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Abstract:

Urban energy models are required to establish baselines, map buildings’ performance, and explore energy and CO, emissions
reduction strategies. The authors propose a new reductive bottom-up model to estimate the final energy demand for educational
building stocks. For this purpose, this model relies on data-driven validated real-reference buildings and probability up-scaling. This
model has three stages: (1) multivariate clustering techniques identify real-reference buildings from building stocks, (2) calibrated
energy simulation estimate demand, uncertainty and allow to test scenarios, and (3) probability up-scaling diversifies building-level
results regarding variations in their urban emplacement. Afterwards, the authors applied this model to two educational building
stocks: a conditioned stock in Barcelona, Spain and a free-floating stock in Quito, Ecuador. Two real-reference schools represent
62% of the stock in Barcelona, with a final energy demand of 15.96 GWh/year. Likewise, two schools describe the entire educational
stock in Quito with a final energy demand of 29.83 GWh/year. Results reflect Barcelona stock is more heterogeneous than Quito
despite its lesser population. Specifically, their energy use intensity was 85.92 kWh/m? with a 4.25% deviation in Barcelona and
40.23 kWh/m? with a 0.11% deviation in Quito. This model is transferable among stocks because it relies on the characterization of
buildings’ thermal balance in their as-is state and provides good accuracy with building and urban energy records. This diversification
procedure gave back part of the lost variability because of the reductive approach in the real-reference building definition. Also, it

produced lower prediction errors for aggregated final energy use.
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1. Introduction:

Analysts expect around 75 to 90% of the existing building stock to be functional by 2050 [1].

Two-thirds of this stock preceded energy efficiency legislation [2]. Hence, the current building

stock is highly energy-intensive and contributes to the building sector responsibility for a third



of global primary energy use and greenhouse gas emissions [3]. Thus, it has an untapped
potential for energy reduction in which small energy savings at the building level can cause
significant savings at an urban scale. For this purpose, planners require identifying adequate
replicable renovation strategies. Urban energy models (UEM) are efficient tools to describe and
quantify building stocks and aid policy decision-making. Abundant UEMs are available in
scientific literature and vary in their techniques, disaggregation level, data sources, assumptions
and aggregation schemes. Specifically, many studies focus on a systematic review of methods

[4], simulation tools [5], and challenges [6].

For UEMs, the modelling approach can be (1) top-down, using historical aggregated data for
projection analysis, or (2) bottom-up, using disaggregated data for tracking technologies
changes. In addition, bottom-up models subdivide into reduced and whole domain models.
Reduced domain physical models are the most widespread method but have an inherent loss of
variability [7]. The reduced domain approach groups similar buildings into classes and identifies
a representative building for each. UEMs use data from this reference building to extrapolate
results to its building stock. Reference buildings can be theoretical archetypes built on average
data or real-reference buildings (RB) with characteristics similar to the median data. Whole
domain models, also known as building-by-building models, use coarse representations of each
building and its occupants [8]. Therefore, these are computationally intensive [9] and less

suitable for energy-saving predictions.

Extensive datasets for reference buildings already exist. The most known are the cross-typology
USA Department of Energy database [10] and the European residential typology matrix
developed by the TABULA project [11]. Both datasets employed deterministic segmentation and
simple classifiers such as building use, age and climate. Current research focuses on stock
segmentation using machine learning algorithms and its comparison to standard practice. A

study on the residential stock in Vienna assessed three segmentation methods under different



combinations of 17 classifiers. That study showed the adequacy of the K-means algorithm over
hierarchical agglomerative clustering for annual heating demand prediction [12]. Similarly,
another study compared K-means and K-medoids to segment a residential district in China [13].
For this district, k-medoids performed better even though its prediction differed only 1% from

k-means for urban energy demand.

For UEMS, deterministic characterization is frequent in which the descriptive parameters take
the mean values for the building stock. However, some studies use principal component analysis
[14] and linear regressions [15] to improve features definition. Most noteworthy is the
hierarchical calibration proposed for the propagation of uncertainty from building to urban scale
for the Danish residential stock using Bayesian techniques [16]. That study assumed that
archetype features are random variables within an underlying distribution function and thus
enable the inference of uncertain parameters through sensitivity analysis. Seldom studies have
dealt with UEMs for free-floating stocks whose buildings do not consume energy for air
conditioning, contrary to conditioned building stocks. A project on social housing in Brazil
identified two RBs from a sample of 120 houses using qualitative and quantitative data and
validated its results against simulated degree hours [17]. Likewise, studies on the low-cost
residential building stock in South Africa [18] and the residential stock in Chile [19] created
deterministic archetypes from a tree-based segmentation of buildings’ age, appearance,
geometry, and occupancy profiles. However, these studies failed to validate their archetypes

because of the lack of a quantifiable significant energy metric.

Following is a description of research gaps after a detailed review of reduced domain UEMs.

sums up that review. UEMs require an extensive dataset, but this information is
usually non-existent, not up-to-date, or not available. Therefore, many studies rely on educated
guesses [16,19] rather than factual data. Stock data consistently neglect building renovation,

leading to discrepancies between buildings and their class [20]. Deterministic bins are the most



widespread segmentation technique because of their simpler classifiers and data availability.
However, this technique results in an excessive number of archetypes and considerable intra-
class heterogeneity [21]. Cluster techniques are better for multivariate classification though
their adequacy for free-floating stocks is not proven [18]. In addition, national statistics serve
for UEMs validation, but this does not apply to specific urban scales due to a lack of
disaggregated data [22]. Aggregated quantification flattens building-level errors as studies
report errors ranging from 1% to 19% for stocks and 55% to 99% for buildings [23]. Thus, there
is an increasing concern that theoretical archetypes might not represent the performance of

buildings [24].

To date, there is a better understanding of the residential stock than the non-residential [25,26],
with the latter documented based on isolated buildings. The educational stock represents 17%
of the non-residential sector in Europe and 18% of its energy consumption [27]. This stock differs
in construction practices and age but has a reasonably homogeneous operation pattern. Despite
its current high energy consumption, energy use intensity (EUI) in educational buildings will
increase to provide adequate indoor comfort levels [28]. For this reason, there is the need to
reduce its energy demand by deep-energy retrofitting. In this sense, many studies have assessed
energy conservation measures (ECMs) for educational buildings [29,30] but failed to quantify
their replicability. A study classified over 1110 Greek schools into five categories using k-mean
clustering to predict their space heating demand [14]. Likewise, another project on 1857 Serbian
schools selected 13 representatives RBs and predicted primary energy savings from 32% to 70%
for its entire stock [31]. That study found broad discrepancies between collected data and the
actual state of those buildings because of poor retrofit records. Clustering techniques assessed
the cost-benefit ratio for energy interventions in the school stock in Lazio, Italy, predicting an
average heating demand of 23 kWh/m? and energy savings of 30%, but showing considerable

differences between simulations and measurements [32]. In a preliminary study, the authors



derived two building typologies from a sample of 130 schools in Quito, Ecuador using k-mean

clustering but did not validate results for energy assessment [33].

This article aims to contribute towards a better understanding of the performance of
educational stocks and their energy intensity and the establishment of energy baselines. For this
reason, this research defines a reduced domain bottom-up physical model based on RBs which
(a) proves suitable for free-floating and conditioned stocks alike, (b) relies on calibrated dynamic
simulation models for energy assessment, (c) uses sensitivity analysis for assessing RBs’
variability to urban boundary conditions, and (d) performs probability up-scaling for the
aggregated energy demand. The first application of this model was to define energy building
typologies for the educational stocks in Barcelona, Spain (conditioned stock) and Quito, Ecuador
(free-floating stock). This study does not focus on these RBs energy performance but on their
ability to represent their stocks. This study is part of a comprehensive research project to
characterize the building surface-level performance and passive retrofitting alternatives using
multi-objective optimization for energy savings, cost efficiency and comfort. The remaining
sections are a) detailed description of the method, b) application on the two previously

mentioned building stocks, c) discussion on the results, and d) final remarks.

