
Virtualization extension to a RISC-V processor

Author: Gerard van den Berg

Project Director: Juan Jose Costa Prats

Departament d’Arquitectura de Computadors

Grau en Enginyeria Informàtica - Enginyeria de Computadors

Facultat d’Informàtica de Barcelona

Universitat Politècnica de Catalunya –

April 2021

1

Abstract

This work consist on implementing the hypervisor specification of the

RISC-V ISA on an already existing CPU. This includes adding new reg-

isters to the CPU, including virtual ones, modifying the interrupt and ex-

ception management,implementing new instructions and designing a Two

Step Address translation mechanism. The objective of this report is to

document the process, and to serve as reference to others wanting to im-

plement it.

Resumen:

Este trabajo consiste en implementar la especificación del hypervisor de la

ISA RISC-V en una CPU ya existente. Esto incluye la adición de nuevos

registros a la CPU, incluidos los virtuales, la modificación de la gestión de

interrupciones y excepciones, la implementación de nuevas instrucciones

y el diseño de un mecanismo de traducción de direcciones en dos pasos.

El objetivo de este informe es documentar el proceso y servir de referencia

a otros que quieran implementarlo.

Resum:

Aquest treball consisteix a implementar l’especificació de l’hypervisor

de la ISA RISC-V en una CPU ja existent. Això inclou l’addició de

nous registres a la CPU, inclosos els virtuals, la modificació de la gestió

d’interrupcions i excepcions, la implementació de noves instruccions i el

disseny d’un mecanisme de traducció d’adreces en dos passos. L’objectiu

d’aquest informe és documentar el procés i servir de referència a altres

que vulguin implementar-lo.

2

1 Acknowledgements:

First of all, I would like to extend my sincerest thanks to Juan for giving me

support and guidance during the full duration of the project.

I would also like to thanks my parents, for their unwavering faith in me, and

their confidence that I would be able to pull through.

Also thanks to Max Doblas, from the BSC, without whom I would have been

completely unable to undertand the Lagarto Source code and to the support of

the Catalan government through the project RIS3CAT DRAC number 001-P-

001723.

Finally I would like to thank my friend David, for being by my side for all these

