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Abstract

Ever since the appearance of quantum computers, prime factoring and discrete logarithm based cryptography
has been put in question, giving birth to the so called post-quantum cryptography. The most prominent
field in post-quantum cryptography is lattice-based cryptography, protocols that are proved to be as difficult
to break as certain difficult lattice problems like Learning With Errors (LWE) or Ring Learning With Errors
(R-LWE). This Master’s Degree Thesis forwards and elevates the work done in the Bachelor’s Degree
Thesis [AE20] by taking the R-LWE-based protocols specified there and giving more accurate and improved
proofs of correctness and security, developing an original proposal for dispute resolution throughout both
protocols, making an analysis of the specific hardness of breaking security of the protocol and analyzing a
given implementation of both protocols in C.
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RLWE-based threshold cryptography

1. Introduction

The vast improvement of computers during the information revolution ushered humanity into the information
age in the late XXth century. As this age progressed with the coming of the new century it was made clear
that through the use of the internet, everything and anything was at an arm’s reach. This meant that one
had information going through these world wide channels, some of which should not be of easy access to
anyone but authorized entities. Here is where we find cryptography.

The need to hide (encrypt) information so only a few target people are able to recover (decrypt) it, has
been a well thought out problem throughout history, especially in the military operations arena. Some of
the greatest advances in the history of cryptography are strongly tied with wars, one of the main examples
being World War II. With the appearance of the computer, it was rapidly seen that cryptography could
be of great help, and advancements in both areas have come hand in hand since then. Whenever a more
powerful computing technique is found, new cryptographic protocols may be needed, and whenever a new
cryptographic protocol is developed more powerful computing techniques may be needed to break it. This
circular behaviour meant that the information age has also been a golden era for cryptography.

One of these new computing advancements forwarding cryptography was the idea of quantum computing
in [Ben80]. This new model allowed for different ways to execute algorithms, and thus gave a new tool
to try and solve problems thought to be hard at that moment. It was not very long until an algorithm
was developed by Shor in [Sho99] that allowed for fast resolutions of both the prime factorization and
discrete logarithm problems. This meant that the encryption schemes most used at the moment (and up
to current days), based on the RSA problem proposed in [RSA78], the hardness of which depended on
hardness of prime factoring, or on ElGamal proposed in [ElG85] or elliptic curves problems, the hardness
of which depended on the discrete logarithm, are insecure against quantum adversaries. Therefore new
quantum resistant protocols were needed.

There are two main ways to face this problem: quantum cryptography and post-quantum cryptography.
Quantum cryptography relies on quantum algorithms that cannot be broken by quantum adversaries,
while post-quantum deals with classical (non-quantum) algorithms that cannot be broken by quantum
adversaries. Although both are interesting in their own right, given that widespread usage of moderately
powerful quantum computers seems unachievable in the short run, we focus in post-quantum cryptography.
In this realm the area that has had more recent advancements is lattice-based cryptography, especially
cryptography based in the Learning With Errors (LWE) problem and its variants, like Ring Learning With
Errors (R-LWE), the variant which our proposals are built around. This is backed by the fact that in the
Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process
[AASA+20] most third-round finalists are lattice-based schemes.

There are many applications of post-quantum cryptography, but the one we are involved with and
hoping our contributions can be applied to, is electronic voting. However in electronic voting we have an
added difficulty, and that is the lack of trust. Given that the lack of trust in other entities is what initially
spawned the concept of cryptography, going further in this direction is the next logical step to follow.
Therefore, what we want is to “spread” that trust, so that one single corrupt player can no longer mess
up with the protocol. Distributed cryptography is this idea of spreading the tasks between several players
so that only certain subsets of them can perform the crpytographic protocol. And this finally brings us to
the main subject of our thesis: R-LWE-based distributed key generation and threshold decryption.
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1.1 State of the Art and Contributions

Despite the usefulness of and interest in efficient post-quantum threshold public key encryption cryptography,
there are not many proposals, and even less that focus on the R-LWE problem. Most current proposals
revolve around the LWE problem (for example [BD10], [BGG+18], [PE17] and [SRB16]) which has the
potential problem of keys and ciphertexts growing with O(n2) instead of with O(n) like the R-LWE variant
(with n the dimension of the lattice), thus having a high possibility to need a greater amount of operations
and therefore computation time. In the world of threshold encryption based on R-LWE as far as we know
there is only one proposal given in [ZXJ+14], which is based on the homomorphic properties of their Fully
Homomorphic Encryption scheme. However, this proposal does not come with a distributed key generation
protocol (they rely on a Trusted Third Party (TTP) for that) and as with all the other proposals, to the
best of our knowledge there are no given implementations to truly analyze computation times.

Our objectives for this work (which we expect to turn into contributions) are on the vein of improving
the current state of the art. To do so we want to improve and expand on the original protocols we
gave on [AE20], that as far as we are concerned are the first R-LWE based threshold protocols including
both decryption and key generation. The protocols are based on the LWE proposal given by Bendlin and
Damg̊ard in [BD10], their ideas transported into the R-LWE setting. In this Master’s Degree Thesis we
have four objectives: improve and in some cases completely remake the proofs given in [AE20] to make
them more accurate, more legible and to conform better with the standard proofs in cryptography; produce
an original dispute resolution protocol to work against an active adversary; give an accurate analysis, not
only asymptotic, for when our instance of R-LWE is hard to solve to decide ranges for the parameters; and
to give an implementation of both protocols in C to analyze the computation time and storage needed for
the protocols and which are the limiting parameters for the performance of the protocols.

1.2 Organization of the Thesis

This Master’s Degree Thesis is structured into the following chapters:

• Preliminaries: where notation and the needed background knowledge about cryptography and
lattices is given.

• Discrete Gaussian Measures and Correctness: where we discuss two different discrete Gaussian
distributions, and we use some results on one of them to prove the correctness of our encryption
scheme.

• Definitions and Proofs of Security: where we explain several concepts about proofs of security in
cryptography and use these definitions and properties to prove the security of our encryption scheme
and the non-leakage of information in the distribution.

• Implementation: where we give our original dispute resolution protocol and discuss the protocols
implementation we give, how we have done it and the results we have extracted from it.

• Conclusions: where we sum up the achievements of this thesis and lay out future work that may
stem from here.
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RLWE-based threshold cryptography

2. Preliminaries

2.1 Notation

Elements in R, Z or Zq will be indicated as lower case letters (a, b, ...), while elements in Rn, Zn or Zn
q

will be indicated as bold lower case letters (a, b, ...). X ←− χ means X is sampled from a random variable
following the distribution χ, Y ←− χn means Y is a vector such that every coordinate independently
follows the distribution χ. We denote the inner product of a, b ∈ Zn

q as 〈a, b〉 :=
∑n

i=1 aibi for some
n, q ∈ Z>0. We will also identify any polynomial of degree n− 1, f(x) = a0 + a1x + ... + an−1xn−1 ∈ Zq[x ]
with the vector f = (a0, a1, ... , an−1) ∈ Zn

q. A function g is said to be negligible over n (g := neg(n)) if

∀k ∈ Z>0, ∃n0 ∈ Z>0 such that ∀n ≥ n0, |g(n)| < 1
nk

. Finally, for any set J , we denote as j
$←− J the

action of choosing j uniformly at random from J .

2.2 Cryptographic Primitives

We will start by giving some cryptographic primitives, well-known definitions, protocols or techniques used
in cryptography upon which we will build our encryption scheme and protocols. First we will properly define
what an encryption scheme is.

Definition 2.1 ([MVOV18]). An encryption scheme is a tuple S = (M, C,K, E ,D) such that:

• M is a set called plaintext space.

• C is a set called ciphertext space.

• K is a set called key space. Generally a key generation is also specified to generate k ∈ K.

• E = {Ek : k ∈ K} is a set of functions Ek : M× R → C called encryption functions. R is a
randomness space because some encryption (and decryption) protocols use random values.

• D = {Dk : k ∈ K} is a set of functions Dk : C ×R →M called decryption functions.

Note that if we have D and E use the same key, then we call it symmetric encryption, otherwise we call
it asymmetric or public key encryption. Also, in public key encryption K can be divided in two different
sets, Ks the secret key space and Kp the public key space. The public key (known by all entities) is used
to encrypt messages and the secret key (known only to the entity decrypting) is used to decrypt.

Once we have defined an encryption scheme we need to prove some properties about it, otherwise it
would not be useful, the most important of which are correctness, to ensure that the protocols give a correct
output, and security, an adversary cannot recover the message without the key. In section 2.5 we will give
the encryption scheme in which we are basing our protocol and given that we want to delve deep into the
definitions of correctness and security and ways to prove them, they are dedicated an entire chapter each,
chapter 3 for correctness and chapter 4 for security.

Having defined encryption schemes, we reinstate again, as in the introduction, that what we are really
focusing in is not the classical cryptography scheme with one sender and one receiver, but rather what is
called threshold or distributed cryptography. The situation we are interested in is the requirement of the
work of several servers to decrypt a single message. The concept was born originally as a way to share
information (or secrets) in multiparty computation, and was then extended to encryption schemes.
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Definition 2.2 ([Sha79]). A threshold secret sharing scheme of threshold t and u players is a scheme such
that given some data D it divides it into u pieces D1 ... , Du such that:

• Knowledge of t + 1 or more pieces Di makes D easily computable.

• Knowledge of t or less pieces Di leaves D completely undetermined (i.e. all its possible values are
equally likely).

Remark 2.3. Note that threshold secret sharing is merely one of the ways a secret can be distributed
between u players, and allows only for a fairly rigid way to recover it. However, one can be even more
general and define what is called an access structure Γ, which denotes all subsets of P = (P1, ... , Pn)
allowed to retrieve the information. In threshold secret sharing we have:

Γt := {A ⊆ P | |A| > t} with t < u.

We will focus on threshold access structures since they are the ones we need.

Definition 2.4. We will call a threshold encryption scheme a secret sharing scheme where what we try to
recover is a plaintext from a ciphertext.

Therefore, in a threshold encryption scheme the encryption works as in general encryption schemes
(only one person or entity encrypts the message), but it is necessary the collaboration of t + 1 players to
decrypt the message.

One of the first secret sharing schemes and one of the most used still due to its simplicity to compute
and understand, is Shamir Secret Sharing. We will use it profusely throughout our work.

Technique 2.5 ([Sha79]). Shamir Secret Sharing over a field F of a secret s ∈ F of threshold t works as
follows:

• Choose t elements bi ∈ F and define the polynomial f (z) := s +
∑t

i=1 biz
i (i.e. choose a random

polynomial f (z) ∈ F[x ] such that f (0) = s).

• For every player Pj , their share of the secret is f (ij).

• When t + 1 players want to recover the secret they use Lagrange interpolation to find f (z) and then
compute f (0).

Note that the recovery of the secret works because of Lagrange interpolation, which states that given
t + 1 points (f (ij), j = 1, ... , t + 1), there exists a unique polynomial of degree at most t that passes
through these points, and it is given by:

f (z) =
t+1∑
j=1

f (ij)
∏
k 6=j

z − ik
ij − ik

.

Furthermore, Shamir Secret Sharing is especially useful since it is linear, therefore it satisfies the two
following useful properties (we will prove them modulo q to ease notation but they hold for any field).

Lemma 2.6. The linear combination (with elements of Zq) of Shamir shares of different secrets is a Shamir
share of the same linear combination of the secrets.

7



RLWE-based threshold cryptography

Proof. Let (a1, ... , au) ∈ Zu
q Shamir shares of a ∈ Zq with threshold t < u, and (b1, ... , bu) ∈ Zu

q Shamir

shares of b ∈ Zq with threshold t. This means that for any t+1 shares of a, if f (z) :=
∑t+1

j=1 f (ij)
∏

k 6=j
z−ik
ij−ik

(mod q) with f (ij) = aj then f (0) = a and for any t + 1 shares of b, if g(z) :=
∑t+1

j=1 g(ij)
∏

k 6=j
z−ik
ij−ik

(mod q) with g(ij) = bj then g(0) = b.

We want to see that λ(a1, ... , au) + µ(b1, ... , bu), λ,µ ∈ Zq are Shamir shares of λa + µb (mod q),
i.e that given any t + 1 shares, if h(z) :=

∑t+1
j=1 h(ij)

∏
k 6=j

z−ik
ij−ik (mod q) with h(ij) = λaj + µbj (mod q)

then h(0) = λa + µb (mod q). Let us see it:

h(z) ≡
t+1∑
j=1

(λaj + µbj)
∏
k 6=j

z − ik
ij − ik

≡ λ

t+1∑
j=1

aj
∏
k 6=j

z − ik
ij − ik

+ µ

t+1∑
j=1

bj
∏
k 6=j

z − ik
ij − ik

 ≡
≡ λf (z) + µg(z) (mod q).

And therefore h(0) ≡ λf (0) + µg(0) ≡ λa + µb (mod q).

Lemma 2.7. Let (a1, ... , au) ∈ Zu
q be Shamir share of a ∈ Zq with threshold t < u and b ∈ Zq, then

(b + a1, ... , b + au) (mod q) is a Shamir share of b + a (mod q) with threshold t.

Proof. We know that for any t + 1 shares of a if f (z) :=
∑t+1

j=1 f (ij)
∏

k 6=j
z−ik
ij−ik (mod q) with f (ij) = aj

then f (0) = a. Let us see that for any t + 1 shares in (b + a1, ... , b + an), if g(z) :=
∑t+1

j=1 g(ij)
∏

k 6=j
z−ik
ij−ik

(mod q) with g(ij) = b + aj (mod q) then g(0) = b + a (mod q):

g(z) :≡
t+1∑
j=1

(b + aj)
∏
k 6=j

z − ik
ij − ik

≡
t+1∑
j=1

b
∏
k 6=j

z − ik
ij − ik

+
t+1∑
j=1

aj
∏
k 6=j

z − ik
ij − ik

:≡ h(z) + f (z) (mod q).

Where h(z) is a polynomial of degree at most t that has t +1 points fixed at b, which implies that h(z) = b.
Therefore we have g(0) ≡ h(0) + f (0) ≡ b + a (mod q).

Other cryptographic tools we will use will be both the Pseudo-Random Secret Sharing (PRSS) and
the Non-Interactive Verifiable Secret Sharing (NIVSS) techniques. These tools will be primordial in our
proposal, since the security of our protocols is based on being able to mask the relevant information with
noise in such a way that the adversary cannot retrieve it. To generate this noise we will use these two
protocols.

Definition 2.8. A Pseudo-Random Function (PRF), Φ·(·), is a deterministic function that maps two sets
(domain and range) on the basis of a key, which when run multiple times with the same input gives the
same output but given an arbitrary input the output seems random, i.e. one cannot distinguish the output
of a given input from a random oracle.