2. Multistage methodology approach:

This stepwise methodology aims to extrapolate RBs energy performance to an urban scale
through diversification and probability up-scaling processes to include urban boundary
conditions. The typical steps for building archetypes selection are segmentation,
characterization, quantification and validation [23]. However, this research performs validation
before quantification to improve transferability among stocks. For this purpose, the validation
step is done at the building level using statistical indexes and disaggregated data. Also,

quantification includes energy demand sensibility to urban boundary conditions. This novel



methodology has three phases: 1) selection of RBs, 2) RBs energy modelling, and 3) stocks’

energy demand quantification. Figure 1 shows a base scheme for this approach.
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Figure 1 Stages and steps in the reduced-domain urban energy model

2.1 First stage: Selection of Reference Buildings

RBs are preferred because they permit detailed analysis and energy audits without losing the
prediction, estimation and aggregation capability of archetypes [24]. For their selection, an

obligatory first step is the collection of data, unless already available.

2.1.1 Building stocks datasets:
Building data compilation includes general and specific data. General data refers to the name,
location, teaching schedule, education program, amongst others. Specific data refers to four
customary aspects: form, envelope, systems and operation [10]. Regarding systems category,
this refers specifically to each stock focusing on mechanical systems for conditioned building
stocks and sanitary systems for free-floating. This data collection is step-by-step. First, official
education datasets provide the number of institutions, students and building area. Second,
building characteristics are retrieved from cadastre, geographic information systems (GIS),
technical reports, or blueprints. Third, management authorities provide a list of completed
retrofit interventions. Fourth, field visits serve to verify data and make amendments if

necessary.



2.1.2 Stock segmentation and characterization:
Stock segmentation uses multivariate K-means clustering because of its adequacy for
aggregated energy predictions [12]. K-means is a data-mining algorithm that identifies relations
between objects — defined as vectors of 1 x n features — and automatically assigns them into
clusters by minimizing the distance between objects and their cluster centroid [34]. It requires
the input of the “K” number of clusters defined in this study by maximizing their Calinski-
Harabasz index. This index quantifies the intra-cluster homogeneity and inter-cluster
heterogeneity and permits an unbiased selection of “K” contrary to size-based or modeller’s
preferences approaches [14,32]. R-language runs the K-means algorithm with the following
assumptions: Euclidean distance as similarity metric, random initialization centres, iterative

process, and K defined by the maximum Calinski-Harabasz index for k = 2 to k = 5.

Clustering algorithms are exploratory techniques in which results depend on the features and
metrics chosen. Therefore, the selection of the “n” features must pair well with the ultimate aim
of the model. For K-means, the “n” features must be numerical, have a meaningful metric and
allow normalization to avoid skewness in results. For educational stocks, sets of six features
provide the best compromise between accuracy and modelling effort for energy predictions
[35]. The six features chosen are: 1) ground floor area (m?); 2) wall area (m?); 3) thermal
conductivity by walls (W/m?K); 4) thermal conductivity by roofs (W/m?K); 5) height (m); and 6)
compactness (1/m), defined as the surface-to-volume index. presents the calculation

and recommended sources for these features.

Feature Unit Calculation Source

Ground floor area (Agf) m? Total area including external walls GIS, blueprints

External wall area (Aw) m? Area of walls in contact with external air Blueprints, field surveys
1 2

U-value walls® (Uw) W/m?K Thermal resistance including lineal Construction details,

U-value roofs? (Ur) W/m?2K thermal bridges. technical codes

Height (H) m Flat roofs: top of ground slab to top of roof  Blueprints, field surveys

Pitch roofs: top of ground slab to ceiling

Compactness (SV) 1/m Surface area divided by enclosed volume Blueprints




1 Based in [36,37]

Table 1 Selected classifiers for the educational stocks

A review of classifiers used in over 25 UEMs is the basis to select these six features (see Figure
2) but considering only the most discriminating classifiers for educational stocks. Two variables
usually describe form, one for building size and the other for building shape. U-value describes
envelope’s thermal properties because using age as representative of envelope’s characteristics
is meaningless for buildings preceding 1970 [12]. Operation features are disregarded as
classifiers because schools have homogeneous occupation patterns and relatively low user
control of their indoor environment; however, these features are included later for uncertainty
analysis. Also, and as systems features have no impact on the thermal performance of free-

floating buildings, these are excluded.

The selection of the optimal “n” features is beyond this study’s scope, which selected six traits
based on previous related research studies [35]. Although data analysis techniques, such as
multilinear regression, may provide a more rigorous selection of optimum features to segment
individual building stocks, this set of features would not be transferable amongst stocks.
Therefore, individual segmentations sets are not appropriate for this bottom-up model
objectives. Thus, these six classifiers are considered sufficient at this stage to perform stocks’
segmentation. This segmentation is then evaluated regarding its goodness-of-fit and adequacy

to represent buildings energy behaviour against dependent energy metrics.
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Figure 2 Frequency of classifiers in UEMs. Window-to-wall ratio (WWR), Window-to-floor ratio (WFR), Energy use
intensity (EUI), Domestic hot water (DHW), Number of (N.o.)



Cluster’s characterization is deterministic based on its centroid — vectors of 1 x n, where each
variable is the mean of its cluster. This characterization is appropriate to determine RBs, though
it is less precise than a probabilistic one [38]. RBs are the buildings whose Euclidean distance to
their cluster centroid is the lowest Clusters that represent over 10% of their

stocks are considered significant.

Dgicr = fZ”Ck—Si”z ER,  where: Eq.1

Si = [Afl AWi UW,: Url- Hi SVL] € Rlxﬁ
Where Ds;cis the Euclidean distance from each school to its centroid, Cx are their centroids and

Si their school building.

2.1.3  Clustering validation:
The proposed validation is two-fold: cluster validity and data-driven validity. Cluster validity uses
several statistical indexes to evaluate the goodness of the clustering scheme used — number of
clusters, algorithm and distance metric — compared to other clustering structures with different
parameters. As clustering techniques are exploratory, the adequacy of their segmentation
relates to the aim of the model. Previous studies have used cluster validity indexes to validate
building benchmarking and typology classification [14,39]. Total Error Sum of Squares (TESS) and
Silhouette indexes represent the intra and inter-cluster variability, respectively; their validation
criteria was the maximum inflexion point for the TESS index and the maximum value for the
Silhouette index. These indexes are calculated for k = 1 to k = 5 and three distance metrics:
Euclidean, Manhattan and Mahalanobis. To further increase the confidence in clustering results,
the NbClust package in R-Language [40] computes over 30 cluster validity indexes and assesses

the best segmentation scheme.

The proposed data-driven validity involves comparing a dependent energy metric between RB

and the building-by-building data for its cluster. RBs are valid if their performance is close to the



median of their cluster. A previous study proposed a similar approach but with less stringent
conditions to validate free-floating archetypes [17]. The energy metrics used are a) EUI for
conditioned stocks and b) the number of hours in thermal comfort for free-floating stocks.
Thermal comfort is defined as in adaptive comfort standards [41,42]. Empirical data is preferable
to calculate these metrics, but because of privacy issues and timeframes, this is not always
possible to attain. In these cases, simple simulation models provide the required data. Single-
zone dynamic simulation models for each school are created in Design Builder and configured
to display real geometry, envelope, urban setting, and occupancy parameters. These simple
models do not provide sufficient data for their performance evaluation but suffice for the

goodness-of-fit evaluation.

2.2 Second stage: Energy Modelling of Reference Buildings

Detailed dynamic simulation models are constructed for each validated RB and are subject to
calibration before up-scaling. Building energy modelling is chosen because it allows analysts to
fully quantify the energy consumption for a building without historical data and to simulate sub-

hourly behavioural patterns needed for naturally ventilated buildings [43].

