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Abstract

We investigate the onset of temporal dynamics of a fluidic oscillator (FO) in the laminar regime at very
low Reynolds number (Re = Uhi/ν, where U and hi are the velocity and channel height at inlet, and ν
is the kinematic viscosity of the fluid). Both two- and spanwise-periodic-three-dimensional simulations are
performed using high-order spectral element methods to characterise the flow inside the FO cavity and the
outcoming jet. While the flow remains steady and symmetric for sufficiently low Re, the two-dimensional
FO undergoes a symmetry-breaking Hopf bifurcation at ReH2

= 75.7 that results in a space-time symmetric
periodic solution. The remnant space-time symmetry is later broken in a pitchfork bifurcation of limit cycles
at ReP2

= 294.2. Taking three-dimensionality into consideration results in an early spanwise-invariance
disruption at about Re3 ' 68 of wavelength 13hi that retards the onset of the oscillation to ReH3 = 82.1.
This effect is little representative of actual FO implementations, which are typically much narrower than
the wavelength of the spanwise instability observed at these low Re. Contrary to what happens with FOs in
the turbulent oscillatory regime, the oscillation frequency of the output jet in the laminar regime is found to
decrease with Re. The mechanism that drives the oscillation, however, remains the same: as the high speed
flow inside the cavity attaches to one of the internal walls through the Coandă effect, the feedback channels
divert part of the momentum back, which pushes the incoming flow against the opposite wall. The alternate
deviation of the flow inside the cavity to one or the other side results in the periodic flipping of the output
jet. The pressure contribution to net momentum at the end of the feedback channels is found to be double
that of the advective momentum flux at the early time-periodic regime but both become comparable as Re
is increased. The jet sweeping angle amplitude is more pronounced for the two-dimensional FO as compared
to three-dimensional at a fixed given Re, the Coandă effect being only partially fulfilled in the latter case. In
both cases the sweep amplitude increases with Re. The instability of the output jet, which becomes slightly
chaotic already at very low Re, is responsible for triggering the cavity instability that drives the oscillation
slightly earlier than it would, should outside noise be suppressed altogether.

Keywords: Fluidic oscillator; transitional flow; oscillating jet;

1. Introduction

Fluidic oscillators (FO) are devices that produce a periodically-oscillating jet at output provided a steady
supply of pressurised fluid is available on input [1, 2]. The characteristic sweeping motion of the emanating jet
is self-induced and self-sustained due to inherent flow instabilities. Fluidic oscillators might be feedback-free
and thus rely on a Kelvin-Helmholtz-type instability, or employ feedback channels to alternatively exploit
and suppress the Coandă effect [3, 4, 5]. Both types may exhibit a wide range of oscillation frequencies and
sweeping angle amplitudes depending on geometrical parameters, and are commonly used in engineering
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applications such as flow separation control [6, 7], drag reduction [8], combustion control [9], mixing and
heat transfer enhancement [10, 11, 12, 13, 14], jet thrust vectoring [15], etc.

Sweeping-jet oscillators are often classified into two groups, i.e. jet-interaction and wall-attachment fluidic
oscillators, based on the mechanisms that drive the oscillation. The standard design of jet-interaction-type
fluidic oscillators involves two separate and constant input flow streams that enter the plenum chamber,
typically in a symmetric fashion. The chamber is designed such that the mixing of the two streams trig-
gers a shear instability which generates a self-induced and self-sustained time-periodic jet on output. In
an experimental investigation using pressure sensitive paint (PSP), Gregory et al. [16] observed that the
interaction of the incoming power streams within the mixing/interaction chamber results in the formation of
a Kelvin-Helmholtz-unstable shear layer. The ensuing complex interaction of counter-rotating vortices that
form at either side of the shear layer is then exploited to generate a sweeping jet at the exit of the device.
Gregory et al. [17] studied a jet-interaction micro fluidic oscillator in order to characterise the relation be-
tween power supply rate and output oscillation frequency from the standpoint of potential applications. The
irregular trends they observed, including a change of slope, seemed to indicate that distinct driving mech-
anisms might be at play depending on the flow regime considered. As a matter of fact, three different jet
oscillation types were later revealed using particle image velocimetry (PIV) with a refractive-index-matched
sodium-iodide solution [18]. The corresponding flow regimes were named weak (or low), transitional and
high flow-rate regimes. A detailed analysis in the weak regime showed that the transfer of kinetic energy
between the interacting streams is regulated by the redirection of part of the outcoming jet towards either
side of the cavity dome [see Table 1 in 19]. Phase averaging unveiled the presence of four vortices, two dome
and two side vortices. The former, which appear and disappear alternatively along a full cycle, were shown
responsible for the splitting of the jet, while the latter, present all along, alternatively grew and shrank thus
regulating the exit jet oscillatory properties [19].

Wall-attachment-type fluidic oscillators base their operation instead on the alternate attachment of a
single input flow stream, fed through the so-called power nozzle, unto one or the other of the internal walls of
the mixing/plenum chamber through the Coandă effect. The underlying mechanism relies on the bi-stability
of two mutually-symmetric wall-attached (to either one of the two walls) flow configurations (or states) that
are alternatively destabilised by the timely diversion of momentum through purposely-designed feedback
channels that push the flow stream towards the opposite wall. The alternate bending of the stream as it
wanders from one wall to the other results in the sweeping motion of the outcoming jet beyond the exit
nozzle. Before the introduction of feedback channels, the switching mechanism of the power stream between
the adjacent walls was driven by the application of a transverse disturbance in the form of a pressure pulse
[20] or a fluid injection [21], such that the oscillation would not qualify as self-sustained. Nowadays, a
typical curved-sweeping-jet oscillator replaces the external momentum source as switching mechanism by
an adequate diversion of ouput momentum through purposefully designed feedback channels. The power
stream, attached to either one of the side walls by the action of the Coandă effect, is made to impinge
quasi-orthogonally on the wall that leads to the exit nozzle throat. As a result, part of the momentum
is directed towards the feedback channel on the side to which the stream is bent. This momentum is
reintroduced back transversally at the exit of the power nozzle, which pushes the power stream away from
the wall to which it is attached. As the power stream dettaches from the wall, a recirculation bubble grows
that blocks the inlet to the feedback channel. Once the recirculation bubble has grown sufficiently large,
the feedback source of pushing momentum is cut but the power stream has already been left at the mercy
of the Coandă effect from the opposite wall, which captures it, thus completing the full sweep of the jet
[22]. The process then repeats symmetrically. The alternate sweeping of the power stream leads to a self-
induced and self-sustained oscillating jet at exit [23] in complete absence of moving parts, which renders
these devices very robust and reliable against mechanical failure. Mass injection has been long thought the
main source of feedback momentum that drives the jet sweeping for these type of devices, as time resolved
pressure and PIV measurements [22] seem to reflect. Baghaei and Bergada [24] have nevertheless shown
that static pressure may become the main feedback momentum source underlying the sweeping mechanism
under certain circumstances.