Technique 2.9 ([CDI05]). Pseudo-Random Secret Sharing in Zq (PRSS) allows u players to non-interactively
share a common random value x with a threshold of t players (t < u) given a pseudo-random function Φ·(·)
that with input a seed and a value λ outputs values in the interval I = [a, b], a < 0, b > 0 and whatever
group of players of size less or equal than t cannot obtain relevant information on x . The algorithm works
as follows:
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• For each subset H of t players a TTP defines a key KH ∈ Zq uniformly at random.

• Each player Pj is given KH , ∀H such that Pj /∈ H.

• The pseudo-random number they are sharing is x :=
∑

H ΦKH
(λ), for a value λ. Since there are

(u
t

)
such subsets H, we know x ∈ [

(u
t

)
a,
(u
t

)
b].

Technique 2.10 ([CDI05]). Non-Interactive Verifiable Secret Sharing in Zq (NIVSS), allows a dealer D to
share a secret s with u players with threshold t given a value λ and a pseudo-random function φ·(·) that
with input a seed and λ outputs values in the interval I = [a, b], a < 0, b > 0. It works very similarly to
PRSS. The algorithm works as follows:

1. For each subset H of t players the dealer D chooses a key KH ∈ Zq uniformly at random.

2. The dealer D gives to player Pj all the KH such that Pj /∈ H.

3. The dealer D reconstructs the pseudo-random value the players share r =
∑

H φKH
(λ), since he has

all the keys.

4. D broadcasts the value s − r , and now all the players have a share of s by adding their shares on r .

Finally we will need a way to convert additive shares (like the ones in PRSS) into Shamir shares. To
do so we will use the following technique.

Technique 2.11 ([Cat05]). Converting from additive shares to polynomial shares allows to convert additive
shares of a secret a of threshold u − 1 (i.e. a =

∑u
i=1 aj) (a1, ... , au) to (a′1, ... , a′u) Shamir shares of a

for u players with threshold t. The algorithm works as follows:

• Each player Pj chooses t elements βi ∈ Zq and computes fj(z) = aj +
∑t

i=1 βiz
i .

• Each player Pj sends to every player i fj(i).

• The Shamir share of a for each player Pj is a′j = f (j) :=
∑u

k=1 fk(j).

Finally, since we will be using distributed methods, one must ensure that the order in which the different
players send information does not compromise the security of the scheme, since, broadly speaking, the last
player to send information would have an advantage respect the first one due to knowing more information
when making its decision.

To solve this problem it is standard to use commitment schemes.

Definition 2.12 (Definition 8.8 [BS20]). Given a message space M, a commitment scheme is a pair of
efficient algorithms C = (C , V ) where C is an algorithm that given m ∈ M outputs a commitment c and
an opening string o and V is a deterministic protocol that given (m, c, o) outputs accept or reject; and
such that it satisfies the following properties:

• Correctness: For all m ∈M, if C (m) = (c , o) then Pr(V (m, c , o) = ‘accept’) = 1.

• Binding: This property is the notion that once a commitment c is generated, it should only commit
for one message in M. In particular, for every efficient adversary A that outputs (c , m1, o1, m2, o2)
we must have that

Pr(m1 6= m2 and V (m1, c, o1) = V (m2, c , o2) = ‘accept’) = neg(λ)

where λ is the security parameter.

9
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• Hiding: This property is the notion that the commitment c alone should not reveal any information
about the message m. To properly define this we use a semantic security attack game (see Attack
Game 4.3) where instead of encrypting the messages we compute its commitment. What we ask is,
if Wb denotes the event that the adversary outputs 1 in experiment b, then

|Pr(W0)− Pr(W1)| = neg(λ).

In other words, the commitment binds a unique value in the commit phase (algorithm C ) that must be
hidden until the information to reveal it is given in the reveal phase (algorithm V ). This type of scheme is
used to ensure that in every round of a distributed protocol all players choose their actions with the same
information regardless of the order in which the round is played.

2.3 Lattices

From all the different types of post-quantum cryptography, we focus on lattice-based cryptography. Thus,
to ease the understanding of the hard lattice-based problem our encryption scheme is based we will give
some basic definitions and notions about lattices.

Definition 2.13. A lattice L is a set of points in an n-dimensional space (usually Rn), n ∈ Z>0, such that:

• L is an additive subgroup: 0 ∈ L and x, y ∈ L ⇒ −x, x + y ∈ L.

• L is discrete: ∀x ∈ L, ∃U 3 x such that U ∩ L = {x}, with U neighbourhood of x.

This definition therefore gives lattices a periodic structure constrained by addition and opposites, so
any lattice can be defined by k vectors in the n-dimensional space, thus giving us the base of the lattice.

Definition 2.14. Given b1, ... , bk ∈ Rn k linearly independent vectors, the generated lattice given by this
set of vectors is:

L(b1, ... , bk) =

{
k∑

i=1

zibi

∣∣∣∣zi ∈ Z

}
= {Bz|z ∈ Zk} = L(B).

Note that we have called B the matrix formed by b1, ... , bk as columns, we call b1, ... , bk a basis of the
lattice L. Also note that many different basis may define the same lattice.

Since several different matrices can define one same lattice we would wish to have a measure of how
“good” a base is as its usefulness to solve hard lattice problems, and this measure turns out to be the
orthogonality of the basis. We have that the hardness of most lattice-based problems depends on how
orthogonal the base of the lattice is, so it is the next logical step to find a more orthogonal basis given a
lattice L. There are several algorithms: the Lenstra-Lenstra-Lovász (LLL) algorithm presented in [LLL82],
that performs gaussian elimination on the elements of the basis two by two; the Blockwise Korkine-Zolotarev
(BKZ) reduction presented in [SE94], that improves the former using blocks of vectors but has to find the
shortest vector, which is a difficult problem; and there are more algorithms based on the shortest vector
problem. However, all these algorithms are exponentially slow, or in the case of LLL is polynomial but its
result is exponentially far from being optimal.

From all the possible lattices over Rn we are interested mainly on those that live on Zn since the
elements, being vectors of integers, are less costly to store than any real value and furthermore we do not
need to deal with truncation errors.

10



Definition 2.15. A lattice L is said to be q-ary if Zn
q ⊂ L ⊂ Zn. There are two usual ways to represent a

q-ary lattice given a matrix A ∈ Zn×m
q :

• The Λq form:

Λq(A) = {y ∈ Zn|y ≡ Az (mod q), z ∈ Zm}.

• The orthogonal Λ⊥q form:

Λ⊥q (A) = {y ∈ Zn|ATy ≡ 0 (mod q)}.

With this we can define one of the core lattice problems the hardness of which many other problems
depend, and that is the Shortest Vector Problem.

Definition 2.16. The minimum λi (B) is the radius of the smallest hypersphere centered in the origin that
contains at least i linearly independent points of the lattice.

Definition 2.17. Given B a base of the lattice L(B), the γ−approximated Shortest Vector problem (γ-
SVP) is finding a non-zero vector v ∈ L(B) such that ‖v‖ ≤ γ · λ1(L(B)).

A decision version of the SVP is the GAPSVP problem, that is, given B a base of lattice L(B), to
decide whether its shortest vector is shorter than 1 or bigger than a given value β.

The hardness of these problems depends on γ and β. The γ-SVP has been proven to be NP-hard for
γ polynomial on some parameter of the lattice [Ajt98], with only exponential algorithms known to solve it
[GN08] and it is believed that no probabilistic polynomial time algorithm exists neither classic or quantic.
The GAPSVP is also conjectured not to have any solving probabilistic polynomial time algorithm in the
range of parameters that are useful for cryptography.

Finally we will define a subset of lattices called ideal lattices, in which our encryption scheme will work.
They have a more defined basis structure, and therefore we can use some optimizations while computing
elements within them. Furthermore, there is no known algorithm that is able to use this structure to help
solving the lattice problems we use significantly faster.

Definition 2.18. Given a vector f = (f1, ... , fn) ∈ Zn we call the transformation matrix F the following
matrix:

F =


0 ... 0 −f1

. . . −f2

Idn−1
...

. . . −fn

 .

Definition 2.19. An ideal lattice is a lattice L which basis is the matrix A = [a, Fa, ... , Fn−1a], where F
is the transformation matrix of some f ∈ Zn. We note this ideal lattice as L(a).

Note that for example if f = (1, 0, ... , 0) the basis matrix A is an antyciclic matrix of vector a =
(a1, ... , an), therefore it will be of the form

A =


a1 −an −an−1 ... −a2

a2 a1 −an ... −a3

a3 a2 a1 ... −a4
...

...
...

. . .
...

an an−1 an−2 ... a1

 .

11
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In particular the basis matrix, and therefore the lattice, are defined (given a fixed f) by the vector a, so we
can store all the information of the lattice on one (or two) vectors. Note that the concepts of q-ary and
ideal lattices are not mutually exclusive, and in fact throughout this work we will be using lattices that are
both q-ary and ideal.

2.4 Ring Learning With Errors

The Learning with Errors (LWE) problem was introduced by Regev in 2005 in a previous version of [Reg09]
as a generalization of the parity learning problem, and gave both a cryptographic protocol based on it and
a reduction of its security to a hard lattice problem (the GAPSVP).

However, cryptosystems based on the LWE problem have several issues. For example, many of them
need to encrypt bit by bit and primarily the public keys required are very costly to store since they are
usually (big) matrices of elements in Zq. Coupling these two together we get that a lot of storage space
is usually needed to encrypt small amounts of information.

To solve these problems, the Ring Learning with Errors variant was introduced by Lyubasevsky, Peikert
and Regev in [LPR13]. It is essentially a particular case of LWE but in polynomial rings over finite rings.
The problem is over the polynomial ring Rq = Zq[x ]/〈f〉, where f is a polynomial in Zq[x ].

Given an element a(x) ∈ Rq, one can see the principal ideal generated by a(x)

〈a(x)〉 = {c(x) ∈ Rq|c(x) = a(x) · b(x), b(x) ∈ Rq}

as an ideal lattice in Zn
q. This correspondence is easy to see in the case f(x) = xn + 1 (the particular Rq

we will use given its specific properties) due to the fact that the vector of coefficients of the product of
polynomials in Rq can be found through the anticyclic matrix as follows

a(x) · b(x) (mod xn + 1) ≡


a1 −an −an−1 ... −a2

a2 a1 −an ... −a3

a3 a2 a1 ... −a4
...

...
...

. . .
...

an an−1 an−2 ... a1

 ·


b1
...
...

bn


where a = (a1, ... , an) and b = (b1, ... , bn) are the coefficients of a(x) and b(x) respectively.

With this out of the way we can finally define the Ring Learning With Errors problem, on which a lot
of lattice-based cryptography is based.

Definition 2.20. Let χ be a probability distribution over Rq and s ∈ Rq. Then the R-LWE distribution
As,χ is the distribution in Rq×Rq given by (a, b = a · s + e), where a ∈ Rq is chosen uniformly at random,
e←− χ and all the operations to compute b are made in Rq.

Definition 2.21. The decisional R-LWE problem is to distinguish samples from As,χ from the uniform
distribution in Rq × Rq with a probability that is non-negligibly bigger than 1

2 .

Definition 2.22. The search R-LWE problem is to find s given polinomially many samples from As,χ with
non-negligible probability.

Therefore given what we have seen in subsection 2.3, we can see that a sample of the R-LWE is a point
of an ideal lattice that has been offset by a margin set by the distribution χ (which is normally taken such

12



that the error is small). So the search R-LWE problem could be seen as finding a point in the ideal lattice
L(a) (remember that a vector a uniquely defines an ideal lattice through its anticyclic matrix) “close” to
the sample, and the decision R-LWE could be seen as given an ideal lattice L(a), decide whether the points
given are all “close” to L(a) or are uniformly distributed.

2.5 Encryption Scheme and Protocols

Having given all the necessary preliminaries, we can finally present our encryption scheme, threshold
decryption protocol and distributed key generation protocol, which we will prove correct in chapter 3,
secure in chapter 4 and analyze its implementation in chapter 5. The definitions will be based on the
ones stated in [AE20], but will be slightly changed to make them clearer and more comprehensible, and to
slightly improve some parameters.

Encryption Scheme 2.23 (Definition 5.2 [AE20]). Let q, n ∈ Z>0 and χ be a distribution over Rq. The
encryption scheme S = (M, C,K, E ,D) and key generation we will be using is the following:

• M = {0, 1}n ⊆ Zn
q
∼= Rq. We will see every m ∈M as an element in Rq with m being its vector of

coefficients.

• C ⊆ Rq × Rq.

• This is a public encryption scheme, we have Ks ⊆ Rq and Kp ⊆ Rq × Rq.

– For any pair of keys (pk, s) ∈ Kp×Ks we will have s←− χ and pk = (aE, bE) = (aE, aE ·s + e)

where aE
$←− Rq and e←− χ.

• E = {Epk : pk = (aE, bE) ∈ Kp} such that given a message m ∈M:

Epk :M→ C
m 7→ (u, v)

where (u, v) = (aE · rE + eu, bE · rE + ev + m · bq2c) with rE, eu, ev ←− χ.

• D = {Ds : s ∈ Ks} such that given a ciphertext (u, v) ∈ C:

Ds : C → P
(u, v) 7→ m

where we will recover every bit of m by rounding every coefficient of

v − s · u = e · rE + ev − s · eu + m ·
⌊q

2

⌋
to 0 or bq2c (mod q) and then mapping 0 to 0 and bq2c to 1.

Now we will define the Threshold Decryption Protocol based on this encryption scheme and a Distributed
Key Generation protocol to work together with it. In both protocols we will assume that a commitment
scheme is used whenever two players exchange information. For clarity we use a TTP to generate the keys
in the encryption protocol, however, what we are looking for is a totally distributed scheme, so we also
define a Distributed Key Generation Protocol to take the place of the TTP in the threshold decryption
protocol.

13
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Protocol 2.24. Let χ be a distribution over Rq and Φ·(·) a pseudo-random function with image in In,
being I an integer interval. Then the Threshold Decryption Protocol works as follows:

1. A TTP generates the keys KH ∈ Zq for every subset H of players of size t and distributes them
according to the PRSS technique (Technique 2.9). It also generates the secret key s ∼ χ and the
public key (aE, bE) as stated in Encryption Scheme 2.23. Then the TTP sends to the players (aE, bE)
and Shamir shares of s. We call sj the Shamir share of s of player Pj , understood as a Shamir share
on the vector of coefficients of s.