years,

3

Contents

1 Acknowledgements: 3

2 Introduction 9

2.1 Context . 9

2.2 Motivation . 10

2.3 Stakeholders . 10

2.4 Justification: . 11

3 Project Planing 12

4 Scope and Obstacles 12

4.1 Reach: objectives and subojectives 12

4.2 Risks . 13

4.2.1 Implementation issues . 13

4.2.2 Lack of technical knowledge: 13

4.2.3 Excessive Design Scope: 13

5 Methodology and Rigor 13

5.1 Methodology . 14

5.2 Monitoring tools . 14

6 Task Description 15

6.1 Project Management: . 15

6.1.1 Scope . 15

6.1.2 Planning . 15

6.1.3 Cost and Sustainability 15

6.1.4 Documentation . 15

6.2 Agile . 16

6.2.1 General Planning . 16

6.2.2 Sprint Planning . 16

4

6.2.3 QA Reunion and Control Reunion 16

6.3 Spec Analysis . 16

6.3.1 Reading The Privileged Spec 16

6.3.2 Reading Additional Specs 17

6.4 Target System Evaluation . 17

6.5 Setting up Development Environment 17

6.6 Designing the solution. 17

6.7 Implementing the solution . 17

6.8 Testing . 18

6.9 Final WriteUp . 18

7 Gantt graph 18

8 Risk Management: 19

9 Budget 20

9.1 Human Cost . 20

9.2 Generic Cost . 21

9.2.1 Resources . 21

9.2.2 Non Amortizable costs . 22

9.2.3 Total . 22

9.3 Contingency . 23

9.4 Risks . 23

9.5 Total . 23

9.6 Control . 23

10 Sustainability report 24

10.1 Survey . 24

10.2 Environmental perspective . 24

10.3 Economic perspective . 25

10.4 Social perspective . 26

5

11 The RISCV 27

12 RISC-V Privileged Instruction Set - Standard Extension for

Hypervisor 28

12.1 Trap Handling . 28

12.2 Two-Stage Address Translation. 28

12.3 Registers . 29

12.4 New instructions . 30

12.4.1 Virtual-machine load and store 30

12.4.2 Fences . 30

13 Choosing the right implementation. 30

14 The Development environment 31

14.1 Chisel . 31

14.2 SystemVerilog . 31

14.3 GNU toolchain . 31

14.4 Testing software. 32

15 Lagarto Lowrisc 32

16 Implementing Hypervisor mode 33

16.1 New CSRs . 33

16.1.1 Reading and Writing to CSRs 39

16.1.2 Testing . 41

16.1.3 Modifying existing CSRs 42

16.2 Trap Handling. 43

16.3 Two Step translation . 43

16.4 New Instructions. 44

16.4.1 Hypervisor Load and Store Instructions 44

6

17 Deviation from initial planning 45

17.1 Project Management: . 45

17.2 Spec analysis. 45

17.3 Choosing the Target System . 45

17.4 Development environment . 45

17.5 Designing the Solution . 46

17.6 Implementing and Testing the solution. 46

17.7 Final Write up. 46

17.8 Final Cost of the Project. 46

18 Conclusion and future work 48

19 Bibliography 49

7

List of Figures

1 Gantt summary . 18

2 Gantt Graph . 19

3 Role Salary/h . 20

4 Task Human cost . 21

5 Resource cost . 22

6 Total generic costs . 22

7 Total Budget . 23

8 sustainability matrix . 24

9 Hypervisor specific registers. 29

10 Gtkwave loading the results of a test. 32

11 CSR declarations . 34

12 Hstatus type declaration . 35

13 Virtual CSR . 36

14 Using Multiplexers to access the virtual registers. 37

15 Address altering approach . 38

16 Code used to change the address while reading or writing a register 39

17 Read switch case snippet . 40

18 Intercepting writes . 41

19 Simple Test for the new Virtual Registers 42

20 Reference of CSRs to modify . 42

21 Trap handling functionality . 43

22 Reference of CSRs accessed by the Hypervisor Load/Store in-

structions . 44

23 Human cost table . 47

8

2 Introduction

The objective of this Project is to implement the Hypervisor Extension in an

existing RISC-V implementation, in this chapter, we’re going to explain the

context of the project as well as its motivation and implied parties.

2.1 Context

Virtualization, as a term, appeared in the 1960s and at the time it was used to

refer to the concept of dividing a mainframe resources between different appli-

cations, however, nowadays it refers to creating a virtual machine, a software

that emulates a real computer with its own operative system.

These virtual machines offer numerous advantages over their bare metal coun-

terparts, such as being easy to deploy on different under different hardware

configurations, and allowing a single machine to run many virtual machines.

Enterprises like Amazon Web Services, use virtualization extensively[1].

However virtualization itself can be quite slow if managed entirely via software,

this is why most commercial CPU’s offer hardware support to accelerate virtu-

alization, this is done implementing a Hardware level Hypervisor.

An Hypervisor allows a computer system to run multiple guest virtual machines

inside one Host system, there exist 2 types of hypervisors:

• Type-1 hypervisors run directly on the host machine hardware, and are

often referred as bare metal hypervisors,

• Type-2 hypervisors run like a conventional program inside of the host

operative system, for the purposes of this project, we will focus exclusively

in the first type.

For this project we will use the RISC-V architecture, because that it is the

most well known example of of free and open source hardware. The RISC-V

architecture was first developed at the University of Berkeley, California in 2010

9

[2]. aiming to create a Free and extensible ISA improved by global collaboration,

this contrasts with others such as Intel or ARM which have closed sourced ISAs.

2.2 Motivation

The main motivator for this project is the technical challenge and the personal

growth opportunity it presents, The skills and knowledge the author will ac-

quire in the fields of specification and implementation of hardware, the RISC-V

architecture, as well as virtualization as a whole are of great interest.

Another reason resides in the university context. Being able to understand a

specification and build a working implementation based on that makes use of

many skills learnt in the Computer Engineering specialization, and the degree

as a whole.

Furthermore,this projects documentation could benefit future developers and

researchers that aimed to implement a hypervisor in their own RISC-V imple-

mentation, as well as a general introduction to RISC-V itself for all kinds of

research and development.

2.3 Stakeholders

The development of this project will involve different people, some of those will

be detailed:

• Project author: I, will be in charge to design, implement and testing

the hypervisor, as well as documenting the whole process.

• Future Hypervisor implementer: The aim of this project is also to act

as a reference document for anyone that wanted to implement the RISC-V

hypervisor in the future.

• Barcelona Super Computing Center: Given the fact that the La-

garto is one of the possible RISC-V implementations to be chosen for this

10

project, their assistance may be needed, furthermore, a successful Hyper-

visor implementation could be useful in future endeavors.

• Project Director: This projects director will be supervising the devel-

opment of the project, as well as provide aid when necessary.

2.4 Justification:

At the time of writing, an open source Type-1 Hypervisor hasn’t been imple-

mented yet, while it is true that many commercial CPUs implement such an

hypervisor, I think that there is value in an hypervisor which implementation

is completely transparent and auditable by any third party.

Being the spec itself not final, a working implementation would also be suitable

to evaluate the specification itself

11

3 Project Planing

In this chapter, we’ll go over the different aspects of the project, such as its

scope, The methodology used, the expected risks, its planned budget, and sus-

tainability concerns.

4 Scope and Obstacles

This section will explain the objectives of this project, as well as some possible

obstacles and pitfalls to surpass or avoid.

4.1 Reach: objectives and subojectives

The main objective of this project is the implementation of the RISC-V Hyper-

visor Specification on an existing RISC-V Implementation, this has yet to be

done, as of the start of this project the specification is not final, and the target

processor is yet to be chosen, finally it is also my objective to document exactly

what is needed to implement the hypervisor for future reference.

All in all the objectives needed to complete the project are the following:

• Study the Hypervisor specification.

• List requirements for the target implementation.

• Choose an initial RISC-V implementation.

• Study the implementation.

• Design the Hypervisor implementation.

• Implement the design and tests.

• Document the process.

12

4.2 Risks

During the project development, different obstacles may occur that could hinder

the process, I will proceed to detail them and possible solutions.

4.2.1 Implementation issues

It is necessary to consider the possibility that the current state of the chosen

processor implementation has insufficient support for the Hypervisor, extending

the development time excessively.

Solution: Look for additional implementations for backup will allow me to

avoid this.

4.2.2 Lack of technical knowledge:

Given that a lot of the project consists on research of both the specification and

the chosen implementation, the time estimates are bound to be more speculative.

Solution: The best strategy to try to mitigate this issue is to plan around this

lack of information.

4.2.3 Excessive Design Scope:

It is possible that during the investigation phase, the design requirements end

up being too large.

Solution: An analysis of the essential features will be made in order to cut non

essential requirements.

