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Abstract
Szemerédi’s Regularity Lemma was introduced by Endré Szemerédi [15] in his proof of the
Erdős conjecture on arbitrary long arithmetic progressions in dense subsets of the integers.
It has become one of the most powerful tools on Mathematics, especially in Graph Theory
and Combinatorics. Roughly speaking, the lemma says that for any graph there is a partition
of the vertices into a bounded number of parts such that edges between most different parts
behave almost randomly. Recently, Tao gave a spectral version of the Regularity Lemma which
originated on work of Frieze and Kannan which applies to self–adjoint operators. Its application
to adjacency matrices provides a spectral proof of Szemerédi’s Regularity Lemma.

This thesis has two main purposes. The first one is to discuss in detail the spectral proof
and the decomposition of the adjacency matrix used to describe the partition. The second one
is to study the natural extension of the notion of regularity and the Regularity Lemma itself
for self–adjoint matrices. The associated Counting and Removal Lemmas are also discussed.
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Introduction
Szemerédi’s Regularity Lemma was introduced by Endré Szemerédi in his proof of his theorem
on arbitrary long arithmetic progressions in dense subsets of the integers. It has become one of
the most powerful tools on Mathematics, especially in Graph Theory and Combinatorics, see
for instance the survey of Komlós, Shokoufandeh, Simonovits and Szemerédi [11].

To properly state the theorem, we require some background on regularity for graphs. Let
G be a graph on n vertices and fix ε > 0. We say that a pair of subsets of vertices X, Y ⊂ V

is ε–regular if for all subsets A ⊂ X and B ⊂ Y such that |A| ≥ ε |X| and |B| ≥ ε |Y |, we have
that

|d(A,B)− d(X, Y )| ≤ ε,

where
d(X, Y ) := e(X, Y )

|X| |Y |
is the edge–density of the pair (X, Y ), namely the number of edges with one end in X and
the other in Y over the maximum possible number of edges between them. A partition of the
vertices P = {V1, . . . , Vk} is ε–regular if∑

(i,j)∈[k]2
(Vi,Vj) not ε–regular

|Vi| |Vj| ≤ ε |V |2 ,

that is to say, almost all pairs are ε–regular.
Roughly speaking, an ε–regular partition of the graph G is such that the edges between

almost all parts are well–distributed, or in other words, the edges between most different parts
behave random–like. The main theorem can be stated as follows.

Theorem (Szemerédi’s Regularity Lemma). For every ε > 0, there exists a constantM = M(ε)
such that every graph has an ε–regular partition into at most M parts.

The power of the above theorem relies in the fact that the number of parts of the ε–regular
partition only depends on the constant ε and as a consequence, is the same reglardless of the
size of the graph we are considering. Moreover, the original proof given by Szemerédi in [15] is
quite straightforward and does not use any sophisticated mathematical techniques. The bound
on M given by such proof is considerably large, and there have been several improvements on
the optimalisation of M such as Gowers (see [9]), which however shows that it can be as large
as a power tower of two’s of height proportional to log(ε−1).

Frieze and Kannan introduced an initial version of what will be the spectral interpretation
of the Regularity Lemma in [8]. Their main motivation was on the algorithmic side as regular
partitions can be applied to tackle many hard problems in Graph Theory such as the Max Cut
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or the Graph Bisection problems. In that exposition, they come up with a polynomial algorithm
to obtain regular partitions based on a spectral decomposition of the adjacency matrix of the
graph. This approach indeed provides approximate algorithms to several such problems and
has had a huge impact in this area.

The spectral version of the Regularity Lemma appeared as an entry from 2012 in the blog
of Tao and no paper version is available. The entry is given in the usual expository style of
Tao and leaves room for a number of technical details. A more precise description appears
in the preprints by Cioaba and Martin [7] and by Robertson [12] that were posted in Arxiv
with no intention of being published in a refereed journal. A published paper by Szegedy [14]
gives explicitely the statement of the Spectral Regularity Lemma, focusing in the much more
abstract setting of the so–called kernel operators in probability spaces and its applications to
the theory of graph limits.

The potential applications of the spectral version of the Regularity Lemma, besides the
ones by Szegedy to graph limits, are not developed in either of the above mentioned references.
These include the standard applications to the Graph Counting and Removal Lemmas. It
is worth noticing here the recent development of removal lemmas for matrices by Alon and
Ben–Eliezer [2] which do not use the spectral approach and focuses on the appearance of a
given submatrix, a casa that can not be captured by spectral techniques which are invariant by
similarity relations. Another line of applications concerns the description of regular partitions
for specific families of graphs for which the spectra and orthogonal basis of eigenvectors are
known.

The main purpose of this Master Thesis is to understand the spectral proof of Szemerédi’s
Regularity Lemma suggested by Tao and to study the additional information that the spectral
partition provides compared to the one given by the classical proof. The structure of the present
dissertation is the following.

In the introductory chapter, we introduce the notion of ε–regularity and then we give a first
proof of Szemerédi’s Regularity Lemma. To appreciate the importance of this tool, we give a
few examples of a practical usage of the Regularity Lemma: the Graph Counting and Removal
Lemmas, which are motivated by Roth’s Theorem on 3–term arithmetic progressions, and the
Erdős–Stone–Simonovits Theorem, a main result in Extremal Graph Theory.

In Chapter 2, a classical context in Spectral Graph Theory is given in order to provide the
fundamental concepts that will be used throughout the thesis. Among other results, we bring
attention to Courant–Fischer inequalities and the Mixing Lemma, and remark how are they
related to pseudorandomness and regularity.

In Chapter 3, we prove the main results of the thesis. Although we are interested in a
spectral proof of Szemerédi’s Regularity Lemma for graphs, we begin with a few regularity
theorems for self–adjoint matrices, in particular:

• The first theorem we prove takes ε > 0 and a self–adjoint n×n matrix T with coefficients
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in C such that Tr(T 2) ≤ n2, and using the spectrum of T and a basis of eigenvectors,
provides a decomposition of T into three self–adjoint matrices T = T1+T2+T3, a partition
{V1, . . . , VM} of [n] and an exceptional set of pairs Σ in [M ]2. This partition enjoys some
particular properties for pairs (Vs, Vt): an upper bound for the sum of products |Vs| |Vt|
for (s, t) ∈ Σ, and bounds for each matrix T1, T2 and T3 for pairs (s, t) 6∈ Σ.

• The following result takes the decomposition, the partition and the set of pairs Σ from the
above theorem and reformulates the properties that they satisfy into what will be defined
later as ε–regularity for matrices. This statement will be refered to as the Spectral
Regularity Theorem, since it is due to spectral arguments on the matrix T and is the
result from which Szemerédi’s Regularity Lemma directly follows.

• The two last matricial regularity results apply to sets of matrices. The first one takes
r self–adjoint n × n matrices such that their sum T satisfies Tr(T 2) ≤ n2 and allows us
to find a partition which is ε–regular for each of them at the same time. The second
one takes again a set of r matrices and also results in an ε–regular partition for all of
them simultaneously but in this case we impose the condition on the trace to each of the
matrices.

Also in Chapter 3, we have the reformulation of those matricial results to graph statements.
In particular, we have the spectral proof of Szemerédi’s Regularity Theorem, edge–coloring
and edge–multicoloring regularity theorems given by the results on sets of matrices mentioned
before, and two weaker results for multigraphs and directed graphs. At the end of the chapter
we find a few examples of the spectral partition obtained when applying those theorems to
widely–studied graphs such as the complete graph (for which the result is trivial) or Cayley
graphs.

In the last chapter, the Graph Removal Lemma from Chapter 1 is recovered and extended
to a multigraph version using one of the regularity theorems from the third chapter. These
applications were one of the main motivations of the present work.

5



Chapter 1

Szemerédi’s Regularity Lemma
Szemerédi’s Regularity Lemma is a powerful tool in the study of large dense graphs which
allows us to partition the set of vertices of any graph into a bounded number of parts so that
the edges between most different parts behave random–like. This first chapter is split into
two sections: the statement and proof of Szemerédi’s Regularity Lemma together with the
essential background on ε–regular partitions, and then classic applications of that result, the
Graph Removal Lemma and the Erdős–Stone–Simonovits Theorem. The chapter follows the
explanations in the notes of Zhao, see [19].

1.1 Statement and proof
Let G = (V,E) be a simple graph and let X, Y ⊂ V . Denote by E(X, Y ) ⊂ E the set of edges
with one end in X and the other in Y , and let e(X, Y ) = |E(X, Y )|.

Definition 1.1. The edge–density of X and Y is the number of edges between X and Y in G
over the maximum number of edges possible, that is

d(X, Y ) := e(X, Y )
|X| |Y | − |X ∩ Y |

.

This quantity is a real number between [0, 1]. In the case X = Y , we can simplify notation
with E(X) = E(X,X) and e(X) = |E(X)|, and compute the density d(X) as

d(X) = d(X,X) = e(X)
|X| (|X| − 1) .

When X = V , we refer to the quantity d(G) = d(V ) as the density of the graph G.

Definition 1.2. The pair (X, Y ) is ε–regular if for all subsets A ⊂ X and B ⊂ Y with
|A| ≥ ε |X| and |B| ≥ ε |Y |, we have

|d(A,B)− d(X, Y )| ≤ ε.

That is, for all subsets of X and Y large enough, their edge–density is essentially d(X, Y ).
On the other hand, if a pair (X, Y ) is not ε–regular, then there exist A ⊂ X and B ⊂ Y with
|A| ≥ ε |X| and |B| ≥ ε |Y | such that |d(A,B)− d(X, Y )| > ε. In this situation, we say that
the pair (A,B) witnesses the irregularity of (X, Y ).
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Definition 1.3. A partition P = {V1, . . . , Vk} of the vertex set V of a graph G is ε–regular if∑
(i,j)∈[k]2

(Vi,Vj) not ε–regular

|Vi| |Vj| ≤ ε |V |2 .

Informally speaking, if we have an ε–regular partition of a graph then the edges are evenly
distributed among ε–regular pairs, or equivalently, the edges between most different parts be-
have almost randomly. Szemerédi’s Regularity Lemma states that for every sufficiently large
graph, we can find an ε–regular partition with an upper bounded number of parts. The power
of this result relies in the fact that such bound is independent of the size of the graph, because
for large dense graphs the size of some of the parts are also considerably large. In that case,
the random–like performance between ε–regular pairs reminds us of the one expected in a truly
random bipartite graph where edges are chosen with some fixed probability.

Theorem 1.4 (Szemerédi’s Regularity Lemma). For every ε > 0, there exists a constant
M = M(ε) such that every graph has an ε–regular partition into at most M parts.

The proof of the above theorem that we are about to see was given in 1978 by Szemerédi
[15]. It consists in taking a trivial initial partition and while the partition is not ε–regular,
find irregular pairs and refine considering the subsets which are precisely witnesses of the ir-
regularity. Before going into the proof, we require a few lemmas which will guarantee that we
indeed arrive to an ε–regular partition in a finite number of iterations. To do so, we use what
is called an “energy increment” argument: we define an upper bounded quantity associated to
a partition, called energy, and see that it increases by a fixed constant every time we refine the
partition.

Let U,W ⊂ V be sets of vertices of G and let PU = {U1, . . . , Us} and PW = {W1, . . . ,Wt}
be partitions of U and W respectively.

Definition 1.5. Let
q(U,W ) := |U | |W |

|V |2
d(U,W )2

and
q(PU ,PW ) :=

s∑
i=1

t∑
j=1

q(Ui,Wj).

The energy of a partition P = {V1, . . . , Vk} of the vertices of a graph G is

q(P) := q(P ,P) =
k∑
i=1

k∑
j=1

q(Vi, Vj) =
k∑
i=1

k∑
j=1

|Vi| |Vj|
|V |2

d(Vi, Vj)2.

Note that it is a real number in [0, 1], since

q(P) =
k∑
i=1

k∑
j=1

|Vi| |Vj|
|V |2

d(Vi, Vj)2 ≤
k∑
i=1

k∑
j=1

|Vi| |Vj|
|V |2

= 1
|V |2

k∑
i=1
|Vi|

k∑
j=1
|Vj| = 1.
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Lemma 1.6. q(PU ,PW ) ≥ q(U,W ).

Proof. Choose vertices u ∈ U and w ∈ W independent and uniformly. Define the random vari-
able Z to be the edge–density of parts Ui and Wj containing u and w. Clearly, the probability
of choosing u ∈ Ui and w ∈ Wj is |Ui||Wj |

|U ||W | . Hence, the expectation of Z is

E[Z] =
s∑
i=1

t∑
j=1

|Ui| |Wj|
|U | |W |

d(Ui,Wj) = 1
|U ||W |

s∑
i=1

t∑
j=1

e(Ui,Wj) = e(U,W )
|U ||W |

= d(U,W ),

and
E[Z]2 = d(U,W )2 = |V |2

|U | |W |
q(U,W ).

Similarly, the expectation of Z2 is

E[Z2] =
s∑
i=1

t∑
j=1

|Ui| |Wj|
|U | |W |

d(Ui,Wj)2 = |V |2

|U | |W |
q(PU ,PW ).

By properties of the expectation, E[Z2] ≥ E[Z]2 and the lemma holds.

Lemma 1.7. If Q is a refinement of P, then q(Q) ≥ q(P).

Proof. Let P = {V1, . . . , Vk} and Q = {QV1 , . . . ,QVk}, where QVi is the refinement of Vi in Q.
Then, applying Lemma 1.6 to each pair (Vi, Vj) we obtain

q(Q) =
k∑
i=1

k∑
j=1

q(QVi ,QVj) ≥
k∑
i=1

k∑
j=1

q(Vi, Vj) = q(P),

where we expressed the energy of Q in terms of its subpartitions.

Lemma 1.8. If the pair (U,W ) is not ε–regular as witnessed by U1 ⊂ U and W1 ⊂ W , then

q ({U1, U \ U1}, {W1,W \W1}) > q(U,W ) + ε4
|U | |W |
|V |2

.

Proof. Define a random variable Z as in the proof of Lemma 1.6, taking {U1, U \ U1} and
{W1,W \W1} as partitions. The variance of Z is

Var(Z) = E[Z2]− E[Z]2 = |V |2

|U | |W |
(q ({U1, U \ U1}, {W1,W \W1})− q(U,W )) .

Observe that |Z − E[Z]| = |d(U1,W1)− d(U,W )| when u ∈ U1 and w ∈ W1, which happens
with probability |U1||W1|

|U ||W | . Then,

Var(Z) = E
[

(Z − E[Z])2
]
≥ |U1| |W1|
|U | |W |

(d(U1,W1)− d(U,W ))2 > ε4
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because U1 and W1 witnessed the irregularity of the pair (U,W ), which means |U1| ≥ ε |U |,
|W1| ≥ ε |W | and

|d(U1,W1)− d(U,W )| > ε.

Lemma 1.9. If a partition P = {V1, . . . , Vk} is not ε–regular, then there exists a refinement Q
of P where every Vi is partitioned into at most 2k parts such that

q(Q) ≥ q(P) + ε5.

Proof. For all irregular pairs (Vi, Vj), find simultaneously the subsets Aij ⊂ Vi and Aji ⊂ Vj
that witness irregularity. Let Q be a common refinement of P by {Aij}(i,j)∈[k]2 . Observe that
each Vi is partitioned into at most 2k parts as we wanted. If we compute the energy of Q, we
get

q(Q) =
∑

(i,j)∈[k]2
q(QVi ,QVj) =

∑
(i,j)∈[k]2

(Vi,Vj) ε–regular

q(QVi ,QVj) +
∑

(i,j)∈[k]2
(Vi,Vj) not ε–regular

q(QVi ,QVj),

where QVi is the partition of Vi in the refinement Q. By Lemma 1.7, for each term of the second
sum we have

q(QVi ,QVj) ≥ q({Aij, V1 \ Aij}, {Aji, Vj \ Aji}).
Now, by Lemma 1.8,∑

(i,j)∈[k]2
(Vi,Vj) not ε–regular

q ({Aij, Vi \ Aij}, {Aji, Vj \ Aji}) ≥
∑

(i,j)∈[k]2
(Vi,Vj) not ε–regular

q(Vi, Vj) + ε4
|Vi| |Vj|
|V |2

.