In the present work, the focus has been placed on the detailed investigation of low Reynolds number flow
dynamics inside a laminar fluidic oscillator as well as on ellucidating the mechanisms underlying the onset
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Fig. 1: Computational domain and mesh. Domain and FO geometry dimensions are duely annotated. The inset shows a detail
of the mesh inside the fluidic oscillator. The streamwise-crossflow plane is discretised with high-order quadrilateral spectral
elements. The acronyms denote inlet channel (ic), plenum or mixing chamber (mc), upper and lower internal elements (ieu,l)
and feedback channels (fcu,l), nozzle throat (nt) and divergent section (nd), and quiescent atmosphere (qa). The boundaries
are labelled di (domain inlet, red), dof,t (domain outlet, blue, continuous for full domain, dashed for truncated domain), and
nw (no-slip walls, black).

of time-dependence and the subsequent transitions in the framework of bifurcation theory. Linear stability
theory has been employed to investigate the three-dimensionalisation of the flow through the characterisation,
in terms of growth rate and spatial structure, of the spanwise-dependent leading eigenmodes.

The paper is structured as follows. §2 outlines the governing equations together with the numerical
methods adopted for time integration. In §3 the dynamical properties of the flow are clarified by suitable
phase-space projections of flow parameters at varying Reynolds number. §4 is devoted to the linear stability
analysis of the two-dimensional time-dependent flow inside the FO to three-dimensional perturbations, at
Reynolds numbers encompassing the entire flow regime under scrutiny. The physical mechanisms underlying
the early flow transitions undergone by the flow inside the FO at low Re are explained in §5. The main
findings and conclusions are finally summarised in §7.

2. Problem formulation and numerical approach

The incompressible Newtonian flow inside a fluidic oscillator is governed by the Navier-Stokes equations,
which, after suitable nondimensionalisation with inlet width hi and upstream mean flow velocity U , read

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u,

∇ · u = 0,
(1)

where u(r; t) = (u, v, w) and p(r; t) are the nondimensional velocity and pressure, respectively, at nondimen-
sional time t and location r = (x, y, z), with x, y and z the streamwise, crossflow and spanwise coordinates,
and u, v, and w the velocity components along the x, y and z directions, respectively. Re = Uhi/ν is the
Reynolds number, with ν the kinematic viscosity of the fluid. The laminar plane-Poiseuille velocity profile
u = u(y)i = 3(1− y2)/2, of unit average, has been prescribed at the inlet channel.

The FO geometry is shown and annotated in Fig. 1 alongside the full computational domain. The
coordinate origin (O) has been placed at the centre of the circular FO cavity. Following the nondimention-
alisation, the inlet nozzle width is hi = 1. The nozzle throat width has been set equal to that of the inlet at
hn = hi = 1. The outer radius of the circular cavity of the FO is R = 4.5. A minimum inlet channel length
of Li = 5 has been adopted to avoid an impact of inlet boundary conditions on the internal dynamics of
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Table 1: Mesh and aerodynamics parameters of fluidic oscillator

Re K P St C̄L C ′L C̄D C ′D
100 4694 4 0.01284 -0.8540 0.5327 0.0843 0.0728

- 4694 6 0.01282 -0.8585 0.5374 0.0852 0.0734
- 4694 8 0.01279 -0.8586 0.5378 0.0851 0.0736
- 6476 4 0.01286 -0.8559 0.5334 0.0842 0.0726
- 6476 6 0.01281 -0.8599 0.5385 0.0848 0.0733

300 4694 4 0.00822 -2.0488 1.7205 0.5649 0.4116
- 4694 6 0.00823 -2.0470 1.7263 0.5665 0.4142
- 4694 8 0.00826 -2.0468 1.7271 0.5675 0.4153
- 6476 4 0.00823 -2.0472 1.7238 0.5651 0.4139
- 6476 6 0.00831 -2.0469 1.7275 0.5685 0.4161

the FO. Also to avoid artificially affecting the internal flow dynamics, the outlet boundary conditions have
been pushed away into the quiescent atmosphere, leaving a semi-circular external domain of radius Re = 75.
The internal elements are circular segments of radius r = 3, centre at the origin O, and sagitta s = 1.5,
symmetrically mounted within the FO cavity with tilt φ = ±π/12. The divergent exit nozzle semi-angle is
taken as β = 14π/45 and its length is Lo = 2.

The boundary conditions for velocity are Dirichlet at inlet (the parabolic profile), Dirichlet homogeneous
(uw = 0, non-slip) at all walls and homogeneous Neumann (∇u · n̂ = 0) at the downstream boundary.
For pressure, high-order homogeneous Neumann boundary conditions are applied everywhere except for the
downstream boundary, where a homogeneous Dirichlet condition (p = 0) is enforced.

The equations have been discretised in space on a structured mesh consisting exclusively of quadrilat-
eral (QUAD) elements using the incompressible Navier-Stokes solver of the spectral/finite element package
Nektar++ [25], enforcing a continuous Galerkin projection across element boundaries. The skew-symmetric
form of the advection term has been adopted for the discrete advection operator in order to preserve the sym-
metry properties of the continuous operator. The spatially discretised system has been evolved in time with
a second-order velocity-correction splitting scheme with a time-step ∆t = 0.005, shown to provide adequate
time-integration accuracy at Re = 100. For Re = 300, the time-step has been reduced to ∆t = 0.002.

A two-dimensional resolution study has been performed at both Re = 100 and 300 to produce the op-
timal mesh balancing sufficient accuracy and reasonable requirements in terms of computational resources.
Two different in-plane structured quad meshes were built and the elements discretised with varying order
polynomial expansions (P ) to assess the effects on a collection of global flow parameters, namely the nondi-
mensional jet oscillation frequency (Strouhal number St ≡ fhi/U), and time-averaged and rms lift (C̄L, C ′L)
and drag (C̄D, C ′D) force coefficients (defined as Cx ≡ Fx

1
2hiU2 ) on the upper internal element, as shown in

table 1. A spatial discretisation of K = 4694 high-order quadrilateral elements, with Lagrange polynomial
expansions of order P − 1 = 5, have been deployed in the streamwise-crossflow plane, as all monitored
global quantities fall within the 1% tolerance accepted here as sufficiently accurate for the purposes of our
study. In order to properly resolve the complex internal dynamics inside the FO, the mesh has been set
up particularly fine in the regions where the flow experiences the largest space and time variations, namely
within the mixing chamber, the inlet and outlet of the feedback channels, and the outlet nozzle, as shown
in Fig. 1. For an accurate description of boundary layers, the quad elements have been set purposefully
thin close to the walls, such that the first element away from the wall was always at a distance in wall-units
y+ ≤ 0.27, well within the viscous sublayer of a hypothetically turbulent boundary layer.