2.2.1 Energy model development
RBs multiple thermal zone models are constructed in Design Builder, including personalized
profiles for each zone, shadows from the surrounding environment, custom-made weather files,
and calculated infiltration and ventilation rates. Building and occupancy parameters collected
in-site are detailed in . Blueprints constructed from site surveys set the basis for the
building models and include geometry, space distribution, fenestration area, operable area, and
location of active mechanical equipment. The envelope thermal transmissivity is measured with
heat-flux meters during peak winter week to maximize temperature gradient. Non-lineal
thermal bridges are modelled in Therm, a two-dimensional heat-transfer modelling tool [44],

and set in Design Builder. The distribution of luminaries and lamps nominal power is collected



on-site to calculate the lighting power density. The maintenance crews provide mechanic
equipment specifications, antiquity and operation schedules. Sub-hourly schedules are
constructed from surveys to teaching and maintenance staff for windows, lighting, shadow
devices operation. Occupancy density corresponds to the number of students in each classroom

and the number of desks in each office.

Classrooms are monitored for three months to evaluate their indoor environmental conditions
— air temperature and relative humidity — with the specific monitoring periods as allowed by the
school’s administration. Dataloggers are placed in representative classrooms throughout the
monitored schools at ceiling level to avoid tampering. The monitored classrooms are selected
based on their location and specific issues reported by the school’s administration, with the
number of classrooms monitored depending on school size and availability. Weather data is
retrieved from the nearest available meteorological station and converted to epw simulation
weather files. Most stations do not provide direct and diffuse components for solar radiation
nor dew-point temperatures. The Perez DIRINT model in MATLAB breaks down the global
horizontal radiation into direct and diffuse [45]. Magnus formula calculates the dew-point

temperature.

Some parameters cannot be measured on-site or would require testing procedures beyond this
project’s scope. These parameters include infiltration and ventilation rates, equipment
normalized heat gains, domestic hot water (DHW) rates, and materials’ thermal properties. The

III

airflow rates were calculated using the “calculated natural ventilation model” in Design Builder.
This model requires: 1) windows operable area, 2) operation profiles, and 3) surface crack data.
The authors defined the first two parameters during building inspection as described above,
while the crack data — infiltration — definition is based on technical literature [46,47]. EQuipment

normalized gains are set according to local energy codes [48] or international standards [49].

For schools with DHW, the consumption rate is set to 4 |/day/person [48]. The specific properties



of the materials are set according to local construction codes [47,50] or ISO standards [51] and
calibrated to match the measured thermal transmissivity. The range for the metabolic rate for
children in classroom activities is taken from [52]. Ventilation, heating and cooling setpoints are
extrapolated from interpolation between operation schedules and indoor environmental

monitoring data. This interpolation results in plausible ranges but no set values.

2.2.2 Uncertainty and model calibration
Sensitivity and uncertainty analyses evaluate the impact that the non-measured model
parameters have on its predictability. The sensitivity analysis informs the stepwise calibration,
and the uncertainty analysis serves to set suitable values for model calibration. Six relevant
parameters are evaluated: occupancy density, infiltration rate, metabolic rate, natural
ventilation setpoint, heating setpoint, and operation of shading devices. Ideally, calibration
should be for all uncontrolled parameters, but this would be unfeasible because of data
limitations [16]. These six parameters are selected based on their recognition as significant
sources of uncertainty [53]. The values for these parameters are unknown, but their variability
range is determined from literature or experimentally, as explained above. The numerical range

and steps to evaluate each variable are in

Parameter Description Unit Step Range
Density Number of students per classroom area people/m?  0.05 0.4-0.95
Infiltration? Uncontrolled airflow per length of window m3/h/m 0.5 0-5
Metabolic  Heat rate in typical classrooms activities W/person 5.0 63-90
rate?

Natural Temperature-driven windows’ opening °C 0.5 19-24
ventilation

setpoint

Heating Base air temperature for winter heating °C 0.5 19-22
setpoint?

Curtain Radiation-driven internal shadows operation W/m? 100 100-700
operation

! Using crack templates, base values [46,47]
2Values from [52]
3Ranges from [46,54]

Table 2 Uncertainty sources in model calibration, ranges and steps



Standardized and unstandardized beta coefficients identify the influence of each variable in the
simulation process and quantify its impact. Multi-linear regressions compute these coefficients
between the six studied parameters and their root mean squared error (RMSE) in indoor
temperature prediction. Each variable is calibrated individually, and its ultimate value for the
energy models is the one that has the highest reduction in the RMSE. This calibration is done
manually, starting with the variable with the highest standardized beta coefficient. The final
simulation models calibration follows the error metrics in ASHRAE 14 Guideline for energy
calibration [55] - normalized Mean Bias Error (nMBE) and Coefficient of Variance of Root Mean
Square Error (CVRMSE) - but with more stringent thresholds as suggested in literature -+2% for

nMBE and £10% for CvRMSE [56].

2.2.3 Model replicability
After model calibration, the following standardizations are made: average density of students in
classrooms based on local standards, official working schedules, heating and cooling setpoints
according to Category 2 in EN 16798-1 [41], natural ventilation setpoint set 2 °C above the
heating setpoint, operation under full conditioned mode during occupancy hours, and use of
Test Reference Year weather files [57]. In free-floating stocks, and to estimate their energy
demand, active systems are set to standard local practices and their coefficients of performance
(COP) as mandated by enforced energy codes. This standardization facilitates the comparison

between RBs and aid in their direct up-scaling [15].

2.3 Third stage: Quantification of the stocks’ energy demand

The diversification approach and probability up-scaling give back the loss variability in the
reduced domain approach regarding the RBs’ urban boundary conditions. For calibration, RBs
models include their urban environment. These boundary conditions are not predominant for
the building stock. As such, RBs performance is evaluated under different urban scenarios as

follows.



2.3.1 Impact assessment for urban boundary conditions and RBs’ diversification
Multi-lineal regressions techniques assess the variability in the RBs’ EUI due to three urban
parameters: orientation, site elevation, and built-up density. These parameters are tested in
discrete steps of 45° for orientation, 50 m for elevation, and 2500 m?/ha for built-up density.
Minimum and maximum values are topography limits for elevation and 0 to 20000 m?/ha for
built-up density. The latter is calculated as the total building area per unit of land area (1 ha) and
describes the variability in the surrounding buildings’ distribution and height. Plot size and shape
are the ones from the RBs, but the urban boundaries are the most frequent in each stock
regarding urban layout, street canyon, and open or green space. These three parameters
provide the first assessment regarding urban variability and its inclusion in probability up-

scaling, although these parameters cannot reflect the full spectrum of urban conditions.

Up-scaling requires the creation of “categories” by combining the previously mentioned three
urban parameters. Beta coefficients rank these variables to include only those discriminating in
the categories. These categories generate a new set of energy simulations with diversified EUIs.
Joint probability distributions predict the probability of these categories occurring in the
assessed stocks. Their calculation is as follows. First, GIS specify these three variables values for
each school in the datasets [58—60]. Second, the independent probability for each variable is
calculated. For example, the number of schools in low (<7500 m?/ha) urban built-up density
divided by the total number of schools. Last, the joint probability is the product of these

independent probabilities.

2.3.2 Aggregated quantification
Up-scaling uses the metric EUI (kWh/m?year) as it is better suited to compare typologies. For
stock energy quantification, the standard approach - dubbed as non-diversified - is the product
of RBs’ EUI and their clusters’ area The diversified approach considers the

probability distributions for urban boundary conditions, the diversified RBs’ EUl and the clusters’



area This diversification keeps the RBs reductive modelling and improves

stocks aggregated quantification. The latter by including previously unconsidered parameters.

k
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Where Qup is the stock’s non-diversified energy use, Qp is the diversified energy use, k is the
number of clusters, EUI is the EUI of the RB for each cluster, A is the total building area for each
cluster, 7is the number for probability outcomes, EUIy;is the EUl of the RB in each probability

scenario, and f;is the frequency distribution for each probability outcome.