5 Methodology and Rigor

This section will detail both the work methodology and the tools used to monitor

the progress.

13

5.1 Methodology

Taking into account the breadth and complexity of the Hypervisor specification

and related material, the project will be separated in 3 parts.

• Analysis of the specification to identify what needs to be implemented

• Analysis of the chosen processor.

• Design and implementation of the hypervisor.

To archive that, we will apply an agile methodology based on ”scrum” strategy,

this will consist of doing small ”sprints” each week with small doable objectives,

then at the start of of the week a reunion will be held with the project director

and new objectives will be added to the next sprint based on the previous sprint

performance.

5.2 Monitoring tools

For the Design and Implementation of the Hypervisor, I’ll use git, an open

source version control system, to track and safeguard the progress in the imple-

mentation.

I’ll also keep a diary-like document detailing the tasks done to facilitate writing

of the documentation. The project will be successful if a working Hypervisor is

implemented. this will be tested using tests provided by the RISC-V foundation

[3] as well as my own.

14

6 Task Description

In the following section I will define the tasks that need to be performed as well

as the expected completion time, due to the investigative nature of the project,

the expected time to completion as my vary as well as the number and nature

of the tasks.

6.1 Project Management:

This group of tasks involve the management of different aspects of the project.

6.1.1 Scope

this section is important, as it involves defining the scope of the project as well

as defining its general structure, this tasks will take 10 hours to ensure the

project foundation is solid.

6.1.2 Planning

This task consists of making a timeline of the project tasks as well as designing

alternative plans and forecasting obstacles, this task will take 5 hours as part

of this task is already done in Scope

6.1.3 Cost and Sustainability

This tasks are about documentation and can be done concurrently, each indi-

vidual task should take the same as the planning, 5 hours.

6.1.4 Documentation

An important part of the project is to document it for future reference, as such

an hour will be dedicated each week to document the week progress, as well as

any insights, this should take 15 hours total.

15

6.2 Agile

As Agile is planned in sprints (Short week long intervals) we need a task to plan

how to implement Agile General Planning and a set of recurrent tasks that

plan each sprint Sprint Planning, QA Reunion and Control Reunion

6.2.1 General Planning

This task involves scheduling reunions with the Project director as well as plan-

ning how to use Agile in the project, this should take 5 hours.

6.2.2 Sprint Planning

In order to make use of the Reunions with the Project Director, half an hour

should be set aside to prepare this reunions and the plans for the next sprint.

6.2.3 QA Reunion and Control Reunion

The reunions can be QA Reunions, Control Reunions or both, QA Reunions are

about checking the quality of the work being done, while the Control Reunions

are about the work to be done, because I expect an even number of both, I

expect that I’ll need to dedicate 15 hours in total in reunions.

6.3 Spec Analysis

The First part of the project involves Reading and understanding the RISC-V

Specification, this will be divided in two tasks:

6.3.1 Reading The Privileged Spec

This task consists of reading the main body of interest, The Privileged Hyper-

visor specification, reading and synthesizing its contents should take 15 hours

given the complexity of the material but it’s relative short length

16

6.3.2 Reading Additional Specs

Given the technical nature of the main document, it will become necessary to

cross reference other RiSC-V Specs, like the Supervisor SPEC, the Standard

SPEC or the Debugging SPEC, this should take an additional 5 hours and will

be done concurrently with Reading the Privileged Spec

6.4 Target System Evaluation

After reading the documentation, the next task consists in looking at the already

existing implementations and choosing the most fit for the task, I expect 2 o 3

candidates to evaluate and about 7 hours of work.

6.5 Setting up Development Environment

Once the Target has been chosen, I need to set up a development environment,

this task may include, setting up a Linux Virtual Machine, installing specific

computer software, including tooling and testing software, and other possible

necessities, due to the large unknown component of this task I estimate 15 hours

to complete it.

6.6 Designing the solution.

This part is both the most opaque one and probably the most time demanding

one, it requires to design the necessary hardware modifications that need to be

implemented, due to the amount and nature of such changes currently being

unknown, I make an estimate of 45 hours, this task will start once the Dev

environment is close to being complete.

6.7 Implementing the solution

After the Design is done, it will be time to implement it, given that the design is

done properly, the implementation should be done somewhat faster, henceforth

17

I estimate 30 hours.

6.8 Testing

This task will both test the correctness of the solution, as well as its performance,

this task will take 20 hours and serve as a buffer in case more time is needed in

Designing The solution or Implementing the solution

6.9 Final WriteUp

This task is to take all the documentation and the results of the Testing task

and write the final document, I want to dedicate 20 hours to that task.

7 Gantt graph

Figure 1: Gantt summary

18

Figure 2: Gantt Graph

8 Risk Management:

Due to the nature of this project, it is very possible that certain tasks take

longer than initially expected, especially those after Reading other Specs,

in other to mitigate that, I designed the testing phase to be open ended and

thus easily re sizeable also I overestimated all linearly dependant tasks outside

of project management to account for unexpected obstacles. in the event that

the progress starts to slow down during sprints, the amount of hours will be

increased by 50% for the following week.

Given a 25% risk of that happening on each of the 15 sprints on average it will

lead to a possible increase of up to 62.6 hours to the project.

19

9 Budget

In this section, we’ll examine the economic cost of the project, in order to do

that, we’ll analyze all the aforementioned task of the project, as well as ”generic

costs” that would apply to all steps of the project.

9.1 Human Cost

First, we’ll employ the social network Linkedin to obtain the average salary of a

Project Lead and a Hardware engineer [4], the two essential roles for this project.