For the first sum of q(Q), again by Lemma 1.6 we have q(QVi ,QVj) ≥ q(Vi, Vj) for each term.
Putting all this bounds together, we obtain the inequality

q(Q) ≥
∑

(i,j)∈[k]2
q(Vi, Vj) +

∑
(i,j)∈[k]2

(Vi,Vj) not ε–regular

ε4
|Vi| |Vj|
|V |2

≥ q(P) + ε5,

where the last step is given by irregularity of the initial partition P .

Finally, Szemerédi’s Regularity Lemma follows from the above lemmas.

Proof of Theorem 1.4. Start with a trivial partition. While the partition is not ε–regular, apply
repeatedly Lemma 1.9 to refine it. Recall that the energy is upper bounded by 1, but at each
iteration it increases by at least ε5. Therefore, we obtain an ε–regular partition in at most ε−5

steps.

At each iteration, if the partition P has k parts we obtain a refinement of at most 22k parts.
In the end, the algorithm produces a partition of at most a tower of twos of height ε−5. Gowers
proved in [9] that the bound is a tower of twos yet the height of a lower bound can be improved
to log(ε−1).
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1.2 The Graph Removal Lemma
A classic application of Szemerédi’s Regularity Lemma is the well–known Graph Removal
Lemma. This result states that a graph G which contains a few copies of a given subgraph H
can be made H–free by removing a small number of edges, and gives the relation between the
number of initial copies of H and the maximum number of edges removed.

Among the results that use the Graph Removal Lemma we remark Roth’s Theorem, which
is a significant example of how Szemerédi’s Regularity Lemma can be used to solve other than
Graph Theory problems. Roth’s Theorem states that every subset of the integers with positive
upper density contains a 3–term arithmetic progression. The idea behind the proof is to wisely
define a graph G and then apply the Triangle Removal Lemma, which is the particular case
of the Removal Lemma taking a triangle as the subgraph H (see Zhao [19], Theorem 3.19).
Another important result that can be proved using the same strategy as in the Removal Lemma
is the Erdős–Stone–Simonovits Theorem, for which we will see the proof later.

The structure of the proof of the Graph Removal Lemma can be divided into three steps:

1. Partition: apply the Regularity Lemma to obtain a regular partition of the vertices of G.

2. Clean: remove edges between irregular pairs, low–density pairs and pairs for which one
part is too small.

3. Count: if the cleaned graph still has a copy of H, then the number of copies in the original
graph must have been larger.

For the last step we will use the Graph Counting Lemma, which as the name suggests, counts
the number of instances of H that we can find in a graph G when it meets some specific ε–
regularity conditions. Intuitively, the Counting Lemma says that if there are subsets of vertices
of G indexed by the vertices of H such that a pair of them is ε–regular whenever there is an
edge inH between their corresponding vertices, we can expect a random–like behaviour between
such pairs and hence the number of copies of H can be approximated using the edge–densities
of those regular pairs.

Theorem 1.10 (Graph Counting Lemma). Let H be a graph on k vertices and let ε > 0. Let
G be a graph on n vertices with vertex subsets V1, . . . , Vk ⊆ V (G) such that (Vi, Vj) is ε–regular
whenever {i, j} ∈ E(H). Then, the number of tuples (v1, . . . , vk) ∈ V1 × · · · × Vk such that
{vi, vj} ∈ E(G) whenever {i, j} ∈ E(H) is within ε · e(H) · |V1| · · · |Vk| of ∏

{i,j}∈E(H)
d(Vi, Vj)

( k∏
i=1
|Vi|

)
.

10



Proof. Let us prove a probabilistic version of the theorem: if we have vertices v1 ∈ V1, . . . , vk ∈
Vk chosen uniformly and independently at random, then∣∣∣∣∣∣Pr ({vi, vj} ∈ E(G) ∀{i, j} ∈ E(H))−

∏
{i,j}∈E(H)

d(Vi, Vj)

∣∣∣∣∣∣ ≤ ε · e(H). (1)

That is, the probability that the tuple (v1, . . . , vk) is indeed a copy of H in G is within ε · e(H)
of ∏

{i,j}∈E(H)
d(Vi, Vj).

Define PH := Pr ({vi, vj} ∈ E(G) ∀{i, j} ∈ E(H)). Relabelling if necessary, assume {1, 2} ∈
E(H). If H ′ denotes the graph obtained by removing the edge {1, 2} from H, we will show
first that

|PH − d(V1, V2)PH′| ≤ ε. (2)

Let us fix v3, . . . , vk and choose randomly only v1, v2. Observe that if last inequality is
satisfied under this extra constraint, it also holds for the weaker case where all k vertices are
chosen randomly. Let

A1 := {v1 ∈ V1 : {v1, vi} ∈ E(G) whenever {1, i} ∈ E(H ′)},

A2 := {v2 ∈ V2 : {v2, vi} ∈ E(G) whenever {2, i} ∈ E(H ′)},
be the possible choices for v1 and v2 which, with v3, . . . , vk, give an embedding of H ′ in G. If
we reformulate the probabilistic statement (2) with v3, . . . , vk fixed, we have to prove that∣∣∣∣∣e(A1, A2)

|V1| |V2|
− d(V1, V2) |A1| |A2|

|V1| |V2|

∣∣∣∣∣ ≤ ε.

In the case |A1| ≤ ε |V1| or |A2| ≤ ε |V2|, both terms are at most ε, so the inequality holds.
Otherwise, if |A1| > ε |V1| and |A2| > ε |V2|, by ε–regularity of (V1, V2) we have∣∣∣∣∣e(A1, A2)

|V1| |V2|
− d(V1, V2) |A1| |A2|

|V1| |V2|

∣∣∣∣∣ = |d(A1, A2)− d(V1, V2)| |A1| |A2|
|V1| |V2|

≤ ε,

which proves (2).
We are going to complete the proof by induction on the number of edges of H. Since

e(H ′) = e(H)− 1, the inequality (1) holds when replacing H for H ′. Therefore,∣∣∣∣∣∣PH −
∏

{i,j}∈E(H)
d(Vi, Vj)

∣∣∣∣∣∣ ≤ |PH − d(V1, V2)PH′ |+ d(V1, V2)

∣∣∣∣∣∣PH′ −
∏

{i,j}∈E(H′)
d(Vi, Vj)

∣∣∣∣∣∣
≤ ε+ d(V1, V2) · ε · e(H ′)
≤ ε (1 + e(H ′))
= ε · e(H).
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Now we have all the necessary tools to prove the Graph Removal Lemma following the
above procedure.

Theorem 1.11 (Graph Removal Lemma). For each graph H and each ε > 0 there exists δ > 0
such that every graph on n vertices with fewer than δn|V (H)| copies of H can be made H–free
by removing no more than εn2 edges.

Proof. Let G be a graph on n vertices. First, apply Szemerédi’s Regularity Lemma 1.4 to
obtain an ε/4–regular partition P = {V1, . . . , VM} of V (G). Secondly, consider the graph G′

obtained from G by removing all the edges between Vi and Vj whenever

(a) (Vi, Vj) is not ε/4–regular,

(b) d(Vi, Vj) < ε/2, or

(c) Vi or Vj has less than εn
4M vertices.

The number of removed edges in (a) is, by ε/4–regularity of the partition,∑
(Vi,Vj) not ε/4–regular

e(Vi, Vj) ≤
∑

(Vi,Vj) not ε/4–regular
|Vi| |Vj| ≤

ε

4n
2.

For low density pairs in (b), we have∑
d(Vi,Vj)<ε/2

e(Vi, Vj) =
∑

d(Vi,Vj)<ε/2
d(Vi, Vj) |Vi| |Vj| ≤

ε

2
∑

(i,j)∈[M ]2
|Vi| |Vj| =

ε

2n
2.

Finally, for small subsets in (c), the number of removed edges is∑
|Vi| or |Vj |< εn

4M

e(Vi, Vj) ≤ n · εn4M ·M = ε

4n
2,

because each vertex in G could be adjacent to at most εn
4M vertices of each of the at most M

small subsets of the partition, which gives a total number of removed edges of at most εn2.
Let V (H) = [k] and suppose that there is a tuple (v1, . . . , vk) ∈ Vs1 × · · · × Vsk for some

s1, . . . , sk ∈ [M ] such that {vi, vj} ∈ E(G′) whenever {i, j} ∈ E(H), i.e. there is a copy of H in
G′ realised by (v1, . . . , vk). Due to the cleaning step, all pairs (Vsi , Vsj) are ε–regular in G′, have
edge–density at least ε/2 and |Vsi | , |Vsj | ≥ εn

4M . Making use of this bounds and the Counting
Lemma 1.10, the number of copies of H in G′ is at least

1
|Aut(H)|

 ∏
{i,j}∈E(H)

d(Vsi , Vsj)
( k∏

i=1
|Vsi |

)
− ε · e(H)

k∏
i=1
|Vsi |


≥ 1
|Aut(H)|

((
ε

2

)e(H) ( εn

4M

)k
− ε · e(H)

(
εn

4M

)k)

= 1
|Aut(H)|

(
ε

4M

)k (( ε
2

)e(H)
− ε · e(H)

)
nk,
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where the constant 1/ |Aut(H)| fixes the overcounting in the case s1 = · · · = sk.
By choosing a sufficiently small δ, namely

δ <
1

|Aut(H)|

(
ε

4M

)k (( ε
2

)e(H)
− ε · e(H)

)
,

we get a contradiction: if there is some copy of H left in the cleaned graph G′, the Counting
Lemma implies that we can actually find more than δnk copies. However, the original graph
G had at most δnk copies, so we conclude that the graph G′ obtained from G by removing at
most εn2 edges is H–free.

The Graph Removal Lemma can be easily translated to asymptotic notation: if a graph on
n vertices contains o

(
n|V (H)|

)
copies of a graph H then we can make it H–free by removing

o (n2) edges.
An interesting result of Extremal Graph Theory that can be proved using a similar strategy is

the Erdős–Stone–Simonovits Theorem. It gives the expression of the extremal number ex(n,H),
i.e. the minimum number such that every graph on n vertices and ex(n,H) edges contains an
instance of H, in terms of the chromatic number of a graph H.

Theorem 1.12 (Erdős–Stone–Simonovits). For every fixed graph H, its extremal number is

ex(n,H) =
(

1− 1
χ(H)− 1 + o(1)

)
n2

2 .

Proof. Let χ(H) = r + 1 and fix ε > 0. Let G be any graph on n vertices with at least
(1 − 1

r
+ ε)n2

2 edges. We are going to prove that, if n = n(ε,H) is sufficiently large, then G

contains a copy of H. First, we apply Szemerédi’s Regularity Lemma 1.4 to G to obtain a
δ–regular partition {V1, . . . , VM} of its vertices, where

δ := 1
2e(H)

(
ε

8

)e(H)
.

Let G′ be the graph obtained from G by removing all the edges between Vi and Vj whenever

(a) (Vi, Vj) is not δ–regular,

(b) d(Vi, Vj) < ε/8, or

(c) |Vi| or |Vj| has less than εn
8M vertices.

The number of removed edges in (a) is, by δ–regularity of the partition,

∑
(Vi,Vj) not δ–regular

e(Vi, Vj) ≤
∑

(Vi,Vj) not δ–regular
|Vi||Vj| ≤

δ

n

2
.

13



For low denisty pairs in (b), we have
∑

d(Vi,Vj)<ε/8
e(Vi, Vj) =

∑
d(Vi,Vj)<ε/8

d(Vi, Vj)|Vi||Vj| ≤
ε

8
∑

(i,j)∈[M ]2
|Vi||Vj| =

ε

8n
2.

Finally, for small subsets in (c), the number of removed edges is
∑

|Vi| or |Vj |< εn
4M

e(Vi, Vj) ≤ n · εn8M ·M = ε

8n
2,

because each vertex in G can be adjacent to at most εn
8M vertices of each of the at most M

small subsets of the partition. Hence, the total number of removed edges satisfies

δn2 + ε

8n
2 + ε

8n
2 ≤ 3

8εn
2

and the cleaned graph G′ has at least
(
1− 1

r
+ ε

4

)
n2

2 edges.

By Turán’s Theorem (see [1]) we know that G′ contains a copy of Kr+1, and assume that it
is given by vertices [r + 1], relabelling if necessary. Let s1, . . . , sr+1 ∈ [M ] (possibly repeated)
be such that (1, . . . , r+ 1) ∈ Vs1 × · · · × Vsr+1 . Due to the cleaning step, we know that all pairs
(Vsi , Vsj) are δ–regular in G′, have edge–density at least ε/8 and |Vsi | , |Vsj | ≥ εn

8M .
Let V (H) = [k] and consider a coloring c : [k]→ [r+ 1], which exists because χ(H) = r+ 1.

Therefore, subsets Vsc(1) , . . . , Vsc(k) meet the hypothesis of the Counting Lemma 1.10 and thus
we obtain that the number of homomorphisms of H in G′ is at least ∏

{i,j}∈E(H)
d
(
Vsc(i) , Vsc(j)

)( k∏
i=1

∣∣∣Vsc(i)

∣∣∣)− δ · e(H) ·
∣∣∣Vsc(1)

∣∣∣ · · · ∣∣∣Vsc(k)

∣∣∣
≥
((

ε

8

)e(H)
− δ · e(H)

)(
ε

8M

)k
nk.

Observe that we are counting all homomorphisms, although there are some which result in a
subgraph of H instead of H. However, the number of non–injective maps [k]→ [n] is

nk − n!
(n− k)! = O(nk−1),

yet the order of total the number of homomorphisms is k for our choice of δ. In conclusion,
for a sufficiently large n there is an injective map [k] → [n] so there is indeed a copy of H in
G′.

14



Chapter 2

Spectral Graph Theory
The spectrum of the graph G = (V,E) is defined as the spectrum of its adjacency matrix A(G).
The purpose of Spectral Graph Theory is to study structural properties of a graph which can be
derived from its spectrum. In this chapter we will see some basic results which will provide the
background on this subject needed to prove the main results of Chapter 3. The proofs of the
following statements can be found in any standard Spectral Graph Theory book, for example
Brouwer–Haemers [4].

2.1 Introduction and examples
First of all, note that A = A(G) is a symmetric 0–1 matrix, and therefore all its eigenvalues are
real. Throughout the chapter, n will be the number of vertices of G and m the size of the edge
set. The spectrum will be denoted by (λ1, . . . , λn) where the eigenvalues are labeled according
to absolute value in nonincreasing order, that is |λ1| ≥ · · · ≥ |λn|. Recall that the entry (a(k)

ij )
of Ak counts the number of walks of length k from vertex i to j.

Proposition 2.1. Let G be a graph on n vertices and let A be its adjacency matrix. Then,

(i) ∑n
i=1 λi = Tr(A) = 0.

(ii) ∑n
i=1 λ

2
i = Tr(A2) = 2m ≤ 2

(
n
2

)
≤ n2.

(iii) ∑n
i=1 λ

3
i = Tr(A3) = 6T , where T is the number of triangles in G.

Another elementary spectral result is the value of the largest eigenvalue of an r–regular
graph, that is a graph such that the degree of all vertices is r.