The two-dimensional geometry and structured mesh in Fig. 1 has been employed throughout the paper
in order to characterise the initial transitions leading to time-dependent two-dimensional solutions. We
denote these simulations on the full two-dimensional domain as f2d. Part of the analysis has been however
repeated on a truncated two-dimensional domain by eliminating the semicircular quiescent fluid region
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Fig. 2: Velocity magnitude ‖u‖ colourmap and streamlines at Re = 75, ‖u‖∈ [0, 1.5]. The figure corresponds to f2d, but is
identical to that for f3d.

altogether and replacing it by a straight outlet (indicated with a dashed blue line in Fig. 1). A Dirichlet
boundary condition enforcing the time-averaged pressure distribution from full domain computations and a
homogeneous Neumann boundary condition for velocity have been applied to the truncated outlet, and the
simulations on the truncated domain designated as t2d. Finally, a few simulations on a three-dimensional
domain with in-plane geometry and mesh coincident with that of f2d, but homogeneously extended in the
spanwise direction, have also been run to understand the actual three-dimensional structure of the flow
inside the FO and dubbed f3d. The spanwise periodic extent has been set to Lz = 14 as suggested by the
stability analysis of the underlying two-dimensional flow to three-dimensional perturbations, and discretised
using a Fourier expansion with 20 modes, which exhibited a modal energy decay in excess of 6 orders of
magnitude at Re = 88.

3. Characterisation of FO solution types

At sufficiently low Re . 76, the flow inside the FO is steady and reflectional symmetric. As the Reynolds
number is increased beyond a certain threshold, the flow develops into increasingly complex time-dynamics
and space topologies following a series of ordinary local bifurcations. We shall see that the transition path
starts with the onset of a space-time symmetric periodic oscillation featuring low amplitude chaotic dynamics
associated to the downstream farfield instability of the oscillating jet. This rather unusual inception of time-
dynamics, including mild chaotic fluctuations, requires using a sufficiently large external region, as is the
case for f2d simulations using the full domain. Meanwhile, t2d computations on the truncated domain
suppress the jet instability along with the chaotic background noise. Furthermore, f3d simulations on the
spanwise-periodic three-dimensional domain show that the first transition does not introduce time-dynamics,
but a disruption of the spanwise translational invariance instead, such that three-dimensionality precedes
time-dependence. In what follows, we analyse the diverse flow topologies and dynamics and their dependence
on the particulars of the domain chosen for the simulations. In particular, we analyse what the origin of
the background chaotic noise is and the effects of three-dimensionality on the onset of time-periodicity. The
f2d and t2d analyses will be carried further to increasing flow regimes to try and ellucidate the transition
route to fully chaotic dynamics.

The base flow, which acts as a global attractor at sufficiently low Reynolds numbers, is a two-dimensional
reflectional-symmetric steady-state solution, as clearly exemplified at Re = 75 by the velocity magnitude
‖u‖2 colourmap of Fig. 2. The inlet channel (ic) discharges an almost unaltered fully-developed plane-
Poiseuille flow into the plenum or mixing chamber (mc), where it flies through the narrow passage left
by the upstream edges of the two mutually-symmetric diverters/deflectors (internal elements, ie) directly
into the nozzle throat (nt), straight and symmetric, only mildly diffused, and then into the quiescent
atmosphere (qa), also undeflected and symmetric, where the jet gradually diffuses. The internal stream
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Fig. 3: Periodic state for f2d (dark gray line), t2d (light gray) and f3d (black) simulations at Re = 88. (a) Spectrum

|Ĉl| of the combined lift coefficient signal Cl (shown in the inset) on the upper (idu) and lower (idl) internal diverters. (b)
Phase map projection on the (vO, Cl) and (uO, Cl) planes, with (uO, vO) the in-plane velocity vector at the origin (O). The
instants corresponding to instantaneous phases θi = {0, π/2, π, 3π/2} (white circles, i = {0, 1, 2, 3}) of the analytical signal
Cal = Cl + iH(Cl) (H denotes the Hilbert transform), are duely marked.

inside the cavity shows no propensity to attach to either one of the circular-segment internal elements,
thus leaving two symmetric recirculation bubbles on their respective straight secant sides. At the heart of
the recirculation bubbles are two mutually-symmetric counter-rotating stationary vortices trapped between
the trailing edge of the ies and the convergent arc-circular walls of the device cavity leading to the nozzle
throat (nt), thus blocking the inlet of momentum into the feedback channels (fc). The internal jet that
crosses the plenum is stable enough to remain insensitive to the so-called Coandă effect, which is exerted
symmetrically, yet ineffectively, from the straight walls of the diverters. In the open atmosphere (qa), the
entrainment effect of the jet results, due to the finite size of the domain, in two very large yet extremely
weak counter-rotating vortices that, although unphysical, have no measurable impact on the solution global
properties at this low Re or higher.

At slightly higher values of the Reynolds number, solutions are no longer steady and time-dependence
has definitely set in. Fig. 3(a) illustrates, at Re = 88, the spectrum |Ĉl| of the Cl(t) time series shown
in the inset, where Cl is the combined lift coefficient on the upper (idu) and lower (idl) internal elements.
There is a very clear peak at the fundamental frequency fF2D0 = 0.0132 (' fT2D

0 ), corresponding to a time
period T = 75.76 for f2d (and t2d), followed by a series of higher-order harmonics at multiples of fF2D0 .
The flow state inside the FO is remarkably periodic, and the relatively high energy of the harmonics reveals
that it has already evolved non-linearly away from the bifurcation point. A very similar fundamental peak,
although shifted to the slightly higher frequency fF3D0 = 0.0133, is obtained for the f3d simulation.

The flow inside the plenum features predominantly periodic oscillations of a space-time symmetric nature.
There remains however, for simulations f2d and f3d in the full in-plane domain, a very mild broad-band
noise that disrupts the perfect periodicity and space-time symmetry of the signal by evenly distributing power
across all frequencies beside the fundamental and harmonics. In the phasemap projections of Fig. 3(b), the
background noise widens the sharp lines that would correspond to a perfectly periodic signal into a narrow
band that might be transited through all of its width at any given cycle. Phase-map trajectories have
been projected onto the (uO, Cl) and (vO, Cl) planes for f2d (dark gray), t2d (light gray) and f3d (black)
computations at Re = 88, where (uO, vO) is the in-plane velocity vector in the middle of the plenum at the
origin (O). Leaving the effects of the background noise aside, the phase-map trajectories clearly evince the
almost perfect space-time symmetry of the solution.