2. Client receives ciphertext c = (u, v), and sends all players c.

3. Each player Pj computes ẽj = v − sj · u that is a Shamir share of ẽ = e · rE + ev − s · eu + bq2c ·m
with e, rE, ev, s, eu ∼ χ if every player is honest given both Lemma 2.6 and Lemma 2.7.

4. Each player Pj computes its additive share of x :=
∑

H ΦKH
(c) for every subset of t + 1 players Pj

belongs to in the following way: in order, the additive share xj is the sum of all ΦKH
(c) no player

before has, but Pj does.

5. For every subset of t + 1 players, they convert the additive share xj share to x̃j Shamir share of x
using Technique 2.11.

6. Each player Pj computes, for every subset of t + 1 players it belongs to, x̃j + ẽj Shamir share of the
vector of coefficients of x + ẽ ∈ Rq, where x + ẽ ∈ Rq is understood as the polynomial in Rq with
vector of coefficients x + ẽ, and sends it to the client.

7. Client reconstructs x + ẽ for every subset of t + 1, picks whichever value is repeated more times,
then for every coefficient returns 0 if x + ẽ is closer to 0 than to bq2c and returns 1 otherwise.

Protocol 2.25. Let χKG be a distribution over Rq, µ = x + 2x2 + ... + (n − 1)xn−1 ∈ Rq, and ΦKG
· (·)

a pseudo-random function with image in InKG , where IKG is an integer interval. The Distributed Key
Generation Protocol works as follows:

1. For the secret key s ∈ Rq, each player Pj chooses its contribution sj = (s j1, ... , s jn) with sj ∼ χKG .

Then they act as the dealer in a NIVSS (Technique 2.10) to share every s ji to all players. All players

verify the value broadcast when doing the NIVSS s ji −
∑

H φ
KG
KH

(µ) is in the interval
(u
t

)
IKG . Now all

players have shares of every s ji and by their linearity also of si =
∑

j s ji . Then s is the polynomial in
Rq with coefficients (s1, ... , sn).

2. For the keys KH ∈ Zq that will be used for the PRSS in the threshold decryption, for every subset H
of t players each player Pj chooses uniformly at random KHj

∈ Zq their contribution on these keys
and shares it with all the players using Shamir secret sharing (Technique 2.5). Then the players will
have, by adding all the shares received by other players Shamir shares of KH =

∑
j KHj

. Finally all
players send privately their shares on KH to all the players in A the complement of H, so they can
recover KH .

3. For the contributions to e ∈ Rq proceed identically to when generating s.

4. For aE ∈ Rq every player Pj chooses its share (ajE ,1, ... , ajE ,n) randomly in Rn
q and does a Shamir

share of it. Then all players send to all players their share on all the (ajE ,1, ... , ajE ,n) so every player
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can recover (by adding the shares)
(∑

j ajE ,1, ... ,
∑

j ajE ,n

)
. The polynomial in Rq with coefficients(∑

j ajE ,1, ... ,
∑

j ajE ,n

)
will be aE.

5. Every player computes locally their Shamir shares on bE = aE · s + e by performing these same
operations with the shares they have on s and e (having previously converted the shares to Shamir).

Finally, we have given the protocols with complete generality, but for the rest of the work we will be
assuming the following constraints on the parameters, distributions and intervals:

• λ the security parameter.

• n ∈ Z>0 the dimension of the lattice.

• q = 2Θ(λ) the integer modulo.

• Rq = Zq[x ]/〈xn + 1〉 the ring of integers where we will work.

• ` ∈ Z>0 the number of samples of encrypted messages expected.

• u ∈ Z>0 the number of players and t ∈ Z>0, t < u the number of corrupted players.

• α > 0 and ξ = α
(

n`
log(n`)

) 1
4

the parameters of the distributions.

• χ = Ψ
n
ξ
q

and χKG = Ψ
n
ξ

q
√
u

(these distributions will be properly defined in chapter 3).
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3. Discrete Gaussian Measures and Correctness

As we have hinted after Definition 2.1, for any encryption scheme we define to be useful, we need to prove
two significant properties: correctness and security. As such, since in [AE20] we proposed a new encryption
scheme and threshold decryption protocol, we proved both these properties. However, the proofs could be
greatly improved in various ways, for example clarity, specificity and structure. Therefore this chapter and
the following chapter 4 will be presented in an effort towards giving better proofs of these properties. In
this chapter we will tackle correctness.

From what we have seen before, the R-LWE problem relies on a small error distribution (see Definition
2.20) to cause slight disturbances to make solving a system of equations hard. However, one can consider
the R-LWE for any error distribution χn, even if not all distributions will make solving the system of
equations equally hard. Therefore, one may ask the question: which error distributions cause the R-LWE
problem to be hard to solve?

The first requirement needed to answer this question is to properly define what the hardness of a
problem is. For cryptographic purposes the usual approach is to give a reduction from a well-known and
widely studied problem known, or at least supposed, to be hard (more detail on hardness reductions on
chapter 4).

Therefore, the more accurate question to answer is: which error distributions yield reductions to R-LWE
from a well-known and widely studied problem known, or at least supposed to be hard? And the answer is
discrete Gaussian measures.

3.1 Lattice Discrete Gaussian Distribution

The first definition of a discrete Gaussian measure is, in broad strokes, taking the probability of the normal
distribution over Rn at the points of Zn and then multiplying that by some constant to make this a proper
random variable. This is the distribution most used in places where a trapdoor (or one-way) function is
needed to sample lattice points following a narrow distribution. As such it has been studied plenty and
has well-known bounding results, though it does have some disadvantages as we will discuss afterwards.
However, it is still useful to see how the bounds are proven.

3.1.1 Definition

This is how the discrete Gaussian distribution over Zn is defined in [Lyu12] (going first through the
continuous Gaussian distribution).

Definition 3.1 (Definition 3.1, 3.2 [Lyu12]). The continuous spherical Gaussian distribution over Rn

centered at v ∈ Rn and with standard deviation σ > 0 is defined by the density function

ρnv,σ(x) =

(
1√

2πσ2

)n

e−
‖x−v‖2

2
2σ2

for x ∈ Rn.

The discrete spherical Gaussian distribution over Zn centered at v ∈ Zn with parameter σ is defined by
the probability function

Dn
v,σ(x) =

ρnv,σ(x)

ρnv,σ(Zn)
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with x ∈ Zn and ρnv,σ(Zn) =
∑

z∈Zn ρnv,σ(z) being the scaling coefficient necessary for Dv,σ to be indeed a
probability distribution.

Remark 3.2. We would like to note that in the discrete Gaussian measure, σ is not the standard deviation.
In fact, computing the standard deviation of Dn

v,σ is not easy. However, what is needed for correctness
is that the tails of the distribution are bounded, and this can be seen through the parameter σ without
needing the standard deviation. We would also like to note that from now on we will drop the “spherical”
term when referring to it, since we will only use them and no elliptical distribution (the only difference is
that with elliptical distributions each direction of the base has a different parameter).

We will always use distributions centered at 0, so we can even see more. Since now we have v = 0, we
can see that (omitting the 0 in the subtext for ease of notation)

ρnσ(x) =

(
1√

2πσ2

)n

e
∑n

i=1−
x2
i

2σ2 =
n∏

i=1

1√
2πσ2

e−
x2
i

2σ2 =
n∏

i=1

ρσ(xi )

where when the dimension is 1 we do not use an exponent to ease the notation. Then we can infer that

Dn
σ ∼ Dσ × · · · × Dσ.

Therefore we can reduce ourselves to the study of Dσ over Z instead of having to deal with Zn.

Another topic we need to discuss is the fact that our lattices are not defined over the whole Zn but
rather over Zn

q. Therefore we will deal with the reduction modulo q of Dσ defined as standard:

D̂σ(i) =
∑
k∈Z

Dσ(i + kq)

for i ∈ Zq.

3.1.2 Bound

Even if the objective of the error distribution χn is to muddle the system of equations to make the solving
difficult, we do not want the system to be too diffused, otherwise we would not be able to recover the
information. In other words, if the distribution is too similar to being uniform, the information cannot be
recovered even with the secret key.

Therefore, we need to bound the tails of our distribution, and given what we have seen before, a bound
of |D̂σ| would be enough. Then we note that given any distribution X over Z and X̂ its standard reduction
modulo q, with representatives −bq2c, ... , bq2c, then

Pr(|X̂ | > i) ≤ Pr(|X | > i)

for any i in Zq, since all elements between kq and kq + i for k ∈ Z>0 are counted on the right but not on
the left, and each of these probabilities is non-negative. We cannot say that it is strictly smaller since if
the support of X is Zq we will have equality, but otherwise the inequality is strict.

This means that we only need a bound on |Dσ|, and we will give a particular case of the bound given
in Lemma 3.3 in [Lyu12] in Z, since we do not need Zn.

Lemma 3.3. For any s,σ > 0 and let T = Dσ (to ease notation), then

E
[
e

s
σ2 T
]
≤ e

s2

2σ2 .
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Proof. Let s,σ > 0, then

E
[
e

s
σ2 T
]

=
∑
z∈Z

Pr(T = z)e
sz
σ2 =

∑
z∈Z

T (z)e
sz
σ2 =

∑
z∈Z

ρσ(z)

ρσ(Z)
e

sz
σ2 =

=
∑
z∈Z

e−
z2

2σ2∑
z∈Z e−

z2

2σ2

e
2sz
2σ2 =

∑
z∈Z

e−
(z−s)2

2σ2∑
z∈Z e−

z2

2σ2

e
s2

2σ2 =

= e
s2

2σ2

∑
z∈Z e−

(z−s)2

2σ2∑
z∈Z e−

z2

2σ2

≤ e
s2

2σ2

where the last inequality is derived from Lemma 2.9 on [MR07], giving us what we wanted to see.

Now we can use this inequality to prove the bound on the probability of |Dσ|.

Lemma 3.4. For any σ, k > 0 then,

Pr (|Dσ| > k) ≤ 2e−
k2

2σ2 .

Proof. Let σ, k > 0 and using the same notation as before T = Dσ, then

Pr (|Dσ| > k) = 2Pr (Dσ > k) = 2Pr
(

e
s
σ2 T > e

s
σ2 k
)
≤ 2

E
[
e

s
σ2 T
]

e
s
σ2 k

≤ 2
e

s2

2σ2

e
sk
σ2

= 2e
s2

2σ2−
sk
σ2

where we have used (in this order) that Dσ is symmetric with respect to zero, the Markov inequality and
Lemma 3.1.2. Since the inequality holds for any s it holds true for s = k in particular, which is the
minimum of the function f (s) = s2

2σ2 − sk
σ2 . This means that the result is the best bound of this type we

can find.

3.2 Rounded Discrete Gaussian Distribution

The discrete Gaussian distribution has many benefits, for example the ease to give mathematical reductions
or tail bounds that are easy to prove, but has one major drawback. Sampling from Dσ is difficult to compute,
to the point that all the known ways to sample at the moment are either efficient or secure, with this or
being exclusive [HLS18]. Therefore, one would need to either sacrifice computation time or security if you
want to use Dσ on an implementation.

That is why we will use another discrete Gaussian distribution, similar enough to Dσ that some of the
benefits are still there, but different enough so that there is an efficient and secure way to sample it (as
long as there is an efficient way to sample a continuous Gaussian distribution over R). This will be the
distribution we will use further on, so from now on every time we mention a discrete Gaussian distribution
will be this one unless the opposite is stated.

3.2.1 Definition

This is how the discrete Gaussian distribution over Zq is defined in [Reg09] (going through a reduction
modulo 1).
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Definition 3.5 ([Reg09]). The continuous Gaussian distribution over T = R/Z with parameter σ > 0 is
defined by the density function

Ψσ(r) =
∑
k∈Z

ρσ(r − k)

for r ∈ [0, 1), where ρσ is the Gaussian function over R defined on section 3.1.1.

The discrete Gaussian distribution over Zq with parameter σ > 0 is defined by the probability function

Ψσ(i) =

∫ i+ 1
2

q

i− 1
2

q

Ψ(r)dr

for i ∈ Zq. Note that in this definition we are taking {0, ... , q− 1} as representatives for Zq, and for 0 the
integral is over [0, 1

2 ] ∪ [q − 1
2 , q].

Remark 3.6. Note that the remark 3.2 about the parameter not being the standard deviation of the
distribution but being enough to give a bound applies in the same way for this distribution.

We would like to emphasize why this new discrete Gaussian is efficiently sampled given an efficient
sampling of a normal distribution. From the definition of the distribution over T it can be seen that for
every r ∈ [0, 1) we are assigning to r the probability of all the real numbers that have r as their decimal
part, so if Y ∼ Ψσ then Y = X (mod 1) where X ∼ N(0,σ) and reducing modulo 1 means taking only
the decimal part. Furthermore, from the definition of the distribution over Zq, it is clear that if Z ∼ Ψσ

then Z = bqY e (mod q) with Y ∼ Ψσ. And both taking the decimal part, multiplying by q and rounding
can be efficiently computed.

Similarly as with the lattice discrete Gaussian distribution, we need the distribution to be over Zn
q. To

do so we define the distribution

Ψ
n
σ = Ψσ × · · · ×Ψσ

over Zn
q as we wanted. And as before, studying Ψσ gives us everything we need about Ψ

n
σ.

3.2.2 Bound

As in section 3.1.2 we want to bound the tails of the distribution. However, we cannot use the same
method used in that section, since our distribution now is not a reduction modulo q from a distribution
over Z, but instead comes from a distribution over T.

To overcome this, we will define yet another distribution over Zq which is easier to bound and prove
that it is equivalent to Ψσ for some σ.

Therefore now we define the rounded Gaussian distribution over Z.

Definition 3.7. The rounded Gaussian distribution over Z with parameter σ > 0 is defined by the probability
function

Ωσ(z) =

∫ z+ 1
2

z− 1
2

ρσ(x)dx

for z ∈ Z and ρσ the Gaussian function over R defined on section 3.1.1.
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The distribution we are interested in is Ω̂σ, its standard reduction modulo q as it is defined in section
3.1.2. It is clear once again from the definition that if Y ∼ Ωσ, then Y = bX e with X = N(0,σ), hence
the name rounded Gaussian.

Now we can see the relation between Ω̂ and Ψ.

Lemma 3.8. For any σ ∈ R we have that Ω̂σ is indeed a random variable and in fact we have that
Ω̂σ = Ψσ

q
.

Proof. First we need to see that Ω̂σ is a random variable. Indeed

q−1∑
i=0

Ω̂σ(i) =

q−1∑
i=0

∑
k∈Z

Ωσ(i + kq) =
∑
k∈Z

q−1∑
i=0

Ωσ(i + kq) =
∑
k∈Z

Ωσ(k) =

=
∑
k∈Z

∫ k− 1
2

k− 1
2

ρσ(x)dx =

∫ +∞

−∞
ρσ(x)dx = 1.

