from gnuradio import gr
import math
import warnings
import pmt

class blk(gr.basic_block):
def __init__(self , pream = np.zeros (176) , root_cosine_filter = np

.zeros (31), payload_length = 400, pw_threshold = 0):
gr.basic_block.__init__(

self ,
name=’Preamble detection ’,
in_sig =[np.complex64],
out_sig =[np.complex64]

)
warnings.simplefilter(action=’ignore ’, category=FutureWarning

)
self.crc_len = 4
self.pw_threshold = pw_threshold
self.set_output_multiple(payload_length)
self.pream = (np.array(pream) * 2) - 1
self.hintfil = self.get_intertpolate_filter_27 ()
self.oversampling_factor = 5
self.oversampling_total = self.oversampling_factor * self.

oversampling_factor2
self.Lh = root_cosine_filter.size
self.Npup = self.pream.size * self.oversampling_factor
self.N = self.Npup + self.Lh - 1 + self.Lh - 1

self.payload_len = payload_length
self.payload_oversamp = self.payload_len * self.

oversampling_factor
self.frame_len = self.Npup + self.payload_oversamp
self.process_pream(root_cosine_filter)
self.pream_pw = np.sum(self.preamble_m * self.preamble_m)

self.pream_detected = 0
self.py_lfilter = 0
self.scipy_signal = 0

self.buffer_atn = np.zeros (50)
self.atn = 0
self.count_atn = 0
self.snr = 0

#Go Back N
self.continue_frame = 0
self.windows = 1

self.load_matlabLib ()

def forecast(self , noutput_items , ninput_items_required):
ninput_items_required [0] = self.frame_len

def general_work(self , input_items , output_items):

62 Appendix B. GNU Radio software

real = np.array(input_items [0]).real

if self.pream_detected == 1:
payload = self.detect_payload(real)
output_items [0][: self.payload_len] = payload
self.consume(0, self.frame_len)
return self.payload_len

res = self.measure_power(real)
self.consume(0, res)
return 0

def measure_power(self , input_real):
conv_real = np.convolve(self.matched_filter , input_real)
pw = np.sum(np.power(conv_real , 2))
if pw > self.pw_threshold:

pos = self.correlate(conv_real)
return pos

return input_real.size - self.frame_len

def correlate(self , received):
if self.continue_frame == 1:

r_pos = self.detect_continue_frame(received)
if r_pos != 0:

return r_pos
valcorr = self.scipy_signal.fftconvolve(received , self.

preamble_m [::-1], mode=’valid’)
argmax = valcorr.argmax ()
detect = valcorr[valcorr > self.pw_threshold]
if len(detect) == 0:

return received.size - self.frame_len
self.pream_detected = 1
self.continue_frame = 1
return int(argmax)

def detect_continue_frame(self , received):
corr = np.sum(received[self.Lh - 1:self.N + self.Lh - 1] *

self.preamble_m)
if corr > self.pw_threshold:

self.windows = self.windows + 1
self.pream_detected = 1
return self.Lh - 1

self.windows = 1
self.continue_frame = 0
return 0

def detect_payload(self , input_real):
self.pream_detected = 0
frame = np.convolve(self.matched_filter , input_real)
y2c = frame[self.Lh - 1:]
z = self.oversampling_rx(y2c)
y3c = self.matlab_filter(self.hintfil , 1, z)
if self.windows == 1:

pot = np.zeros(self.oversampling_total + self.hintfil.
size)

for nq in range(self.oversampling_total + self.hintfil.
size):
y3b = y3c[nq:nq + self.Npup * self.

oversampling_factor2]
y3d = y3b[:self.pream.size * self.oversampling_total:

self.oversampling_total]
pot[nq] = np.sum(y3d * self.pream)

Appendix B. GNU Radio software 63

self.pot_max = pot.argmax ()

nmax = self.pot_max
y2d2 = y3c[nmax:nmax + self.Npup * self.oversampling_factor2]
y2d = y2d2 [0:: self.oversampling_total]
attn = np.sum(y2d * self.pream) / self.pream.size
self.atn = self.set_attenuation(attn)
preamblesest = y2d / self.atn
self.calc_noise(y2d)

rx_prem = np.where(preamblesest > 0, 1, -1)
npream = np.sum(rx_prem == self.pream)

total_len = ((self.pream.size + self.payload_len) * self.
oversampling_factor) * self.oversampling_factor2

y3b = y3c[nmax:nmax + total_len] / self.atn
y3d = y3b [0:: self.oversampling_total]
header = y3d[self.pream.size:self.pream.size]
payload = y3d[self.pream.size:self.pream.size + self.

payload_len]
return payload

def calc_noise(self , preamble):
noise = abs(preamble) - self.atn
var2 = np.sum(noise ** 2) / self.pream.size
self.snr = 10 * math.log10(self.atn / (4 * var2))
return self.snr

def set_attenuation(self , attn):
if self.count_atn == 49:

self.buffer_atn [:self.count_atn - 1] = self.buffer_atn [1:
self.count_atn]

self.buffer_atn[self.count_atn] = attn
mean = np.mean(self.buffer_atn)
return mean

self.buffer_atn[self.count_atn] = attn
self.count_atn += 1
mean = np.sum(self.buffer_atn) / self.count_atn
return mean

def process_pream(self , root_cosine_filter):
pream_sup = self.oversampling_preamble ()
eq_filter = np.convolve(root_cosine_filter ,

root_cosine_filter)
self.matched_filter = root_cosine_filter
self.preamble_m = np.convolve(eq_filter , pream_sup)

def oversampling_preamble(self):
pream_sup = np.zeros(self.pream.size * self.