The complete absence of noise for the t2d computation, as ascertained by the low energy levels at all
frequencies but the fundamental and harmonics and also by the clear-cut phase-map trajectories, points at
an external origin of the chaotic disturbance. Suppressing the farfield instability of the jet by truncating
the domain at the nozzle exit and thus eliminating the external region altogether, results in a perfectly
periodic and space-time symmetric solution. The background chaotic fluctuations are therefore a result of
an instability of the external oscillating jet. The instability inside the FO cavity that triggers the oscillations
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(a)
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Fig. 4: Velocity field colourmaps of the periodic solution at Re = 88 at instants indicated with white circles in Fig. 3(b) and
corresponding to phases θ0, θ1, θ2 and θ3. Simulations on (a) f2d and (b) f3d domains. Colour coding as for Fig. 2.

remains however largely unaffected, as the solution preserves its most salient features both from a qualitative
and a quantitative point of view. In this respect, the oscillation must be solely ascribed to an instability of
the FO cavity proper and the output jet instability can be discarded as the triggering mechanism.

Four snapshots corresponding to f2d, indicated with white circles in the phase map trajectory of
Fig. 3(b), are shown in Fig. 4(a) to illustrate the oscillatory dynamics of the periodic solution at Re = 88
along a full cycle. The snapshots have been equispaced along a full period using the instantaneous phase
of the analytical signal Cal = Cl + iH(Cl), where H denotes the Hilbert transform. The first snapshot,
labeled θ0 depicts the internal/power stream fully attached to idl. Towards the trailing edge of idl, the jet
bends up and faces the nt with an angle such that the output jet leaving the nozzle into qa points slightly
upwards. Part of the momentum is however directed to the inlet of fcl and effects, when reintroduced
through its outlet, the inititation of the dettachment. The stream has been pushed away from idl by the
time corresponding to the second snapshot, labeled θ1. The output jet is still bending upwards, even further
than before, but the internal stream has already been trapped by the Coandă effect exerted by idu. The
half cycle is completed as the solution attaches completely to the idu and reaches the instant captured by
the snapshot labeled as θ2. Half a period has elapsed and the current flow topology is related to the original
state by a mere reflection about the midplane. The fourth snapshot, labeled θ3, is the symmetry conjugate
of θ1, and the cycle resumes its original state as the stream reattaches completely to the idl wall.

The effect of taking three-dimensionality into consideration at the same exact Re, as done for f3d
simulations, is an attenuation of the oscillation amplitude with respect to the two-dimensional case f2d.
This is already visble from the phase-map trajectories of Fig 3(b), but becomes all the more clear upon
observation of flowfield snapshots along a full cycle shown in Fig 4(b). While f2d has the power stream
fully attached to iel at θ0 through the Coandă effect, which corresponds to maximum downwards deflection,
f3d only produces a very mild bending. The result is a much lower amplitude of the output jet deflection
angle.

The straight-jet steady-state solution crucially relies on a spring force that acts to straighten the power
stream back whenever the reflection symmetry is disrupted. The solution remains stable while a sufficient
damping force exists that prevents the amplification of any deviation from symmetry. Beyond a certain
value of the Reynolds number, the damping action becomes ineffective and the steady state is no longer a
stable solution. The self-induced and self-sustained oscillation of the resulting sweeping-jet solution critically
depends on the existence of the spring force and the absence of sufficient damping. This force is exerted by
the fcs by redirecting part of the momentum of the power stream, whenever it is deflected to one side of
the mc, into flipping it towards the opposite side. This momentum transfer has two components: advective
momentum (inertia force Fi), and pressure momentum (pressure force Fp) fluxes along the fcs, which
capture the momentum at mc exit and feed it back transversally at inlet. As the power stream is deflected
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(a) (b)

Fig. 5: FO properties along a full oscillation cycle at Re = 88 for f2d (gray) and f3d (black) simulations. Signals have
been phase-averaged. (a) Inertia (Fi, dashed), pressure (Fp, dotted) and total (F , solid) vertical forces exerted by the two
fcs through their respective outlet ports unto the power stream. (b) Power stream (αi, dashed) and output jet (αo, solid)
deflection angles at the inlet of the mc and the nt, respectively.

to one side of the mc, it impinges on the convergent section of the cavity wall either above or below of the
nt. At the stagnation point, the stream splits in two. The largest portion is driven through the nt into the
qa, while a smaller part is driven along the nearest fc and reinjected at mc inlet thus providing advective
momentum flux that acts on the power stream. At the same time, the pressure surge at the stagnation point
pressurises the neighbouring fc thus effecting a pressure difference between opposing fcs. This pressure
gradient from one fc outlet to that opposing it, and thus orthogonal to the power stream, results in a net
momentum flux that also contributes in correcting the flow deflection. Needless to say, both Fp and Fi are
balanced for the straight-jet solution, while the force equilibrium is unstable for the oscillating jet solution.

The total vertical force acting on the power stream can be thus split into its two main components as

F = Fi + Fp = ŷ ·
[∫∫

S

u(u · n̂) dS +

∫∫
S

pn̂ dS

]
where S covers both the lower and upper fc outlet planes and n̂ is the unit normal away from the fc exits.

Fig. 5(a) depicts the inertia (Fi, dashed), pressure (Fp, dotted) and total (F , continuous) vertical forces
exerted by the combined effect of both fcs on the power stream along a full oscillation cycle, phased-
averaged over several cycles. Shown are the forces for f2d (gray) and f3d (black) simulations at Re = 88.
The correcting momentum flux exerted by the fcs is clearly dominated by pressure (dotted) rather than
advection (dashed) for both the f2d (gray) and f3d (black) cases. The total momentum reinjection is
also larger, by a factor of around 2, for f2d than f3d on account of the milder oscillation of the latter.
The relative contribution of pressure and advection momentums to total force is not significantly modified
from f2d to f3d, which seems to indicate that both grow fairly proportional to power stream deflection.
The space-time symmetry of the solution is clear from all force signals and the maximum total momentum
flux coincides with (and opposes) maximum power-stream deflection. There is however a clear phase lag
between advective and pressure momentum fluxes, the former preceding the latter by about ∆θF2D ' 25◦

and ∆θF3D ' 27◦ of a full cycle for the f2d and f3d, respectively.
The evolution along one full oscillation cycle of the power stream deflection angle at mc inlet (αi, dashed)

and the output jet sweep angle at nt (αo, solid) is shown in Fig. 5(b). These angles have been measured
from flow velocity probes located on the symmetry plane at the ic exit and the nt, and averaged over the
span for the three-dimensional run. The oscillation amplitude for f2d is about double that of f3d and much
larger, by about a factor of 12, on the respective output jets than for the incoming power streams. There
is also a phase lag from power stream to output jet deflection angles of around 295◦ (296.1◦ ± 5.9◦ and
294.5◦ ± 3.4◦ for f2d and f3d, respectively). The output jet attains its maximum deflection around 5/6th

of a cycle after the power stream was at its maximum deflection.
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(a) (b)

θ0
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θ2

θ3

θ0

θ1

θ2

θ3

Fig. 6: Space-time-symmetry-broken periodic periodic state at Re = 300 for f2d case. (a) Spectrum |Ĉl| of the Cl time-series
(shown in the inset). (b) Phase map projection on the (uO, Cl) and (vO, Cl) planes. Four equispaced instantaneous phases
along a full oscillation cycle, as obtained from the Cl signal via Hilbert transform, are indicated with white circles and labelled
θi, i ∈ 0, 1, 2, 3.