Proposition 2.2. Let G be an r–regular connected graph. Then λ1 = r and |λi| < r for all
i > 1.

Let us now review the spectrum of some remarkable families of graphs.

Proposition 2.3 (Circulant graphs). Let G be a graph with adjacency matrix A = circ(a1, . . . , an),
where (a1, . . . , an) is the first row and row k is a cyclic shift of row k− 1. Then the j–th eigen-
value of G is

λj =
n∑
k=1

akω
jk,
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where ω = e2πi/n is a primitive n–th root of unity.
Moreover,

uj = 1√
n

(ωj, ω2j, . . . , ω(n−1)j, 1), j = 1, . . . , n,

is an orthonormal basis of eigenvectors of G. In particular,

(i) for the complete graph Kn we have

Spec(Kn) = (n− 1,−1, . . . ,−1),

and u1 = 1√
n
1, uj = 1√

2(e1 − ej) for j > 1 (where ej represents the vector with a 1 in
position j and a 0 everywhere else) is an orthonormal basis of eigenvectors.

(ii) Spec(Cn) = (2, 2 cos(2π/n), 2 cos(4π/n), . . . , 2 cos(2(n− 1)π/n).

Proposition 2.4 (Complement of a graph). Let G be an r–regular graph and let G be the
complement of G. If Spec(G) = (r, λ2, . . . , λn) then

Spec(G) = (n− r − 1,−λn − 1, . . . ,−λ2 − 1).

Moreover, the eigenvectors of G are also eigenvectors of G.

Proposition 2.5 (Line graphs). Let G = (V,E) be an r–regular graph on n vertices and let
L(G) denote the line graph of G, which has E as vertex set and two vertices are adjacent if the
corresponding edges are incident in G. Then, the eigenvalues of the line graph are λi − 2 + r

for i = 1, . . . , n and −2 with multiplicity m− n.

Another interesting family are Kneser graphs. The Kneser graph K(n, k) has the k–subsets
of [n] as vertex set, and two subsets are adjacent if they are disjoint. One famous example is
K(5, 2), also known as the Petersen graph.

Proposition 2.6 (Kneser graphs). The eigenvalues of the Kneser graph K(n, k), n ≥ 2k, are

(−1)t
(
n− k − t
k − t

)
, t = 0, . . . , k.

The eigenvectors of (−1)t
(
n−k−t
k−t

)
are the vectors

x = (xK : K ∈
(

[n]
k

)
),

where each coordinate xK is
xK =

∑
T∈(Kt )

yT

with the yT satisfying ∑
T∩K=∅

yT = (−1)t
∑
T⊂K

yT .
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Proof. The Kneser graph is r–regular with r =
(
n−k
k

)
, and by Proposition 2.2 this is the

largest eigenvalue λ1. We are going to determine the remaining eigenvalues by finding plausible
eigenvectors. Suppose that x = (xK : K ∈

(
[n]
k

)
) is an eigenvector of the adjacency matrix of

the Kneser graph K(n, k). Then, for each k–subset K of [n], we must have∑
K′∩K=∅

xK′ = λxK , (1)

where λ is the corresponding eigenvalue, because if A = (aKK′) is the adjacency matrix indexed
by k–subsets of [n], then by definition aKK′ = 1 if and only if K ∩K ′ = ∅. One way to obtain
xK for every K satisfying the above equality (1) for some λ and all K ∈

(
[n]
k

)
is as follows. Fix

t < k and consider numbers {yT : T ∈
(

[n]
t

)
} to be specified later and define, for each k–subset

K,
xK =

∑
T∈(Kt )

yT .

Observe that every t–subset T not meeting K apears in
(
n−k−t
k−t

)
k–subsets disjoint from K: one

T is fixed we must complete it with k − t elements not in K ∪ T in order to obtain a k–subset
K ′ disjoint from K and containing T . Therefore, equation (1) reads

∑
K′∩K=∅

xK′ =
∑

T∩K=∅

(
n− k − t
k − t

)
yT = λ

∑
T⊂K

yT .

We would be done if we can find real numbers yT such that, for each K ∈
(

[n]
k

)
, we have

∑
T∩K=∅

yT = (−1)t
∑
T⊂K

yT , (2)

which would give the eigenvector corresponding to eigenvalue (−1)t
(
n−k−t
k−t

)
.

Let us show that there are in fact
(
n
t

)
−
(
n
t−1

)
independent vectors (yT : T ∈

(
[n]
T

)
) satisfying

equation (2). Actually it suffices to see that, for each U ∈
(

[n]
t−1

)
, we have

∑
T⊃U

yT = 0. (3)

In this case, for each i = 0, . . . , t we have

0 =
∑

U :|U∩K|=i

∑
T :T⊃U

yT =
∑

T :|T∩K|=i

∑
U :U⊂T

yT +
∑

T :|T∩K|=i+1

∑
U :U⊂T

yT , (4)

because whenever |U ∩K| = i, sets T containing U satisfy i ≤ |T ∩K| ≤ i+ 1 and the second
equality in the above equation follows by exchanging the order of summation. Now, for every
set T with |T ∩K| = i + 1 we have precisely (t − i) sets U contained in T with |U ∩K| = i,
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while if |T ∩K| = i then T contains (i + 1) sets U contained in T with |U ∩K| = i. Hence
equation (4) gives

0 = (t− i)
∑

T :|T∩K|=i
yT + (i+ 1)

∑
T :|T∩K|=i+1

yT .

The above equation gives a recurrence in i which leads to

∑
T :|T∩K|=i+1

yT = − t− i
i+ 1

∑
T :|T∩K|=i

yT = · · · = (−1)i+1
(

t

i+ 1

) ∑
T :|T∩K|=0

yT

and, for i+ 1 = t, ∑
T :T⊂K

yT = (−1)t
∑

T :|T∩K|=0
yT ,

which is precisely (2). Moreover, (3) gives a linear system with
(
n
t

)
variables and

(
n
t−1

)
equations,

so the vector space of solutions has dimension
(
n
t

)
−
(
n
t−1

)
. Those vectors are clearly independent

for distinct values of t (because they correspond to distinct eigenvalues) and therefore we have

1 +
k−1∑
t=1

(
n

t

)
−
(

n

t− 1

)
=
(
n

k

)

linearly independent eigenvectors.

2.2 Main results and connection with regularity
A central tool in Spectral Graph Theory are the Courant–Fischer inequalities. Observe that
the theorem is not restricted to adjacency matrices of graphs, it holds for any real symmetric
matrix.

Theorem 2.7 (Courant–Fischer inequalities). Let A be a real symmetric matrix. Then

λk = max
V ∈Vk

min
v∈V,‖v‖2=1

vTAv,

where Vk denotes the family of all k–subspaces of Rn. Similarly,

λk = min
V ∈Vn−k+1

max
v∈V,‖v‖2=1

vTAv.

Proof. See Brouwer–Haemers [4], Theorem 2.4.1.

One of the consequences is the relation of the average and maximum degrees of a graph G
with the first eigenvalue of the adjacency matrix A.

Corollary 2.8. Let G be a connected graph. If d(G) and ∆(G) denote the average and maxi-
mum degrees of G, then

d(G) ≤ λ1 ≤ ∆(G).
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The spectrum of the Laplacian of a graph G is also related to some properties of G such as
connectivity. Recall that the Laplacian L(G) = (lij) is the n× n defined as

lij =


−1 if {i, j} ∈ E,
d(i) if i = j,

0 otherwise,

that is to say, L(G) = D − A where D is the diagonal matrix with entries the degrees of the
vertices.

Proposition 2.9. Let µ1 ≤ · · · ≤ µn be the spectrum of the Laplacian of a graph G. Then,

(i) µ1 = 0 and has eigenvector 1 = (1, . . . , 1).

(ii) If G is connected then µ2 > 0.

(iii) If G is r–regular then µi = r − λi, where λi is the i–th eigenvalue of A.

It follows from the above proposition that L = L(G) is semipositive definite. Interpreting
L as a bilinear operator, for every vector v = (v1, . . . , vn) ∈ Rn we have

vTLv =
∑
{i,j}∈E

(vi − vj)2.

The above equality is the basis of many applications of spectral graph theory via the Courant–
Fischer inequalities. For instance, given that µ1 = 0 and has eigenvector 1, then for the second
smallest eigenvalue µ2 and for every unit vector v orthogonal to 1 we have

vTLv ≥ µ2 ‖v‖2
2 = µ2.

By choosing v = 1U to be the indicator function of a subset U ⊂ V of vertices of G, and using
the fact that the bilinear operator L is invariant by translations by the vector 1 (again because
1 is an eigenvector of eigenvalue µ1 = 0), we have

e(U, V \ U) = 1TUL1U = (1U − c1)TL(1U − c1) ≥ µ2 ‖1U − c1‖2 ,

where 1U − c1 is the projection of 1U onto the space orthogonal to 〈1〉 for some c ∈ R.
Thus µ2 is related to the expansion properties of the graph G which refer to the number of

edges leaving a set with respect to the size of the set. One basic example of this relation are
the Cheeger inequalities. These are bounds for the isoperimetric number of a graph G, also
called the Cheeger constant, that is

i(G) = min
{
e(U, V \ U)
|U |

: U ⊂ V, |U | ≤ n

2

}
.
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Theorem 2.10 (Cheeger inequalities). Let G be a connected graph with n vertices. Then

µ2

2 ≤ i(G)

and if G 6= Kn,
i(G) ≤

√
2∆µ2.

Proof. See Brouwer–Haemers [4], Proposition 4.5.2.

The above theorem shows that the spectral gap, the distance between the two smallest
eigenvalues of the Laplacian matrix, gives a spectral description of the expanding properties of
a graph.

A second consequence of the spectral approach, which is relevant for the Regularity Lemma,
is the so–called Mixing Lemma. We will say that a graph G is an (n, r, λ)–expander if it has
n vertices, it is r–regular and has second adjacency eigenvalue in absolute value at most λ,
namely |λ2| ≤ λ.

Theorem 2.11 (Mixing Lemma). Let G be an (n, r, λ)–expander. For every pair U, V of
disjoint sets of vertices, ∣∣∣∣e(U, V )− r

n
|U | |V |

∣∣∣∣ ≤ λ |U | |V | .

Proof. See Brouwer–Haemers [4], Proposition 4.3.2.

An interpretation of the above inequality is that the number of edges between two sets is
close to the number one would find if the edges were placed randomly, and the deviation is
smaller as the value of λ is smaller. One more time, the spectral gap describes a structural
property of the graph in terms of the random–like distribution of the edges. This leads to the
notion of pseudorandomness, a notion introduced by Thomason in [18]. A graph G is said to
be (p, α)–jumbled if, for every subset U of vertices, the inequality∣∣∣∣∣e(U)− p

(
|U |
2

)∣∣∣∣∣ ≤ α|U |

holds. Chung, Graham and Wilson showed that this notion indeed captures the nature of
randomness in the sense that a (p, α)–jumbled graph enjoys a number of properties which
happen almost surely in the binomial random graph where every edge is independently chosen
with probability p, which is an informal definition of what we call a pseudorandom graph (see
[6]). Among these properties, we find that the largest eigenvalue of the adjacency matrix of G
satisfies

|λ1 − pn| ≤ εn

while λ = max{|λ2|, |λn|} ≤ εn.
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The proof of the Mixing Lemma uses the fact that, for disjoint sets U, V of vertices,

1TUA1V = e(U, V ).

The condition of regularity of the graph can be disposed of in several ways. One of them is
using the cut norm of a matrix A, which is defined as

‖A‖� = sup{
∣∣∣xTAy∣∣∣ : ‖x‖∞ , ‖y‖∞ ≤ 1}.

This norm was introduced in Frieze–Kannan [8] and was used in the definition of graph limits
to define an appropriate metric for the space of graphs and graphons. The above is one among
several equivalent definitions of the cut norm. We observe that

‖A‖� ≤ rad(A),

where rad(A) denotes the spectral radius of A, the largest eigenvalue of A in absolute value.
Thus for every pair of disjoint sets U and V we have

e(U, V ) = 1TUA1V ≤ ‖A‖� ≤ rad(A),

which means that a graph with an adjacency matrix with small spectral radius implies that
e(U, V ) is small.

In addition to the Courant–Fischer inequalities, a common tool in spectral graph theory is
the use of the Spectral Theorem. If u1, . . . ,un is an orthogonal basis of eigenvectors, listed in
the order of nonincreasing eigenvalues, then

A =
n∑
i=1

λiuiuTi .

Among the many applications of this spectral decomposition in spectral graph theory there is
the following theorem given by Chung (see [5]).

Theorem 2.12 (Spectral bound of diameter). Let G be an r–regular graph with second largest
eigenvalue in absolute value λ. The diameter D(G) satisfies

D(G) ≤
⌈

log n
log(r/λ)

⌉
.

Proof. See Brouwer–Haemers [4], Proposition 4.7.1.

Once more, the smaller the value of λ the closer is the diameter to log n, the smallest possible
in order of magnitude among the possible values of the diameter in a regular graph.
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Chapter 3

Spectral regularity theorems
This central chapter contains the spectral proof of Szemerédi’s Regularity Lemma. Furthermore,
the same spectral method is used to prove regularity theorems for graphs with edge–colorings
and multicolorings, and weak versions of regularity for multigraphs and directed graphs.

In order to do so, we prove first more general results for matrices. We start with the
Spectral Regularity Theorem for self–adjoint matrices which provides the definition ε–regular
partition of a matrix. Then, anticipating the results for graphs that we want to prove, we
prove generalisations of the matrix which give partitions that are ε–regular for a set of matrices
simultaneously. Then, we translate the matricial versions to the desired graph statements.

To illustrate the results, there is a final section with some examples of the partitions we
obtain using spectral tools.

3.1 Spectral regularity for matrices
This section is a step by step review of the first parts of the generalisation and explanation of
Cioaba and Martin (see [7]) of the spectral proof given by Tao in [16]. In addition, there are
some observations of interest concerning the interpretation of the obtained partition.

First of all, we are going to prove a theorem which provides a descomposition T = T1+T2+T3

of a self–adjoint n × n matrix T together with a partition {V0, . . . , VM} of [n] and a set of
“irregular” pairs Σ ⊂ {0, . . . ,M}2. Matrices T1, T2 and T3 of the decomposition are also
self–adjoint, and they have the following properties:

• T1 is ε–constant on each submatrix on Vs × Vt for a pair (s, t) 6∈ Σ,

• ‖T2‖2
2 ≤ ε3n2, and

• if rad(T3) denotes the spectral radius of T3, then

rad(T3) ≤ ε

n
|Vs| |Vt| .

The decomposition can be interpreted as a structured part T1 close to a step function with
respect to the given partition, T3 a random noise on the same partition, involving fluctuations
bounded by its largest eigenvalue which is small, and a negligible part T2.

Throughout the section, we will consider self–adjoint n× n matrices T with coefficients in
C, their spectrum λ1, . . . , λn ∈ R ordered according to absolute value in nonincreasing order
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and an orthonormal basis of eigenvectors u1, . . . ,un ∈ Cn. We denote the n×n all–ones matrix
by Jn.

Theorem 3.1 (Matrix Regularity Theorem). Let T be a self–adjoint n × n matrix such that
Tr(T 2) ≤ n2. For every ε > 0, there are constants M = M(ε) and N = N(ε) such that if
n ≥ N , there is a partition P = {V0, . . . , VM} of [n], a decomposition T = T1 + T2 + T3 where
T1, T2 and T3 are self–adjoint and a set of pairs Σ ⊂ {0, . . . ,M}2 such that

• for all (s, t) ∈ [M ]2, there exists dst such that for all a ∈ Vs and b ∈ Vt,

|(T1)ab − dst| ≤ ε,

• for all (s, t) ∈ {0, . . . ,M}2 \ Σ,∑
a∈Vs

∑
b∈Vt
|(T2)ab|2 ≤ ε2|Vs||Vt|,

• for all (s, t) ∈ {0, . . . ,M}2 \ Σ,

n · rad(T3) ≤ ε|Vs||Vt|,

• and ∑
(s,t)∈Σ

|Vs||Vt| ≤ εn2.