While I considered a tester role for the testing task, it would not be adequate

as most of the task involves work that resembles more that of an engineer that

a dedicate testing role.

Figure 3: Role Salary/h

We use this data to calculate the human cost of each task.

20

Figure 4: Task Human cost

The estimate human cost of the project is 5,429.45 euros.

9.2 Generic Cost

9.2.1 Resources

First of all, the main resource used in this project will be the authors personal

computer, valued in 1,400 euros (peripherals included) and an expected life span

of 8 years.

All software used on the project is free open source software, with a total cost

21

of 0 euros.

Amortized cost: In order to calculate the amortized cost of the computer we

use the following formula

Amortized cost = resource cost ∗ project span

resource lifespan

Figure 5: Resource cost

9.2.2 Non Amortizable costs

internet: Using a 45€/month contract during the 4 months of the project for

a total of 180€ given that only 235h out of 4 month of internet are used for the

project the cost is: 180*(235/(4*30*24))= 14.69 euros

Electricity: Using this resource [5] we establish the kWh cost at 0,147743 euro.

assuming I use the computer for every task of the project (235h) and given the

fact that the computer uses 500W, henceforth 0,147743*500*235/1000=17.36

euros

9.2.3 Total

The total generic cost is the sum of the previously mentioned costs:

Figure 6: Total generic costs

22

9.3 Contingency

As it is customary in this types of projects we should add a 15% contingency,

taking into account the big variability of the project, 828,60 euros.

9.4 Risks

The main risks exposed previously is the risk that the time allocated proved to be

insufficient, the main mitigation strategy consists on reallocating testing hours

to the overdue task, if that is insufficient, additional time will be allocated, up

to 20 additional hours as a hardware engineer (374.92 euros), given the nature

of the project I think there is at least a 25% chance of this occurring, given an

estimated cost of 93.73 euros.

9.5 Total

Adding up all together we get the following budget:

Figure 7: Total Budget

9.6 Control

Using the Agile methodology allow us to readjust the hours dedicated to each

task as well as keep track of the time and resources spent on each sprint.

23

10 Sustainability report

10.1 Survey

Before starting the report, a survey was answered in order to become more

aware of subjects related to sustainability in engineering projects.

The survey contained questions about knowledge about sustainability as a

concept as well as techniques for identifying and preventing issues of that nature.

Mainly due to a lack of experience on the subject, and little to none coverage

of this subjects in the curriculum, the survey reflected a lack knowledge in the

field, these results weren’t surprising.

The next sections will cover sustainability from different perspectives, it is based

on the following sustainability matrix.

Figure 8: sustainability matrix

10.2 Environmental perspective

What resources have you used during the lifespan of the project?

What is the environmental impact of those resources?

24

The main resource used is a personal computer, The main environmental impact

is its electrical usage. Have you estimated the environmental impact of

undertaking the project? Have you considered how to minimise the

impact, for example by reusing resources?

I have not quantified the the environmental impact of the used resources, and

neither have I taken measures to minimize them.

How is the problem that you wish to address resolved currently (state

of the art)? In what ways will your solution environmentally improve

existing solutions?

Different CPU vendors have their own hypervisor implementations, my solution,

while not being directly an improvement could be made more environmentally

friendly by any third party given that the project is open source.

What resources could reuse other projects?

Everything related to the project is open source and could be used by other

RISC-V implementators either in the BSC or elsewhere.

10.3 Economic perspective

Have you estimated the cost of undertaking the project (human and

material resources)

This project includes a budget and the deviations of said project

How is the problem that you wish to address resolved currently

(state of the art)? In what ways will your solution economically im-

prove existing solutions?

This solution offers a free Hypervisor implementation, which would be an im-

provement over the closed source proprietary ones currently on the market.

Is there a collaboration with another project?

While not an explicit collaboration, the project may be integrated the in the

Lagarto project of the BSC.

25

10.4 Social perspective

What do you think undertaking the project has contributed to you

personally?

This project has given me experience in the hardware field, as well as a greater

understanding on how to manage this kind of projects.

Is there a real need for the project?

I think that having an open source hypervisor is important, as open source

hardware is both really important and surprisingly scarce.

26

11 The RISCV

In this section we are going to discuss the ISA itself as well as some of its more

relevant characteristics for our project.

The term RISC itself means Reduced Instruction Set Computer, a type of com-

puter design that prioritizes a simple, small, fixed length instruction set, with

explicit load and store instructions in contrast with a CISC (Complex Instruc-

tion Set Computer) that tends to have a large number of instructions of various

word sizes,the most common desktop PC architecture x86 is a CISC. What

distinguishes the RISC-V architecture among other RISCs and most ISAs in

general, is that it is a royalty free, open and free ISA, allowing anyone to de-

velop, and sell their own RISC-V implementations. This coupled with a large

amount of existing support, makes it an attractive offer for hardware developers

and researches alike.

The base design of the ISA is focused on small, low energy, general usage CPUs,

however, the ISA has a number of extensions, that allow things such as: Integer

multiplication and division, single and double precision floating point opera-

tions, atomic operations and more.

One of the extensions, and the one we will be focusing on, is the H extension -

Standard Extension for Hypervisor, that allows for the implementation of both

Type-1 and Type-2 Hypervisors.

27

12 RISC-V Privileged Instruction Set - Stan-

dard Extension for Hypervisor

As said before, virtualizing without hardware support is really slow and re-

source intensive. The Hypervisor Extension aims to improve virtualization per-

formance, mainly by reducing amount of interrupts and exceptions that need to

be handled by the Host OS.