Now we can see that Ω̂σ(i) = Ψσ
q

(i) for all i ∈ Zq, and therefore Ω̂σ = Ψσ
q

as random variables.

Ω̂σ(i) =
∑
k∈Z

Ωσ(i + kq) =
∑
k∈Z

∫ i+kq+ 1
2

i+kq− 1
2

1√
2πσ

e
−
(

x√
2σ

)2

dx =

=
∑
k∈Z

∫ i+ 1
2

q

i− 1
2

q

1√
2πσ

e
−
(

q(y+k)√
2σ

)2

q · dy =

∫ i+ 1
2

q

i− 1
2

q

∑
k∈Z

1√
2π σq

e
−
(

y+k√
2 σ
q

)2

dy = Ψσ
q

(i)

where we have used the change of variables y = x−kq
q and the dominated convergence theorem.

Therefore, if we know a bound for Ω̂, we know a bound for Ψ. Given this result, we can now bound
the distributions using the fact that Ω is a rounded Gaussian and Mill’s inequality:

Pr (|N(0,σ)| > t) = 2

∫ +∞

t
ρσ(x)dx ≤

√
2

π

e
−
(

t√
2σ

)2

t
.

Lemma 3.9. For all c ,σ > 0 then,

Pr
(∣∣∣Ψσ

q

∣∣∣ > c
)
< 2

√
2

π
e
−
(
dce− 1

2√
2σ

)2

.

Proof. Let c,σ > 0, then

Pr
(∣∣∣Ψσ

q

∣∣∣ > c
)

= Pr
(∣∣∣Ω̂σ

∣∣∣ > c
)
< Pr (|Ωσ| > c) = 2

+∞∑
j=dce

∫ j+ 1
2

j− 1
2

ρσ(x)dx =

= 2

∫ +∞

dce− 1
2

ρσ(x)dx ≤
√

2

π

e
−
(
dce− 1

2√
2σ

)2

dce − 1
2

≤ 2

√
2

π
e
−
(
dce− 1

2√
2σ

)2

where we have used (in this order) Lemma 3.8, the reasoning in section 3.1.2 (note that now we can say
that it is strictly smaller since the support of Ωσ is Z), the fact that Ωσ is symmetric respect 0, the previous
known result and the fact that dce − 1

2 ≥
1
2 for any c > 0, thus seeing what we wanted.
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3.3 Correctness

This whole section is motivated by the fact that a basic property needed by any encryption scheme is
correctness. In broad strokes, what is needed is that for any ciphertext received, the probability of incorrectly
recovering the original message given the secret key is negligibly small. More formally we can put it the
following way.

Definition 3.10. Let (M, C,K, E ,D) be an encryption scheme. The encryption scheme is said to be
correct if for all e ∈ Kp exists some computable d ∈ Ks such that with λ the security parameter

Pr(Dd(Ee(m)) 6= m) = neg(λ)

for all m ∈M.

In our particular encryption scheme (defined in section 2.5), we need to change a little bit this definition.
Since we are executing the protocol against an active adversary (an adversary that can arbitrarily deviate
from the protocol), we will have

( u
t+1

)
decryptions of every message, and we need to see that a majority is

correct. Therefore we need that a majority of reconstructions satisfy that Pr((|x + ê|)i > q
4 ) is negligible

for all i , where ê = e · rE + ev− s · eu and (·)i denotes the ith coefficient of an element in Rq. To do so we
will use the bound given in Lemma 3.9, but we still need two more technical results to be able to properly
finish the proof. Let us prove them.

Lemma 3.11. Let A, B, C three random variables such that C ≤ A + B and A, B are independent. Then,{
Pr(A > a) < λa
Pr(B > b) < λb

=⇒ Pr(C > a + b) < λa + λb.

Proof. Let A, B, C three random variables such that C ≤ A + B. Then note that C > a + b if and only if
either A > a or B > b, therefore the event C > a + b is contained in the event (A > a)∪ (B > b), and so
Pr(C > a + b) < Pr((A > a) ∪ (B > b)). Then we get that:

Pr(C > a + b) < Pr((A > a) ∪ (B > b)) = Pr(A > a) + Pr(B > b)− Pr(A > a)Pr(B > b) ≤
≤ Pr(A > a) + Pr(B > b) < λa + λb

as we wanted to see.

Remark 3.12. Note that this is generally a very coarse bound on the random variable C , but we do not
need the bound to be any tighter for the proof of correctness.

Corollary 3.13. Let A1, ... , An independent random variables such that Pr(Ai > a) < λ, and let C another
random variable such that C ≤

∑n
i=1 Ai . Then Pr(C > na) < nλ.

Proof. Direct by using induction on Lemma 3.11.

Lemma 3.14. Let A, B, C ≥ 0 three random variables such that C ≤ A · B, and A, B are independent.
Then, {

Pr(A > a) < λa
Pr(B > b) < λb

=⇒ Pr(C > a · b) < λa + λb.
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Proof. Let A, B, C three random variables such that C ≤ A · B. Then, in an analogous way to Lemma
3.11, note that C > a · b if and only if either A > a or B > b, therefore the event C > a · b is contained
in the event (A > a) ∪ (B > b), and so Pr(C > a · b) < Pr((A > a) ∪ (B > b)). Then we get, as in the
proof of Lemma 3.11 that:

Pr(C > a · b) < λa + λb

as we wanted to see.

Remark 3.15. Once again, this is a generally very coarse bound, but we do not need it any tighter to prove
correctness.

With these technical results in hand we can tackle the proof of correctness in our encryption scheme,
redoing the proof given in [AE20].

Theorem 3.16 (Theorem 5.5 [AE20]). Let c = Ω(
√
λ), 0 < d < 1 and let In = [−(cξ)2(2n +

1)qd , (cξ)2(2n + 1)qd ]n be the interval image of Φ·(·). Assume that 1 < ξ < 1
c

√
q

4(2n+1)((ut)qd+1)
Then the decryption protocol will have correct output except with negligible probability.

Proof. Let ê = e · rE + ev− s ·eu. Like we have said before, what we want to see is that Pr((|x + ê|)i > q
4 )

is negligible ∀i .

Since the product in Rq is done through the anticyclic matrix (as we have seen in section 2.4), we know
that:

(|ê|)i ≤ |ei · rE1 |+ |ei−1 · rE2 |+ ... + |ei+2 · rEn−1 |+ |ei+1 · rEn |+ |evi |+ |si · eu1 |+ ... + |si+1 · eun |

and therefore, since e, rE, ev, s, eu ∼ Ψ
n
ξ
q

, if we have that Pr

(∣∣∣∣Ψ ξ
q

∣∣∣∣ > k

)
< µ for some k , then using

Corollary 3.13 and Lemma 3.14 we get that

Pr((|ê|)i > 2nk2 + k) < (4n + 1)µ. (1)

From Lemma 3.9 we know that

Pr

(
|Ψ ξ

q
| > cξ

)
< 2

√
2

π
e
−
(
dcξe− 1

2√
2ξ

)2

(2)

so we have that k = cξ.

We also know that by construction:

(|x|)i ≤
(

u

t

)
(cξ)2(2n + 1)qd . (3)

And by hypothesis:

ξ <
1

c

√
q

4(2n + 1)
((u

t

)
qd + 1

) ⇒ k2 <
q

4(2n + 1)
((u

t

)
qd + 1

) ⇒ k2(2n + 1)

((
u

t

)
qd + 1

)
<

q

4
. (4)
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Therefore giving us:

Pr
(

(|x + ê|)i >
q

4

)
≤ Pr

(
(|x|)i + (|ê|)i >

q

4

)
<

< Pr

(
(|x|)i + (|ê|)i > k2(2n + 1)

((
u

t

)
qd + 1

))
=

= Pr

(
(|ê|)i > k2(2n + 1)

((
u

t

)
qd + 1

)
− (|x|)i

)
≤

≤ Pr

(
(|ê|)i > k2(2n + 1)

((
u

t

)
qd + 1

)
−
(

u

t

)
k2(2n + 1)qd

)
=

= Pr
(
(|ê|)i > k2(2n + 1)

)
< Pr

(
(|ê|)i > 2nk2 + k

)
<

< (4n + 1)2

√
2

π
e
−
(
dcξe− 1

2√
2ξ

)2

where we have used (in this order) the triangular inequality, the final inequality in (4), the inequality in (3),
the fact that c, ξ > 1 and therefore k > 1 so k2 > k and the inequalities (1) and (2) coupled together.

And finally, using that c = Ω(
√
λ) and ξ > 1 we get that

Pr
(

(|x + ê|)i >
q

4

)
= neg(λ).

We would like to note that the proof of this theorem is only valid when we can ensure that s and e
follow the distribution Ψ. However, Protocol 2.25 does not generate this distribution. How we deal with
this will be explored with more detail in chapter 4.
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4. Definitions and Proofs of Security

This section will be laid out in an aim to prove security of Encryption Scheme 2.23 and both Protocol 2.24
and 2.25. What we want to achieve in respect to the security proofs in [AE20] is twofold: on the one hand
we want to completely remake the proofs in a more standard fashion, since security proofs usually do not
revolve around functionalities but rather attack games; and in the other hand we also want to fill some
little holes left unexplained in [AE20] so as to give more comprehensible and autocontained results. Let us
get into it.

4.1 Definitions of Security

In contrast with correctness of an encryption scheme, security has many different ways in which it can
be defined. This is due to the fact that you always want a decryption to be correct (or always except
with negligible probability) but security depends on how is the adversary we want to defend us against
(information available, computational power) and what we want to ensure (that the adversary cannot
know what message was encrypted or that he cannot distinguish which message has been encrypted from
a pool of plaintexts).

These different “securities” are defined revolving around an attack game between the challenger and
the adversary, in which we say that an encryption satisfies that type of security if the advantage of the
adversary in this particular game is negligible.

The following definitions of the attack games, advantages and securities are taken from [BS20], and
we will move from weaker to stronger notions of security.

4.1.1 Message Recovery Security

This security notion is quite straightforward from its name, you do not want the adversary to recover the
message associated to a given ciphertext. Let us properly define its attack game and advantage.

Attack Game 4.1 (Attack Game 2.2 [BS20]). Let S = (M, C,K, E ,D) be an encryption scheme. Given
an adversary A, the message recovery attack game proceeds as follows:

• The challenger computes m
$←− M, e

$←− Kp, c = Ee(m), and sends c to A. In case of public key
encryption schemes the challenger also sends e to the adversary.

• The adversary outputs a message m̂ ∈M.

Let W be the event in which m̂ = m, then we define A’s message recovery advantage as:

MRAdv[A,S] :=

∣∣∣∣Pr(W )− 1

|M|

∣∣∣∣ .

Definition 4.2 (Definition 2.3 [BS20]). An encryption scheme S is said to be secure against message
recovery attacks if for all efficient adversaries A, the value MRAdv[A.S] is negligible.

24



4.1.2 Semantic Security

Message recovery security is the weakest notion of security, an adversary could be able to know information
of the message without being able to specifically recover the message. For example, the parity of the
message could be leaked or other properties about it. That is the reason why semantic security was
defined.

In general terms, what semantic security wishes to achieve is that the adversary cannot distinguish if
an encrypted message is one of two selected by A. Let us define its attack game and advantage.

Attack Game 4.3 (Attack Game 2.1 [BS20]). Let S = (M, C,K, E ,D) be an encryption scheme. Given

an adversary A, the semantic security attack game, after the challenger computes b
$←− {0, 1}, follows with

the following experiment b:

• The adversary computes two same-length messages m0 6= m1 ∈M and sends them to the challenger.

• The challenger computes e
$←− Kp, c = Ee(mb) and sends c to A. In case of public key encryption

schemes the challenger also sends e to the adversary.

• The adversary outputs a bit b̂ ∈ {0, 1}.

Let Wb be the event in which A outputs 1 in the experiment b, then we define A’s semantic security
advantage as:

SSAdv[A,S] := |Pr(W0)− Pr(W1)|.

Definition 4.4 (Definition 2.2 [BS20]). An encryption scheme S is said to be semantically secure if for all
efficient adversaries A, the value SSAdv[A,S] is negligible.

Note that in the public key encryption cases, where the public key is known by the adversary, S cannot
be semantically secure if its encryption function is deterministic. Therefore we will need to add some
measure of randomness to ensure security, that is the reason why we use samples from random variables.

We also need to formally see that indeed this is a stronger security notion that security against message
recovery attacks, so we will see semantic security implies security against message recovery attacks. We
will give a version of the proof given in [BS20].

Lemma 4.5 (Theorem 2.7 [BS20]). Let S = (M, C,K, E ,D) be an encryption scheme. Then if S is
semantically secure, S is secure against message recovery attacks.

Proof. We will prove the contrapositive: that if S is not secure against message recovery attacks, then it
is not semantically secure. In other words, we want to see that given access to an efficient adversary A
such that it has non-negligible message recovery advantage, we can construct another efficient adversary
B that interacts with A as the challenger and has non-negligible semantic security advantage.

Let B be an adversary of the semantic security attack game. Its behaviour is as follows:

• Generate m0, m1
$←−M and send them to the challenger of the semantic security attack game.

• Receive from the challenger c = Ee(mb) (and if we are in public key encryption receive e too).

• Act as the challenger in a message recovery attack game with A and as such send A the ciphertext
c (and e if we are in public key encryption).
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• Receive m̂ from A and return to the challenger 0 if m̂ = m0 and 1 if m̂ = m1, abort otherwise.

Now we need to compute the semantic security advantage for B. Note that the probability of B
outputting 1 in experiment 1 is Pr(m̂ = m1), and that in experiment 0 in the semantic security game, the
message recovery game with A is independent of m1, therefore the probability of A outputting m1 is 1

|M| .
Adding it all together we get:

SSAdv[B,S] = |Pr(W0)− Pr(W1)| =

∣∣∣∣ 1

|M|
− Pr(m̂ = m1)

∣∣∣∣ = MRAdv[A,S] = non-negligible

as we wanted to see.

Apart from this way to define the semantic security advantage, there is another equivalent way to do
so which may be easier to use in some situations. The attack game is the same as Attack Game 4.3, but
we define a new advantage.

Definition 4.6 (Attack Game 2.4 [BS20]). Let W be the event in which b̂ = b. Then we define the
bit-guessing semantic security advantage as

SSAdv∗[A,S] =

∣∣∣∣Pr(W )− 1

2

∣∣∣∣ .

Now we need to see that these two advantages are equivalent, so that we can interchange them without
worrying. The proof follows the one in [BS20].