Proof. Since T is self–adjoint, we can consider the spectral decomposition

T =
n∑
j=1

λjuju∗j .

Observe that for each j ∈ [n], we have that

jλ2
j ≤ λ2

1 + · · ·+ λ2
j ≤ Tr(T 2) ≤ n2,

and as a consequence,
|λj| ≤

n√
j
. (1)

To find the spectral decomposition of T into three matrices, we are going to use a function
F : N → N to be defined later which depends on ε that satisfies F (x) > x for all x ∈ N. If
F (k) denotes the composition of F k times, consider the following partition of [n] into b1/ε3c
intervals:

• Ik :=
[
F (k−1)(1), F (k)(1)− 1

]
for k = 1, . . . , b1/ε3c − 1, and
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• Ib1/ε3c :=
[
F (b1/ε3c−1)(1), n

]
.

Choose K ∈
[
b1/ε3c

]
satisfying ∑

j∈IK
λ2
j ≤ ε3n2, (2)

which indeed exists, otherwise we would have

b1/ε3c∑
k=1

∑
j∈Ik

λ2
j = Tr(T 2) > 1

ε3
ε3n2 = n2.

Consider the decomposition T = T1 + T2 + T3 where

T1 :=
K−1∑
k=1

∑
j∈Ik

λjuju∗j ,

T2 :=
∑
j∈IK

λjuju∗j ,

T3 :=
b1/ε3c∑
k=K+1

∑
j∈Ik

λjuju∗j ,

which are also self–adjoint by definition.
Let J := F (K−1)(1). We are going to define a partition of [n] using the eigenvectors of T1,

namely u1, . . . ,uJ−1. Consider the square of side 2
√
J/(εn) centered at the origin of the complex

plane and divide it into 4J4/ε4 subsquares of side
√
ε3/(J3n). For each uj = (uj(1), . . . , uj(n)),

define P(uj) to be the partition of [n] by coloring a ∈ [n] by the square where uj(a) belongs
to. All values outside the square, precisely the a ∈ [a] for which either the imaginary or the
real part of uj(a) is larger than

√
J/(εn), are contained in an exceptional part Σj. If a value

lies in the border of a square, assign the index to any of the parts corresponding to an adjacent
square.
Let P = {V0, . . . , VM} be the partition of [n] where

V0 :=
J−1⋃
j=1

Σj

and {V1, . . . , VM} is the common refinement of [n] \ V0 of partitions P(uj) for j = 1, . . . , J − 1.
For j ∈ [J − 1], the partition P has the following properties:

(i) The size of each Σj is at most εn/J because ‖uj‖2 = 1. Therefore,

|V0| ≤ (J − 1)εn
J
< εn.
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(ii) For every a ∈ V1t· · ·tVM we have that uj(a) lies inside the big square so its magnitude
is upper bounded by

|uj(a)| ≤
√

2J
εn
.

(iii) For each s > 0 and a, b ∈ Vs, we have

|uj(a)− uj(b)| ≤
√

2ε3
J3n

.

(iv) The number of parts M is upper bounded by the total number of small squares of all
the partitions, namely

M ≤

 2
√
J/(εn)√

ε3/(J3n)

2J

=
(

2J2

ε2

)2J

=
(

4J4

ε4

)J
. (3)

To complete the proof, we need to find a set of pairs Σ ⊂ {0, . . . ,M}2 such that
∑

(s,t)∈Σ
|Vs| |Vt| ≤ εn2,

and check that the partition P satisfies the conditions on T1, T2 and T3.
Define σ ⊂ {0, . . . ,M}2 as the set of pairs (s, t) such that

∑
a∈Vs

∑
b∈Vt
|(T2)ab|2 > ε2 |Vs| |Vt| .

Therefore,
ε2

∑
(s,t)∈σ

|Vs| |Vt| <
∑

(s,t)∈σ

∑
a∈Vs

∑
b∈Vt
|(T2)ab|2 ≤

∑
a,b∈[n]

|(T2)ab|2 ≤ ε3n2,

where last inequality is a consequence of equation (2) expressed in terms of T2 and also the
symmetry of T2, namely

∑
j∈IK

λ2
j = Tr(T 2

2 ) =
∑

a,b∈[n]
|(T2)ab|2 ≤ ε3n2.

Let Σ be the set of pairs (s, t) ∈ {0, . . . ,M}2 such that (s, t) ∈ σ or either s = 0, t = 0 or
min(|Vs| , |Vt|) < εn/M . Therefore,
∑

(s,t)∈Σ
|Vs| |Vt| ≤

∑
(s,t)∈σ

|Vs| |Vt|+ 2n |V0|+ 2
∑

|Vs|<εn/M
n |Vs| ≤ εn2 + 2εn2 + 2M εn

M
n = 5εn2 (4)

as we wanted.

25



By definition of σ, for pairs (s, t) 6∈ σ (and consequently, for (s, t) 6∈ Σ) we have∑
a∈Vs

∑
b∈Vt
|(T2)ab|2 ≤ ε2 |Vs| |Vt| . (5)

Thus, we have proved the desired properties of T2.
To prove the rest of the theorem, we are going to show first that for any pair (s, t) ∈ [M ]2,

the entries of T1 over the block Vs×Vt differ among themselves by at most 4ε. For any a, c ∈ Vs
and b, d ∈ Vt,

|(T1)ab − (T1)cd| =

∣∣∣∣∣∣
∑
j<J

λjuj(a)uj(b)− λjuj(c)uj(d)

∣∣∣∣∣∣
≤
∑
j<J

|λj| |uj(a)uj(b)− uj(c)uj(b) + uj(c)uj(b)− uj(c)uj(d)|

≤
∑
j<J

n (|uj(b)| |uj(a)− uj(c)|+ |uj(c)| |uj(b)− uj(d)|)

≤ Jn

2 ·
√

2J
εn
·
√

2ε3
J3n


= 4ε,

where we used that |λj| ≤ n/
√
j ≤ n.

Now, if dst is the mean of the entries of T1 in block Vs × Vt, we have

|(T1)ab − dst| =

∣∣∣∣∣∣∣ (T1)ab −

∑
c∈Vs,d∈Vt

(T1)cd

|Vs| |Vt|

∣∣∣∣∣∣∣
≤ 1
|Vs| |Vt|

∣∣∣∣∣∣ |Vs| |Vt| (T1)ab −
∑

(c,d)∈Vs×Vt
(T1)cd

∣∣∣∣∣∣
≤ 1
|Vs| |Vt|

∑
(c,d)∈Vs×Vt

|(T1)ab − (T1)cd|

= 1
|Vs| |Vt|

∑
(c,d)∈Vs×Vt
(c,d) 6=(a,b)

|(T1)ab − (T1)cd|

≤ |Vs| |Vt| − 1
|Vs| |Vt|

· 4ε

< 4ε.

(6)

Thirdly, for the condition on T3, note that all of its eigenvalues satisfy inequality (1). In
particular, for the spectral radius of T3 we have

n · rad(T3) = n
∣∣∣λF (J)

∣∣∣ ≤ n2√
F (J)

.
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It only remains to check that n2/
√
F (J) ≤ ε |Vs| |Vt| for all pairs (s, t) 6∈ Σ. Since |Vs| , |Vt| ≥

εn/M for such pairs, it suffices to choose F so that F (J) ≥ M4/ε6. We already have seen in
(3) that M ≤ (4J4/ε4)J , so if F satisfies

F (x) ≥ 1
ε6

(4x
ε4

)4x
,

we get the condition on T3, namely

n · rad(T3) ≤ n2√
F (J)

≤ ε3n2

M2 ≤ ε |Vs| |Vt| . (7)

To sum up, if we choose ε/5 instead of ε, inequalities (4), (6), (5) and (7) become∑
(s,t)∈Σ

|Vs| |Vt| ≤
5
5εn

2 = εn2,

|(T1)ab − dst| ≤
4
5ε < ε,

∑
a∈Vs

∑
b∈Vt
|(T2)ab|2 ≤

ε2

52 |Vs| |Vt| < ε2 |Vs| |Vt| ,

n · rad(T3) ≤ ε

5 |Vs| |Vt| < ε |Vs| |Vt| ,

which complete the proof.

Observation 3.2. Note that, for ε and F fixed, the maximum value K that may be chosen is
b1/ε3c, and hence Jmax = F (b1/ε3c−1)(1). Therefore, a bound for the number of parts M valid
for any self–adjoint matrix T of size n ≥ N(ε) is

M ≤
(

4J4
max
ε4

)Jmax

.

However, if there exists another J < Jmax for which the sum of squares of eigenvalues with
indexes in the interval

[
J, F (J)−1

]
is small enough, then the bound (3) is significantly smaller.

For that reason, if we choose J = F (K−1)(1) for the first K ∈
[
b1/ε3c

]
for which∑

j∈IK
λ2
j ≤ ε3n2

holds, we are obtaining a partition with the minimum number of parts (using this particular
spectral method).

For instance, consider a matrix T with Tr(T 2) ≤ (1 − ε3)n2 and let IK be an interval for
which (2) holds. Then

Tr(T 2) >
K−1∑
k=1

∑
j∈Ik

λ2
j +

b1/ε3c∑
k=K+1

∑
j∈Ik

λ2
j >

( 1
ε3
− 1

)
ε3n2 = (1− ε3)n2,

27



so there must be another interval Ik for which (2) also holds, and therefore the same algorithm
provides two distinct ε–regular partitions.

Considering this observation, the constants depending on ε of the statement are clearly
determined:

• N(ε) := F (b1/ε3c−1)(1), otherwise the last part of the partition is empty, and

• M(ε) :=
(

4J4
max
ε4

)Jmax + 1.

Observation 3.3 (Basis of real eigenvectors). Note that in the special case when u1, . . . ,uJ−1 ∈
Rn, then for all a ∈ [n] and j ∈ [J − 1], uj(a) lies in R, which is the border of 4J2/ε2 squares.
Therefore, the indexes can be distributed into at most 1 + 2J2/ε2 parts, which is a significantly
better bound for the total number of parts.

Actually, in the case of a real symmetric matrix T , we can always find an orthonormal basis
of eigenvectors in Rn. Let u ∈ Cn be an eigenvector of λ 6= 0, we have that

(T − λI)u = (T − λI)<(u) + (T − λI)=(u)i = 0

where <(u) and =(u) represent the real and imaginary parts of the vector u respectively. Thus
<(u) and =(u) are both real eigenvectors for the eigenvalue λ.

Let u1, . . . ,un ∈ Cn be a basis of eigenvectors. If we take their real and imaginary parts we
still have a set which spans the whole space of eigenvectors, and a maximal linearly independent
subset provides us with a basis of real eigenvectors. It might not be orthogonal for eigenvectors
of the same eigenvalue, but we may use the Gram–Schmidt process to find an orthonormal
basis.

Observation 3.4. The hypothesis Tr(T 2) ≤ n2 is needed to make sure that

(i) the bound on the eigenvalues (1) holds, and

(ii) there exists a K for which the inequality (2) holds,

so we could replace them by these two conditions without changing the result. For instance,
take a self–adjoint matrix T with spectrum λ1, . . . , λn such that Tr(T 2) ≤ n2 and assume there
exists K > 1 for which (2) holds, and consider an orthonormal basis of eigenvectors u1 . . . ,un.
We can construct a self–adjoint n × n matrix T̃ that satisfies (i) and (ii) but Tr(T̃ 2) > n2 as
follows:

T̃ = nu1u∗1 +
n∑
j>1

λjuju∗j ,

a matrix with eigenvalues λ̃1 = n and λ̃j = λj for j > 1 which satisfies

Tr(T̃ 2) =
n∑
j=1

λ̃2
j = n2 +

n∑
j=2

λ̃2
j > n2,

and both (i) and (ii) clearly hold by definition of T̃ .
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Observation 3.5 (Refinement of the spectral partition). Let Q = {W0, . . . ,WM̃
} be a refine-

ment of P = {V0, . . . , VM}, where M̃ = M + ∆ for some natural number ∆ > 0 and the first m
parts of Q are the refinement of V0, namely

V0 =
m⋃
s=0

Ws.

Define σ̃ ⊂ {0, . . . , M̃}2 as the set of pairs (s, t) such that∑
a∈Ws

∑
b∈Wt

|(T2)ab|2 > ε2 |Ws| |Ws| .

Let Σ̃ be the set of pairs (s, t) ∈ {0, . . . , M̃}2 such that (s, t) ∈ σ̃ or either s ∈ {0, . . . ,m},
t ∈ {0, . . . ,m} or min(|Ws| , |Wt|) < εn/M̃ .

• For all (s, t) ∈ {m+ 1, . . . , M̃}2, there exists d̃st ∈ C such that for all a ∈ Ws and b ∈ Wt

we have ∣∣∣(T1)ab − d̃st
∣∣∣ ≤ ε,

because in particular, a ∈ Ws ∈ Vs′ and b ∈ Wt ∈ Vt′ for some (s′, t′) ∈ [M ]2. As a
consequence, we can choose either d̃st = ds′t′ or the mean of the entries of T1 on block
Ws ×Wt.

• For all (s, t) ∈ {0, . . . , M̃}2 \ Σ̃, by definition of σ̃ we have∑
a∈Ws

∑
b∈Wt

|(T2)ab|2 ≤ ε2 |Ws| |Wt| .

• For all (s, t) ∈ {0, . . . , M̃}2 \ Σ̃, we have

n · rad(T3) = n
∣∣∣λF (J)

∣∣∣ ≤ n2√
F (J)

,

but we want n2/
√
F (J) ≤ ε |Ws| |Wt| for all pairs (s, t) 6∈ Σ̃. Since |Ws| , |Wt| ≥ εn/M̃ for

such pairs, if we chose F so that F (J) ≥ M̃4/ε6 = (M + ∆)4/ε6, for instance

F (x) ≥ 1
ε6

((
4x4

ε4

)x
+ ∆

)4

,

then the refinement Q satisfies

n · rad(T3) ≤ ε |Ws| |Wt| .

• Analogously to (4), by choosing an appropriate ε we have∑
(s,t)∈Σ̃

|Ws| |Wt| ≤ εn2.
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In conclusion, if we apply Theorem 3.1 to a matrix T and F (J) ≥ M̃4/ε6 for some M̃ , then we
can refine the obtained partition P into at most M̃ parts and find a set Σ̃ ⊂ {0, . . . , M̃}2 such
that fulfill the required properties on T1, T2 and T3.

In other words, not any refinement Q of P is a suitable partition for T : for the property on
T3 we need that the F used in Theorem 3.1 is such that F (J) ≥ |Q|4 /ε6.

Although we could use last theorem to prove Szemerédi’s Regularity Lemma with spectral
techniques, we are going to prove an intermediate statement that brings the above result a little
bit closer to the graph ε–regularity defined in Chapter 1.

Theorem 3.6 (Spectral Regularity Theorem). For every ε > 0, there are constants M = M(ε)
and N = N(ε) such that every n× n self–adjoint matrix T with n ≥ N such that Tr(T 2) ≤ n2

has a partition of [n], {V0, . . . , VM}, and an exceptional set of pairs Σ ⊂ {0, . . . ,M}2 such that
∑

(s,t)∈Σ
|Vs||Vt| ≤ εn2,

and for all pairs (s, t) 6∈ Σ and vectors vA,vB ∈ Cn such that supp(vA) ⊂ Vs, supp(vB) ⊂ Vt,
‖vA‖2

2 ≤ |Vs| and ‖vB‖
2
2 ≤ |Vt|, we have

|v∗B(T − d(Vs, Vt)Jn)vA| ≤ ε |Vs| |Vt| ,

where d(Vs, Vt) is the mean of the entries in the block matrix Vs × Vt.