The approach taken is to virtualize supervisor mode(S mode), changing the

existing supervisor mode into an Hypervisor-extended supervisor mode (HS

mode) and adding both virtual user mode (US mode) and virtual supervisor

mode (VS mode), additionally, a second stage is added to the address transla-

tion mechanism, virtualizing the memory and memory mapped I/O devices for

the guest OS.

12.1 Trap Handling

RISC-V features a trap delegation mechanism that allows different privilege

levels to handle interrupts and exceptions instead of M-mode. this is done by

selecting which exceptions are delegated to a lower privilege level, going from

M to HS to VS. This allows the Guest OS to handle exceptions by itself.

12.2 Two-Stage Address Translation.

When virtualization is enabled, all memory accesses go through two stages,

on the first one, the virtual address is translated into a guest physical address

this stage is known as VS-stage, then these address is translated again to a

supervisor physical address, this is known as the G-stage, when performing this

step all accesses are considered U-mode accesses, even those preformed on VS-

mode data structures, a guest page-fault must be handled by either M or HS

and cannot be delegated further.

28

12.3 Registers

The specifications details number of registers specific to the Extension, those

registers and their functionality, are explained in figure 9.

Register Description

hstatus Contains information for tracking and controlling exception behavior

hedeleg Configure exception delegation HS->VS.

hideleg Configure interrupt delegation HS->VS.

hvip Trigger virtual interrupt intended for VS.

hip Shows pending VS or Hypervisor-specific interrupts.

hie Shows enabled VS or Hypervisor-specific interrupts.

hgeip&hgip Control external interrupts directed to the guest OS f.e(passthrought)

hcounteren Controls the availability of specific hardware counters.

htimedelta(l/h)
Controls the ∆ between the time read from the time register

and the time displayed in VS-VU modes.

htval additional information for trap handling.

htinst information about the instruction that trapped.

hgatp controls the guest stage of the page translation behavior.

Figure 9: Hypervisor specific registers.

Additionally several supervisor specific registers need to have a copy that will

be accessed when virtualization is enabled, this is further discussed in Chapter

16.

29

12.4 New instructions

12.4.1 Virtual-machine load and store

The Virtual machine load and store instructions are HS-mode or M instruction

that perform a memory access as if the virtualization was enabled, that means

performing the Two-Stage translation, depending on the configuration of hstatus

register, the protection of the guest pages may be overridden. this allows the

host to access the Guest OS address space.

12.4.2 Fences

Coalesces all the memory accesses that precede the instruction, needed when

enabling/disabling virtualization to avoid the Guest and Host trying to write

to each other memory address spaces.

13 Choosing the right implementation.

While there are many implementations of the Base RISC-V architecture, the

amount of them with an implemented S-mode, was sparse, and didn’t include

most of the reference implementations,which ended up being very problematic

for the project, This led to Lagarto, a RISC-V implementation with Multicore

support and capable of booting Linux, this CPU is being developed by the

DRAC partnership, from which the BSC is partner of, one of their recent ver-

sions, in internal development at the time of writing. does implement S-mode,

making it the most viable implementation.

30

14 The Development environment

. The Lagarto uses several programming languages that need their specific tool

chain in order to be able to build the processor.

14.1 Chisel

Chisel is a Hardware Description Language used to facilitates circuit generation

for ASICs and FPGAs.[6] the language adds primitive to the Scala language,

Because it is based on Scala it runs in the Java Virtual machine, we need a java

development kit and running environment in order to build it, However, Chisel

cannot build the processor if the java version ¿= 8.

Most of the code currently on Chisel is being ported to SystemVerilog and none

of the code we need to change is written in Chisel, so no more tools are needed.

14.2 SystemVerilog

SystemVerilog is another Hardware Description Language, considered to be an

evolution on Verilog, Adding many features to the later, For the purposes of

the project, we’ll take advantage of the new types, more specifically, the reg

or logic type for declaring registers, and enums that allow us to give names to

constants, useful to avoid having to hardcoded memory addresses or bit masks

on the code, greatly improving readability.

While many options exist to compile SystemVerilog, the project already makes

use of Verilator, a SystemVerilog simulator/synthesizer that transpiles to C++/C

[7].

14.3 GNU toolchain

Finally, the tests for this platform are written in RISC-V asm and C. Given that

the development machine is not a RISC-V computer, it is necessary to install

a cross-compiler, a program that is able to compile for an architecture different

31

from the systems native architecture.

The RISC-V Foundation itself provides with a a cross compiler [8]. The toolchain,

however, failed to compile the project if built with gnu-gcc version 8 or above,

while the reason is currently unknown, it is suspected to be a bug with the

generated verilator code.

14.4 Testing software.

In order test our changes to the codebase. the project provides a Simulator that

generates traces that can be load in and analyzed using software like GTKWave.

Figure 10: Gtkwave loading the results of a test.

15 Lagarto Lowrisc

The lagarto is a enormous project, boasting around 260K lines of code Most

of which is a mix of C, SystemVerliog, Scala and assembly. However, for this

project, we’ll only need to touch one specific system, the CSRs, in this project,

the CSRs are all implemented in a single file, the csr bsc.sv with additional

definitions in the riscv pkg.s

32

16 Implementing Hypervisor mode

in this chapter, we’ll design and implement the Hypervisor itself, this task can

be narrowed down into the following subtasks:

1. Add the new CSRs to enable support for the rest of the featuers,

2. Expand the Trap Handling Mechanism.

3. Add a second step to the Address Translation

4. Add the new Instructions, defined in the specification.

16.1 New CSRs

CSRs are Control and Status registers, memory units that control the behavior

of the CPU. Reading from them allows the developer to know the current status

of the CPU, for example, what kind of interruption or exception the CPU is

handling at the moment, and writing to them allows them to control it, en-

abling interruptions, different timers and counters etc. In order to access those

registers, a program needs to be running at the appropriate mode, and execute

the the CSRR or CSRW instruction, to read or write to the registers.