θ0 θ1 θ2 θ3

Fig. 7: Velocity field colourmaps of the periodic f2d-solution at Re = 300 at instants indicated with white circles in Fig. 6(b)
and corresponding to equispaced phases θ0, θ1, θ2 and θ3. Colour coding as for Fig. 2.

f2d solutions retain the space-time symmetry just described, with a slight degree of superposed chaotic
fluctuations due to the jet instability, all the way up to Re ' 290. Beyond this point, the symmetry is finally
disrupted, as exemplified by the (uO, Cl) and (vO, Cl) phase-map projections of Fig. 6(b) at Re = 300. The
cycle remains qualitatively symmetric and the repetition of the main features of the trajectory are clearly
identifiable after half a period, but the reflection operation does no longer produce a quantitative match.
The solution remains mainly periodic, as the phase map trajectories wind around indefinitely following the
same cycle, but the repetition is not exact and the phase map projections appear as a band rather than a
thin line due to the mild chaotic fluctuations of the ouput jet. This is also clear from the Cl spectrum in
Fig. 6(a), which shows a clear peak at frequency f = 0.0082 (corresponding to a time period T = 121.95)
and harmonics, protruding from featureless broad-band noise. The frequency is lower at Re = 300 than it
was at Re = 88, which points at a decrease of oscillation frequency as Reynolds number is increased. This
behaviour belies that observed for fully turbulent FOs, which feature an increasing oscillation frequency. As
a matter of fact, FOs may produce oscillating jets in the laminar regime, but this oscillation is later lost in
the transitional regime and recovered again once the flow has become fully turbulent.

The velocity fields of Fig. 7, evenly distributed along a full oscillation cycle, provide further insight into
the symmetry disruption of the periodic f2d solution. The attachment of the power stream to the straight
wall of the ies is remarkably more pronounced at Re = 300 than at Re = 88. While the internal flow
is fully attached to iel at θ0, the sweeping jet leaves the FO with a large upward deflection angle. The
output jet still points up, even more so, as the power stream has flipped and has started attaching to the
ieu straight wall at θ1. Advective momentum transfer along the fcl can be detected at this point with the
naked eye, which was not the case at the lower Re = 88. The massflow going through the fcl joins the
main power stream coming from the ic and helps fulfil the complete attachment onto ieu at θ2. Once this is
accomplished, the advective momentum transport across the fcs is no longer detectable and the output jet
has reached its lowest angle. At θ3 the power stream has flipped again, feedback advective momentum can
be spotted on the fcu and the jet leaves almost horizontally. Comparing the snapshots at phases taken half
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(a) (b)

F

Fig. 8: FO properties along a full oscillation cycle at Re = 300 for f2d simulations. Signals have been phase-averaged. (a)
Inertia (Fi, dashed), pressure (Fp, dotted) and total (F , solid) vertical forces exerted by the two fcs through their respective
outlet ports unto the power stream. (b) Power stream (αi, dashed) and output jet (αo, solid) deflection angles at the inlet of
the mc and the nt, respectively.

a cycle apart (θ0 vs θ2 and θ1 vs θ3), the space-time symmetry inside the FO cavity is still remarkable, but
the output jet has a clear upward bias. A solution that is symmetry-conjugate to the one shown in Fig. 7
does of course exist and either one of the two might be obtained depending on the initial conditions.

The contribution of pressure (Fp, dashed) and advective (Fi, dotted) to total (F , solid) momentum
injection at fcs exit is comparable at Re = 300, as shown in Fig. 8(a). The vertical correction forces exerted
on the power stream are larger than those occurring at Re = 88 and pressure has lost its predominance over
advection. The latter does no longer feature a clear peak and a kind of plateau exceeding a quarter cycle
has replaced it. Pressure force still lags behind advective momentum, but barely so. The deflection angle at
the inlet of the mc (αi) follows a pattern very similar to that observed for Re = 88, albeit with a somewhat
larger amplitude as shown in Fig. 8(b). The output jet angle, as measured at the nt, however, has a clear
upward bias. The maximum upward angle has a similar value to the maximum downward deflection, but
is sustained for a longer time during which the jet remains pretty much attached to the upper wall of the
nd through the Coandă effect. As was the case at the lower Reynolds number, the power stream leads the
output jet deflection by about 5/6th of the full cycle.

4. Stability of two-dimensional solutions to spanwise-dependent perturbations

Systems featuring homogeneous boundary conditions along an extended spatial direction can often be
treated as two-dimensional at sufficiently low values of the Reynolds number. Away from the bounds of the
domain in the extended direction, the flow is steady and practically two-dimensional. Three-dimensional
perturbations may however be amplified beyond a certain critical Re and lead to fully three-dimensional
solutions.

We have performed a linear stability analysis of the steady solution to spanwise-periodic perturbations
of varying wavelength in order to determine the critical Reynolds number and wavenumber. Fig. 9 depicts
the eigenvalue with the largest real part, which happens to be real, as a function of wavenumber κz for three
different Reynolds numbers. The first wavenumber to bifurcate is κz3 = 0.483, roughly corresponding to a
wavelength λz3 = 2π/κz3 = 13, at Re3 ' 67. This wavelength is sufficiently large that actual FO devices,
which are narrow in the spanwise direction, can hardly accomodate it. Actual three-dimensionality will
therefore be driven by the bounding walls at these low values of the Reynolds number.

In some cases, three-dimensionality is preceded by the onset of time-dynamics, such that Floquet stability
analysis is required to gauge the instability modes and their growth rates. Such is the case of the flow past
a cylinder of circular [26, 27] or square [28] cross-section, for which a von Kármán vortex street is already
in place by the time three-dimensionality kicks in. For the simple FO under scrutiny here, the bifurcation
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σ

β

Fig. 9: Eigenvalue σ with the largest real part as a function of Re and wavenumber κz . Shown are Re = 66 (black), Re = 67
(dark gray) and Re = 68 (light gray). Bullets indicate actually tested wavenumbers.

that breaks the spanwise-invariance anticipates the Hopf bifurcation that triggers time-dependence. It may
nevertheless be still useful to try and forecast the spanwise periodicity of fully three-dimensional solutions at
any given value of the Reynolds number by determining the fastest growing modes for the underlying time-
dependent two-dimensional solution. Although the wavelength of the linear instability needs not coincide
with the spanwise size of actual three-dimensional flow structures away from the bifurcation point, it can
still guide the choice of the domain’s minimum spanwise extent required for reliable and accurate three-
dimensional computations.