2.4 Case Studies

This multistage approach was applied first for the public educational stocks in Barcelona, Spain
and Quito, Ecuador. These stocks have considerable differences in age, size, occupancy density
and operation mode This study builds upon previous work describing these stocks
[61]. The number of public schools varies significantly, with 159 and 268 in Barcelona and Quito,
respectively [62,63]. details this study data collection, sources, and references. Data
collection was from the beginning of 2018 until January 2020. Both cities’ governments have
recognized the need for deep retrofitting their educational centres but with different end goals,
energy reduction in Barcelona [46] and health issues in Quito [64]. Considering retrofit as end-
goal, new and fully renewed buildings were not included for stock classification as neither were

historically listed buildings because of their specificity.



Barcelona (BCN)  Quito (UIO)

General

Climate?! Mediterranean Highlands
Teaching schedule [weeks] 34 + 2 compact 40 + 4 half
Holidays [days] 118 85
Size per school [m?] 3318 2297
Number of students per school 263 1035
Stock

Number of schools 159 268
Incomplete information 1 8
Sharing infrastructure? 4 7
Listed buildings 22 19
New built3 37 20
Marked for demolition 3 0
Total schools for classification 92 214
Total construction area [m?] 301012 741629

! According to Koppen classification
2 Between schools or with other public services
32006 set as baseline because of the new energy code in Spain and the renewal campaign
in Ecuador
Table 3 General description for the two educational stocks

A substantial proportion of Barcelona’s stock precedes the first Spanish energy building code of
1979. Most schools are compact, low-rise concrete-frame buildings poorly insulated with high
glazing ratios. An ongoing project for near-zero energy schools characterized 282 centres in the
Barcelona Metropolitan Area into four shape models [65]. The three showcase buildings had
energy consumptions between 90 to 150 kWh/m?/year, way above the median of 64.32
kWh/m?/year. This deviation shows the need for a multivariate classification approach. The
school stock in Quito is more homogeneous regarding shape and materiality but varies
significantly in building size. It is relatively newer, with most buildings dating from the 1980s. In
1995, a seismic-resistance study characterized Quito’s stock into two typologies: concrete-frame
two-story buildings and lightweight metal-frame classroom units [66]. On the current quality of
classrooms, problems relate to daylight, ventilation and thermal comfort. Over 30% of students
complaining of suboptimal thermal comfort [67] but the energy demand for air conditioning in

this stock has not been quantified.

3. Results

This section follows the aforementioned multistage approach for each case study and presents
their 1) stock classification and RBs selection, 2) RBs energy modelling, and 3) urban energy

guantification.



3.1 First stage: selection and validation for reference buildings

Figure 3 shows segmentation results and selected RBs. Calinski-Harabasz index favoured four
and two clusters for Barcelona and Quito’s stocks, respectively. This cluster scheme had the best
results in TESS and Silhouette indexes (see Appendix D). Although there were no outliers in the
studied samples, verified by a cumulative probability in a chi-square distribution of Mahalanobis
distance, cluster four in Barcelona was not representative because it groups very singular shaped
buildings and less than 10% of the stock’s area. There is a more significant inter-cluster
heterogeneity for the sample in Quito than for the three significant clusters in Barcelona that
have similar inter-distances between them. Clustering disaggregates relatively similar shaped
and age buildings into different categories because of retrofit interventions in their thermal
envelopes. Therefore, it signals the importance to consider building stocks in their as-is state

despite the substantial effort for data compilation.
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Figure 3 Clustering graphical representation using principal components analysis for a) Barcelona and b) Quito;
selected RBs in c) Barcelona and d) Quito. For identification the following nomenclature has been used: for clusters

(CITY_ID.C_NUMBER), for RBs (RB.CITY_ID.C_NUMBER)

For both cases, clusters differ significantly in floor area, height, compactness and U-value of

roofs (see p-values in Table 4). Surface area and U-value of walls do not influence the outcome



for Quito, suggesting that fewer classifiers would produce similar results. In contrast, all
variables are significant for Barcelona, which reflects its heterogeneity. Correlations between
features were revised for a p-value < 0.05. P-value showed that for schools in Quito, shape and
materiality are highly correlated. In Barcelona, there are no correlations between variables.
Therefore, building typologies are less easily identifiable and less suitable for deterministic bin
segmentations. In fact, by using kK = 2 and k = 3 for Barcelona, the school’s assignation varies

significantly between clusters, whereas for Quito, clusters only subdivide.

shows the cluster characterization using their centroids; standard deviations are
included for data completeness. Clusters BCN.C1 and BCN.C2 share similar envelope
characteristics but differ in their shape and distribution schemes. BCN.C1 comprises stepped
low-rise compact buildings distributed around a central courtyard, and BCN.C2 groups mid-rise
schools, with one or more rectangular edifices. Cluster BCN.C3 is less homogenous and includes
buildings with various shapes but lower thermal conductivity walls and higher conductivity roofs
than previous clusters. In Quito, school typologies differ more significantly. UIO.C1 are single-
story modular lightweight structures and UIO.C2 multi-story concrete-frame buildings. A close
review of this stock showed that most schools have buildings belonging to either typology and
that clustering favoured the dominant one. Therefore, the individual analysis for each building

in a school could provide better segmentation.

Agf Aw Uw Ur H SV Units Area Freq.
[m?] [m?] [W/mK]  [W/m%K] [m] [1/m]  [N.o] [m?] [%]
BCN.C1  1410.6 2062.2 1.36 0.95 7.5 0.47 31 97236.1 323
0+171.7 o0 1550.8 0 10.2 0 +0.3 0+1.04 0¢+0.07
BCN.C2 791.10 1985.1 1.38 0.96 10.97 0.43 26 88601.7 29.4
01106.3 o0t177.3 0 0.2 0104 011.56 010.04
BCN.C3 11554 2667.2 1.02 1.56 10.1 0.42 24 86298.1 28.7
0+124.5 ©+554.9 0 +0.3 0+0.3 0+1.59 0 +0.04
p-value 0.000 0.008 0.023 0.017 0.000 0.000
uio.ci 1314.0 1266.3 2.46 3.45 3.00 1.04 112 302480.3 40.5
01270.7 o0x179.0 0 10.16 010.11 010.30 00.10
ulo.c2 7135 1190.4 2.49 3.00 5.66 0.63 102 439149.0 59.5
o0+150.1 013194 0 +0.20 010.31 01041 o¢0.05
p-value 0.000 0.517 0.783 0.000 0.000 0.000

Ground floor area (Agf), Wall area (Aw), U-value walls (Uw), U-value roofs (Ur), height (H), compactness (SV)
Table 4 Characterization and frequency distribution for the clusters



The selected RBs were validated against a dependent energy metric relevant to each stock, EUI
for Barcelona and hours in thermal comfort for Quito (see section 2.1.3). Barcelona’s local
government provided annual data for 2018 on electricity and gas consumption for a
representative sample of its schools. These values were normalized regarding building area
previous to their use in this study validation. For Quito, single-zone simulation models of each
school in a sample were developed to calculate indoor temperature and evaluate thermal
comfort conditions. Most designated RBs showed values very close to the medians of their
respective clusters, fulfilling the required validation. The exception was the RB for cluster
BCN.C3, which performed significantly better than its cluster (see Figure 4). Table 5 describes
the four validated RBs. Barcelona’s RBs represent 61.7% of its stock, whereas Quito’s RBs

represent its entire stock.
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Figure 4 Data-driven validation for real-reference buildings (RB). The RBs are marked to see how each RB behaves
with respect to its cluster. Maximum data point excluding outliers (Max), minimum data point excluding outliers
(Min), first quartile (Q1), third quartile (Q3), interquartile range (IQR).