oversampling_factor)
pream_sup [:: self.oversampling_factor] = self.pream
return pream_sup

def oversampling_rx(self , rx_data):
rx_sup = np.zeros(len(rx_data) * self.oversampling_factor2)
rx_sup [:: self.oversampling_factor2] = rx_data
return rx_sup

def matlab_filter(self , a, b, c):
return self.py_lfilter(a, b, c)

def load_matlabLib(self):

64 Appendix B. GNU Radio software

from scipy import signal
from scipy.signal import lfilter
self.scipy_signal = signal
self.py_lfilter = lfilter

def get_intertpolate_filter_27(self):
self.oversampling_factor2 = 7
hintfil = np.array ([-0.0249 , -0.0466, -0.0622, -0.0683,

-0.0619, -0.0401, -0.0000, 0.1524 , 0.3170 , 0.4845 , 0.6457 ,
0.7914 , \

0.9125 , 1.0000 , 0.9125 , 0.7914 , 0.6457 , 0.4845 , 0.3170 ,
0.1524 , -0.0000, -0.0401, -0.0619, -0.0683, -0.0622,
-0.0466, -0.0249])

return hintfil

Appendix B. GNU Radio software 65

"""
Rx
Demodulator M-PAM Block

"""

import zlib
import numpy as np
from gnuradio import gr
import math
import warnings

class blk(gr.basic_block):
def __init__(self , m_pam = 4, payload_length = 400):

gr.basic_block.__init__(
self ,
name=’Demodulator M-PAM’,
in_sig =[np.complex64],
out_sig =[np.uint8]

)
self.m_pam = m_pam
self.bits_per_sym = int(self.m_pam / 2)
self.sym_len = int(payload_length)
self.byte_len = int((payload_length * self.bits_per_sym) / 8)

def forecast(self , noutput_items , ninput_items_required):
ninput_items_required [0] = self.sym_len

def general_work(self , input_items , output_items):
symbols = np.array(input_items [0][0: self.sym_len])
if self.m_pam == 2:

pam2_bytes = np.where(symbols > 0, 1, 0)
output_items [0][: self.byte_len] = pam2_bytes
self.consume(0, self.sym_len)
return self.byte_len

elif self.m_pam == 4:
pam4_bytes = self.demodule_4PAM(symbols , 1e-4)
output_items [0][: self.byte_len] = pam4_bytes
self.consume(0, self.sym_len)
return self.byte_len

return 0

def demodule_4PAM(self , payload , pn):
result = np.zeros(self.sym_len*self.bits_per_sym , dtype=int)
symbols = np.array([-3, -1, 1, 3]) / math.sqrt (5)
result [::2] = (-np.sign(payload)) > 0
r1 = -np.power(payload - symbols [0], 2)
r2 = -np.power(payload - symbols [3], 2)
res1 = np.exp(-np.power(payload - symbols [0], 2) / pn) + np.

exp(-np.power(payload - symbols [3], 2) / pn)
res2 = np.exp(-np.power(payload - symbols [1], 2) / pn) + np.

exp(-np.power(payload - symbols [2], 2) / pn)
result [1::2] = np.where(res2 > 0, 1, 0)
res_pack = np.packbits(result)
return res_pack

66 Appendix B. GNU Radio software

"""
Rx
Check CRC Block

"""

import zlib
import struct
import math
import numpy as np
from gnuradio import gr
from gnuradio import digital
import time

class blk(gr.basic_block):

def __init__(self , frame_length = 96):
gr.basic_block.__init__(

self ,
name=’Check CRC’,
in_sig =[np.uint8],
out_sig =[np.uint8]

)
self.packet_len = frame_length
self.crc_len = 4
self.wrongs = 0
self.corrects = 0

def forecast(self , noutput_items , ninput_items_required):
ninput_items_required [0] = self.packet_len + self.crc_len

def general_work(self , input_items , output_items):
res = self.check_crc(input_items [0][: self.packet_len + self.

crc_len])
num = np.array(input_items [0][:2] , dtype=np.uint8).view("

uint16")[0]

if res == 0:
self.corrects = self.corrects + 1
output_items [0][0:2] = input_items [0][:2]

else:
self.wrongs = self.wrongs + 1
output_items [0][0:2] = [0, 0]

per = (self.wrongs / float(self.corrects + self.wrongs))
output_items [1][0] = per
output_items [2][0] = self.wrongs
output_items [3][0] = self.corrects + self.wrongs
self.consume(0, self.packet_len + self.crc_len)
return 2

def check_crc(self , input):
packet = input[:self.crc_len * -1 - 1]
packet_crc = input[self.packet_len - 1:self.packet_len + self

.crc_len - 1]
crc_int32 = zlib.crc32(packet)
crc_np = np.array([crc_int32], dtype="int32")
crc_int8 = crc_np.view("uint8")
res1 = np.sum(packet_crc != crc_int8)
return res1

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Objectives
	Methodology

	Theoretical background
	 Modulation techniques
	Quadrature Amplitude Modulation (QAM)
	Pulse Amplitude Modulation (PAM)

	Automatic Repeat Request schemes
	Stop-and-Wait ARQ
	Go-Back-N ARQ

	Numerical simulations
	BER simulations
	BLER simulations
	ARQ simulations
	Average frames per transmission
	Utilization of the channel

	Real-time simulations
	 GNU Radio
	Block diagram of the VLC transmitter
	Block diagram of the VLC receiver

	BER Simulations
	ARQ Simulations

	Integration and evaluation
	 Coaxial cable
	 LED/PD in the loop
	 Performance evaluation of a direct transmission scenario
	 VLC-based indoor monitoring experiment

	Conclusions
	References
	Contributions
	GNU Radio software