Out-of-the-box Floquet analysis does not apply here because the two-dimensional solution is not perfectly
time-periodic, on account of the mild chaotic fluctuations introduced in the temporal dynamics by the
output jet instability. To overcome this obstacle, we have devised a method that relies solely on time-
stepping to compute the most unstable pseudo-Floquet multiplier of the two-dimensional oscillating-jet
solution. The method consists of two steps. First, the two-dimensional, almost-periodic, time-dependent
solution, U = U(x, y; t) = (U, V ), is fully resolved in the two-dimensional domain by time-integrating past
all initial transients. Then, a tiny three-dimensional random perturbation of order ε� 1, ũ0e

iκzz + cc, with
ũ0 = ũ(x, y; 0) = (ũ, ṽ, w̃)0 and cc denoting complex conjugation, is added and the flow evolved further
within the simplest three-dimensional domain by considering a single Fourier mode of wavenumber κz. An
additive decomposition is applied to the instantaneous perturbed velocity field following

u(x, y, z; t) = U(x, y; t) + ũ(x, y; t)eiκzz + cc. (2)

Plugging the expression above back into the Navier-Stokes equations, i.e. Eq. 1, we find the equations for
the perturbation field as

∂ũ

∂t
+����(ũ · ∇)ũ︸ ︷︷ ︸

O(ε2)

+(U · ∇)ũ + (ũ · ∇)U = −∇p̃+
1

Re
∇2ũ

∇ · ũ = 0

(3)

where p̃ is the perturbation pressure field and the nonlinear term has negligible effects on the dynamics
as long as the perturbation velocity field remains of order ε. There is no need to implement the linearised
Navier-Stokes equations of (3). The full non-linear equations in (1) can be evolved in time and the first
and only Fourier mode tracked as long as it remains within the linear regime. After some initial transients,
the perturbation field will naturally align with the fastest growing mode (or the slowest decaying) and thus
provide information on the stability of the underlying two-dimensional flow. The analysis is analogous to
that followed by Sarwar and Mellibovsky [29] in analysing the spanwise stability of two-dimensional chaotic
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(a) (b) (c)

Cl Ẽκz µ

Fig. 10: Estimation of Floquet multiplier from time traces of Cl and kinetic energy Ẽκz of the perturbation velocity field
at Re = 100; (a) Cl time series with Poincaré section defined at phase φ = π/2 (crossings marked with circles). (b) Linear
growth of the perturbation velocity kinetic energy Ẽκz for κz = 2π

13
. (c) Cycle-average Floquet multiplier µ(n) as a function

of cycle number n. Circles indicate µ values within the linear regime, while crosses denote either initial transients or nonlinear
saturation and are not valid for computing statistics.

vortex-shedding past a circular cylinder at Re = 2000. A Poincaré section is defined, here based on the
instantaneous phase of the Cl signal, and the mean Floquet multiplier over the corresponding cycle estimated
as

µ =

√
Ẽnκz

Ẽn−1κz

, (4)

where Ẽnκz
is the kinetic energy contained in the perturbation velocity field ũ(x, y; tn)eiκzz at the time tn of

Poincaré crossing n.
Fig. 10 exemplifies the procedure at Re = 100. The Cl signal used in defining the Poincaré section

is shown in Fig. 10(a), and all Poincaré crossings are marked with circles. The evolution of the kinetic
energy Ẽκz

contained in the perturbation velocity field is shown in Fig. 10(b). After a short initial transient,
the energy grows steadily closely following the exponential trend that is typical of the linear regime of
perfectly periodic solutions, before finally saturating at nonlinear levels. Saturation corresponds to nonlinear
interaction of the perturbation velocity fields that feeds energy back onto the two-dimensional flow, the effect
of which can be clearly observed towards the end of the Cl signal in Fig. 10(a) as a clear disruption of the
original oscillation amplitude. The energy at the Poincaré crossings, marked with circles in Fig. 10(b),
has been used to estimate the average Floquet multiplier over each FO cycle and the sequence plotted in
Fig. 10(c). The imperfect exponential growth is to be ascribed to the presence of chaotic fluctuations that
modulate the two-dimensional underlying flow stability from cycle to cycle. The pseudo-Floquet multiplier
fluctuates over time and can therefore only be defined statistically. A sharp value is not to be expected as
outcome, as chaotic fluctuations instantaneously affect the stability of the two-dimensional solution in a way
that growth (or decay) is not purely modal.

Once in the linear growth regime, the perturbation field must be understood as the least stable pseudo-
eigenmode. It is not a mode proper, as the two-dimensional underlying flow is neither steady nor periodic and
the instability is not perfectly modal, but it still contains valuable information as to where the instability
is actually located. Fig. 11(a) depicts the two-dimensional spanwise vorticity field Ω of the underlying
solution at one of the Poincaré crossings within the linear regime, alongside the corresponding perturbation
cross-stream vorticity field ω̃y (panel b) at the same instant. The three-dimensional instability is clearly
growing fastest in the proximal jet region, particularly so along the curved braids that trail from the last
issued vortex core. Growing three-dimensionality is conspicuously absent within the FO cavity and in the
distal jet region, which points at a local spanwise instability of the high shear regions of the outcoming jet.
Three-dimensionalisation of the flow inside the FO can therefore be attributed to the result of an external
jet instability, whose effect, as we will shortly see, is that of retarding the onset of time-dynamics.

The determination of the fastest growing three-dimensional perturbation has been extended to varying
wavenumber κz and Re ∈ {100, 200, 300} in Fig. 12. The error bars convey variability in the growth rate
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(a) (b)

Fig. 11: Least stable pseudo-eigenmode at Re = 100. (a) Spanwise vorticity Ωz ∈ [−5, 5] colourmap of the two-dimensional
flow. (b) Cross-flow vorticity ω̃y (symmetric arbitrary range) at the same instant, well within the linear growth regime.

(a) (b)

Fig. 12: (a) Most unstable pseudo-Floquet multiplier µ vs wavenumber κz = 2π
Lz

at Re = 100 (black), Re = 200 (dark gray)

and Re = 300 (light gray). (b) A detail of the Re = 100 case. Error bars indicate indicate the standard deviation along the
linear-growth regime and across multiple determinations starting from different initial conditions.
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Fig. 13: (a) Exponential decay of the perturbation field u′O along the sequence of crossings of the Poincaré section diefined
by S = {(u′, p′) : v′O = 0, v̇′O > 0}. Each set of bullets corresponds to sequential Poincaré crossings for t2d simulation at
a different Re ∈ [71, 76.2]. Solid lines indicate least-squares exponential fits. The inset shows a continuous-time phase map
projection on the (u′O, v

′
O) plane. (b) Flight time T (k) = tk − tk−1 between consecutive Poincaré crossings.

that might be expected at different instants along the mildly chaotic two-dimensional oscillating-jet solution.
At Re = 100, the spanwise wavenumber of the instability may already range from very long to very short,
the most unstable corresponding to κz = 0.483. Two separate instability modes seem to compete instead at
Re = 200, the most unstable having κz ' 1.57, followed by a second mode, somewhat shorter with κz ' 3.
The former mode seems to remain dominant at Re = 300, albeit slightly shifted to κz ' 1.8, while the second
mode appears to have vanished. The large error bars at Re = 200 and 300 are a result of the extremely fast
modal growth, which leaves the linear regime in so few Poincaré crossings, that statistics become unreliable.