Lemma 4.7 (Theorem 2.10 [BS20]). For every encryption scheme S and adversary A we get that

SSAdv[A,S] = 2 · SSAdv∗[A,S].

Proof. Let S be an encryption scheme and A an adversary. Then,

Pr(b̂ = b) = Pr(b̂ = 0|b = 0)Pr(b = 0) + Pr(b̂ = 1|b = 1)Pr(b = 1) =

=
1

2
(Pr(b̂ = 0|b = 0) + Pr(b̂ = 1|b = 1)) =

=
1

2
(1− Pr(b̂ = 1|b = 0) + Pr(b̂ = 1|b = 1)).

Therefore we get that

SSAdv[A,S] = |Pr(W0)− Pr(W1)| = |Pr(b̂ = 1|b = 0)− Pr(b̂ = 1|b = 1)| =

= |2Pr(b̂ = b)− 1| = 2 · SSAdv∗[A,S]

as we wanted to see.

This means that whenever looking at semantic security, it is indifferent if we look at it as the probability
the adversary distinguishing the ciphertexts being negligible or as the probability of the adversary guessing
being negligibly close to 1

2 , since 2 times a negligible value remains negligible.
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4.1.3 CPA Security

Semantic security is a very useful notion of security to make sure no information is leaked when encrypting
a message. But there is a catch, it only contemplates encrypting one message with a given key. What
happens if you want to use the same key repeatedly to encrypt different messages? Is your encryption
scheme still secure?

This is what Chosen Plaintext Attack (CPA) security was defined for. In broad strokes, it is a very
similar concept to semantic security in that you cannot distinguish between encryptions of chosen plaintexts,
but now you can make several queries to the adversary (a polynomial amount to be specific). Let us define
its attack game and advantage.

Attack Game 4.8 (Attack Game 5.2 [BS20]). Let S = (M, C,K, E ,D) be an encryption scheme. Given an

adversary A, the Chosen Plaintext Attack (CPA) attack game, after the challenger computes b
$←− {0, 1},

follows with the following experiment b:

• The challenger chooses e
$←− Kp (and sends it to the adversary if we are in public key encryption).

• The adversary submits polynomially many queries to the challenger. For i = 1, 2, ..., A submits two
same-length messages m0i , m1i ∈ M. The challenger computes ci = Ee(mbi ) and sends it to the
adversary.

• The adversary outputs a bit b̂ ∈ {0, 1}.

Let Wb be the event in which A outputs 1 in the event b, then we define A’s CPA advantage as:

CPAAdv[A,S] := |Pr(W0)− Pr(W1)|.

Definition 4.9 (Definition 5.2 [BS20]). An encryption scheme S is said to be CPA secure if for all efficient
adversaries A, the value CPAAdv[A,S] is negligible.

Note that in order to achieve CPA security, an encryption scheme S cannot have a deterministic
encryption function, even in symmetric cryptography where the adversary does not have the key. Otherwise,
CPA security is easily broken by sending two queries and just changing one of the messages.

Furthermore, now it is even more clear that if an encryption scheme S is CPA secure, then it is
semantically secure. This is due to the fact that the semantic security attack game (Attack Game 4.3) is
exactly the same that the CPA attack game (Attack Game 4.8) making only one query, and the advantages
are computed in the same way. Therefore we will get

max
A
{CPAAdv[A,S]} ≥ max

A
{SSAdv[A,S]}

so if SSAdv[A,S] in non-negligible, then CPAAdv[A,S] will be too, thus seeing what we wanted.

Moreover, in the public-key encryption realm (which is where our encryption scheme stands) we have
that if an encryption scheme S is semantically secure then it is also CPA secure. The basic idea on which
this is based is the fact that given that the adversary knows the public key, the adversary can compute as
many ciphertexts as wanted, so extending the semantic security attack game onto the CPA attack game
should not vastly change the information the adversary knows. The proof is taken from [BS20].
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Theorem 4.10 (Theorem 11.1 [BS20]). Let S be a public-key encryption scheme. Then if S is semantically
secure, S is CPA secure. In particular, for every CPA adversary A that plays Attack Game 4.8 with respect
to S, and which makes at most Q queries to its challenger, there exists a semantic security adversary B
such that

CPAAdv[A,S] = Q · SSAdv[B,S].

Proof. Let S = (M, C,K, E ,D) be a public-key encryption scheme. Let A be the adversary that plays
the CPA Attack Game 4.8 with respect to S making at most Q queries to its challenger. To prove what
we want to see we will need to define another type of experiments for Attack Game 4.8, the j Hybrid
experiments played against the same CPA challenger. Let us see them:

Hybrid experiment j: For j ∈ {0, ... , Q} we define the following experiment:

• The challenger computes the keys (e, d) with the key generation protocol and forwards the
public key e to A.

• For every query mi0, mi1, i ∈ {1, ... , Q} forwarded by the adversary, the challenger computes
the following:

– if i ≤ j: ci = Ee(mi1)

– if i > j: ci = Ee(mi0)

and forwards ci to A.

• A outputs b̂ ∈ {0, 1}.

First note that both Experiment 0 and Experiment 1 used to define CPA advantage in Attack Game
4.8 are a particular case of these Hybrid experiments, in particular Experiment 0 is Hybrid experiment 0
and Experiment 1 is Hybrid experiment Q. We will also define (to ease notation) the probability that A
outputs 1 in Hybrid experiment j as pj , which exists and is “fair game”, since even though CPA security
is defined using only Experiment 1 and Experiment 0 the rest of Hybrid experiments can be run for any
adversary attacking the CPA security of the scheme. Now if we define WAj the event which A outputs 1
in experiment j of the hybrid Attack Game we get that:

CPAAdv[A,S] = |Pr(WAQ)− Pr(WA0)| = |pQ − p0|.

Now we need to define an efficient adversary B that attacks the semantic security game (Attack Game
4.3) acting as a challenger towards A.

Adversary B: The adversary B against Attack Game 4.3 works as follows:

• Receives e from its challenger, forwards it to A and chooses w
$←− {1, ... , Q}.

• For every query mi0, mi1, i ∈ {1, ... , Q} received from A computes the following:

– if i < w: ci = Ee(mi1)

– if i = w: Send mi0, mi1 to the challenger and receive ci .

– if i > w: ci = Ee(mi0)

and forwards ci to A.

• B outputs b̂ received from A.
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Now let us compute the semantic security advantage of B. Let WBb the event which B outputs 1 in
experiment b. Then we have:

SSAdv[B,S] = |Pr(WB1)− Pr(WB0)| =

∣∣∣∣∣∣
Q∑
j=1

Pr(w = j) · (Pr(WB1|w = j)− Pr(WB0|w = j))

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣ 1

Q

Q∑
j=1

Pr(WAj−1)− Pr(WAj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

Q

Q∑
j=1

pj−1 − pj

∣∣∣∣∣∣ =
1

Q
|p0 − pQ |.

So we get, as we wanted to see, that

CPAAdv[A,S] = Q · SSAdv[B,S].

4.2 Standard Proofs of Security

Now that we have properly defined what security is, we need to solve another problem. How do we
mathematically prove that the advantages are negligible? It is clear that the probabilities on which these
advantages are based upon are usually not easily computed, so we need to find other indirect ways to
ensure security. Here is where we discuss the fact that there are two main currents in dealing with this
issue: heuristic security and mathematical security.

On the one hand we have heuristic security. It is a security model that in essence asserts that any
cryptographic protocol is secure as long as there is no known efficient attack against it. It is a very
useful model since if one desires to effectively “break” the cryptographic protocol, then one will need an
efficient attack against it, so as long none is known it is not unreasonable to think that the protocol is
secure. Furthermore, since you only need to make sure that no efficient attack is known, the protocols with
security based in this model are usually more efficient than the ones with mathematical security. However,
there are drawbacks, since the only way to break security for the protocol is finding an attack to it in
particular, so protocols based on heuristic security are rendered obsolete much more often that the ones
based on mathematical security. A couple of examples of heuristic security are the Advanced Encryption
Standard (AES), the NIST symmetric encryption standard, and Secure Hash Algorithms (SHA), the NIST
hash algorithm standards; the first of which remains secure up to this day (since 2001), while the second
has seen several iterations (SHA-0 to SHA-3) since they have been broken several times.

On the other hand we have mathematical security. The idea behind this security notion is to be able
to mathematically prove a given cryptographic protocol to be secure. To do so, the usual method is to
use security reductions to the protocol from a well-studied problem that is known (or assumed) to be hard
to solve. The gist of these security reductions is to mathematically prove that if an adversary had a non-
negligible advantage against the cryptographic protocol, then it would be able to solve the hard problem.
This implies, since the problem is known (or assumed) to be hard, that breaking the protocol is hard. This
is a more stable sense of security, since the problems where security is based are usually very well studied
and documented, so the discovery of any algorithm efficiently solving them is usually unlikely.

Note that mathematical security implies heuristic security, since if an efficient attack is known against
the cryptographic protocol, then through the security reduction the hard problem would be efficiently solved,
giving a contradiction with it being hard. In this master’s thesis we will prove mathematical security of
three things: the cryptosystem, the threshold decryption protocol and the key generation protocol, the first
of which we will tackle in this subsection, and the other two on the next.
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4.2.1 Reducing Security of Encryption Scheme to R-LWE

We will split the proof of mathematical security of our cryptosystem in two distinct parts: reducing the
security of the cryptosystem to the decisional R-LWE problem, and then reducing the decisional R-LWE
problem to K -DGS, a well-known lattice problem assumed to be hard to solve. We will make this splitting
because the first reduction will be for any distribution χ, while the second reduction will be specifically
for the distribution Ψ

n
. The first reduction will follow the ideas from the reduction of Regev’s encryption

scheme to LWE given in [Reg09].

Theorem 4.11. Given χ a distribution over Rq, there exists a reduction to the security of the Encryption
Scheme 2.23 from the decisional R-LWEχ problem.

Proof. What we want to see is that given an efficient adversary A who has non-negligible semantic security
advantage, we can construct an efficient adversary B with access to A who given an instance of the
decisional R-LWE problem, it can solve it with probability non-negligibly bigger than 1

2 .

Let (ai , bi ) ∈ Rq × Rq be an instance of the decisional R-LWE problem. What we need B to do is to
be able to output whether a polynomial amount of instances are samples of the distribution As,χ or of the
uniform distribution over Rq×Rq, in other words, we want to know whether bi = ai · s + e for some s ∈ Rq

and e←− χ.

Note that any adversary A who breaks semantic security may be of one of two types. Either A has
non-negligible semantic security advantage against the encryption scheme when (aE, bE) are generated
independently uniformly at random (instead of having bE = aE · s + e) or it does not. We will construct
two different adversaries for these cases.

Assume firstly that A has a negligible semantic security advantage against the encryption scheme when
(aE, bE) are generated independently uniformly at random. Let (a1, b1) be an instance of the R-LWEχ
problem, then we define the following attack game.

Attack Game 1: The attack game goes as follows:

• Set the public key to (a1, b1) and send it to A.

• Receive m01, m11 from the adversary, and choose b1
$←− {0, 1}.

• Compute u1 = a1 · rE + eu and v1 = b1 · rE + ev + mb11bq2c with rE, eu, ev ←− χ, and send
(u1, v1) to A.

• Receive b̂1 from the adversary.

Then B will work as follows. When given the instances, it picks (a1, b1) and performs the Attack Game
1 with A a polynomial amount of times. Then it computes the advantage:

SSAdv∗1[A,S] =

∣∣∣∣∣Number of queries where b̂1 = b1

Total number of queries
− 1

2

∣∣∣∣∣ .

We know from how we have defined the adversaryA, since SSAdv[A,S] is non-negligible, if the instances
follow the distribution As,χ then SSAdv∗1[A,S] will be non-negligible and if the instances are uniform over
Rq ×Rq then SSAdv∗1[A,S] will be negligible. This means that with non-negligible probability B can solve
the decisional R-LWEχ problem as we wanted.
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Assume now that A has a non-negligible semantic security advantage against the encryption scheme
when (aE, bE) are generated independently uniformly at random. Let, once again, (a1, b1) and (a2, b2) be
two instances of the R-LWEχ problem, then we define the following attack game.

Attack Game 2: The attack game goes as follows:

• Set the public key to (a1, a2) and send it to the adversary.

• Receive m02, m12 from the adversary, and choose b2
$←− {0, 1}.

• u2 = b1 and v2 = b2 + mb22bq2c and send (u1, v1) to A.

• Receive b̂2 from the adversary.

Then B will work as follows. When given the instances, it picks two of them (a1, b1) and (a2, b2), and
performs the Attack Game 2 with A a polynomial amount of times. Then it computes the advantage:

SSAdv∗2[A,S] =

∣∣∣∣∣Number of queries where b̂2 = b2

Total number of queries
− 1

2

∣∣∣∣∣ .

We know from how we have defined the adversaryA, since SSAdv[A,S] is non-negligible, if the instances
follow the distribution As,χ then SSAdv∗2[A,S] will be non-negligible and if the instances are uniform over
Rq × Rq then SSAdv∗2[A,S] will be negligible, since if bi are uniformly at random then v2 is independent
from the public key and mb22. This means that with non-negligible probability B can solve the decisional
R-LWEχ problem as we wanted, since it is possible to distinguish a non-negligible random variable from a
negligible random variable with a non-negligible probability.

Remark 4.12. Note that the proof of Theorem 4.11 is not a constructive proof, in the sense that it does not
give an efficient adversary B that for any adversary A with non-negligible advantage against the encryption
scheme, solves the decisional R-LWEχ problem. However, we have proven that for any such A exists an
efficient B solving the decisional R-LWEχ problem, and this is enough for security. Since we are postulating
that the decisional R-LWEχ problem is hard to solve, if an efficient A existed we could efficiently solve the
hard problem.

4.2.2 Reducing R-LWE to K-DGS

We now need to see that solving the decision R-LWEΨ is a hard problem to solve, in our case as hard to
solve as the Discrete Gaussian Sampling over K (K -DGS), where K is the field such that R is its ring of
integers, in other words, R = OK . Thankfully, this job has already been done in [PRSD17], though to do
so properly we need to give some clarifications about different ways to define the R-LWE distribution.

Let K be a number field with R its ring of integers. Let R∨ be the fractional codifferential ideal of
K (R∨ = {x ∈ K | Tr(xR) ⊂ Z}), and let TR = KR/R∨. Let q ≥ 2 be an integer modulus. Let us
unpack this. Firstly in our specific case of K being a cyclotomic field with n = 2k for some case, we have
R = Z[x ]/〈xn + 1〉, so in turn it can be seen that R∨ is isomorphic to R. Secondly, KR = K ⊗Q R which
is isomorphic to Rn, so looking it component by component TR could be seen as isomorphic to Tn with
T = R/Z. With this out of the way we can see their definition.