Proof. Apply Theorem 3.1 to matrix T . Let P be the partition obtained and Σ the set of
irregular pairs. Observe that ∑

(s,t)∈Σ
|Vs| |Vt| ≤ εn2,

is a direct consequence of Theorem 3.1. To complete the proof, we will see that for pairs
(s, t) 6∈ Σ and vectors vA,vB ∈ Cn as in the statement, we have

|v∗B (T − d(Vs, Vt)Jn) vA| ≤ |v∗B (T1 − dstJn) vA|+ |v∗BT2vA|+ |v∗BT3vA|+ |v∗B (dst − d(Vs, Vt)) JnvA|
≤ ε |Vs| |Vt|

for some number dst. The proof will consist in finding a bound for each summand.
For the first one, if dst is the mean in the entries of T1 in block Vs × Vt, observe that

|v∗B(T1 − dstJn)vA| ≤
∑
a∈Vs

∑
b∈Vt
|(T1)ab − dst| |vA(a)| |vB(b)| < ε ‖vA‖1 ‖vB‖1 ≤ ε |Vs| |Vt| , (8)

where we applied the triangle inequality, the condition on T1 given by Theorem 3.1 and the
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norm inequality given by Cauchy–Schwarz, namely

‖v‖1 =
∑

j∈supp(v)
|vj|

=
∑

j∈supp(v)
|vj| · 1

≤

 ∑
j∈supp(v)

√
|vj|2

1/2 ∑
j∈supp(v)

12

1/2

=
√
|supp(v)| ‖v‖2 ,

which applied to vA and vB is precisely

‖vA‖1 ≤
√
Vs ‖vA‖2 ≤ |Vs| ,

‖vB‖1 ≤
√
Vt ‖vB‖2 ≤ |Vt| .

Secondly, for any (s, t) 6∈ Σ, we apply Cauchy–Schwarz and the condition on T2 given by
Theorem 3.1 and obtain

| v∗BT2vA|2 =

∣∣∣∣∣∣
∑
a∈Vs

∑
b∈Vt

(T2)abvA(a)vB(b)

∣∣∣∣∣∣
2

≤

∑
a∈Vs

∑
b∈Vt
|(T2)ab|2

∑
a∈Vs

∑
b∈Vt
|vA(a)|2|vB(b)|2


≤ ε2 |Vs| |Vt| ‖vA‖2 ‖vB‖2

≤ ε2 |Vs|2 |Vt|2 ,

which implies
|v∗BT2vA| ≤ ε |Vs| |Vt| . (9)

For the third term, if rad(T3) is the spectral radius of T3, we have

|v∗BT3vA| ≤ rad(T3) ‖vA‖2 ‖vB‖2 ≤ n · rad(T3) ≤ ε |Vs| |Vt| , (10)

where the first inequality is a consequence of Cauchy–Schwarz and the second one is given by
Theorem 3.1.

Finally, observe that by the triangle inequality,

|dst − d(Vs, Vt)| =
1

|Vs| |Vt|
∣∣∣1TVs(T1 − T )1Vt

∣∣∣
= 1
|Vs| |Vt|

∣∣∣1TVs(T2 + T3)1Vt
∣∣∣

≤ 1
|Vs| |Vt|

( ∣∣∣1TVsT21Vt
∣∣∣+ ∣∣∣1TVsT31Vt

∣∣∣ )
≤ 2ε.

(11)
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Making use of the bounds (8), (9), (10), (11), we have that for all pairs (s, t) 6∈ Σ, and for
any vA, vB ∈ Cn as before we have

|v∗B (T − d(Vs, Vt)Jn) vA| ≤ |v∗B (T1 − dstJn) vA|+ |v∗BT2vA|+ |v∗BT3vA|+ |v∗B (dst − d(Vs, Vt)) JnvA|
≤ (ε+ ε+ ε+ 2ε) |Vs| |Vt|
= 5ε |Vs| |Vt| .

Choosing ε/5 instead of ε, we obtain the desired result.

Observation 3.7 (Definition of ε–regular partition of a matrix). If we choose ε3 instead of ε
in Theorem 3.6, we obtain ∑

(s,t)∈Σ
|Vs||Vt| ≤ ε3n2 ≤ εn2,

for irregular pairs and
|v∗B(T − d(Vs, Vt)Jn)vA| ≤ ε3 |Vs| |Vt| ,

for regular pairs. Whenever ‖vA‖2
2 ≥ ε |Vs| and ‖vB‖2

2 ≥ ε |Vt|, if we divide both sides of the
inequality by the product of the square of the norms of vA and vB we have that

|v∗B(T − d(Vs, Vt)Jn)vA|
‖vA‖2

2 ‖vB‖
2
2

≤ ε3
|Vs| |Vt|

‖vA‖2
2 ‖vB‖

2
2
≤ ε.

From now on, we will call such partition an ε–regular partition for a self–adjoint matrix T .

Observation 3.8. Let J = F (K−1)(1) ∈ N and vectors u1, . . . ,uJ−1 ∈ Cn be fixed. The
spectral proof gives the same partition for all matrices T with spectrum λ1, . . . , λn for which

(i) ∑
j∈IK

λ2
j ≤ ε3n2, and

(ii) u1, . . . ,uJ−1 are the first J − 1 vectors of an orthonormal basis of eigenvectors of T .

Let us now study how the partition changes when the spectrum, the J or the basis of
eigenvectors vary. Let T and T̃ be two self-adjoint n×n matrices such that Tr(T 2),Tr(T̃ 2) ≤ n2.
Let λ1, . . . , λn and λ̃1, . . . , λ̃n be their spectrums and u1, . . . ,un and ũ1, . . . , ũn orthonormal
basis of eigenvectors of T and T̃ respectively. Let J = F (K−1)(1) and J̃ = F (K̃−1)(1) be such
that ∑

j∈IK
λ2
j ≤ ε3n2

and ∑
j∈I

K̃

λ̃2
j ≤ ε3n2.

We remark the following situations, where the partitions obtained from the spectral proof are
somehow related:
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(a) J = J̃ and {u1, . . . ,uJ−1} = {ũ1, . . . , ũJ−1}: the ε–regular spectral partitions obtained
are the same.

(b) J = J̃ and {u1, . . . ,uJ−1} 6= {ũ1, . . . , ũJ−1}: the bound (3) for the number of parts is
the same, because the complex plane is split likewise. The coordinates of {u1, . . . ,uJ−1}
and {ũ1, . . . , ũJ−1} may be different, so the ε–regular partitions may vary for the
indexes for which the value of the corresponding coordinate lies in different parts of
the complex plane.

(c) J < J̃ and {u1, . . . ,uJ−1} = {ũ1, . . . , ũJ−1}: the complex plane is split into different
parts, so the partition may not be suitable for both matrices. In the very specific case
when J̃ = c2/3J for some constant c ∈ N, then each square of the complex plane defined
by J is divided into c2 subsquares in the partition for J̃ . Then, the ε–regular partition
for T̃ is a refinement of the partition for T .

Having in mind that our goal is to prove regularity theorems for graphs with a coloring or
multicoloring of the edges, let us give the proof of the analogous versions for matrices. The
result follows the proof by Robertson [12].

Theorem 3.9. For every ε > 0, there are constantsM = M(ε, r) and N = N(ε, r) such that for
every set of self–adjoint n×n matrices {T [1], . . . , T [r]} with n ≥ N such that

r∑
i=1

Tr
(
(T [i])2

)
≤ n2

there exists a partition of [n] which is ε–regular for T [1], . . . , T [r] simultaneously.

Proof. For i = 1, . . . , r, let λ[i]
1 , . . . , λ

[i]
n ∈ R be the eigenvalues of T [i] and consider an orthonor-

mal basis of eigenvectors u[i]
1 , . . . ,u[i]

n ∈ Cn.
We will prove the theorem in three steps:

1. Find an appropriate J ∈ N.

2. Apply Theorem 3.6 to each T [i] using the J from last step and refine to obtain a
partition P .

3. Check that P is ε–regular for T [i] for i = 1, . . . , r.

Let us begin with the definition of a proper J ∈ N. Let F : N → N be a function to be
defined later which depends on ε and r that satisfies F (x) > x for all x ∈ N. Consider the
partition of [n] into intervals I1, . . . Ib1/ε3c as in Theorem 3.1. Define J := F (K−1)(1) for some
K ∈

[
b1/ε3c

]
satisfying

r∑
i=1

∑
j∈IK

(λ[i]
j )2 ≤ ε3n2.
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Note that this K exists, otherwise we would have

b1/ε3c∑
k=1

r∑
i=1

∑
j∈Ik

(λ[i]
j )2 =

r∑
i=1

Tr
(
(T [i])2

)
>

1
ε3
ε3n2 = n2.

For each i = 1, . . . , r, apply Theorem 3.6 to T [i] and let P [i] := {V [i]
0 , . . . , V

[i]
M [i]} be the

partitions we obtain. Let P := {V0, . . . , VM} be the partition where

V0 :=
r⋃
i=1

V
[i]

0 ,

and {V1, . . . , VM} is a refinement of partitions P [i] for indexes in [n] \ V0. Observe that

|V0| ≤
r∑
i=1
|V [i]

0 | ≤
r∑
i=1

(J − 1)εn
J
< rεn.

The total number of parts obtained in the refinement is

M ≤
r∏
i=1

M [i] ≤
(

4J4

ε4

)rJ
. (12)

Consider the decomposition T [i] = T
[i]
1 + T

[i]
2 + T

[i]
3 as in Theorem 3.1. To complete the

proof, we will check the ε–regularity of the partition P for each T [i]. The proof is analogous to
Theorems 3.1 and 3.6 but with partition P instead of P [i].

We are going to check first the condition on irregular pairs. Observe that

∑
j∈IK

λ
[i]
j

2
= Tr

(
(T [i]

2 )2
)

=
∑

a,b∈[n]
|(T [i]

2 )ab|2 ≤ ε3n2.

Define σ[i] ⊂ [M ]2 so that for all pairs (s, t) 6∈ σ[i],
∑
a∈Vs

∑
b∈Vt
|(T [i]

2 )ab|2 ≤ ε2 |Vs| |Vt| . (13)

Let Σ[i] be the set of all irregular pairs for T [i]: (s, t) ∈ {0, . . . ,M}2 such that (s, t) ∈ σ[i], s = 0,
t = 0 or min (|Vs| , |Vt|) < εn/M . Therefore,

∑
(s,t)∈Σ[i]

|Vs| |Vt| ≤
∑

(s,t)∈σ[i]

|Vs| |Vt|+ 2n |V0|+ 2
∑

|Vs|<εn/M
n |Vs|

≤ εn2 + 2rεn2 + 2M εn

M

= (3 + 2r)εn2.

(14)
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For the ε–regularity of the pairs (s, t) 6∈ Σ[i], we are going to check that for any vectors
vA,vB ∈ Cn as in the statement,

|v∗B
(
T [i] − d[i](Vs, Vt)Jn

)
vA|

≤
∣∣∣v∗B (T [i]

1 − d
[i]
stJn

)
vA
∣∣∣+ ∣∣∣v∗BT [i]

2 vA
∣∣∣+ ∣∣∣v∗BT [i]

3 vA
∣∣∣+ ∣∣∣v∗B (d[i]

st − d[i](Vs, Vt)
)
JnvA

∣∣∣ ,
for real numbers d[i]

st (the mean of the entries of T [i]
1 in block Vs × Vt).

Clearly, if the bound (8) for the term of T [i]
1 holds for V [i]

s′ , V
[i]
t′ ∈ P [i] for some pair (s′, t′),

it also holds for the refinement P because in particular, supp(vA) ⊂ Vs ⊆ V
[i]
s′ and supp(vB) ⊂

Vt ⊆ V
[i]
t′ . Therefore, we have ∣∣∣v∗B(T [i]

1 − d
[i]
stJn)vA

∣∣∣ ≤ ε |Vs| |Vt| . (15)

Similarly, it is easy to see that the bound (9) for T [i]
2 also holds for Vs, Vt ∈ P since we have

specifically defined σ[i] to satisfy (13). For that reason, we have∣∣∣v∗BT [i]
2 vA

∣∣∣ ≤ ε |Vs| |Vt| . (16)

For the term of T [i]
3 , the F defined in Theorem 3.1 is not valid because in this case the

bound for M is (12), which is weaker than (3). Then, to make sure that∣∣∣v∗BT [i]
3 vA

∣∣∣ ≤ ε |Vs| |Vt| ,

it suffices to choose an F satisfying

F (x) ≥ 1
ε6

(
4x4

ε4

)4rx

,

because then, since |Vs| , |Vt| ≥ εn/M for all pairs (s, t) 6∈ Σ[i], we have

∣∣∣v∗BT [i]
3 vA

∣∣∣ ≤ n · rad(T [i]
3 ) ≤ n2√

F (J)
≤ ε3n2

M2 ≤ ε |Vs| |Vt| . (17)

Finally, observe that the bound (11) is also satisfied by the refinement partition P , namely∣∣∣d[i]
st − d[i](Vs, Vt)

∣∣∣ ≤ 2ε. (18)

Making use of the bounds (15), (16), (17) and (18), we have that for all pairs (s, t) 6∈ Σ[i],
and for any vectors vA,vB ∈ Cn as before, we have∣∣∣v∗B (T [i] − d[i](Vs, Vt)Jn

)
vA
∣∣∣ ≤ 5ε |Vs| |Vt| .
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To conclude, if we do all the computations choosing ε3

3+2r instead of ε, last inequality becomes
∣∣∣v∗B (T [i] − d[i](Vs, Vt)Jn

)
vA
∣∣∣ ≤ 5

3 + 2r ε
3 |Vs| |Vt| ≤ ε3 |Vs| |Vt| ,

and the conditon on irregular pairs (14) becomes
∑

(s,t)∈Σ[i]

|Vs| |Vt| ≤
3 + 2r
3 + 2r ε

3n2 < εn2.

Therefore, P is an ε–regular partition for T [1], . . . , T [r] simultaneously.

In next section we will see that matrices of monochromatic subgraphs of a graph with an
edge–coloring are a particular case of last theorem. In order to obtain a regularity theorem
for edge–multicolorings, we need the following statement which is very similar to the previous
one, but with a weaker condition on the traces of T [i]. In this case, we require Tr(T [i]) ≤ n2 for
all i = 1, . . . , r instead of

r∑
i=1

Tr
(
(T [i])2

)
≤ n2. Although the proof is almost identical, we are

going to review it to remark the differences on a few constants.

Theorem 3.10. For every ε > 0, there are constants M = M(ε, r) and N = N(ε, r) such that
for every set of self–adjoint n×n matrices {T [1], . . . , T [r]} with n ≥ N such that Tr

(
(T [i])2

)
≤ n2

there exists a partition of [n] which is ε–regular for T [1], . . . , T [r] simultaneously.

Proof. For i = 1, . . . , r, let λ[i]
1 , . . . , λ

[i]
n ∈ R be the eigenvalues of T [i] and consider an orthonor-

mal basis of eigenvectors u[i]
1 , . . . ,u[i]

n ∈ Cn.
The structure of the proof is exactly the one in Theorem 3.9. However, there are differences

in some of the inequalities:

• the condition for the definition of J ,

• the bound for trace of (T [i]
2 )2 (and consequently, the bound for pairs in Σ[i]), and

• the appropriate value of ε that completes the proof.