Adding CSRs requires editing the SystemVerilog file itself to add them. in the

language point of view, a register is described as two binary arrays of bits, the q

array and the d array. The register is read from the q array, and it is written

to the d array. at each clock cycle. the contents of the d array are written

to the q array, this is done this way to ensure that the registers read remains

coherent for the duration of the cycle. In figure 11, we can see the new CSRs

declarations.

33

1 // Hypervisor

2 // virtual Registers

3 logic [63:0] vsscratch_q , vsscratch_d;

4 logic [63:0] vsip_q , vsip_d;

5 logic [63:0] vsie_q , vsie_d;

6 logic [63:0] vsstatus_q , vsstatus_d;

7

8 logic [63:0] vstvec_q , vstvec_d;

9 logic [63:0] vstatus_q , vstatus_d;

10 logic [63:0] vsepc_q , vsepc_d;

11 logic [63:0] vscause_q , vscause_d;

12 logic [63:0] vstval_q , vstval_d;

13 logic [63:0] vsatp_q , vsatp_d;

14

15 // Hypervisor - Trap Handling

16 riscv:: hstatus_rv64_t hstatus_q , hstatus_d;

17 logic [63:0] hedeleg_q , hedeleg_d;

18 logic [63:0] hideleg_q , hideleg_d;

19 logic [63:0] hie_q , hie_d;

20 logic [63:0] hcounteren_q , hcounteren_d;

21 logic [63:0] hgeie_q , hgeie_d;

22 logic [63:0] htval_q , htval_d;

23 logic [63:0] hip_q , hip_d;

24 logic [63:0] htinst_q , htinst_d;

25 logic [63:0] hvip_q , hvip_d;

26 logic [63:0] hgeip_q , hgeip_d;

27 logic [63:0] htimedelta_q , htimedelta_d;

28 logic [63:0] htimedeltah_q , htimedeltah_d;

Figure 11: CSR declarations

However, sometimes we need to access individual bits of the array, and while

it is possible to do so using bitmasks, or accessing a particular bit using its index

in the array, SystemVerilog allows use to declare structured arrays with proper

names for each of the bits. as seen in figure 12, where declare a type for hstatus,

34

in which we include the different bits, in figure 11, we can see how hstatus is

declared as a hstatus rv64 t type instead of just a logic array like the others.

1 typedef struct packed {

2 logic [63:34] wrpi0;

3 logic [1:0] vsxl;

4 logic [8:0] wrpi1;

5 logic vtsr;

6 logic vtw;

7 logic vtvm;

8 logic [1:0] wrpi2;

9 logic [5:0] vgein;

10 logic [1:0] wrpi3;

11 logic hu;

12 logic spvp;

13 logic spv;

14 logic gva;

15 logic vsbe;

16 logic [4:0] wpri4;

17

18 } hstatus_rv64_t;

Figure 12: Hstatus type declaration

We also need to be able able to tell whenever virtualization is enabled, or dis-

abled, the specifics on how to do it are not actually defined in the specification,

for this reason, I decided to add an extra CSR named virt or V, that will store

this information. In addition to the aforementioned hypervisor specific registers

in figure 9, we need to add extra registers to act as the Supervisor mode registers

in guest mode, figure 13 contains those registers and their S-mode equivalent.

35

CSRs S-mode Equivalent

vsstatus sstatus

vsip sip

vsie sie

vstvec stvec

vsscrach sscratch

vsepc sepc

vscause scause

vstval stval

vsatp satp

Figure 13: Virtual CSR

Given that we need to access both sets of registers, depending if virtual-

ization is or not enabled, we need to implement a mechanism that allows us

to access them both, Figure 14 shows us a possible design, in which we add a

multiplexer to each of the registers in Figure 13 and use our custom CSR as the

selector.

36

Figure 14: Using Multiplexers to access the virtual registers.

When virtualization is enabled all accesses to the S-mode CSRs will ac-

cess their virtual counterparts, this will be completely transparent to the guest.

However, this design presents a couple of problems, first, because each register

has its specific address, including the virtual ones we just made, we would need

specific hardware to access them explicitly, also, from a programming stand-

point, we would need to add this multiplexer every time any time a CSR from

the figure 13 table is accessed, which is both error prone and time consuming,

Then we came up with another design.

37

Another read through the specification revealed an important fact, The ad-

dresses for the Virtual registers are at a fixed offset of 0x100 from their non

virtual counterparts, for example, sie is accessed at 0x104, while vsie is ac-

cessed at 0x204, with that information in mind, Figure 14 design proved to be

a better approach,

Figure 15: Address altering approach

now, we will read the address that the CPU wants to read, and if its a

supervisor specific to S-mode and virtualization is enabled, The address will

38

be shifted from the 0x1?? to the 0x2?? address, and the access will continue

normally, this approach will still allow us to access the virtual registers explicitly,

without any special hardware.

The performance of both systems should be about the same, and the code to

implement it is a simple if statement placed in

1 riscv:: csr_t actual_addr;

2 csr_read // a valid read

3 csr_write // a valid write

4 csr_addr // the original address

5 ...