PARAMETER UNIT RB.BCN.C1 RB.BCN.C2 RB.UIO.C1 RB.UIO.C2
Age 1976 1972 1976 1990
Gross floor area [m?] 3563 2683 1476 1580
WWR [%] 30.0 25.2 29.5 21.3
S/V [1/m] 0.53 0.66 0.92 0.54
Occupancy density  [people/m?] 0.4-0.5 0.4-0.5 0.65-0.95 0.55-0.85
Use hours 9am-16:30pm 9am-16:30pm 7am-12:30pm 7am-18:30pm
Walls [W/m2K] 1.43 1.32 2.27 1.81
Roof [W/m3K] 0.23 0.39 6.45 2.31
Ground floor [W/m2K] 1.79 2.56 2.38 3.04
Internal floor [W/m2K] 1.18 1.70 - 2.15
Glazing [W/m2K] 5.77 5.77 5.89 5.89
Infiltration rate [m3/h m] 1.0 0.5 4.0 2.0
Shading devices Roller shutters Roller shutters None Curtains

Table 5 Geometrical and thermophysical characteristics for the validated RBs.

to-volume index (S/V)

Window-to-wall ratio (WWR), surface-



Even though the lower EUI for the RB in cluster BCN.C3 could be due to better operational
practices — some studies have shown the considerable impact of operation practices in EUI
[68,69] — current data does not justify this hypothesis In addition, the distance of this RB to its
cluster centroid is 1.5 times larger than for any other RBs. Accordingly, this RB is not
representative of the composite characteristics of its cluster and, therefore, was not further
considered. A further subdivision could improve this cluster representation. For this,

segmentation requires classifiers more appropriate to the reduced sample [35].

3.2 Second stage: energy behaviour in the reference schools

Information collection for the detailed simulation models was on-site during 2019. Table 6
summarizes the energy models’ input parameters, and Appendix E fully describes them. Quito’s
schools were monitored from April to June and Barcelona’s from September to December as
allowed by their local governments. Calibration was successful for all RBs. However, building
RB.UIO.C1 had the highest RMSE with a value of 1.24 °C. Significant errors occur at noon because
of peak heat flux and the end of school hours. Both causes produce high thermal dynamics that
the simulation models cannot reflect. Despite this, this school model has the second-lowest
nNMBE proving this index is prone to cancellation effects. For Barcelona, validation was further
reviewed to monthly gas bills for 2019 to test the accuracy of our approach. This revision
resulted in estimation errors of 4.70% for RB.BCN.C1 and 4.52% for RB.BCN.C2, compliant with

ASHRAE thresholds.

System Parameter Units RB.BCN.C1 RB.BCN.C2 RB.UIO.C1 RB.UIO.C2
Heating Type GB + water GB + water (GB + water (GB + water
radiators radiators radiators) radiators)
cop 0.7 0.865 (0.92)* (0.92)*
Setpoint [°C] 22 21 (20)? (20)?
Operation Nov-Mar Nov-Mar

schedule 8:00-17:00 7:30-21:0



Cooling Type Splits (Multi-splits) (Multi-splits) (Multi-splits)

cop 2.5 (2.6)* (2.6)* (2.6)*
Setpoint [°C] 25 (25)? (24)2 (24)2
Operation Jun-Sep
schedule 10:00-17:00

DHW Type Electric heater Gas Boiler® None None
Rate [I/day-ppl] 4t 4!
cop 0.85 0.81

Ventilation Setpoint [°C] 24 23 21 22
Operation 11:00-16:30 11:00-16:30 9:00-12:30 9:00-12:30
schedule

Lighting Type FL FL LED/FLC LED
Power [W/m?] 8.6 8.6 2.25/7.05 2.25
density

Equipment Power [(W/m?] 45! 4,5 None None
density

Calibration Iterations [#] 44 39 34 40
nMBE [%] -0.67 0.26 0.52 0.81
CvRMSE [%] 4.76 4.96 6.42 5.06
RMSE [°C] 1.12 1.11 1.24 1.02

1 Reference values from [48]

2 Reference values from [41]

3 Dedicated natural gas boiler
Table 6 Parameter inputs and calibration indexes for these simulation models. Values in () represent hypothetical
systems used for thermal demand calculations. Fluorescent lamps (FL), compact fluorescent lamps (FLC).

depicts the sensitivity analysis and the influence that the six uncontrolled parameters
had on the models’ outcome. Heating and natural ventilation setpoints impact the most,
followed by occupancy density. The heating setpoint uncertainty was highly relevant as the only
control thermostat in the studied schools was the boilers, with setpoints reported between 55
°C to 60 °C. A one-degree increment in heating setpoint produces indoor temperature
increments of 0.11 °C for RB.BCN.C1 and 0.17 °C for RB.BCN.C2. Natural ventilation uncertainty
owes to the differences in windows operation, as reported in field surveys. Cross-referencing
surveys to indoor temperature showed that windows operation is mapped better through a
control setpoint contrary to unified schedules used in the literature [70]. This setpoint was 22
°C for Barcelona and 21 °C for Quito, with an amplitude of £2 °C. Variations of one degree in this
setpoint generate temperature fluctuations of 0.13 °C to 0.18 °C. Discrepancies in occupancy
density among classrooms produced changes in sensible heat gains of 12.58 W/m? in Barcelona
and 37 W/m? in Quito. The latter is due to differences of up to 12 students per classroom and
their smaller classroom size. Increasing one student per surface area leads to an increment in

indoor temperature of 0.56 °C, 0.36 °C, 0.91 °C, and 0.46 °C for the four studied RBs.
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Figure 5 Sensitivity analysis for sources of uncertainty in the modelling for the studied RBs. Root mean square error
between measured and simulated temperature (RMSE)

Uncertainty analysis narrowed down the ranges for the uncontrolled parameters and set the
most appropriate values for model calibration (see Tables 5 and 6). The average prediction
uncertainty for all models was below +0.6 °C; however, it reached maximums of £3.30 °C during
specific hours in the models for Barcelona. This considerable uncertainty occurs during the non-
occupancy periods as surveying did not account for these. Therefore, auditing non-occupancy
periods would improve the models’ annual predictability. Despite the deterministic
characterization, the prediction capability of these models had a 1:1 relation between measured
and simulated data. Thus, these models neither over nor under-predict their outcome. In
addition, the authors validated the simulation outcomes for a week outside the three calibration
months. During this week, the simulation errors complied with the set thresholds. Figure 6
shows the measured and simulated data for RB.BCN.C1 alongside the prediction of indoor

temperature for the last week of January 2020 (Appendix F depicts this data for the other RBs).
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Figure 6 Simulation error for RB.BCN.C1 during (a) 3-month calibration period and (b) 1-week prediction period.
Mean bias error (MBE), root mean square error (RMSE), coefficient of variance of the root mean square error
(CvRMSE), standard deviation (Std. Dev.)

Stock segmentation emphasized the buildings’ thermophysical characteristics. Therefore, these
were assessed more explicitly. Figure 7 depicts the RBs’ thermal balance and indoor
temperature For Barcelona, both RBs have a relatively similar thermal balance, but for
RB.BCN.C1 horizontal envelop elements contribute less. Envelope losses surpass gains by 3to 1
during winter and account for half the heat gains in summer, as typical for buildings in
Mediterranean climates [54]. The recorded winter air temperatures ranged from 17 °C to 25 °C,
hinting at overheating problems as detected in [71]. This high temperature is because of

occupancy gains, continuous heating operation, and lack of zone controls.