The long wavelength of the fastest growing perturbations, in combination with their location in the
external flow region, suggests that the two-dimensional analysis of the FO might still be valuable for narrow
practical implementations despite the obvious effects of bounding walls.

5. The onset of time-dynamics

As we have already seen, the output jet of the FO starts oscillating somewhere in the range Re ∈ [75, 88]
regardless of whether the two-dimensional, full (f2d) or truncated (t2d) at nozzle exit, or three-dimensional
(f3d) domain is considered. Here we follow the time-stepping-based approach of An et al. [30] in order to
investigate the Hopf bifurcation that is responsible for the onset of time-periodicity in f2d simulations.
Namely, we investigate the evolution of small perturbations on top of the stable symmetric-jet steady-state
solution as the onset of time dynamics is approached by increasing the Reynolds number. While stable,
whenever the steady state is perturbed, the perturbation velocity field decays and the symmetric-jet solution
is asymptotically recovered. The fashion and rate with which the perturbation vanishes provide insight into
the type and proximity, respectively, of the bifurcation under scrutiny.

In the case of a Hopf bifurcation, which anticipates the onset of time-dynamics, all field variables approach
exponentially the steady state following a damped oscillatory pattern. To illustrate this, we define the
perturbation velocity at the centre of the FO cavity as u′O = (u′O, v

′
O) ≡ u(0, 0; t) − uSJ(0, 0), where u

and uSJ are the instantaneous and symmetric-jet steady-state velocity fields, respectively. The perturbation
velocity in the centre of the cavity asymptotically spirals towards anihilation, as shown in the inset of
Fig. 13(a) for Re = 71. The steady state is a stable focus, meaning that the leading eigenmode is a complex-
conjugate pair. The real and imaginary parts of the leading eigenvalue can be estimated by using a purposely
devised Poincaré section S = {(u′, p′) : v′O = 0, v̇′O > 0} and then recording the sequence of u′O(k) and flight
times T (k) = tk− tk−1 at successive Poincaré crossings. In the linear regime, once the initial transients have
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Fig. 14: Hopf bifurcation in the FO. (a) Real (σr, top) and imaginary (σi, bottom) parts of the leading eigenvalue for t2d as the
bifurcation point is approached by increasing Re. A quadratic fit (dashed line) estimates the Hopf bifurcation at ReH2t

= 76.4
with angular frequency ωH2t = σi(ReH2t ) = 0.0853. (b) Lift coefficient amplitude ACl

vs Re of the oscillating-jet periodic
solution for the f2d (dark gray), t2d (light gray) and f3d (black) cases. Circles indicate actually computed nonlinear solutions
while error bars denote variability due to chaotic fluctuations. Lines correspond to square-root fits of the points closest to
the bifurcation. Diamonds indicate the bifurcation point as predicted by the fits. The vertical dotted lines indicate the Hopf
bifurcations as estimated from perturbation decay analysis (see panel a).

been overcome and the perturbation has aligned with the least unstable eigenmode, the imaginary part of
the leading eigenvalue may be estimated from

T = lim
k→∞

T (k) −→ σi =
2π

T
. (5)

A least-squares exponential fit to the tail of the decaying set u′O(k)/u′O(0), with u′O(0) taken already suffi-
ciently deep into the linear regime, yields the multiplier µ, which can then be used to esimate the real part
of the leading eignevalue as

u′O(k)

u′O(0)
= µk −→ σr =

1

T
logµ. (6)

Fig. 13(a) shows the exponential decay of uO(k) along the sequence of Poincaré crossings k for a range
of Re ∈ [71, 76.2]. The exponential fits are excellent and the decay rate is seen to decrease with Re, a
clear indication that the bifurcation is being approached. Fig. 13(b) records the sequence of flight times
between consecutive Poincaré crossings, which are very stable across the full linear-growth regime. The
imaginary and real parts of the leading eigenvalue extracted from the fits in Fig. 13 and employing Eqs. (5)-
(6) are plotted against Reynolds number in Fig. 14(a). A quadratic fit (dashed line) to the last few points
before the zero-crossing of the real part σr of the leading eigenvalue places the Hopf bifurcation for the
t2d case at ReH2t = 76.4. Beyond this point perturbations are expected, and indeed seen, to grow and
the flow departs from the steady symmetric-jet solution. A second quadratic fit to the last few points of
the imaginary part σi provides a fair estimation of the angular frequency at the Hopf point, which yields
ωH2t

= σi(ReH2t
) = 0.0853, corresponding to a Strouhal frequency StH2t

= ωH2t
/(2π) = 0.0136. This is

compatible with the frequency St(88) = 0.0132 reported for the fully nonlinear solution at a slightly higher
Re = 88 presented in §3 and the decreasing trend observed upon increase to Re = 100 and then further to
Re = 300 when analysing convergence in §2.

In order to ellucidate the nature, subcritical or supercritical, of the Hopf bifurcation, a few non-linear
oscillating-jet solutions have been computed beyond ReH2t

. The combined lift coefficient oscillation am-
plitude ACl

≡ Cmax
l − Cmin

l has been plotted as a function of Re in Fig. 14(b) for the f3d (black), f2d
(dark gray) and t2d (light gray) cases. Filled circles denote actually computed oscillating-jet solutions and
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a square-root fit of the form
ACl

= Abif
Cl

+K
√
Re−Rebif , (7)

with fitting parameters Abif
Cl

, Rebif and K, has been applied to the few leftmost points of each case to allow

extrapolation of the bifurcation point. The offset term Abif
Cl

of the fit vanishes in all three cases, which

indicates that the bifurcation point is a supercritical Hopf. As a matter of fact, Ret2dbif coincides with ReH2t

to within the expected accuracy of the methods employed.
It must be borne in mind that the oscillating-jet instability introduces mild chaotic fluctuations that

perturb the periodicity of the bifurcated solutions. Accordingly, all solutions in Fig. 14(b) computed on the
full domain are represented by a point that indicates the mean oscillation amplitude and an error bar that
expresses the variability. In most cases the variability is imperceptible to the naked eye and only the f3d
case that is closest to the bifurcation point features actually discernible fluctuations.

The only difference between f2d and t2d cases is the use or not of an external qa. t2d crops the
domain at the exit of the nd and imposes on it the average pressure measured at this precise location in
f2d simulations with the same Re with the sole aim of understanding the output jet effect on the FO
cavity instability that triggers the oscillation. The first remarkable effect of eliminating the qa is that
chaotic fluctuations are suppressed altogether, which points at an oscillating external jet instability as the
culprit. The second consequence of truncating the domain is that the Hopf bifurcation is slightly retarded
to ReH2 = 76.4 from 75.7. This suggests that chaotic fluctuations, although mild and originating outside of
the domain, are capable of triggering the FO cavity instability a little earlier than it would naturally occur
in a noiseless controlled environment.