6 if (csr_read|csr_write && virt_q && csr_addr.address [11:8] ==

4’h1)

7 begin

8 actual_addr.address [7:0] = csr_addr.address [7:0];

9 actual_addr.address [11:8] = 4’h2;

10 end

11 else

12 begin

13 actual_addr = csr_addr;

14 end

Figure 16: Code used to change the address while reading or writing a register

16.1.1 Reading and Writing to CSRs

In the Project the CSR interface exposes two buses for I/O, those are the

r data core iand r data core o respectively, note that some CSRs (such as msta-

tus, are also exposed directly, luckily, this does not apply to the registers we

need to implement. This is done using 2 switch cases, in one of them, you read

the address of the requested CSR and fetch the data from the register, in the

writing case, the output assignments are made, both to the output bus, and to

the CSRs themselves, given that we alter the address itself, the process only

consists in adding our newly created registers to those switch cases, as seen

39

figure 17.

1 // virtual

2 riscv:: CSR_VSSTATUS: begin

3 csr_rdata = mstatus_q & def_pkg :: SMODE_STATUS_READ_MASK;

4 end

5 riscv:: CSR_VSIE: csr_rdata = mie_q & mideleg_q &

hedeleg_q;

6 riscv:: CSR_VSIP: csr_rdata = mip_q & mideleg_q &

hideleg_q;

7 riscv:: CSR_VSTVEC: csr_rdata = vstvec_q;

8 riscv:: CSR_VSSCRATCH: csr_rdata = vsscratch_q;

9 riscv:: CSR_VSSCRATCH: csr_rdata = vsscratch_q;

10 riscv:: CSR_VSEPC: csr_rdata = vsepc_q;

11 riscv:: CSR_VSCAUSE: csr_rdata = vscause_q;

12 riscv:: CSR_VSTVAL: csr_rdata = vstval_q;

13 riscv:: CSR_VSATP: csr_rdata = vsatp_q;

14 //hyper

15 riscv:: CSR_HSTATUS: csr_rdata = hstatus_q;

16 riscv:: CSR_HEDELEG: csr_rdata = hedeleg_q;

17 riscv:: CSR_HIDELEG: csr_rdata = hideleg_q;

18 riscv:: CSR_HIE: csr_rdata = hie_q;

19 riscv:: CSR_HCOUNTEREN: csr_rdata = 64’b0;

20 riscv:: CSR_HTVAL: csr_rdata = htval_q;

21 riscv:: CSR_HIP: csr_rdata = hip_q;

22 riscv:: CSR_HVIP: csr_rdata = hvip_q;

23 riscv:: CSR_HTINST: csr_rdata = htinst_q;

24 riscv:: CSR_VIRT: csr_rdata = virt_q;

Figure 17: Read switch case snippet

Additionally, because the original code uses intermediate variables to store

the values of the CSRs, we need to intercept those as well, as figure 18 shows.

40

1 if(virt_q) begin

2 mstatus_d = mstatus_int;

3 mcause_d = mcause_int;

4 vscause_d = scause_int;

5 mtval_d = mtval_int;

6 vstval_d = stval_int;

7 mepc_d = mepc_int;

8 vsepc_d = sepc_int;

9 end

10 else

11 begin

12 mstatus_d = mstatus_int;

13 mcause_d = mcause_int;

14 scause_d = scause_int;

15 mtval_d = mtval_int;

16 stval_d = stval_int;

17 mepc_d = mepc_int;

18 sepc_d = sepc_int;

19

20 end

Figure 18: Intercepting writes

16.1.2 Testing

In order to test the new registers, we program a test that, with the virtualization

register enabled, will write to a supervisor specific register, for example sscratch,

if the system works, reading from its virtual equivalent vsscratch, should return

the same value. The code of figure 19 does that, first it enables virtualization

writing 1 to the virt q CSR [1]. then loads to a temporal register the value 1[2],

then writes it to the sscratch register[3], then reads explicitly from the vsscratch

register[4], if the CSRs work correctly the value from vsscratch will be the same

as the value we written in sscratch (1), if not the test fails [5], else the test

succedes[6] In the code of figure

41

1 csrw 0x60C , 1 //virt

2 li t1 , 1

3 csrw sscratch , t1

4 csrr 0x240 , t2 // vsscratch

5 bne t1,t2 , fail

6 j pass

Figure 19: Simple Test for the new Virtual Registers

.

16.1.3 Modifying existing CSRs

In addition to the new registers, it is necesary to do minor modifications to the

already existing registers, figure 20 shows which

Register Changes

misa set the 7th bit to show that the Hypervisor extension is implemented

mstatus

Add fields MPV and GVA to keep track of the previous virtualization mode and the

guest page address when a trap is taken in M mode.

Change behaviour of TSR and TVM.

mideleg Set bits 10,6 and 2, if guest external interrupts are enabled,

mip and me Add additional active bits.

mtval2 Modify to support guest page fault exceptions.

mtinst Add support for the new trapped instructions.

Figure 20: Reference of CSRs to modify

42

16.2 Trap Handling.

Figure 21: Trap handling functionality

The trap handling needs to be expanded so that the existing interrupts can be

delegated from the existing S mode (now HS) to to VS mode. if we decompose

this further, what we need is the following:

First, we need to enter M mode and save the previous virtualization mode, from

the virt CSR to the spv bit from hstatus.

Then we need to check if the exception is delegated to hs mode, this is done

checking against mideleg or medeleg

only after that, we check if the exception has been further delegated, comparing

against the hsdeleg CSRs.