For Quito, the most notable difference between RBs is due to their roofs. Roofs contribute heat
gains for RB.UIO.C1 and heat losses for RB.UIO.C2. High heat gains in both RBs suggest the
potential for heat storage and passive heating systems to diminish low temperatures at night.
Despite an 18 °C average indoor temperature, during the first school hours, it drops to 13 °C,
and at noon it rises to 30 °C. Winter-low and summer-high indoor peak temperatures in
Barcelona are comparable to peak temperatures during a typical school day in Quito. The
assessment of efficient ECMs requires considering this high thermal amplitude. Hence,
additional research is needed to evaluate passive conditioning techniques. Few projects deal

with the performance of free-floating buildings, despite their potential in the equatorial



highland climate. In contrast, many studies focus on the energy efficiency of schools in

Mediterranean climates [72-74].
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Figure 7 Monthly thermal balance (left) and indoor temperature (right) in studied RBs

Though the calibrated building models allowed for an extensive assessment of their current
state and renovation strategies, their analysis was beyond this study’s scope. For the stocks’
energy demand quantification, the theoretical EUIl for the RBs was calculated in full conditioning
mode and with standard occupation parameters as described in section 2.2.3. When non-
existent, the active systems were set as described in Table 6. Figure 8 displays the estimated EUI
for the four RBs and their contributors. EUIs reflect the differences between case studies and
building typologies. Since cooling load is low in Barcelona, both RBs have relatively similar EUls
to the statistical means of their clusters. End-use energy data revealed discrepancies between
electricity consumption in Barcelona’s clusters and RBs, with their models under-predicting it by
25% (5.25 and 5.4 kWh/m? in BCN.C1 and BCN.C2). However, natural gas consumption
prediction has only a 2% error. Electricity disparity is because the simulation model did not
include outdoor lighting. Nevertheless, outdoor lighting is not relevant to these buildings’
thermal performance. Thus, it did not affect the diversification process, and simple extrapolation

could include it in the up-scaling process.
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Figure 8 Energy use intensity (EUI) for the studied RBs and its variability due to urban conditions

3.3 Third stage: educational stock’s energy use — diversified up-scaling

EUl increases from the calibrated RBs baseline because of variations in urban boundary
conditions (see Figure 8). School RB.UIO.C2 is the only one that has lower and higher EUls under
different urban scenarios. The lower EUI occurs since RB.UIO.C2 is a row building in a medium-
density neighbourhood, whereas the other RBs are detached buildings in low built-up density
areas. Urban boundaries alter RBs’ EUI by 20% with nominal maximum changes of 9.95 kWh/m?
for RB.UIO.C2, 12.95 kWh/m? for RB.BCN.C1, and 22.37 kWh/m? for RB.BCN.C2. School
RB.UIO.C1 has a maximum change of 6.8% because its modular distribution levers out the
variations. In contrast, linear facades cause larger fluctuations in the other RBs. This fluctuation

is because their performance depends on orientation and urban shadowing.

Regarding the studied urban parameters, elevation had no statistical significance (p > 0.05) as
the simulation engine only considers it for pressure and natural ventilation calculations. Table 7
shows the regression coefficients and p-values for the three urban variables and each RB. Built-
up density is significant for all cases, whereas orientation only for RB.BCN.C1 and RB.UIO.C1.
Orientation lesser influence is due to the high glazing ratio in internal courtyards in RB.BC.C2
and the enclosed layout in RB.UIO.C2. In urban stocks where variations in environmental
temperature and global horizontal radiation are significant, including diversified weather files

should be explored. Such is the case of Quito, where weather monitoring showed hourly



differences between north and south zones of the city of 2.5 °C in temperature and 22.3 Wh/m?
in solar radiation. Additional parameters to be considered are urban layout, building adjacency

and street canyon. All of which were fixed in this project.

RB.BCN.C1 RB.BCN.C2 RB.UIO.C1 RB.UIO.C2

B B p B B P B B p B B p
Orientation 0.50 21.63 000 -0.22 -9.40 024 -022 -1.89 001 -007 -2.36 0.22
Elevation 005 -3.77 070 000 007 099 -0.06 -038 051 -0.07 -2.05 0.22
Density 046 037 000 029 031 011 084 012 000 094 075 0.00

Standardized Beta coefficient (B), Unstandardized beta coefficient (B), and probability value (p)
Table 7 Regression coefficients for urban parameters on the RBs’ final EUI

Since elevation was insignificant, orientation and built-up density combined to create twelve
urban categories. Ranges for orientation were +45° from the ordinal directions, and for built-up
density were low (2500-7500 m2/ha), medium (7500-12500 m?/ha) and high (12500-17500
m?/ha). These twelve categories represent a compromise between diminishing the error in the
EUI estimation and increasing the probability of each. The twelve categories had individual
probabilities below 19%, whereas, with 24, the probability was below 12%, with 72, below 9%,
and with 96, below 6%. The prediction error for the twelve categories was less than 4 kWh/m?2.
For numerous building stocks, their categories joint probability distributions should be
calculated for each cluster rather than for the building stock. However, because of the small
populations in these clusters, it was not possible to do so. depicts the individual
probabilities and EUls for each urban category and RB. The names for these categories are the
ordinal direction followed by the built-up density, e.g. NE.L refers to northeast facing buildings

in low built-up density areas.
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Figure 9 Urban-diversified energy use intensity for the studied RBs

Interestingly, the urban layout for RB.BCN.C1 was only similar to that of 13% of schools in this
cluster. Moreover, the most predominant urban conditions increased this RBs EUI by 6.08
kWh/m?2year. For all other school typologies, their RBs had similar urban layouts to most of their
clusters which resulted in variations below 5% for the diversified EUls for 90% schools in cluster
BCN.C2, 70% in UIO.C1, and 64% in UIO.C2. The highest variability in EUls estimation occurred
for RB.BCN.C1 and RB.UIO.C2 with maximum deviations of 14.83 kWh/m? and 12.84 kWh/m?.
Urban shadowing has a large negative impact on these two schools because of their single-sided
window layout and longitudinal facades. School RB.BCN.C2 has a variability below 12% (8.36
kWh/m?) and school RB.UIO.C1 below 8% (2.70 kWh/m?). School RB.BCN.C2 high WWR in its
internal courtyard and RB.UIO.C1 modular configuration reduced the influence of urban
conditions. Diversification analysis showed that for these four RBs, there are urban categories

with lower predicted EUIs, though only 3.4% and 6.3% of their stock in clusters BCN.C1 and



UI0.C1 had lower values. The maximum decrements for the diversified RBs were 2.07 kWh,/m?

and 3.41 kWh/m? for Barcelona and Quito, respectively.

The final diversified energy demand was 15.96 MWh/year for 57 schools in Barcelona and 29.83
MWh/year for 214 schools in Quito. shows the non-diversified and diversified energy
demand for both stocks. Approaches differ significantly for clusters BCN.C1 and UIO.C1 as both
RBs had EUls similar to the lowest energy intensity in the diversified categories. In contrast,
other RBs had EUIs equal to the average diversified energy intensity. The diversified approach
increases the stocks’ energy demand estimation by 5%. Nominal differences between methods
are 651 MWh/year for Barcelona and 34 MWh/year for Quito. However, as RBs do not represent
the entire educational stock in Barcelona, this difference could increase. To date, there is no
available data on the final energy consumption of schools in Barcelona city; nevertheless, 2012
energy data for 212 schools in the coastal area for Barcelona province served for comparison
[46]. On average, schools had an annual measured energy demand of 85 kWh/m?2. This value is
slightly over-predicted (<1%) using this diversified approach, whereas the non-diversified

method under-predicts it by 3%.

k E
Floor area Stock Energy Use

Cluster % Stock [m?] Non-diversified Diversified Delta
Qno [MWh/year]  Qp [MWh/year]
BCN.C1 323 97236.1 7153.3 7712.6 -7.82%
BCN BCN.C2  29.43 88601.7 8163.3 8255.0 -1.12%
Total 61.73  185837.8 15316.7 15967.7 -4.25%
ulo.c1 40.48 302480.3 10639.9 10802.9 -1.53%
ulo Ulo.Cc2 59.52 439149.0 19161.4 19032.5 0.67%
Total 100 741629.3 29801.3 29835.4 -0.11%

Table 8 Educational stock energy demand quantification

4. General discussion

The estimated EUI for the educational stock in Barcelona was 85.92 kWh/m?year and in Quito
was 40.23 kWh/m?year. There are significant differences in EUls between school typologies in
each city, with the average EUI for BCN.C2 typology being 1.25 times higher than for BCN.C1.