Definition 4.13 (Definition 2.14 [PRSD17]). For s ∈ R∨q and an error distribution ψ over KR, the R-LWE

distribution As,ψ over Rq × TR is sampled by independently choosing a
$←− Rq and an error term e ← ψ,

and outputting (a, b = (a · s)/q + e mod R∨).
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Now our postulate is that this definition taking as Ψ an n-dimensional spherical continuous Gaussian
with parameter ξ (which is a distribution used in [PRSD17]) and then raising it to Rq again, is equivalent
to our Definition 2.20 using Ψ ξ

q
. It can be seen as one, since a spherical Gaussian in Rn can be seen as the

product of n independent Gaussians over R with the same standard deviation. Then in essence what we
are doing in Definition 4.13 is multiply a times s, then divide the result by q (which we can since we are
seeing the elements in KR which is a field) and adding the error distribution. Then we reduce it modulo
R∨ thus landing in TR . Now if we look it component by component we have in essence computed a · s/q
and then added to each component a sample of Ψ ξ

q
, so when raising it again to R∨q (by multiplying by q

and rounding) we get that q(a · s/q) = a · s ∈ R∨q and to every component we have added an independent

sample taken from Ψ ξ
q

. Therefore, if ρnξ is the spherical Gaussian with parameter ξ, given an adversary

who solves R-LWEΨ ξ
q

it is easy to give an adversary who solves R-LWEρnξ .

Therefore we can apply the following result from [PRSD17]. Let ρnξ be a spherical Gaussian with
parameter ξ and ρnr be an elliptical Gaussian defined as the product of n 1-dimensional Gaussians such that
the standard deviation σi ≤ ri with r = (r1, ... , rn).

Lemma 4.14 (Corollary 7.3 [PRSD17]). There is a polynomial-time quantum reduction from K-DGSγ to

the (average-case, decision) problem of solving R-LWEρnξ using l samples with ξ = α
(

nl
log(nl)

) 1
4
, α > 0 and

γ(I) = max

{
η(I) ·

√
2

α
· ω
(√

log(n)
)

,

√
2n

λ1(I∨)

}

as long as αq ≥ ω
(√

log(n)
)

.

Therefore, using the “translation” we have stated before, we can say that solving the decisional
R-LWEΨ ξ

q

is as hard as solving K -DGSγ , a lattice based problem which is believed to be hard to solve.

This means, adding the reduction from security of the encryption scheme to R-LWE, that breaking our
cryptosystem is a hard problem to solve.

Remark 4.15. We would also like to note that this reduction would only be directly appliable to the
decryption protocol when we can assure that both s and e follow the distribution Ψ. To be able to apply
it to our case when the keys are generated through Protocol 2.25 we would need to do a deeper level
proof, which we do prioritize for this Master’s Degree Thesis. However, we can say that it is folklore
that all currently known ways to attack R-LWE cannot distinguish the distribution of errors (some current
implementation use the uniform distribution), so we can say that our encryption scheme is secure against
currently known attacks.

4.3 Non-leakage of Information in Threshold Schemes

In the previous subsection we have seen that breaking the security of Encryption Scheme 2.23 is as
hard as solving the hard lattice problem K -DGSγ . However, the attack games considered are always
an adversary against a unique entity known as the challenger. This means that we cannot directly apply
this security result, since both Protocol 2.24 and Protocol 2.25 are distributed, meaning that the actions
usually performed by the unique challenger are performed by several players.
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Therefore, we need to see that the adversary does not gain any extra information by interacting with the
distributed protocol, so the previous security analysis still holds true. We will start first with the Protocol
2.24 (threshold encryption protocol), seeing that an adversary A cannot distinguish between interacting
with the protocol or with random inputs. Furthermore, we will also give the adversary the ability to choose
its shares of the secret key and the PRSS keys, since it makes the game easier and it only serves to see
that the protocol’s security is even stronger than what is usually required. We will give a revamped proof
to a theorem on [AE20].

Theorem 4.16 (Theorem 5.9 [AE20]). Assuming that ΦR
· (·) is a secure pseudo-random function modeled

as a random oracle, that the keys KH have been securely generated and distributed and that the secret key
s has been securely generated and shared, the Decryption Protocol is secure against a passive and static
adversary, corrupting up to t = u − 1 players.

Proof. We want to construct an Attack Game in which the adversary cannot distinguish between the
protocol executed correctly or with random values to show that the distribution does not leak anything
about the secret key nor the error e.

Let B denote the set of corrupted players and C the set of honest players. The Attack Game works as
follows. Assume that the challenger knows the secret key s and the KH such that B ⊇ H (the keys that
the adversary does not know) which have been securely generated. Assume that the challenger sends to
the adversary A the ciphertext (u, v) and then A submits (s ′B , KHB

, d ′B) as the challenge, where s ′B are
the shares on the secret key of the corrupted players, KHB

are the keys KH such that B + H (the keys A
knows) chosen by A, and d ′B are the shares on the decryption of the corrupted players. Then the challenger
generates consistent shares on s for the players not in B.

Once all these preliminaries are done, the challenger chooses b
$←− {0, 1} and proceeds as following:

• If b = 0: The challenger uses the decryption protocol to compute the shares of the decryption d ′C
for the honest players. It computes the decrypted message m and outputs (d ′C , m).

• If b = 1: The challenger computes for every H such that B ⊇ H some element (taking k = cξ)

rH ∈
[
−k2

2
(2n + 1)qd ,

k2

2
(2n + 1)qd

]n
uniformly at random and we denote as y the polynomial in Rq with vector of coefficients

∑
B+H ΦR

KH
(c)+∑

B⊇H rH . Then the challenger generates d ′C consistent shares of y + mbq2c (the challenger knows m
since it can be computed using the protocol, since everything needed is known) and outputs (d ′C , m).

Finally A outputs b̃ ∈ {0, 1}, meaning whether it thinks it has interacted with the protocol or with a
simulation, and the Game concludes.

It is clear that m will be correct in both cases given the proof of correctness of the protocol (Theorem
3.16), and furthermore, y +bq2c ·m will be an effective “decryption” of m in the sense that every coefficient
will be closer to 0 if mi = 0 and closer to bq2c if mi = 1, also by direct consequence of the proof of
correctness (what we are adding to bq2c ·m in the worst case scenario is smaller than q

4 ).

Therefore we only need to see that d ′C are indistinguishable whether they are computed with b = 0 or
with b = 1. Let us see it. First y and x are computationally indistinguishable to the adversary given the
properties of pseudo-randomness of ΦR

· (·). We now want to see that y and y + e · rE + ev − s · eu are
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computationally indistinguishable. It is clear that yi is the sum of at least one element taken uniformly
at random from an interval of size 2(cξ)2(2n + 1)qd and it is known that ei , (rE )i , (ev )i , si and (eu)i
are distributed with overwhelming probability in an interval of size 2(cξ), so (e · rE + ev − s · eu)i is
distributed in an interval smaller than 2(2n + 1)(cξ)2 because of the product of polynomials being done
through the anticyclic matrix (using the same reasoning as in the proof of correctness). We also know
that 2(cξ)2(2n + 1) is exponentially smaller than 2(cξ)2(2n + 1)qd = 2(cξ)2(2n + 1)2dΘ(λ), so the way
y and y + e · rE + ev − s · eu are distributed are statistically indistinguishable. Therefore y + mbq2c and
x + e · rE + ev − s · eu + mbq2c are computationally indistinguishable.

Finally, adding it all together we get that the output (d ′C , m) is computationally indistinguishable
whether it has been computed with b = 0 or with b = 1, so∣∣∣∣Pr

(
b̃ = b

)
− 1

2

∣∣∣∣ = neg(λ)

as we wanted to see.

Now after Theorem 4.16 we have only seen that Protocol 2.24 is secure when the keys are securely
generated and against a passive adversary corrupting t ≤ u − 1 players, but it is standard to see that the
same protocol is secure against a semi-honest adversary corrupting t < u

2 players and against an active
adversary corrupting t < u

3 players if instead of the client choosing t + 1 players he sends the ciphertext to
all players and all combinations of t + 1 decrypt it, giving a majority of correct outputs.

The reason behind this is that we have already seen that no information is leaked, so the only thing
required is to see that the adversary cannot abort the protocol or cause an incorrect output. In case of
a semi-honest adversary (who can only cause players to abort), it is clear to see that if we have more
honest players than corrupt the protocol as a whole will not abort so t < u

2 is enough. In case of an
active adversary (who can cause players to deviate arbitrarily from the protocol), what is needed is that if
all combinations of t + 1 players decrypting the message, there needs to be a majority of combinations of
t + 1 players with no corrupt players. This gives us that t < u

3 is enough.

However, we still need to see that Protocol 2.25 correctly and securely generates the keys used in
Protocol 2.24. We will first discuss the correctness of the key generation, which can be seen with not much
difficulty. For the elements chosen uniformly at random it is obvious that the sum of elements chosen
uniformly at random in Zq generates elements uniformly distributed in Zq. For elements computed as a
sum of rounded discrete Gaussians just a single honest player is needed to be able to rely on the hardness
of R-LWE. As long as sj , ej ∼ Ψ, then

a ·
∑
i

si +
∑
i

ei = a · sj + ej + a
∑
i 6=j

si +
∑
i 6=j

ei

will be indistinguishable from random since a · sj + ej is.

We know that the distribution Ψσ is the distribution in T = R/Z obtained by sampling a Gaussian
random variable X , X ∼ N (0,σ) and then taking mod 1 by only keeping the decimal part, an operation
that behaves well with addition. Therefore,we can assure that

u∑
i=1

Ψ ξ
q
√
u

≤ Ψ ξ
q

+ u.
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using how rounding to the integers works and the fact that the sum of continuous Gaussians is a continuous
Gaussian. However we cannot say that the sum of rounded discrete Gaussians is a rounded discrete Gaussian.

This means that we will need to slightly change the proof of Theorem 3.16 if we want it to hold when
the key generation is done through Protocol 2.25 against an active adversary. However, this can easily
be done by using Lemma 3.13, which will only add a factor u in the proof, which does not influence the
asymptotic analysis.

Now we only need to see that 2.25 is secure. What we will see is that no information about the secret
key, the errors or the keys KH is leaked when distributing, so we need to see that the adversary cannot
distinguish between interacting with the protocol (where nobody sets any value) or a simulation where the
challenger chooses each value generated by the protocol (s, e, aE , KH).

In this case we will prove directly security against an active adversary corrupting up to t < u
3 players

since, unlike with Theorem 4.16, the naive implementation that is secure against a passive adversary could
not be extended to an active adversary. We will once again give a revamped proof to a theorem in [AE20].

Theorem 4.17 (Theorem 5.14 [AE20]). Let c = Ω(
√

n) and 0 < d < 1, we define IKG = [− cξ√
u

qd , cξ√
u

qd ].

Assuming that the image interval of the pseudo-random function ΦKG
· (·) is InKG , then the Key Generation

Protocol is secure against an active and static adversary, corrupting up to t < u
3 of the players.

Proof. We want to construct an Attack Game in which the adversary cannot distinguish between the
protocol executed correctly or someone (the challenger) setting previous values for the parameters.

Let B denote the set of corrupt players and C the set of honest players. The Attack Game works as
follows. Assume the adversary A submits (s ′B , e ′B , K ′HB

, a′EB
) shares of the corrupt players of s, e, KH and

aE respectively as the challenge (assuming s ′B and e ′B have gone through NIVSS and are therefore of the

correct size). Then the challenger chooses b
$←− {0, 1} uniformly at random and proceeds as follows:

• If b = 0: The challenger uses the key generation protocol to generate aE , bE and the shares
s ′C , e ′C , K ′HC

and a′EC
and outputs (aE , bE , s ′C , e ′C , K ′HC

, a′EC
).

• If b = 1: The challenger chooses s, e ∼ Ψ ξ
q

, aE ∈ Rq uniformly at random and every KH ∈ Zq

uniformly at random. Then for s and e it computes consistent Shamir shares s ′C , e ′C and simulates
running the NIVSS and the conversion from additive shares to Shamir shares for every coefficient. For
KH and aE it computes consistent Shamir shares K ′HC

, a′EC
. Then using all the shares the challenger

computes aE and bE and outputs (aE , bE , s ′C , e ′C , K ′HC
, a′EC

).

Finally A outputs b̃ ∈ {0, 1}, meaning whether it thinks it has interacted with the protocol or with a
simulation, and the Game concludes.

Since every step is done exactly in the same order and are from indistinguishable distributions, it is
easy to see that (aE , bE , s ′C , e ′C , K ′HC

, a′EC
) are indistinguishable to the adversary whether they have been

computed with b = 0 or b = 1, and since the noise in the NIVSS is exponentially larger that what we want
to cover (as we have seen in the proof of Theorem 4.16) no information is leaked so∣∣∣∣Pr

(
b̃ = b

)
− 1

2

∣∣∣∣ = neg(λ)

as we wanted to see.
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Remark 4.18. Due to how we have implemented the PRSS share (explanation more in detail in section
5.2.2) mixing additive and Shamir secret sharing, the proof of Theorem 4.17 is a little sloppy in the exact
ways to simulate the change from additive to Shamir shares. However, as we will also comment in section
5.2.2, we are planning as future work to change this implementation to one that deals purely with Shamir
shares, causing this last proof to clean up considerably.

Finally, combining all the security theorems and reductions in this chapter we can give the Main Theorem
of our encryption scheme.

Theorem 4.19 (Theorem 5.16 [AE20]). Let c = Ω(
√
λ), 0 < d < 1, 1 < ξ < 1

c

√
q

4(
√
unqd+1)((ut)+1)

,

InKG defined as in Theorem 4.17 be the interval image of the pseudo-random function ΦKG
· (·) and In =

[−(cξ)2(n
√

uqd + 1), (cξ)2(n
√

uqd + 1)]n be the interval image of the pseudo-random function Φ·(·). If
K -DGSγ is hard, then encryption under s generated by the Key Generation Protocol is CPA secure against
any active and static polynomial time adversary corrupting t < u

3 players acting through both protocols
and decryption under s is correct except with negligible probability.

Proof. Security is direct from all the security results and observations in this chapter. We only need to
prove correctness against an active adversary.

We remember from the proof of Theorem 3.16 that what we want to see is that the Pr((|x + ê|)i > q
4 )

is negligible for all i . We also remember from that proof that

(|ê|)i ≤ |ei · rE1 |+ |ei−1 · rE2 |+ ... + |ei+2 · rEn−1 |+ |ei+1 · rEn |+ |evi |+ |si · eu1 |+ ... + |si+1 · eun |.