Then we reneable virtualization, and load the specific handler, which will run

inside the guest OS.

16.3 Two Step translation

• Implement vstap and hgatp to configure the pages.

• Implement vsstatus MXR field.

• Change the memory protection to take into account the guest memory

protection schema

• add support for Guest Page Faults.

43

16.4 New Instructions.

16.4.1 Hypervisor Load and Store Instructions

For every load and store instruction exists a corresponding Virtual load and

Store, these instructions are only valid in M or HS mode unless user mode

Hypervisor is enabled.

The following CSRs are accessed:

CSR Field Explanation.

hstatus HU make the instruction legal in user mode.

SVPV
Controls the privilege level of the access.

VU if 0 VS othewise.

sstatus MXR makes execute-only pages readable on both translation stages.

vstatus MXR makes execute-only pages reable on the first stage of the translation.

∼Same aceesses as a regular load∼

Figure 22: Reference of CSRs accessed by the Hypervisor Load/Store instruc-

tions

44

17 Deviation from initial planning

In this section, we’ll go over the different tasks, and compare the estimates with

how things turned out.

17.1 Project Management:

This section was allocated 68 hours total, and in the end it may have been an

overestimate, the planning stages took fewer ours than expected, however, due

to the extended guideline, more sprints than expected happened. leading to a

slight overtime of 4 hours.

17.2 Spec analysis.

This part went without issue,However, the analysis revealed a larger number

of subtasks at the design and implementation tasks than expected. The time

spent was the 40 hours budgeted.

17.3 Choosing the Target System

This part had many complications, for one, there were multiple, delays accessing

the Lagarto project and the alternative processors that we considered were

mostly non-starters, most of them due to lacking a implementation of Supervisor

mode, essential, for the hypervisor spec, and the development environments

being hard to set up. this alone put a wrench in the project planning, and the

time was extended to 25 hours, as different processors were evaluated without

success until we were granted access to the project.

17.4 Development environment

Outside of a couple of difficulties with bugs and other technical difficulties,

we didn’t suffer many delays on this part, and because of that, we didn’t go

overtime.

45

17.5 Designing the Solution

I completely underestimated the complexity of the codebase, and how much out

of my element I’ll be, I spend a very large amount of time getting myself familiar

with the it and its complexities, I ended up taking up close to 120 hours,

17.6 Implementing and Testing the solution.

This task proved to be to large for the time remaining, a such I initially decided

to cut the implementation. Even with that, only the new CSRs were successfully

implemented successfully. this also took longer than expected, about twice the

hours, 40.

17.7 Final Write up.

The write up itself has been completed on the allocated time,

17.8 Final Cost of the Project.

At first we budgeted 6.446.33€ to the project, including an 828.60€ of contin-

gency, do to the extended deadline, the cost exceeded the budget, From figure

7, the generic cost remains the same, as the cost increase comes down to the

increased hours.

46

Figure 23: Human cost table

As seen in the table, the Additional Human Cost eats through our contin-

gency, Taking it into account, it puts our project at Budget−OriginalHumanCost+

NewHumanCost − Contingency = (7017.24 − 5429.45) + 6446.33 − 828.63 =

7205.49€, including a 21% IVA 8718.64€ I would like to note that while the Risk

were successfully detected, The mitigation strategies proved to be insufficient.

47

18 Conclusion and future work

The main objectives of the project were the following:

• Study the Hypervisor specification.

• List requirements for the target implementation.

• Choose an initial RISC-V implementation.

• Study the implementation.

• Design the Hypervisor implementation.

• Implement the design and tests.

• Document the process.

From that list, most objectives have been fulfilled up and including a design for

each of the Hypervisor components, however, due to a variety of circumstances,

we were unable to complete the implementation task, Of course, the process

itself has been documented in this very document.

From a personal standpoint, I have acquired a wealth of knowledge in quite

a few areas, including how to interpret a specification, about Hypervisors, How

to deal with large scale projects. and modifying real hardware.

As for future work, the current implementation is a proof of concept, another

person interested in implementing this extension would benefit from the design

insights, however my inexperience in SystemVerilog makes me believe that a

better implementation is possible.

48

19 Bibliography

References

[1] What is Amazon EC2? - Amazon Elastic Compute Cloud. Amazon.com,

2020. url: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

concepts.html (visited on 10/19/2020).

[2] History - RISC-V International. RISC-V International, Sept. 2020. url:

https://riscv.org/about/history/ (visited on 09/29/2020).

[3] riscv. riscv/riscv-tests. GitHub, 2020. url: https://github.com/riscv/

riscv-tests (visited on 10/19/2020).

[4] LinkedIn Salary - Overview — LinkedIn Help. Linkedin.com, 2020. url:

https://www.linkedin.com/help/linkedin/answer/85616/linkedin-

salary-descripcion-general?lang=e (visited on 10/19/2020).

[5] Cómo funciona la tarifa fija anual. Tarifaluzhora.es. tarifaluzhora.es, 2015.

url: https://tarifaluzhora.es/info/tarifa-fija-anual-electricidad

(visited on 10/12/2020).

[6] the Chisel/FIRRTL Developers. Chisel/FIRRTL: Home. 2021. url: https:

//www.chisel-lang.org/.

[7] 2021. url: https://www.veripool.org/wiki/verilator.

[8] riscv. riscv/riscv-gnu-toolchain. Apr. 2021. url: https://github.com/

riscv/riscv-gnu-toolchain.

49