Similarly, EUI for UIO.C2 typology is 25% above UIO.C1l. For Barcelona, the two validated



typologies only represent 61.73% of its educational stock and have an average EUI of 91.73
kWh/m?2year. However, data suggests this section is the most energy-intensive, whereas the
remaining 38.27% of this stock has an average EUl of 73.17 kWh/m?year RBs were
more appropriate for Quito because of the stock homogeneity in construction practices and
relatively simple envelopes. Therefore, two RBs represent this entire educational stock. The
authors expected RB.UIO.C2 performed better than RB.UIO.C1 because of its lower thermal
conductivity. RB.UIO.C1 low thermal mass allowed higher heat gains during occupancy hours
and, therefore, its EUl was lower. However, the high thermal amplitude in RB.UIO.C1 requires

careful consideration for the assessment of ECMs.

The motivation behind the simultaneous application of this bottom-up model in two very
distinct educational stocks was the possibility to validate it against standard energy metrics for
at least one stock [18,19]. Barcelona’s conditioned stock was used as a control for the adequacy
of this model, considering both stocks were assessed using the same segmentation,
characterization, calibration and validation processes. While the authors do not expect that the
prediction errors for both stocks to be the same, the UEM model provides a higher certainty in
RBs selection for free-floating stocks. Also, the proposed validation at the building level
permitted verifying that the RBs were representative of the average behaviour of the sample.
Nevertheless, to confirm stocks’ demand, large-scale field experimentation is required. Further
effort should be placed on a building-by-building mapping and simulation for these stocks, as
should be the inclusion of active equipment in the free-floating schools to measure their actual

energy use and compared it to the hypothetical demand estimation.

This model characterization based on buildings’ heat balance makes it transferable to all
educational stocks alike. RBs should be accurate representations of their building stocks, but
considering all variables would cause very complex and sometimes unrealistic RBs. Although the

six variables used in this project proved sufficient for educational stock modelling — as suggested



previously in the literature [35] — higher variability stocks may require different and more
numerous sets of classifiers for segmentation and characterization suited to their specificities
[12,54]. Similarly, classifiers should adapt to the research end-goal; for example, for energy
classification, COP and nominal power should be considered [20,32]. This on-demand
segmentation capability provides flexibility to focus on specific aspects of the studied stocks. In
addition, the reliance on statistical indexes to define accurate segmentation schemes eliminates

the modeller’s direct inference.

This diversification is a less resource-intensive method to account for the lost variability in
reduced-domain stock modelling, whereas whole domain UEMs are computationally expensive
[8]. The data-driven definition for the number of clusters and diversification categories produced
highly representative categories, thus lowering the potential number of archetype buildings.
This project’s diversification focused on urban boundary modelling, but diversification could
model stochastic occupancy and assess probabilistic characterizations [12,16]. Also,
diversification could model primary energy use per fuel type and source contrary to average

national data [31].

5. Conclusions

There is an array of available urban energy models that focus on the Global North, but scarce
models for free-floating stocks because of the inability to validate their outcomes. Recognizing
this difficulty in modelling free-floating building stocks, a novel reductive bottom-up model that
relies on thermophysical building parameters was proposed and applied simultaneously in a
conditioned stock and a free-floating stock. The designed two-step validation evaluated
simultaneously the goodness-of-fit for the stock segmentation scheme and the appropriateness
of the selected real-reference buildings to represent their stock at a building-by-building level.

Also, this conditioned building stock was assessed using standard energy metrics to verify the



accuracy of this model. This verification showed errors below 1% for aggregated energy demand,

thus confirming model adequacy. The main findings in this project are:

1. The annual energy demand for Barcelona educational stock was 15.96 MWh/year, and
for Quito was 29.83 MWh/year. Their average energy use intensity was 85.92 kWh/m?
and 40.23 kWh/m?, respectively. However, it can increase up to 1.2 times because of
urban boundaries.

2. Two reference schools only represent 61% of Barcelona educational stock because of
edifices heterogeneity and retrofit interventions. However, the assessment of this stock
in its as-is state allowed for proper segmentation and grouping of unforeseen similar
buildings.

3. In Quito, 52% of its schools are modular steel-frame classrooms, and 48% are multi-
storey concrete-frame buildings. Two reference buildings represent this entire stock
because of standard construction practices and envelope materiality.

4. The proposed model has three stages: 1) K-means algorithm segments the stocks and
identifies real-reference buildings, building-by-building energy data ratify this selection;
2) detailed Energy Plus models represent these reference buildings, and empirical data
validate their outcomes; 3) joint probability distributions describe urban boundaries in
the studied stocks, these boundaries inform RBs' EUI diversification.

5. Building-level validation and probability up-scaling increased the accuracy of aggregated
energy demand predictions.

6. The additional effort for diversification is not justified to establish energy baselines
because there is only a 5% variation between diversified and non-diversified
approaches. However, diversification is better for building-level analyses, such as the

assessment of energy conservation measures.



Future work will include the probabilistic modelling for reference buildings as will the
propagation of uncertainty from building-level to urban-level energy estimation. Additional
studies will assess energy conservation measures and green-envelope technologies to retrofit

these stocks.
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APPENDIX A

Table A.1 Available reduced-domain urban energy models

Stock Scale Year Model Method DATA Aim VALIDATION SIMULATION Ref
Source Type Level Metrics Method Tool
w NB 2017 Ph-A Hierarchical GIS data, technical A Identify reference AL/  Heating demand Steady- Python [12]
clustering / K- codes buildings BL archetype and B-by-B state R language
mean
R NB 2018 Ph-A K-mean / K- Field surveys / 3D M Best clustering AL EUl archetype Shoebox UMI Rhino [13]
medoids reconstruction technique aggregated and B-by-B Matlab
R language
E N 2010 H K-mean / PCA Energy audits M Energy classification SG Silhouette function None Matlab [14]
tool
R N 2012 H Deterministic / Database (energy use, M Identify reference - None - SPSS [15]
Statistic geometry, thermal buildings
properties, occupancy)
R CcT 2017 Ph-M Deterministic Database A Archetype calibration AL/  NMBE, CvRMSE Single- Matlab [16]
framework BL zone
R NB 2016 Ph-A Hierarchical Questionnaires M Validate reference BL DH archetype and B- Dynamic Design Builder [17]
clustering / K- building by-B Minitab
mean Excel
R NB 2017 Ph-M Deterministic Field surveys M Establish typologies - None Detailed Design Builder [18]
R N 2020 H Deterministic / National statistics A Establish typologies - None - R Language [19]
Statistic
R N 2011  Ph-M Deterministic National statistics, A Establish typologies AL EU archetype Quasi TEE-KENAK [20]
Technical codes aggregated and steady-
national statistics state
R NB 2017 Ph-M Deterministic GIS M Identify reference - None Shoebox Archsim [21]
buildings
w N 2011  Ph-M Deterministic National statistics, A Identify reference AL EU archetype Single- Matlab [22]
Technical codes buildings aggregated and zone
national statistics
R RG 2014  Ph-M Deterministic National statistics, A Estimate energy - None Quasi Italian [24]
Technical codes savings steady- calculation
state method