When the spanwise direction is taken into consideration in f3d simulations, the Hopf bifurcation point
remains supercritical but is pushed back to higher ReH3 = 82.1. The three-dimensionalisation of the flow
at Re3 = 67, introduces a spanwise modulation in the jet that permeates into the FO cavity. This slighlty
wavy sheet into which the power stream turns appears to be more robust to the instability that triggers the
oscillation, much in the way that a wavy plate has better endurance to buckling under compression along a
direction normal to the plain containing the wavy pattern.

The nature -supercritical for all three cases- of the bifurcation, the similar oscillation frequency, and the
resemblance of the resulting fully nonlinear oscillating solutions among all three cases considered, leads us
to conclude that the mechanism that triggers the onset of time-dynamics is the same, and that it relies on
an intrinsic instability of the FO cavity resulting from its internal geometry.

6. The loss of the space-time symmetry

The oscillating-jet solutions progressively develop into escalating nonlinearity as the Reynolds number is
increased. Chaotic fluctuations also build up, but the space-time symmetry inherited from the steady base
flow remains distinctly identifiable in both phase-maps and flow snapshots taken half a period apart. At
Re = 300, however, the symmetry has been finally lost for f2d simulations and the output jet has a bias
to spend more time to one side of the qa than the other. This is suggestive that a pitchfork bifurcation of
cycles has taken place.

In order to characterise the symmetry loss, a symmetry parameter must be defined. To do so, a pair of
Poincaré sections have been set up at Cl = 0, one with the additional condition that Ċl > 0, the other with
Ċl < 0. Phase map trajectories pierce one and the other of the Poincaré sections in an alternate fashion,
such that the evolution between two consecutive crossings k − 1 and k becomes a representation of a half
cycle. The space-time symmetry of a (pseudo-)periodic solution demands that the combined drag coefficient
Cd on ieu and iel repeats every half cycle, so that a symmetry parameter defined as

ψ ≡ |Cd(tk)− Cd(tk−1)|

must exactly vanish for space-time-symmetric solutions and depart from zero for symmetry-broken solutions.
In the absence of chaotic fluctuations, ψ is expected to converge onto a constant value. Otherwise, ψ is
randomly distributed and a mean and standard deviation can be extracted from the statistically converged
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Fig. 15: Pitchfork bifurcation diagram for t2d (light gray) and f2d (dark gray) pseudo-periodic solutions. Circles denote mean
value and errorbars plus/minus two standard deviations of the symmetry parameter ψ, expressed as a function of Re. Full
lines denote square-root fits to the data and filled diamonds indicate the predicted pitchfork points.

ψ(k) sequence. This is shown for both t2d (light gray) and f2d (dark gray) simulations in Fig. 15, where
the circles denote the mean, and the errorbars plus-minus two standard deviations (95% confidence interval).
The symmetry parameter remains negligible for t2d all the way up to Re < ReP2t

' 294.6. From this point
on, the increasing trend is well adjusted by a square-root fit analogue to that in (7) to the few points closest
to the bifurcation. The vanishing additive parameter indicates that the pitchfork is supercritical. For f2d,
despite its probabilistic nature due to chaotic fluctuations, the statistical average of ψ is indistinguishable
from zero up to Re < ReP2 ' 294.2 with over 99% confidence. Beyond the bifurcation point, ψ clearly
departs from symmetry and a square-root fit to the statistical average of the first few points confirms
supercriticality. The situation is far more complex when considering the full three-dimensional domain and
will not be explored here.

7. Conclusions

We have characterised the various flow states and analysed the onset of time dynamics for a spanwise-
extended laminar fluidic oscillator operating at very low values of the Reynolds number. The flow remains
two-dimensional, steady and reflection-symmetric all the way up to Re3 ' 67, beyond which point the span-
wise invariance is broken and the flow becomes three-dimensional. The resulting nonlinear three-dimensional
solutions remain steady. The critical wavenumber is κz3 = 0.483, which corresponds to a spanwise wave-
length λz3 = 13, as a thorough analysis of the fastest growing three-dimensional perturbations shows.
Practical realisations of fluidic oscillators are usually much narrower than the first destabilised spanwise
mode, so that three-dimensionallity in this regime would generally be driven by side-wall effects. However,
the infinite-spanwise-domain approach becomes gradually more valid, as the most unstable spanwise modes
of the underlying two-dimensional solution shift to shorter wavelenghts with increasing Re.

It is only by increasing the Reynolds number further that the output jet starts oscillating, following a
supercritical Hopf bifurcation at ReH3 = 82.1. The oscillation is mainly driven by pressure momentum that
the feedback channels capture at mixing chamber exit and reinject transversally at mixing channel inlet,
just downstream from the inlet channel. Nonetheless, the Coandă effect fails to completely attach the power
stream to the straight walls of the internal elements and the output jet sweep angle is only moderate. Full
attachment is instead fulfilled if the spanwise waviness is duely suppressed by considering a two-dimensional
domain. In this case the jet oscillates with much larger amplitude and the onset of time-periodicity is
considerably advanced to ReH2 = 75.7. Spanwise waviness can therefore be considered a stabilising factor.
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Both for the two- and the three-dimensional FOs, time-periodicity arises together with mild chaotic fluc-
tuations, which is not a usual feature of Hopf bifurcations. As a matter of fact, some mediating bifurcations
must be at play that we have not been able to identify. Perhaps a very mild and imperceptible subcriticality
or a classic Ruelle-Takens transition scenario. The two-dimensional domain has been truncated at the nozzle
exit and the boundary conditions adapted from full domain simulations to cast light on the origin of the
chaotic fluctuations. The fact that chaos is completely suppressed on the truncated domain indicates that
its origin must be traced to an external oscillating jet instability. Besides, the Hopf bifurcation remains su-
percritical and is only slightly pushed forward to ReH2

= 76.4. This confirms that the triggering mechanism
for the oscillation is an intrinsic instability of the FO cavity geometry and that the only effect of the mild
external fluctuations is to slighlty advance the onset of the instability.

In spite of the mild chaotic fluctuations, the original reflectional symmetry of the steady state is broadly
retained as a space-time symmetry (the flow is invariant under evolution over half a period followed by
reflection about the mid plane) for a wide range of Re. For the two-dimensional FO, this symmetry is
finally disrupted in a supercritical pitchfork bifurcation of cycles at ReP2

= 294. From this point on, the jet
acquires a bias in its oscillation to one side. Two mutually symmetric solutions exist, and which is actually
reached depends on the initial conditions.

The effects of spanwise bounding walls on actual implementations of the laminar FO under scrutiny here
remains to be analysed. Narrow configurations at low Reynolds numbers that undergo very long spanwise-
invariance-breaking instabilities may behave very differently from the extended FO investigated here.
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