Here is where the differences start. On Theorem 3.16 we could assure that s, e ∼ Ψ
n
ξ
q

. Now, given

that the keys have been generated through Protocol 2.25, we can only say that s = sh + sc where the
contributions of the honest players follow a the distribution Ψ ξ

q
√
u

, and for the contributions of the corrupt

players we can only assure that ‖sjc‖∞ ≤ |IKG |2 = cξ√
u

qd . The analysis for e is the same as for s.

To ease the proof we will take a very rough upper bound and assume all contributions to both s and
e are made by corrupt players, so we have noting k := cξ, ‖si‖∞ = ‖ei‖∞ ≤

√
ukqd . Then by applying

both Lemma 3.14 and Lemma 3.11 we get that:

Pr(|ei · rEj
| >
√

uk2qd) = Pr(|si · euj | >
√

uk2qd) < 2

√
2

π
e
−
(
dcξe− 1

2√
2ξ

)2

which in turn gives us

Pr((|ê|)i > k(2n
√

ukqd + 1)) < (2n + 1)2

√
2

π
e
−
(
dcξe− 1

2√
2ξ

)2

.

We also know that by construction

(|x|)i ≤
(

u

t

)
k2(n
√

uqd + 1). (5)

And by hypothesis:

ξ <
1

c

√
q

4(
√

unqd + 1)
((u

t

)
+ 1
) ⇒ k2 <

q

4(
√

unqd + 1)(
(u
t

)
+ 1)

⇒ k2(
√

unqd + 1)

((
u

t

)
+ 1

)
<

q

4
.

(6)
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Therefore giving us:

Pr
(

(|x + ê|)i >
q

4

)
≤ Pr

(
(|x|)i + (|ê|)i >

q

4

)
<

< Pr

(
(|x|)i + (|ê|)i > k2(

√
unqd + 1)

((
u

t

)
+ 1

))
=

= Pr

(
(|ê|)i > k2(

√
unqd + 1)

((
u

t

)
+ 1

)
− (|x|)i

)
≤

≤ Pr

(
(|ê|)i > k2(

√
unqd + 1)

((
u

t

)
+ 1

)
−
(

u

t

)
k2(n
√

uqd + 1)

)
=

= Pr
(

(|ê|)i > k2(
√

unqd + 1)
)
< Pr((|ê|)i > k(2n

√
ukqd + 1)) <

< (2n + 1)2

√
2

π
e
−
(
dcξe− 1

2√
2ξ

)2

in a very similar fashion as in Theorem 3.16.

And finally, using that c = Ω(
√
λ) and ξ > 1 we get that

Pr
(

(|x + ê|)i >
q

4

)
= neg(λ).
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5. Implementation

Once we have some new protocols described and proved correct and secure, the next logical step is to give
a try to their implementation. This is due to several reasons. Firstly, if the protocols are to be used in
any real life application, an implementation will be needed. Secondly, an implementation will be used to
fine-tune the parameters used in the protocols to get more efficient yet secure performances. Finally the
implementation will be used to analyze the computational and storage cost of the protocols.

This chapter will be divided in three parts: the first will cover how an implementation should deal with
an active adversary sending non-matching values to honest players, an occurrence we call disputes, in a
theoretical level; the second part will explain how we have implemented the simulation of the protocols,
detailing what libraries, functions and ideas have been used; and the third part will deal with the analysis
of the prototype implementation we have made.

5.1 Solving Disputes

The first important appreciation to be done while managing the implementation of especially the key
generation, is that the protocol, as it is stated in Protocol 2.25, needs all the players submissions to
properly generate a secure set of keys. Then if at any point a commitment check or an interval check
in NIVSS fails because the active adversary has arbitrarily deviated from the protocol, the computations
must halt and cannot come to an end without the contribution of every player. Therefore, Protocol 2.25
could be stuck in loop without being able to finish, thus making this particular key generation protocol not
desirable. This occurrence of two players disagreeing on a privately sent value is called a dispute.

There are several ways one may think to try solving disputes. The first naive idea one may come to,
is if we are using a secure (i.e. impregnable) communication medium that stores the encrypted messages
and commitments, the affected player may publish its secret key and the messages involved. Then the rest
of the players decide by majority which of the two players is corrupt and kick him out to start the protocol
again with less players. This dispute resolution method has some glaring issues, mainly that a new set of
public and secret keys have to be setup per player every time a dispute occurs, and since usually these kinds
of keys are generated and distributed by an outside authority it would be desirable not to burn through
them quickly.

Another more elaborate way to go to solve disputes would be to use a zero knowledge proof of knowledge
of the matching of the commitment with the message. Let us define this concept.

Definition 5.1 (Definition 3.1, informal [BFM88]). A Zero Knowledge Proof of Knowledge is an interactive
protocol in which a party named the Prover proves that he knows a value x satisfying some property to
another party named the Verifier with the following properties:

1. Completeness: The probability of proving the knowledge of x given that the Prover knows x is
overwhelming.

2. Soundness: The probability of proving the knowledge of x given that the Prover does not know x
is negligible.

3. Zero Knowledge: The proof gives no other information that the Prover knows x . This is formalized
by proving that there exists a simulator without access to x or the Prover such that for every statement
to be proved it can simulate a transcript that looks like a correct interaction between the Prover and
the Verifier.
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Given this concept one could think that if we could give a zero knowledge proof of knowledge where
we show that the value received and the commitment received do not match, then if the rest of the players
decide by majority that the proof of knowledge is valid, we can kick the corrupt player out and start again
with less players. However, this method still has issues, since it requires quite a lot of interaction, which is
generally not advisable given that it is very costly.

What we will end up using will be going more in the line of the concept of dispute control introduced by
Beerliová-Trub́ıniová and Hirt in [BTH06]. The basic idea behind dispute control is to divide the different
phases of the protocol into different parts, then if a dispute between two players is detected (where at least
one of them is corrupted), the execution of the part is slightly tweaked so that those two players do not
need to interact again, thus giving a finite amount of possible disputes to t(t − 1), thus having a finite
amount of part “resets” needed. However, this is a very general concept designed to be applicable to many
different multi-party protocols. Using the specific properties of our key generation protocol and the idea of
localizing pairs of disputing players at least one of them corrupt, we can give a dispute solving criteria that
ensures Protocol 2.25 ends with only one iteration of the protocol and gives a correct output, compatible
with Protocol 2.24 and not compromising its security.

The idea is that every time an honest player finds an inconsistency (usually in the commitments) he
generates a dispute against whoever has fed him the inconsistent value. Then both players, the accuser
and the accused, are removed from that section of the protocol and their contributions are discarded in
that part. What we need to see is that this yields a correct output that does not compromise the security
of the decryption phase. What we need to see is that the values output by a subset of players such that
the proportion of corrupted players is still less than a third, are either indistinguishable from a correctly
generated output or still follow the properties needed to be secure, i.e. reducible to an R-LWE distribution
that is secure.

In case of the values that are uniformly distributed over an interval, it is obvious that the sum of fewer
values uniformly distributed over that same interval (modulo the interval) still gives a uniformly distributed
value over the interval.

Note that given the way we generate the secret key, we can see s as s = s′ + se , where s′ is the
contribution of the honest players and se is the contribution of the corrupt players. We know that s′ is
the sum of several samples of a rounded discrete Gaussian; however, we cannot say the same about se , we
only know that each contribution of the adversary is bounded.

Furthermore, the way we will handle the disputes we will have that

#{Contributions following the distribution} ≥ τ := #{Honest players} −#{Disputes}.

We also know that every correct contribution follows a Ψ ξ
q
√
u

. Using that for an active adversary we

will have a maximum of t < u
3 corrupt players and t disputes, we get the following bounds

1 ≥ τ

u
≥ u − 2t

u
>

u − 2u
3

u
=

3u − 2u

3u
=

1

3

This means that we only need to see if the scheme is secure for the parameter ξ√
uq

, which we have

done using the LWE estimator by Albrecht et al. given in [APS15].

If we add the condition that any player can only be in one dispute (any dispute involving a player that
has already accused or been accused after the first is made is ignored) and we make sure that no honest
player can accuse any other honest player (this can be achieved through an impregnable communication
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channel), then the key generation protocol will finish the first time it is attempted, and the u players that
remain will satisfy, if t is the number of corrupt players that are left and 0 ≤ x ≤ t is the number of
disputes

t ≤ t − x <
u

3
− x ≤ u

3
− 2x

3
=

u − 2x

3
=

u

3

since we know that no dispute will involve two honest players. Therefore we can say that the decryption
protocol is still secure.

Finally for this section we would like to remark that we have only discussed disputes in Protocol 2.25
even though there is also interaction in Protocol 2.24, namely when changing the shares from additive to
Shamir. The reason why no dispute resolution is needed in Protocol 2.24 is because the adversary only
has access to (and therefore ability to compromise) the decryptions of those subsets of t + 1 players where
there is a corrupted player. However, these subsets are the minority by construction (since t < u

3 ), so we
do not really mind if the decryption of these subsets is compromised. This means that not only dispute
resolution is not needed in the decryption phase, we can even drop the commitment scheme too if it is so
needed for performance issues.

5.2 Implementation Techniques

The final step before being able to properly analyze the behaviour of our simulation is to actually outline
how the main components were programmed and which tools we used to do so. Before anything, however,
we would like to remark that the implementation was not created as a completed version which can be
used directly from code for any use due to time constraints among other reasons. Therefore, the intent
of this implementation is to gauge how feasible our proposed protocols are in a real life implementation,
given that as far as we know this is the first implementation of a threshold protocol based on the R-LWE
problem. An example of this can be find in the way we simulate the protocol. Instead of doing multiple
simultaneous processes we execute every step of the protocols for every player and then take the maximum
time for every step as an estimate of the time spent by the multi-processed protocol in that step.

To do this implementation we have coded in C language, since the protocols are costly both in processing
time and storage, and with using a very low-level language we gain time. We have also used several libraries,
most importantly OpenSSL for cryptographic primitives such as secure Pseudo-Random Generators and the
Secure Hash Algorithms; and FLINT (Fast Library for Number Theory), a very vast library from which we
have used its capabilities to deal with multiple precision integers and polynomials with multiple precision
integers as coefficients. Furthermore FLINT requires both the GMP and the MPFR libraries to be installed;
for more details refer to the GitHub repository in Appendix A where the relevant programs are stored and
these technicalities are better explained.

Without further ado now we can explain which techniques we used to implement the cryptographic
primitives; which decisions we have taken towards using them and why; and if there is any other alternative
of note.

5.2.1 Shamir Secret Sharing

The first inconvenient we faced was with Shamir Secret Sharing. Given that in essence what we share is
every one of the coefficients (since we only perform linear operations onto the shares as elements in Rq),
we can assume that we are sharing elements in Zq. However, given how Lagrange interpolation works for
the reconstruction to work it is usually required that the sharing is done in a field.
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Now we had to options: either view Zq as a field (or nearly), or make all operations in Q. For the
sake of generality and to be truly able to use any q, we opted to go with the second option. However this
has a downside, because we are using more memory than would otherwise be required. This is due to the
fact that seeing the whole Shamir “process” as taking part in Q, we cannot reduce modulo q any of the
operations we do with shares, therefore instead of polynomials with coefficients in Zq we have polynomials
with coefficients far bigger than what is required.

Furthermore, the other route may be also a plausible solution if you do not need any q ∈ Z to be
eligible as a modulo. This is because even if it is usually stated that a field is required to use Lagrange
interpolation, as we can see in Technique 2.5 it is only required that the substraction of evaluation points
has an inverse. Therefore, given that our evaluation points are the cardinals of the players, we would only
need all prime factors of q to be bigger than u, which given that in real life applications the number of
players tend to be small, it is not a big concession to make. That would allow us to do all operations
modulo q, and maybe slightly improve the performance of the implementation, with the drawback of not
being able to use any q.

5.2.2 PRF, PRSS and NIVSS

Next we needed a way to securely implement a PRF to be able to perform both the PRSS and NIVSS
techniques (Tecniques 2.9 and 2.10). It is clear that simply using a Pseudo-Random Generator would not be
useful to us, since we would need to have the same output given the same parameters, thus compromising
the PRG. Therefore we used an HMAC which is a message authentication code based on hashes. It was
proven in [Bel06] that an HMAC is a PRF under the condition that the underlying compression function is
a PRF. To ensure this property is satisfied we use the HMAC based around SHA-3.

In regards to the PRSS (and NIVSS) implementation, we approached the matter trying to minimize
the number of operations made with elements in Rq since, being polynomials with really big coefficients,
they are probably the most time and memory consuming. To achieve the minimum number of operations,
for every allowed subset of t+1 each player adds to its contribution in the PRSS all the contributions that
have not been used by a player prior to him. The way we compute this is through the recursion seen in
Algorithm 1, where we look for every H “forbidden subset” from which a player has the key. State stands
for the players already picked for H, Indexes stands for the players still eligible and Size for how many
players left to pick until we get t, so it is t − length(State).

Algorithm 1: PRSS share

Input: State, Indexes, Size, Share, KH , µ
if Size == 0 then

Share+=ΦKState
(µ);

else
if length(Indexes) > Size then

PRSS share(State, Indexes[2:], Size, Share, KH , µ)
end
PRSS share(State+Indexes[1], Indexes[2:], Size-1, Share, KH , µ)

end

The idea then is that for each allowed subset of t + 1 players B = (Pi1 , ... , Pit+1) with ij < ij+1, the
initial State we send to player Pij are all ik such that ik < ij , the initial Indexes will be all indexes not in
State except ij and Size will be t − length(State). Then the first player will add the contributions of all
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subsets he does not belong, the second player all the ones where neither him nor the first player do not
belong (since any subset where the first player belongs will already have been counted), and so on, thus
minimizing the number of operations needed to achieve the PRSS share.

However, there is another way of doing the PRSS share which even if it makes far more operations, we
have recently found it may be beneficial. The method, which is described in [CDI05], makes use of some
cleverly defined polynomials to be able to uninteractively compute a valid Shamir share of the PRSS. This
has two benefits. The first one is the obvious one of being able to skip the interaction round needed for
the usual change from additive sharing to Shamir sharing. The other one, which will probably save a lot
of time, is that the share does not depend on the subset of players. This coupled with the properties of
the PRF leads us to conjecture that instead of needing u ≥ 3t + 1 for an active adversary, we only require
u ≥ 2t + 2, which is only one more than the absolute minimum required against active adversaries. This
conjecture stems from the fact that due to the properties of the PRF, the probability of outputting two
incorrect values that are equal in any subset with corrupted players is negligible. Therefore, if we have
2t + 2 players, we have at least two subsets of t + 1 honest players which will output the same correct
value. And given that the probability of outputting two equal incorrect values is negligible, we would not
need anything else. Why reducing the number of needed players will allow to save a lot of time will be
better seen in section 5.3.2.