Let us begin with the definition of a proper J ∈ N. Let F : N → N be a function to be
defined later which depends on ε and r that satisfies F (x) > x for all x ∈ N. Consider the
partition of [n] into intervals I1, . . . , Ib1/ε3c as in Theorem 3.1. Define J := F (K−1)(1) for some
K ∈

[
b1/ε3c

]
satisfying

r∑
i=1

∑
j∈IK

(λ[i]
j )2 ≤ rε3n2.

Note that this K exists, otherwise we would have
b1/ε3c∑
k=1

r∑
i=1

∑
j∈Ik

(λ[i]
j )2 =

r∑
i=1

Tr
(
(T [i])2

)
>

1
ε3
rε3n2 = rn2.
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For each i = 1, . . . , r, apply Theorem 3.6 to T [i]. Define the partition P := {V0, . . . , VM}
and the decomposition as in Theorem 3.9. We will check the ε–regularity of the partition P for
each T [i].

We are going to check first the condition on irregular pairs. Observe that∑
j∈IK

(λ[i]
j )2 = Tr

(
(T [i]

2 )2
)

=
∑

a,b∈[n]
|(T [i]

2 )ab|2 ≤ rε3n2.

Define σ[i] ⊂ [M ]2 as in Theorem 3.9 and let Σ[i] be the set of all irregular pairs for T [i]:
(s, t) ∈ {0, . . . ,M}2 such that (s, t) ∈ σ[i], s = 0, t = 0 or min (|Vs| , |Vt|) < εn/M . Therefore,∑

(s,t)∈Σ[i]

|Vs| |Vt| ≤
∑

(s,t)∈σ[i]

|Vs| |Vt|+ 2n |V0|+ 2
∑

|Vs|<εn/M
n |Vs|

≤ rεn2 + 2rεn2 + 2M εn

M

= (3r + 2)εn2.

(19)

The ε-regularity of pairs (s, t) 6∈ Σ[i] can be checked in the exact same way as in theorem
3.9. Therefore, we have that for all pairs (s, t) 6∈ Σ[i], and for any A ⊂ Vs and B ⊂ Vt, we have∣∣∣1TB (T [i] − d[i](Vs, Vt)Jn

)
1A
∣∣∣ ≤ 5ε |Vs| |Vt| .

To conclude, if we do all the computations choosing ε3

3r+2 instead of ε, last inequality becomes

∣∣∣1TB (T [i] − d[i](Vs, Vt)Jn
)

1A
∣∣∣ ≤ 5

3r + 2ε
3 |Vs| |Vt| ≤ ε3 |Vs| |Vt| ,

and the conditon on irregular pairs (19) becomes

∑
(s,t)∈Σ[i]

|Vs| |Vt| ≤
3r + 2
3r + 2ε

3n2 < εn2.

Therefore, P is an ε–regular partition for T [1], . . . , T [r] simultaneously.

3.2 Spectral regularity for graphs
In this section we are going to see how the regularity of the partition of the adjacency matrix
T of a graph G provided by the Spectral Regularity Theorem 3.6 can be translated to a regular
partition of the graph itself. The following lemma shows that graph regularity is indeed a direct
consequence of matrix regularity of its adjacency matrix.

Lemma 3.11. Consider an ε–regular partition P of the adjacency matrix of a graph G for
some ε > 0. Then, P is an ε–regular partition of G.
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Proof. Let G be a graph on n vertices. Let P = {V0, . . . , VM} be an ε–regular partition for its
adjacency matrix T and let Σ ⊂ {0, . . . ,M}2 be the set of exceptional pairs.

Consider a pair (s, t) ∈ {0, . . . ,M}2 \ Σ and subsets A ⊂ Vs and B ⊂ Vt. Let 1A and
1B be their characteristic vectors respectively. By definition of characteristic vector, we have
supp(1A) = A, supp(1B) = B, ‖1A‖2

2 = |A| and ‖1B‖2
2 = |B|. Thus, by ε–regularity of the

partition for T , ∣∣∣1TB(T − d(Vs, Vt)Jn)1A
∣∣∣

|A| |B|
= |d(A,B)− d(Vs, Vt)| ≤ ε,

which is precisely the definition of ε–regularity of the pair (s, t) for the graph G. For irregular
pairs, it is clear that ∑

(s,t)∈Σ
|Vs||Vt| ≤ εn2.

Therefore, we can conclude that P is an ε–regular partition for the graph G.

Let us now revisit Szemerédi’s Regularity Lemma. Again, the proof we are going to see is
based on the explanation of Cioaba and Martin in [7]. It is a pretty straightforward consequence
of Theorem 3.6 and the above lemma.

Theorem 3.12 (Szemerédi’s Regularity Lemma). For every ε > 0, there are constants M =
M(ε) and N = N(ε) such that every graph on n ≥ N vertices has an ε–regular partition into
at most M parts.

Proof. Let G be a graph on n vertices and let T be its adjacency matrix. Observe that the
entry (a, b) of the matrix T k counts the number of walks of length k between vertices a and b.
Taking k = 2, we have

n∑
j=1

λ2
j = Tr(T 2) = 2e(G) ≤ 2

(
n

2

)
≤ n2.

The matrix T satisfies the hypothesis of Theorem 3.6. Let P = {V0, . . . , VM} be the ε–regular
partition obtained from the theorem and let Σ ⊂ {0, . . . ,M}2 be the set of exceptional pairs.
By Lemma 3.11, P is an ε–regular partition of the vertices of G.

This spectral proof also provides an ε–regular partition of G as in Theorem 1.4, but there
are remarkable differences. One example is the bound on the number of parts: recall that for
the partition obtained in 1.4 (the energy proof), the bound was a power tower of ε−5 twos, and
in the spectral case, as we observed in 3.2 it may be a lot larger, namely

M ≤
(

4(F (b1/ε3c−1)(1))4

ε4

)F (b1/ε3c−1)(1)

.

Therefore, we can conclude that the interest on the spectral version is not in the optimisation
of the size of the ε–regular partition. In [8], Frieze and Kannan came up with the spectral
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method (in fact, they obtained a slightly different algorithm that then then derivated to the
proof by Tao in [16]) in order to find a more efficient way to compute partitions.

As we have commented in the previous section, another interesting situation to study is the
case of a graph with an edge–coloring. We define the ε–regularity of a partition for a graph with
an edge–coloring to be ε–regularity of the partition for each of the monochromatic subgraphs.
Therefore, the Edge–coloring Regularity Theorem will provide a partition of the vertices which
is ε–regular simultaneously on the set of monochromatic subgraphs.

Theorem 3.13 (Edge–coloring Regularity Theorem). For every ε > 0 and r ∈ N, there are
constants M = M(ε, r) and N = N(ε, r) such that for every graph on n ≥ N vertices and
every r–coloring of the edges there is a partition of the vertices into at most M parts which is
ε–regular in the monochromatic subgraphs.

Proof. Let G = ([n], E[1]t· · ·tE[r]) be a graph on n vertices and an r–edge–coloring. Let T be
its adjacency matrix and λ1, . . . , λn ∈ R its spectrum. For i = 1, . . . , r, define G[i] = ([n], E[i])
and let T [i] be its adjacency matrix. Denote the spectrum of T [i] by λ[i]

1 , . . . , λ
[i]
n ∈ R. Note that

n∑
j=1

λ2
j = Tr

(
T 2
)

= Tr
(
(T [1] + · · ·+ T [r])2

)
=

r∑
i=1

Tr
(
(T [i])2

)
+

∑
1≤i1,i2≤r
i1 6=i2

Tr
(
T [i1]T [i2]

)

=
r∑
i=1

n∑
j=1

(λ[i]
j )2

because the diagonal entries of T [i1]T [i2] are zero since E[i1] ∩ E[i2] = ∅ for all i1 6= i2. As a
consequence,

r∑
i=1

Tr
(
(T [i])2

)
= Tr(T 2) ≤ n2.

Apply Theorem 3.9 to matrices T [1], . . . , T [r] and let P be the ε–regular partition obtained.
By Lemma 3.11, P is an ε–regular partition for G[1], . . . , G[r] simultaneously.

The natural generalisation of last theorem is the case when G has an r–multicoloring of the
edges: edge-sets E[1], . . . , E[r] are not disjoint, which means we can assign to each edge up to r
colors.

Theorem 3.14 (Edge–multicoloring Regularity Theorem). For every ε > 0 and r ∈ N, there
are constants M = M(ε, r) and N = N(ε, r) such that for every graph on n ≥ N vertices and
every r–multicoloring of the edges there is a partition of the vertices into at most M parts which
is ε–regular in the monochromatic subgraphs.
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Proof. Let G = ([n], E[1] ∪ · · · ∪ E[r]) be a graph on n vertices and an r–edge–multicoloring.
For i = 1, . . . , r, define G[i] = ([n], E[i]) and let T [i] be its adjacency matrix.

Apply Theorem 3.10 to matrices T [1], . . . , T [r] and let P be the ε–regular partition obtained.
By Lemma 3.11, P is an ε–regular partition for G[1], . . . , G[r] simultaneously.

It is clear that the case of one single graph and the edge–coloring versions are particular
choices of G in last theorem:

(i) Szemerédi’s Regularity Lemma 3.12 corresponds to the case r = 1, and

(ii) the Edge-coloring Regularity Theorem 3.13 corresponds to the case
r⋂
i=1

E[i] = ∅.

Thanks to the generality of the matrix of the Spectral Regularity Theorem 3.6, we are able
to state regularity theorems for other types of graphs as long as the trace of the square of
its adjacency matrix is properly bounded. We are going to see first the case of undirected
multigraphs. We are including the proof for the sake of completeness although it is exactly
the same as the one in Theorem 3.12. The weakness of this theorem compared to the previous
ones is precisely that this result does not hold for any multigraph, because not any adjacency
matrix of a multigraph satisfies the bound on the trace.

Theorem 3.15 (Multigraph Weak Regularity Theorem). For every ε > 0, there are constants
M = M(ε) and N = N(ε) such that every multigraph on n ≥ N vertices with adjacency matrix
T satisfying Tr(T 2) ≤ n2 has an ε–regular partition into at most M parts.

Proof. Let G be a multigraph on n vertices and let T be its adjacency matrix, which satisfies
the hypothesis of Theorem 3.6. Let P = {V0, . . . , VM} be the ε–regular partition obtained and
let Σ ⊂ {0, . . . ,M}2 be the set of exceptional pairs. By Lemma 3.11, P is an ε–regular partition
of the vertices of G.

The last theorem we are going to see is a weaker regularity theorem for directed graphs
which will provide an ε–regular partition of a bounded number of parts for a graph of any size
satisfying an extra condition that will be determined later. The definition of ε–regularity for
digraphs that we are going to consider is the one from Alon–Shapira [3].

Let G = (V,E) be a directed graph and let X, Y ⊆ V .

Definition 3.16. Define
−→
E (X, Y ) := {(x, y) ∈ E : x ∈ X, y ∈ Y },
←−
E (X, Y ) := {(y, x) ∈ E : y ∈ Y, x ∈ X},
E(X, Y ) := {(x, y) ∈ E : (y, x) ∈ E, x ∈ X, y ∈ Y },
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and let −→e (X, Y ), ←−e (X, Y ) and e(X, Y ) be the cardinals of those sets respectively.
The directed edge–densities of X and Y are

−→
d (X, Y ) :=

−→e (X, Y )
|X||Y |

,

←−
d (X, Y ) :=

←−e (X, Y )
|X||Y |

,

d(X, Y ) := e(X, Y )
|X||Y |

.

Definition 3.17. The pair (X, Y ) is ε–regular if for all A ⊂ X and B ⊂ Y with |A| ≥ ε|X|
and |B| ≥ ε|Y |, we have

|
−→
d (A,B)−−→d (X, Y )| ≤ ε,

|
←−
d (A,B)−←−d (X, Y )| ≤ ε,

|d(A,B)− d(X, Y )| ≤ ε,

the three at the same time.

Definition 3.18. A partition P = {V1, . . . , Vk} of V is ε–regular if∑
(s,t)∈[k]2

(Vs,Vt) not ε–regular

|Vs||Vt| ≤ ε|V |2.

Alon and Shapira gave a proof using an energy increment argument analogous to the proof
of Szemerédi’s Regularity Lemma 1.4 in the first chapter (see [3]). The idea is, given any initial
partition Q = {W1, . . . ,Wk}, to divide the directed graph into three undirected graphs −→G , ←−G
and G with edge sets

−→
E (Q) =

⋃
s<t

−→
E (Ws,Wt),

←−
E (Q) =

⋃
s<t

←−
E (Ws,Wt),

E(Q) =
⋃
s 6=t

E(Ws,Wt)

respectively. Then, start refining and updating the undirected graphs by adding the edges
between subparts until the partition is ε–regular. The spectral approach inspired by this proof
is the following.

Start with a random partition Q. Define three undirected graphs −→G , ←−G and G as before.
Then, we could apply Theorem 3.10 and obtain a partition which is ε–regular in the directed
sense for the graph G̃ with edge set Ẽ = −→E ∪←−E ∪E, with Ẽ ⊂ E. The problem is that Ẽ may
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be a proper subset, which means that there are some edges of G that have not been taken into
account, specifically the single inner edges of parts of Q. In this case, the refinement step of
Theorem 3.10 may not give a truly ε–regular partition for G in the directed sense.

One way to avoid this situation is to start with an initial partition for such Ẽ = E, for
instance, a partition into independent sets. In that setting, all edges are assigned a direction
and consequently the spectral algorithm provides a suitable ε–regular partition for G. In fact,
as we do not have this problem for double edges, a partition into independent sets of the graph
with edge-set E \E(V, V ) would be enough. This method will give an ε–regular partition such
that the bound on the number of parts depends on the size of that initial partition, which is
precisely the chromatic number of the graph (V,E \ E(V, V )).

In this case, the weakness of the following statement is that the bound not only depends on
ε but also on the chromatic number of the graph specified above.

Theorem 3.19 (Directed Weak Regularity Theorem). For every ε > 0 and χ ∈ N, there is
M = M(ε, χ) and N = N(ε) such that every graph on n ≥ N vertices such that the subgraph
induced by single edges has chromatic number χ has an ε–regular partition into at most M
parts.

Proof. Let G = ([n], E) be a directed graph and let Q = {W1, . . . ,Wχ} be a χ–vertex–coloring
of the simple graph ([n], E \ E([n], [n])). Consider the multicoloring of the edges given by
E = −→E (Q) ∪ ←−E (Q) ∪ E(Q). Let −→T , ←−T and T be the adjacency matrices of graphs −→G , ←−G
and G with edge–sets −→E (Q), ←−E (Q) and E(Q) respectively. Apply Theorem 3.14 and let
P = {V0, . . . , VM} be the refinement of Q and the partition given by the theorem. The size of
P is bounded by

M ≤ χ

(
4J4

ε4

)3J

and by choosing an appropriate F , for instance

F (x) ≥ χ4

ε6

(
4x4

ε4

)12J

,

we can conclude that P is ε–regular for −→G , ←−G and G simultaneously, or in other words, P is
an ε–regular partition of G in the directed sense.

3.3 Examples
The first graph we are going to study is Kn, the complete graph on n vertices. Although any
partition of the vertices is ε–regular, because the edge–density between two subsets of vertices
is always 1, we are going to apply the spectral method to see which partition do we obtain.
Recall that λ1 = n− 1 and λj = −1 for j > 1, and u1 = 1/

√
n1, uj = 1/

√
2(e1 − ej) for j > 1
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is an orthonormal basis of eigenvectors. Let us apply Szemerédi’s Regularity Lemma 3.12 to
Kn. Define the intervals I1, . . . , Ib1/ε3c as in Theorem 3.1 and let K ∈ b1/ε3c be the first integer
such that ∑

j∈IK
λ2
j ≤ ε3n2.