5.2.3 Commitment Scheme

Finally in this subsection we only need to comment on how and where we have implemented the commitment
scheme. In regards to how we have used hashes, the commitment of any element is its hash concatenated
with a random string (its opening), in this case SHA-2 since as far as we know it is still secure enough.
However, should the need arise it can be easily swapped for any other secure hash.

In regards to where, we have only needed to implement one round of commitments, since we only care
about it on the step where all contributions are created. Once all the contributions have been properly
created and sent we do not care about any malicious activities the adversary may do, since all the rest
of steps are done localized for every allowed subset of t + 1 players without any exterior interference.
Therefore, since in the end a majority of the subsets will recover everything correctly we do not need any
further commitment rounds. This commitment scheme serves the purpose of disabling the ability of the
adversary to decide their contribution to the keys depending on the contributions of the honest players.

5.3 Analysis of the Simulation

In this final subsection we will discuss the results we have obtained from the simulation. First we will
discuss what exact parameters we have chosen and why, and then we will discuss the proper results. The
specifications of the system where we have executed the programs are found in Table 1, and once again
remind that all relevant programs can be found in the GitHub repository through the link in Appendix A.

5.3.1 Choice of Parameters

We have two main constraints while choosing parameters: that the conditions for the correctness theorem
are satisfied (Theorem 3.16), and that the instance of the R-LWE problems onto which we reduce our
security is not easy to solve. To be able to verify this last fact we will use the LWE hardness estimator
developed by Albrecht et al. in [APS15]. This is a sage module that provides functions for estimating the
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Equipment Version

Operating System Ubuntu 18.04.5 LTS

CPU Intel® Core™ i5-8500
Memory 15,4 GiB

Word Size 64 bits
CPU Clock Speed 3.00GHz x 6

Table 1: Specifications of the computer

concrete security of certain LWE instances by facing them against most well-known attacks. Note that it
is a LWE and not a R-LWE estimator, however, given that there is no known way to distinguish the ideal
case from the regular case in the lattice problem we can use the LWE estimator.

First we will want to reduce all the parameters we have to just n, q and α := ξ
q , the parameters the

estimator uses. We take c =
√
λ, which obviously satisfies c = Ω(

√
λ), and d such that

(u
t

)
qd + 1 = q

1
4 .

We can see that the following parameters satisfy the requisites of Theorem 3.16:

ξ =

√
q

4λ(2n + 1)q
1
2

=⇒ SigmaEnc :=
ξ

q
=

√
1

4λ(2n + 1)q
√

q

InterDec := (cξ)2(2n + 1)qd =
q

4
√

q
qd =

q
(

q
1
4 − 1

)
4
√

q
(u
t

)
where we will have IDec =[-InterDec,InterDec]. We have made these arbitrary decisions due to the fact
that taking any decimal power of a multiple precision integer is not easy, whilst taking the squared root is
well implemented. Therefore we will choose powers of 1

2 whenever we can get away with it. We will also
note that given that the bounds for Theorem 4.19 are essentially very similar, these parameters are still
valid for an active adversary (although the choice of d would be different).

Furthermore, we will take q ≈ 2100, in this case the next prime next to 2100 to be able to compare with
doing Shamir share in Zq as a field if we implement it further down the line. We have previously mentioned
that we take qΘ(λ), though we could take q = 2Θ(n) following the line of [BD10], the LWE protocol in
which this proposal is based. However, Bendlin and Damg̊ard mention in this article that due to Hermite’s
constant in the LLL algorithm to solve the SVP problem (which is hypothesized to be 1.02) the constant
before n in q = 2cn tends to be very small. Therefore, since we need q ≈ 2100 to be able to securely drown
the contributions in the Shamir share (we need q exponential over the security parameter), we need to take
a rather large n. This is supported by the results found through the LWE estimator, which when taking
q the next prime after 2100 and α = SigmaEnc we get that we need at least n = 211 to get 100 bits of
security (and the previous powers of two from 28 had between 30 and 40 bits of security). It is also worthy
of note that we use n a power of two since we know that these polynomials are cyclotomic and generate
an Rq which is well behaved, however, other choices of n may still verify the security properties. Another
favourable point towards using powers of 2 is that even if the current implementation uses Karatsuba to
multiply polynomials, we are working on a variant of the Partial Fast Fourier Transform also called Number
Theoretic Transform to multiply polynomials faster, which requires n to be a power of 2.

For the Key Generation protocol to have the following sigma and interval to satisfy the requisites of
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Theorem 4.17.

SigmaKG :=
ξ

q
√

u
=

SigmaEnc√
u

InterKG := InterDec

where we will have IKG =[-InterKG,InterKG].

5.3.2 Results of the Simulation

Active adversary t = 2, u = 7
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Passive adversary t = 2, u = 3
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Figure 1: Times of the simulation for n = 128, 256, 512, 1024, 2048

We have done four extensive analysis: with respect to n in an active adversary setting and in a passive
adversary setting and with respect to t in an active adversary setting and in a passive adversary setting. We
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have not analysed extensively the dependence over q or ξ for two main reasons. Firstly, both q and ξ come
virtually set by the need of q being exponentially large in its case and by the need to satisfy the conditions
on Theorem 3.16 in case of ξ. Secondly, after some preliminary analysis doing some single executions, we
found that greatly changing the values of q and ξ (from 17 to 2256 in case of q and from 10−30 to 0.1 in
case of ξ) had little repercussions on execution times.

Active adversary u = 3t + 1
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Figure 2: Times of the simulation for t = 0, 1, 2, 3

In the case of the analysis with respect to n in the active adversary case, we wanted to see how the
times scaled as a function of n leaving q fixed at the next prime after 2100, ξ computed accordingly from
q and n, t = 2 and u = 3t + 1 = 7. We used t = 2 since this value or similar ones are one of the most
frequently used values of t. Since what we wanted to see was how times scaled we have executed from
n = 27 to n = 211, even if the first four values of n are not secure, so we could see the progression. For
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every value of n we have performed 1000 iterations of the protocol and have averaged the times (that
always coincided in the first significant digit, so there was not much standard deviation). In the first half of
Figure 1 we can see the results for this case and it is clear that we have that the time scales linearly with n
for both protocols in the range of n relevant to our study, which is a little better than we expected, given
that we are performing several products of polynomials through the Karatsuba algorithm which scales with
nlog2(3) > n1.5, so the product must be dominated by some linear operation like the addition of polynomials
or the initialization of these polynomials. Also of note is the fact that the time spent on the Key Generation
simulation is consistently an order of magnitude higher than the Decryption simulation, however this is not
too much of a problem since the Key Generation protocol should only be performed once for a number of
decryptions, so it being more time expensive is not too much of a bother.

For the execution with n = 2048, which is the one that matters to us since it is the one that is secure,
we get that the execution of the Key Generation simulation uses 2 GB of RAM, while the Decryption
simulation uses less than 200 MB of RAM. This is a reasonable amount of storage, however we would like
to note that there is a small issue with storage in the FLINT library we have not been able to completely
solve yet, so if you execute too many iterations inside the program it will probably make your computer
suffer, that is the reason why in our executions we have used the aid of a python script to overcome this
problem.

In relation to the difference between the active adversary case and the passive adversary case, we fix
the number of corrupt players and we compute u = 3t + 1 = 7 or u = t + 1 = 3. We care for this
analysis because even if the most secure implementation is where we consider the active adversary, in
some applications like some current electronic voting schemes they only require security against a passive
adversary. As we can see in the second half of Figure 1, the Key Generation simulation for a passive
adversary behaves linearly as well, however, in the Decryption simulation we can see the behaviour of n1.5.
This is due to the fact that there will be a much smaller proportion of additions in front of products, and
therefore the product dominates over the addition in this case. This gives us the idea that for very few
operations (which translates directly onto very few subgroups) the dominant behaviour is n1.5 instead of
n, but given that the number of operations will be small this does not give problems. The other results of
importance can be found in Table 2, where we can see that the passive adversary setting needs times that
are consistently two orders of magnitude smaller than in the active adversary setting, and gives us very
promising execution times.

Key Generation
n Active Passive

128 1851.72 ms 14.26 ms
256 3709.40 ms 29.26 ms
512 7033.16 ms 59.89 ms

1024 14664.54 ms 122.21 ms
2048 27872.93 ms 254.56 ms

Decryption
n Active Passive

128 140.98 ms 1.70 ms
256 286.95 ms 3.70 ms
512 543.04 ms 8.50 ms

1024 1229.64 ms 20.33 ms
2048 2473.32 ms 51.32 ms

Table 2: Time comparison between an active and passive adversary

Once again, for the execution with n = 2048, the one that is secure, we get that the execution of
the Key Generation simulation against a passive adversary uses approximately 20 MB of RAM while the
Decryption simulation uses less than 10 MB of RAM. We would like to note that given how we have
implemented this simulation, the values of storage needed are a very rough upper bound of the storage
needed in a real life implementation. For starters, spreading this to u servers would mean that we need to
at least divide the storage by u. Furthermore, due to several quirks of our implementation we believe that
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even this is a rough upper bound of the storage needed.

In the case of the analysis with respect to t in the active adversary case, we wanted to see how the time
scaled as a function of t having fixed n = 128, q as the next prime after 2100 and ξ computed accordingly.
We decided to use n = 128 instead of n = 2048 due to time constraints. For every value of t from 0 to 3
(the case t=0 is analogous to not distributing the protocols and we stay at t=3 because the times grow
very fast) we have performed 100 iterations of the protocol (once again due to time constraints) and have
averaged the times (once again the standard deviation was small). In Figure 2 we can see the results which
informs us that the time grows at least exponentially with t (it can potentially grow in a factorial way),
which we already anticipated, given that the number of subsets grows through a binomial. This is the
reason why being potentially able to reduce the amount of players required through the conjecture we have
mentioned in Section 5.2.2 would be such a big deal. For example, in a preliminary analysis, using t = 2
and u = 2t + 2 = 6 already gives us better results, we get from around 28 seconds in the key generation
phase with t = 2 and u = 7 to around 14 seconds, while the decryption phase comes down from around
2.5 seconds to around 1.5 seconds.

Regarding the difference between the active adversary case and the passive adversary case, we fix
u = t + 1 and we iterate over t = 0, 1, 2, 3. We care for this analysis since we want to know if it still scales
as badly with the number of corrupt players. It is clear from Figure 2 that this is obviously not the case,
as it was expected. This difference is mainly due to the fact that the number of operations scales roughly
with

(u
t

)
, and therefore we get the following two very distinct ratios when going from t to t + 1. Then

we get that in case of the active case the time scales roughly as an exponential function (if you put the
graphic in logarithmic scale you get a line, we have left the linear scale to better compare cases), while the
passive adversary case scales linearly or better with t. Once again we see that more than the amount of
players, what this proposals struggles more is the growth of

(u
t

)
.
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6. Conclusions

In this thesis we have elevated the protocols proposed in [AE20] to another level of comprehension and
applicability through four main ways: by improving and in some cases completely revamping the proofs
given in [AE20]; by producing an original dispute resolution protocol for the Key Generation phase (since
the Decryption phase did not need one); by doing a detailed analysis of which conditions are needed for
the underlying R-LWE problem to be hard to solve; and by giving an implementation of a simulation of
both protocols and analyzing the processing time and storage needed for them. Let us go through the
conclusions we have been able to get from each one of them.

For the new proofs of both the correctness and security in [AE20], a couple of improvements stem
from them. On the one hand, by improving the accuracy and legibility of all proofs we have made it easier
to communicate the knowledge and, in case it was necessary, make any improvements or corrections to
them. On the other hand, by completely revamping the security proofs from functionality-based to attack
game-based we have for one part conformed to a more standard cryptographic proof style, and for the
other we have improved composability, since attack games can be nested which can be of use in future
applications or proofs.

In regards to the dispute resolution, it is a necessary protocol for any real life application of a protocol
that regards functioning against an active adversary and requires input of all players, even if we were not
aware of so when writing the future works for [AE20]. By giving our original dispute resolution protocol,
we check that box and, even better, since our dispute resolution does not require any resets of the Key
Generation protocol without compromising either correctness nor security, we give a solution to our problem
in particular that is better than the general solution in [BTH06].

For the detailed analysis of the security, we have given a much more detailed and rigorous study of the
security reductions than in [AE20]. This coupled with the analysis done with the LWE estimator developed
in [APS15], we have been able to verify that indeed the conditions necessary for the protocol to be correct
and the conditions necessary for the protocol to be secure are not mutually exclusive and that by combining
them both we still get a R-LWE instance that is secure for reasonable parameters.

Finally in relation to the implementation of the simulation the main result we were going after was to
see whether our proposal, already proven correct and secure, was in any way viable for a real life application.
When answering this question we will be focusing mainly on the realm of electronic voting, since it is the
main focus of the research group and where we were expecting of maybe applying our results. When
seen through those eyes, then our protocols are totally viable against a passive adversary for any type of
election, 51 ms for decrypting is a reasonable time per vote. While going up against an active adversary
our protocols are viable for small elections, up to the order of 10000 votes.

Even with all the objectives we have achieved, this thesis still spawns future works we will tackle as
soon as possible. On the side of the theorems and bounds, they can be optimized, especially the ones for
ξ and I. This would allow us to increase the bits of security to give us a little more wiggle room. Also the
conjecture in Section 5.2.2 should be proven true (or not), to be able to improve the bound for corrupt
players in an active setting, thus improving execution times. On the side of the implementation we have
several upgrades in mind. Firstly, by modifying the PRSS share implementation to the one alluded in 5.2.2
we would be able to skip completely the interaction in the Decryption phase, which would be beneficial for
a future implementation. Secondly, by implementing Shamir share modulo q as stated in Section 5.2.1,
we could compare it with the current implementation to see if either computation time or storage is saved
doing so. Thirdly, by implementing the fast product based on a variation of the Fast Fourier Transform we
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could also compare with the current product and see if there is any improvement in computation times.
Finally, for the codes in the GitHub repository in Appendix A to be able to blossom into a completely secure
implementation of the protocol the codes should be analyzed carefully through the eyes of someone having
secure programming in mind. The current codes where not made with that in mind for the sake of being
able to see whether the implementation was viable or not, therefore attacks like Side Channel Attacks or
similar will likely be able to disrupt the security of our implementation.
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RLWE-based threshold cryptography

A. Link to Repository

All relevant codes for the implementation can be found in the following GitHub repository, last commit
made on June 18 2021:

https://github.com/FerranAlborch/RLWE-based-distributed-key-generation-and-threshold-decryption
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