We have two possibilities:

• If K = 1, then the following should be satisfied,

∑
j∈I1

λ2
j = (n− 1)2 +

F (1)−1∑
j=2

(−1)2

= n2 − 2n+ 1 + F (1)− 1
= n2 + F (1)− 2n− 1
≤ ε3n2,

which does not hold for example for ε = 1/2 and F (x) = 1/ε6(4x/ε4)4x.

• If K > 1, then ∑
j∈IK

λ2
j =

∑
j∈IK

(−1)2 = |IK | ≤ ε3n2.

Assume K > 1 and let J = F (K−1)(1). Consider the square of side 2
√
J/(εn) centered at

the origin of the complex plane. The eigenvectors of Kn have values 0, 1/
√
n and ±1/

√
2. The

entries 0 and 1/
√
n are inside the square of side 2

√
J/(εn), because 1/

√
n ≤

√
J/(εn). We will

assume n > 2J/ε, which implies that 1/
√

2 >
√
J/(εn). The partition is defined as follows:

• P(u1) = {[n]} and Σ1 = ∅, because u1(a) = 1/
√
n for all a ∈ [n].

• P(uj) = {[n] \ Σj,Σj} where Σj = {1, j} for j > 1.

The refinement of those partitions is P = {V0, V1} where

V0 =
⋃
j=1

Σj = [J − 1]

and V1 = [n] \ [J − 1], which is trivially ε–regular.
For a general circulant graph C with adjacency matrix T = circ(a1, . . . , an), we have that

the j–th eigenvalue of C
λj =

n∑
k=1

akω
jk,

and u1, . . . ,un ∈ Cn where

uj = 1√
n

(ωj, ω2j, . . . , ω(n−1)j, 1)
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is an orthonormal basis of eigenvectors.
Let K ∈ b1/ε3c be the first integer such that
∑
j∈IK

λ2
j =

∑
j∈IK

n∑
k=1

akω
jk = an + an−1

∑
j∈IK

ω(n−1)j + · · ·+ a2
∑
j∈IK

ω2j + a1
∑
j∈IK

ωj ≤ ε3n2.

Again, let J = J = F (K−1)(1) and consider the square of side 2
√
J/(εn) centered at the

origin of the complex plane. The entries of the eigenvectors of G are n–th roots of unity
multiplied by a 1/

√
n factor. Therefore, |uj(a)| = 1/

√
n for every a, j ∈ [n]. Similarly as

before, all of these entries lie inside the square because 1/
√
n ≤

√
J/(εn).

The partitions in this case are not as clear as before: for each j < J , we have that
(uj(1), . . . , uj(n)) is plotted conforming a regular polygon of n vertices and radius 1/

√
n. For

each j, we have a different permutation of the vertices of the polygon. This difficults us to
give the explicit description of the partitions P(uj) for j < J and in consequence the posterior
refinement.

The interest on circulant graphs comes from the fact that they can be equivalently described
as Cayley graphs of finite cyclic groups. Recall that a Cayley graph is a directed graph Γ =
Γ(G,S) where G is a group and S a generating set of of G. The graph Γ has vertex set
indexed by the elements of G and there is an edge (g, h) whenever gh−1 ∈ S. If S is symmetric
(S = S−1) and does not contain the identity element of the group, the Cayley graph Γ can be
represented as a simple undirected case, which is the case we were studying. For example, if
G = Zn and S = {g, g−1}, then Γ(G,S) is the cycle Cn.

This interpretation of circulant graphs leads us to the study of “ε–regularity” for groups.
Analogously to the process of translating regularity for graphs to matrices that we have done
previously in this chapter, we can reformulate the same concept but for groups.

Let G be a finite group and S a symmetric set of generators not containing the identity,
and let X, Y ⊆ G. Define

d(X, Y ) = |{(g, h) ∈ X × Y : gh−1 ∈ S}|
|X| |Y |

.

The pair (X, Y ) is ε–regular if for all A ⊂ X and B ⊂ Y such that |A| ≥ ε |X| and |B| ≥ ε |Y |,
we have

|d(A,B)− d(X, Y )| ≤ ε.

This property can be interpreted as, if we take not too small subsets A and B of X and Y

respectively, the elements h ∈ B and g ∈ A such that are related like h = gs for some s ∈ S
are well distributed among A and B. If a partition P = {V0, . . . , VM} of the group G satisfies
that ∑

(s,t)∈{0,...,M}2

(Vs,Vt) not ε–regular

|Vs| |Vt| ≤ ε |G|2 ,
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we will say that P is ε–regular.
In terms of finite abelian groups, Green proved an Arithmetic Rregularity Lemma in [10]. It

states that, when G = Fnp for a fixed primer p, given any subset S ⊆ G there exists a subspace
H of bounded codimension such that S is Fourier–uniform with repect to almost all cosets of
H. All the discussion by Green is done in terms of Fourier transforms, which are out of our area
of expected knowledge. A more accessible interpretation of this result is given in Terry–Wolf
[17].

We say that a graph (V,E) is k–stable if there are no a1, . . . , ak, b1, . . . , bk ∈ V such that
aibj ∈ E if and only if i ≤ j. A subset S ⊆ G of a finite abelian group G is k–stable if the
Cayley graph Γ(G,S) if k–stable.

The result from Terry and Wolf is the following: for ε > 0, k ≥ 2 and a prime p, there is
a constant N = N(k, ε, p) such that for all n ≥ N , if G = Fnp and S ⊆ G is k–stable, then
there is a subspace H 6 G of codimension at most Ok(ε−Ok(1)) such that for any g ∈ G, either
|(S − g) ∩H| ≤ ε |H| or |H \ (S − g)| ≤ ε |H|.

The above result can be interpreted as follows. For a k–stable subset S ⊆ G, the density of
S for each translate on the subspace H is either close to 1 or 0. Further work can be done in
that direction by studying the spectral partition of the Cayley graph Γ(G,S) for a k–stable set
S, which we will not discuss in this dissertion, and more generally, studying how the spectral
partition may be related to Green’s Arithmetic Regularity Lemma.

Let us give a final example concerning multigraphs. An interesting example is the case of
the multigraph correponding to the k–th power of a graph Gk. If G is a graph on n vertices,
Gk has vertex set [n] and has an edge between a and b for each walk from a to b in G.

Recall that if T is the adjacency matrix of G, the entry (T k)ab is the number of walks from
a to b. In other words, T k is precisely the adjacency matrix of Gk. Therefore, if λ1, . . . , λn ∈ R
are the eigenvalues of T and u1, . . . ,un ∈ Cn is a basis of eigenvectors, then λk1, . . . , λkn are the
eigenvalues of T k and u1, . . . ,un is also a basis of eigenvectors.

If Tr(T 2k) ≤ n2, we can apply Theorem 3.15 and if the same K is valid for both G and Gk,
that is ∑

j∈IK
λ2
j ,
∑
j∈IK

λ2k
j ≤ ε3n2,

then the same partition is ε–regular for vertices of G and Gk. A trivial example of this situation
is when ∑

j∈IK
λ2
j < 1 ≤ ε3n2,

because then |λj| < 1 and consequently λ2k
j ≤ λ2

j for all j ∈ IK .

45



Chapter 4

Removal Lemmas
The Removal Lemma is one of the key applications of the Regularity Lemma, as we have
already seen in Chapter 1. As mentioned in the Introduction, no explicit development of a
spectral removal lemma has been addressed in the literature. The purpose of this chapter
is to accomplish this goal. To this end we start by giving a matrix version of the Counting
and Removal Lemmas for graphs, which correspond to the Matrix Removal Lemma for 0–1
symmetric matrices with zero diagonal. This will motivate our statement of a spectral removal
lemma. Once in this more general setting, a natural application is to obtain a removal lemma
for multigraphs, which to our knowledge has not been formulated in the literature except for
the case of the triangles. In this case, Shapira and Yuster [13] show that the Triangle Removal
Lemma does not necessary hold for multigraphs and give some requirements for this removal
version to hold. Our version for multigraphs provides general sufficient conditions for the
Removal Lemma for multigraphs to hold which involves the maximum multiplicity of an edge.

4.1 The matricial version of the Graph Removal Lemma
In order to prove the matricial analogous of the Counting and Removal Lemmas in Chapter 1,
we have to see first how the concepts of the statements for graphs are translated in terms of
their adjacency matrices.

Definition 4.1. Let A = (aij) be a n× n symmetric 0–1 matrix and let A1, A2 ⊆ [n]. Define

wA(A1 × A2) := |{aij > 0 : i ∈ A1, j ∈ A2}| .

The weight of A is w(A) := wA([n]× [n]).

Let G be a graph on n vertices and let A be its adjacency matrix. The number of edges
between two subsets of vertices A1, A2 ⊆ [n] of G is wA(A1×A2) and the total number of edges
of G is w(A)/2. Therefore, the edge-density between A1 and A2 corresponds to

d(A1, A2) = wA(A1 × A2)
|A1| |A2|

,

which is a real number between 0 and 1 (as expected).
For a k–tuple Q = (v1, . . . , vk) ∈ [n]k with no repeated entries denote by AQ the k × k

matrix obtained obtained from A by choosing the rows and columns with indexes in Q ordered
as in the k–tuple.
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A graph H on k vertices with adjacency matrix B is a subgraph of G if and only if there is
a k–tuple Q such that B ≤ AQ, where here the inequality is meant to be componentwise. We
then say that G contains a copy of H, or equivalently, that A contains a copy of B. If there is
no k–tuple with this property, we say that A is B–free.

Theorem 4.2 (Graph Counting Lemma, matricial version). Let B = (bij) be a k×k symmetric
0–1 matrix with zero diagonal and let ε > 0. Let A = (aij) be a n × n symmetric 0–1 matrix
with zero diagonal and let V1, . . . , Vk be subsets of [n] such that (Vi, Vj) is ε–regular whenever
bij = 1. Then, the number of copies of B in A is within ε · w(B)

2 · |V1| · · · |Vk| of ∏
bij=1
i<j

d(Vi, Vj)


(

k∏
i=1
|Vi|

)
.

Proof. Let us prove a probabilistic version of the theorem: if we have indexes v1 ∈ V1, . . . , vk ∈
Vk chosen uniformly and independendently at random, then the conclusion of the theorem is
equivalent to ∣∣∣∣∣∣∣∣∣Pr

(
AQ ≥ B

)
−

∏
bij=1
i<j

d(Vi, Vj)

∣∣∣∣∣∣∣∣∣ ≤ ε · w(B)
2 . (1)

That is, the probability that the tuple (v1, . . . , vk) is indeed a copy of B in A is within ε ·w(B)/2
of ∏

bij=1
i<j

d(Vi, Vj).

Suppose w(B) > 0. To simplify notation, define

PB := Pr
(
AQ ≥ B

)
.

Relabelling if necessary, assume b12 = 1. If B′ = (b′ij) denotes the k× k symmetric matrix with
b′12 = b′21 = 0 and b′ij = bij for the rest of entries, we will show

|PB − d(V1, V2)PB′| ≤ ε.

Let us fix v3, . . . , vk and choose randomly only v1, v2. Observe that if last inequality is
satisfied under this extra constraint, it also holds for the weaker case where all k indexes are
chosen randomly. Let

A1 := {v1 ∈ V1 : av1vi = 1 whenever b1i = 1 for all i 6= 2},

A2 := {v2 ∈ V2 : av2vi = 1 whenever b2,i = 1 for all i 6= 1},
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be the possible choices for v1 and v2 which, with v3, . . . , vk, give a copy of B′ in A. The
probabilistic statement with v3, . . . , vk fixed can be reformulated as∣∣∣∣∣wA(A1 × A2)

|V1| |V2|
− d(V1, V2) |A1| |A2|

|V1| |V2|

∣∣∣∣∣ ≤ ε.

Let us check it by cases. If |A1| ≤ ε |V1| or |A2| ≤ ε |V2|, both terms are at most ε, so the
inequality holds. Otherwise, if |A1| > ε |V1| and |A2| > ε |V2|, by ε–regularity of (V1, V2) we
have ∣∣∣∣∣w(A1 × A2)

|V1| |V2|
− d(V1, V2) |A1| |A2|

|V1| |V2|

∣∣∣∣∣ = |d(A1, A2)− d(V1, V2)| |A1| |A2|
|V1| |V2|

≤ ε.

We are going to complete the proof by induction on w(B)/2. Since w(B)/2 = 1 +w(B′)/2,
assume (1) holds when replacing B with B′. Therefore,∣∣∣∣∣∣∣∣∣PB −

∏
i<j
bij=1

d(Vi, Vj)

∣∣∣∣∣∣∣∣∣ ≤ |PB − d(V1, V2)PB′ |+ d(V1, V2)

∣∣∣∣∣∣∣∣∣PB′ −
∏
i<j
b′ij=1

d(Vi, Vj)

∣∣∣∣∣∣∣∣∣
≤ ε+ d(V1, V2)ε · w(B′)

2

≤ ε

(
1 + w(B′)

2

)

= ε · w(B)
2 .

Equipped with the above counting lemma we can formulate the following matricial version
of the Removal Lemma. As before, we say that an n × n matrix contains a copy of a k × k
matrix B if there is a subset Q ⊂ [n] with |Q| = k such that B ≤ AQ.

Theorem 4.3 (Graph Removal Lemma, matricial version). For each k × k symmetric 0–1
matrix B = (bij) with zero diagonal and each ε > 0 there exists δ > 0 such that every n × n
symmetric 0–1 matrix A = (aij) with zero diagonal with fewer than δnw(B)/2 copies of B can be
made B–free by changing at most εn2 pairs of entries (aij, aji) to zero.

Proof. First, apply the Spectral Regularity Theorem 3.6 to matrix A in order to obtain an
ε/4–regular partition P = {V0, . . . , VM} of [n]. Secondly, let A′ be a 0–1 symmetric matrix that
has zero entries on the blocks Vi × Vj and Vj × Vi whenever

(a) (Vi, Vj) is not ε/4–regular,

(b) d(Vi, Vj) < ε/2,
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(c) Vi or Vj have size smaller than εn
4M .

For the rest of the entries, set a′ij = aij.
The number of pairs (aij, aji) set to zero in (a) is, by ε/4–regularity of the partition,

∑
(Vi,Vj) not ε/4–regular

wA(Vi × Vj) ≤
∑

(Vi,Vj) not ε/4–regular
|Vi| |Vj| ≤

ε

4n
2.

For the low denisty pairs in (b), we have

∑
d(Vi,Vj)<ε/2

d(Vi, Vj) |Vi| |Vj| ≤
ε

2
∑

(i,j)∈{0,...,M}2

|Vi| |Vj| =
ε

2n
2.

And finally, for the small subsets in (c), the number of pairs of entries set to zero is at most

n · εn4M ·M = ε

4n
2,

because for each index in [n], there are at most εn
4M entries for each of the at most M small

subsets of the partition.
Suppose that there is a tuple (v1, . . . , vk) ∈ Vs1 × · · · × Vsk where s1, . . . , sk ∈ {0, . . . ,M}

such that a′vivj = 1 whenever bij = 1. In other words, there is a copy of B in A′ realised by
(v1, . . . , vk). By the Counting Lemma 4.2, there are at least

1
|Aut(B)|


 ∏
bij=1
i<j

d(Vsi , Vsj)


(

k∏
i=1
|Vsi |

)
− ε · w(B)

2

k∏
i=1
|Vsi|


≥ 1
|Aut(B)|

( ε
2

)w(B)
2
(
εn

4M

)k
− ε · w(B)

2

(
εn

4M

)k
= 1
|Aut(B)|

(
ε

4M

)k ( ε
2

)w(B)
2
− ε · w(B)

2

nk
copies of B in A′, where Aut(B) is the set of permutation matrices P such that B = PBP T .
If we choose

δ <
1

|Aut(B)|

(
ε

4M

)k ( ε
2

)w(B)
2
− ε · w(B)

2

 ,
we get a contradiction: if in the matrix A′ there is some copy of B left, we found that there are
more than δnk copies. However, the original matrix A had at most δnk copies. In conclusion, the
matrix obtained from A by changing at most εn2 pairs (aij, aji) of entries to zero is B–free.
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4.2 The Multigraph Removal Lemma
Let G be a multigraph on n vertices and let H be another multigraph on k vertices. Let G(x, y)
be a simple graph on n vertices with an edge between vertices i and j whenever

mG(i, j) ≥ mH(x, y),

where mG(i, j) denote the number of edges in G between the pair of vertices {i, j}. We will also
refer to this number as the multiplicity of the edge {i, j} in G. Note that if r is the maximum
edge multiplicity of H, then {G(x, y)}(x,y)∈[k]2 consists in of most r differents matrices, one for
each possible multiplicity.

In matricial terms, if A = (aij) and B = (bij) are the adjacency matrices of G and H, then
A(x, y) := (a(x, y)ij) is the adjacency matrix of the graph G(x, y), which is defined by

a(x, y)ij :=

1 if aij ≥ bxy > 0,
0 otherwise,

Let dxy = dA(x,y) be the edge–density computed on matrix A(x, y).
Let us first prove the Multigraph Counting Lemma. Note that the ε–regularity conditions

are imposed in matrices A(i, j) instead of A as we could have imagined. We make use of this
strategy because in a key step of the proof we need the density to be a real number between
0 and 1, and it may not be the case for any multigraph since the multiplicity of the edges can
be arbitrarily large. We observe that this approach in the following statement is different from
the naive one, consisting of decomposing the matrices A and B as a sum of 0–1 matrices and
apply the edge–multicolored version of the Regularity Lemma, which may give a different and
weaker statement.

Analogous to the above case, a multigraph H is a subgraph of G if and only if there is a
k–tuple Q = (v1, . . . , vk) such that B ≤ AQ in the sense that avivj ≥ bij whenever bij > 0.

Theorem 4.4 (Multigraph Counting Lemma, matricial version). Let B = (bij) be a k × k

symmetric matrix with bij ∈ N and zero diagonal and let ε > 0. Let A = (aij) be a n × n

matrix with aij ∈ and zero diagonal and consider the matrices A(i, j) determined by A and B.
Let V1, . . . , Vk ⊆ [n] be such that (Vi, Vj) is ε–regular for A(i, j) whenever bij > 0. Then, the
number copies of B in A is within ε · w(B)

2 · |V1| · · · |Vk| of ∏
bij>0
i<j

dij(Vi, Vj)


(

k∏
i=1
|Vi|

)
.

Proof. Let us prove a probabilistic version of the theorem: if we have indexes v1 ∈ V1, . . . , vk ∈
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Vk chosen uniformly and independendently at random, then∣∣∣∣∣∣∣∣∣Pr
(
avivj ≥ bij ∀bij > 0

)
−

∏
bij>0
i<j

dij(Vi, Vj)

∣∣∣∣∣∣∣∣∣ ≤ ε · w(B)
2 . (2)

That is, the probability that the tuple (v1, . . . , vk) is indeed a copy of B in A is within ε ·w(B)/2
of ∏

bij>0
i<j

dij(Vi, Vj).

To simplify notation, define

PB := Pr
(
avivj ≥ bij ∀bij > 0

)
.

Relabelling if necessary, assume b12 > 0. If B′ = (b′ij) denotes the k× k symmetric matrix with
b′12 = b′21 = 0 and b′ij = bij for the rest of entries, we will show

|PB − d12(V1, V2)PB′| ≤ ε.

Let us fix v3, . . . , vk and choose randomly only v1, v2. Observe that if last inequality is
satisfied under this extra constraint, it also holds for the weaker case where all k vertices are
chosen randomly. Let

A1 := {v1 ∈ V1 : av1vi ≥ b1i whenever b1i > 0 for all i 6= 2},

A2 := {v2 ∈ V2 : av2vi ≥ b2i whenever b2i > 0 for all i 6= 1},

be the possible choices for v1 and v2 which, with v3, . . . , vk, give a copy of B′ in A. The
probabilistic statement with v3, . . . , vk fixed can be reformulated as∣∣∣∣∣wA(1,2)(A1 × A2)

|V1| |V2|
− d12(V1, V2) |A1| |A2|

|V1| |V2|

∣∣∣∣∣ ≤ ε.

Let us check it by cases. If |A1| ≤ ε |V1| or |A2| ≤ ε |V2|, both terms are at most ε, so we have∣∣∣∣∣wA(1,2)(A1 × A2)
|V1| |V2|

− d12(V1, V2) |A1| |A2|
|V1| |V2|

∣∣∣∣∣ ≤ ε.

Otherwise, if |A1| > ε |V1| and |A2| > ε |V2|, by ε–regularity of (V1, V2) in A(1, 2) we have∣∣∣∣∣wA(1,2)(A1 × A2)
|V1| |V2|

− d12(V1, V2) |A1| |A2|
|V1| |V2|

∣∣∣∣∣ = |d12(A1, A2)− d12(V1, V2)| |A1| |A2|
|V1| |V2|

≤ ε.
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We are going to complete the proof by induction on the number of entries bij > 0. Since
w(B)/2 = 1 + w(B′)/2, assume (2) holds when replacing B with B′. Therefore,∣∣∣∣∣∣∣∣∣PB −

∏
bij>0
i<j

dij(Vi, Vj)

∣∣∣∣∣∣∣∣∣ ≤ |PB − d12(V1, V2)PB′ |+ d12(V1, V2)

∣∣∣∣∣∣∣∣∣PB′ −
∏
b′ij>0
i<j

dij(Vi, Vj)

∣∣∣∣∣∣∣∣∣
≤ ε+ d12(V1, V2) · ε · w(B′)

2

≤ ε

(
1 + w(B′)

2

)

= ε · w(B)
2 .

Let us now use the above theorem to prove a matricial version of the Multigraph Removal
Lemma. Since the Counting Lemma requires some kind of regularity for matrices A(i, j) and
not for A, we are not going to use the Multigraph Regularity Lemma 3.15. In spite of that,
if r = maxmH(i, j) is the maximum edge–multiplicity of H, we are going to consider the r
distinct matrices A(i, j) and Theorem 3.10 will provide a suitable ε–regular partition.

Theorem 4.5 (Multigraph Removal Lemma, matricial version). For each k × k symmetric
matrix B = (bij) with bij ∈ N and r = max bij and each ε > 0 there exists δ > 0 such that every
n × n symmetric matrix A = (aij) with aij ∈ N with fewer than δnw(B)/2 copies of B can be
made B–free by changing c(r)εn2 pairs of entries (aij, aji) to zero for some constant c(r) ∈ Q.

Proof. If r = max bij, then there are r distinct A(i, j) matrices, each one corresponding to
some bij = k for k = 1, . . . , r. Let {A1, . . . , Ar} be such matrices. First, apply Theorem 3.10
to matrices {A1, . . . , Ar} in order to obtain an ε/4–regular partition P = {V0, . . . , VM} of [n].
Secondly, let A′ be a symmetric matrix that has zero entries on the blocks Vi × Vj and Vj × Vi
whenever

(a) (Vi, Vj) is not ε/4–regular in some As,

(b) d(Vi, Vj) < ε/2 in some As,

(c) Vi or Vj have size smaller than εn
4M .

For the rest of the entries, set a′ij = aij.
The number of pairs (aij, aji) set to zero in (a) is, by ε/4–regularity of the partition,

r∑
s=1

∑
(Vi,Vj) not

ε/4–regular for As

wAs(Vi × Vj) ≤
r∑
s=1

∑
(Vi,Vj) not

ε/4–regular for As

|Vi| |Vj| ≤
ε

4rn
2.
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If ds = dAs is the density in As, for the low density pairs in (b) we have
r∑
s=1

∑
ds(Vi,Vj)<ε/2

ds(Vi, Vj) |Vi| |Vj| ≤
ε

2r
∑

(i,j)∈{0,...,M}2

|Vi| |Vj| =
ε

2rn
2.

And finally, for the small subsets in (c), the number of pairs of entries set to zero is at most

n · εn4M ·M = ε

4n
2,

because for each index in [n], there are at most εn
4M entries for each of the at most M small

subsets of the partition.
Suppose that there is a tuple (v1, . . . , vk) ∈ Vs1 × · · · × Vsk where s1, . . . , sk ∈ {0, . . . ,M}

such that a′vivj ≥ bij whenever bij > 0. In other words, there is a copy of B in A′ realised by
(v1, . . . , vk). By the Counting Lemma 4.4, there are at least

1
|Aut(B)|


 ∏
bij>0
i<j

dij(Vsi , Vsj)


(

k∏
i=1
|Vsi |

)
− ε · w(B)

2

k∏
i=1
|Vsi |


≥ 1
|Aut(B)|

( ε
2

)w(B)
2
(
εn

4M

)k
− ε · w(B)

2

(
εn

4M

)k
= 1
|Aut(B)|

(
ε

4M

)k ( ε
2

)w(B)
2
− ε · w(B)

2

nk
copies of B in A′, where Aut(B) is the set of permutation matrices P such that B = PBP T .
If we choose

δ <
1

|Aut(B)|

(
ε

4M

)k ( ε
2

)w(B)
2
− ε · w(B)

2

 ,
we get a contradiction: if in the matrix A′ there is some copy of B left, we found that there are
more than δnk copies. However, the original matrix A had at most δnk copies. In conclusion,
the matrix obtained from A by changing at most 3r+1

4 εn2 pairs (aij, aji) of entries to zero is
B–free.

We can omit the zero diagonal condition since in the definition of the k–tuple we already
assume that entries are not repeated. We observe that in the context of the matrix versions
the condition that the coefficients are in N can be relaxed to entries Q, which may provide a
more meaningful statement.

In the language of multigraphs the above two theorems can be rewritten as follows.

Theorem 4.6 (Multigraph Counting Lemma). Let H be a multigraph on k vertices and let
ε > 0. Let G be a multigraph on n vertices and consider the graphs Gij determined by G and
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H. Let V1, . . . , Vk ⊆ V (G) be such that (Vi, Vj) is ε–regular for Gij whenever {i, j} ∈ E(H).
Then, the number of tuples (v1, . . . , vk) ∈ V1×· · ·×Vk such that mG(vi, vj) ≥ mH(i, j) whenever
{i, j} ∈ E(H) is within ε · e(H) · |V1| · · · |Vk| of ∏

{i,j}∈E(H)
dij(Vi, Vj)

( k∏
i=1
|Vi|

)
.

Theorem 4.7 (Multigraph Removal Lemma). For each multigraph H with maximum edge-
multiplicity r and each ε > 0 there exists δ > 0 such that every multigraph on n vertices
with maximum edge–multiplicity R and fewer than δn|V (H)| copies of H can be made H–free by
removing no more than c(r)Rεn2 edges for some constant c(r) ∈ Q.

Note that the number of edges removed depends on the maximum edge–multiplicities of
both multigraphs. In fact, our results are much more innacurate with respect to the ones in
Shapira–Yuster [13] in the case of triangles, because in our approach we allow the removal of a
number of edges proportional to R which can be arbitrarily large. Let us remark some cases:

• When r = R = 1, we recover the Graph Counting Lemma 1.11.

• When r = 1, if (v1, . . . , vk) gives a copy of H in G, for some {i, j} ∈ E(H) such that
m(vi, vj) ≥ 1, we have to remove all the edges between vi and vj to avoid that copy of H.
In fact, R > 1 indicates that the dependency on r and R in the statement of Theorem
4.7 can not be ommitted.

• When r > 1 and m > 1 is the minimum multiplicity of edges of H then it is not necessary
to set the corresponding entry of the adjacency matrix of G to zero to remove an instance
of H, it suffices to set the value to m− 1. In that case, the number of removed edges can
be improved to (R−m+ 1)c(r)εn2.
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Conclusions and further work
The main purpose of this thesis is to study the spectral proof of Szemerédi’s Regularity Lemma
given by Tao [16], inspired by the article of Frieze and Kannan [8].

The most remarkable accomplishments in the present dissertation are the following:

• A complete and exhaustive review of the spectral proof of Szemerédi’s Regularity Lemma
by Tao, with an interpretation of the decomposition of the adjacency matrix.

• The spectral partition enjoys some noteworthy properties that the partition obtained
from the classical proof may not satisfy. We remark the fact that since it is exclusively
determined by the spectrum and a part of the eigenvectors, the same partition is valid
for all graphs satisfying those spectral conditions.

• A generalisation of Szemerédi’s Regularity Theorem to self-adjoint matrices fulfilling a
condition on the trace, namely an upper bound on the trace of the second power of the
matrix, following Cioaba–Martin [7]. We yielded a notion of ε–regularity for matrices
which contain the familiar regularity for graphs for particular case of symmetric 0–1
matrices. We refer to this statement as the Spectral Regularity Theorem.

• The matricial version can be extended to a regularity theorem for a finite set of matrices.
We studied two different situations: a first one where each of the matrices satisfy the
condition on the trace required by the Spectral Regularity Theorem and another one
where the trace bound must be realised by the sum of squares of those matrices.

• A spectral proof for a regularity theorem concerning graphs with an edge–(multi)coloring
following Robertson [12]. In addition, we contribute with a reinterpretation of those
matricial results which derive to weaker regularity statements for multigraphs and directed
graphs.

• A practical use of the regularity theorem for a set of graphs in the proof of the Multigraph
Removal Lemma, analogous to the classic example of the Graph Removal Lemma and
Szemerédi’s Regularity Lemma, together with the reformulation of the statements in
terms of adjacency matrices.

• An explicit version of the Spectral Counting Lemma and the Spectral Removal Lemma
for matrices which has not been developed int he literature.

Some interesting further work suggested by this thesis is the following:
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• An important topic that we did not study is the algorithmic efficiency of the spectral
method. We have briefly commented the non–optimality of the bound on the number of
parts of the spectral partition. Nevertheless, the adjacency matrix decomposition actually
originated in an algorithmic context in Frieze–Kannan [8], so a complete study on the
spectral proof by Tao may be significant.

• Alhough there are some families of graphs for which we have expressions for the spectrum
and a basis of eigenvectors, see some examples in Chapter 2, we have encountered some
difficulties to give explicit ε–regular partitions for those graphs. In our case, a visible
obstacle for the practical use of the spectral method is the exponential dependence on ε−1

of the bound for the number of parts and obviously the minimum size of the considered
graphs. For example, in the case of Kneser graphs, although we know that the entries of
the eigenvectors are the solution to linear systems with real coefficients, the magnitude
of the graph makes it notably labourious. In conclusion, the ability to do some computa-
tions for large dense graphs may be useful to illustrate the particularities of the spectral
partition with respect to the obtained in the classical proof of Szemerédi.

• Green proved an arithmetic reformulation of Szemerédi’s Regularity Lemma which follow
from Fourier analysis arguments [10]. An interesting study may result from connecting
the spectral approach discussed with the arithmetic interpretation.

• The Removal Lemma has been extended to the general hypergraph setting with significant
applications to the multidimensional Szemerédi Theorem. Tao mentions in his blog that
it seems unlikely that spectral techniques could be used to handle this extension. Never-
theless, Frieze and Kannan do address this issue and consider regular decompositions of
high dimensional matrices or tensors. It is likely that such decmmopositions may be used
to obtain the removal lemma for hypergraphs, bypassing the use of spectral methods.
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