E N 2018
E RG 2018
E RG 2015
C N 2014
w N 2014
R RG 2011
R N 2014
R RG 2014
E RG 2014
E CcT 2017
C N 2011
w CcT 2018

Ph-SA

Ph-M

Ph-A

Ph-M

H

H

Deterministic /
K-means

K-mean / Linear
regression

K-mean / Linear
regression
K-mean / Linear
regression
Deterministic

Statistic /
Hierarchical
clustering
Deterministic &
statistic

Deterministic /
Statistic
K-means

Deterministic

Deterministic /
Statistic
Deterministic /
Statistic

Questionnaires

EPC

Official database

Commercial Building
Energy Database
National statistics,
Technical codes

EPC

EPC, BBR

National statistics,
Technical codes
Database (geometry,
thermal properties and
energy use)

Field surveys / cadastral
data
ENEA project

EPC, National statistics

A

M

Establish typologies

Cost benefit energy
retrofit to physical
characteristics

Best segmentation
parameters

Energy benchmark
tool

Identify reference
buildings

Compare
deterministic and
clustering
Estimate energy
savings

Establish typologies

Best segmentation
parameters

Identify reference
buildings

Method for reference
building

Identify reference
buildings

AL

AL

AL

AL

SG

AL

AL

SG

BL

None

Index of determination

EUI real vs regression
model

EUI cluster and energy
star

EU archetype
aggregated and
national statistics
Cophenetic coefficient

Heating demand
archetype aggregated
and national statistics

Regression coefficient

None

NRMSE of energy
signature

Quasi
steady-
state
Dynamic

None

Single-
zone

Quasi
steady-
state

Dynamic

Single-
zone

Matlab
TRNSYS

Matlab

Matlab

Tabula
calculation tool

Design Builder

R Language
Design builder

(31]

(32]

(35]
(39]

(54]

[75]

[76]

[77]

(78]

[79]
(80]

(81]

STOCKS: Residential (R), Educational (E), Commercial (C), Whole stock (W). SCALE: Neighbourhood (NB), City (CT), Region (RG), National (N). MODEL TYPE: Physical with manual segmentation (Ph-M), Physical with
semi-automated segmentation (Ph-SA), Physical with automated segmentation (Ph-A), hybrid (H). TYPE OF DATA: measured (M), estimated (A). VALIDATION LEVEL: aggregated (AL), building level (BL),

segmentation validity (SG).



APPENDIX B

Table B.1 Monitored data in the reference school buildings

Category Description Method Processing

Weather Air temperature, humidity, global  City weather Irradiance components (MATLAB)
horizontal radiation, wind speed and  stations (closest to Dew point (Magnus formula)
direction, rain depth. Hourly records school location)

Indoor Indoor air temperature and humidity. Mini-dataloggers Weighted hour values

environment

Energy

Operation

Systems

Envelope

15-minute records for a 3-month
period in classrooms

Electricity and natural gas
consumption for school year 2018-
2019

Occupancy densities and schedule
Classrooms
Offices/Halls/others

Occupants behaviour (classrooms)
Operation of windows and curtains
Use of lighting systems
Use of computation equipment
Clothing

Setpoints
Natural ventilation
Heating
Cooling

HVAC type, location and service zone
HVAC schedule

Lighting type

DHW type, service zone

Ambient lighting use

Lighting power

Computing equipment specifications

Thermal conductivity

In-site blueprints depicting current
distribution, floor-to-ceiling heights,
openable area of windows, location
of active systems.

Error £0.5 °C
+3% RH

Monthly bills

Questionnaires
(teachers)

Questionnaires
(management)

Questionnaires
(teachers)

Questionnaires
(management)

Questionnaires
(maintenance)

Field surveys
Field surveys

Heat-flux meter

Architecture survey

Smooth of non-continuous data

Sub-hourly compact schedules

Sub-hourly compact schedules
CLO insulation calculation from
ASHRAE Fundamentals

Interpolation operation schedules
and measured  indoor  air
temperature

Sub-hourly compact schedules
Lighting power density

Average thermal conductivity

2D digital line drawings (CAD)

Lighting power density was calculated as follows:

For CFL

For LED

Eq.B.1

Eq. B.2

Where LPDc is lighting power density for fluorescent luminaires, LPDgp is lighting power density
for LED luminaires, Lp is the lamp’s nominal power, L, is the number of lamps in a luminaire, BF

is the ballast factor, N is the number of luminaires, and PF is the power factor.



APPENDIX C

Table C.1 Data description and sources used in the creation of the schools’ datasets

Category

Description

Source

Ref

Identification

Form

Envelope

Systems

Operation

ID code

Location

Contact information
Construction year
Listings

Renovation year
Renovation type and component
Gross floor area
Terrain area

Number of floors
Building Layout
Neighbouring
Orientation

Elevation

Urban layout

Built density
Structure type

Wall materiality

Roof materiality
Fenestration type
Electricity grid
Heating

Cooling

DHW

Mechanical ventilation
Drinking water
Sewerage

Schedule

Number of students
Number of employees

Official datasets

Cadastre

Official datasets

Project documents

Project documents / field surveys
Cadastre / GIS

GIS / field surveys
Blueprints /

Technical datasheets / field surveys /

Technical codes

Official datasets

Official datasets

[62,63]

[82,83]
[84,85]

[58-60]

[58-60]
[47,50]

[62,63]

[62,63]

Domestic hot water (DHW), Geographic information systems (GIS).



APPENDIX D. (K-mean clustering results)
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Figure D.1 Stock classification in Barcelona showing (a) Calinski-Harabasz index for different number of k clusters, (b)
distribution of schools regarding number of clusters, and (c) standardized cluster centroids for k = 4
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Figure D.2 Stock classification in Quito showing (a) Calinski-Harabasz index for different number of k clusters, (b)
distribution of schools regarding number of clusters, and (c) standardized cluster centroids for k = 2

Table D.1 TESS and Silhouette indexes for the different clustering schemes

Index Barcelona Quito
K=2 K=3 K=4 K=5 K=2 K=3 K=4 K=5
TESS 96.05 76.55 58.13 47.98 54.03 43.11 34.17 26.05

Silhouette 0.207 0.225 0.270 0.257 0.414 0.289 0.257 0.281




APPENDIX E (Full descriptions for Reference School Buildings)
Reference School RB.BCN.C1

This school model represents 31 schools in Barcelona and 32.2% of the total building floor area.
It is a three-story compact building distributed around a small central courtyard. The main
facade is oriented due south-west and opens to a playground. This school is located in a low
built-up density area with wide canyon streets on three of its sides - its low built-up density is
due to the surrounding park and boulevard. This school complex also houses an independent
gymnasium. This school has 22 classrooms and serves 375 students. This building was monitored
from 3™ September to 10" December 2019 for indoor environmental parameters and during the
last week of January 2020 for envelope thermal conductivity.

Section A-A'
i i iy
| |
L [r_-;--'n )
i S T DG |
= Section B-B' =
] Classroom  [] Tutorships  [[] Special education [O] Library []1Tlab [[] Hallway
[] Dinning room  [B Kitchen [ Toilets  [[] Storage  [[] Offices W Dataloggers

Figure E.1 Exploded axonometric for RB.BCN.C1 showing internal distribution and position of monitoring equipment

Table E.1 Internal gains per type of space in RB.BCN.C1

Space Schedule Occupancy Lighting Lighting Power density Equipment
[people/m?] Type [w/m?] [w/m?]
Classrooms 9:00-11:00 0.5 FL 8.6 4.5
11:30-12:30
15:00-16:30
Offices 9:00-16:30 0.15 FL 6.0 15
Teachers 9.00-16:30 0.15 FL 6.0 4.5
rooms
Dining room 12:30-15:00 0.2 FL 7.8 50 (kitchen)
Library 9:00-16:30 0.15 FL 7.2 3.5
Hall 8:30-18:00 0.05 FL 7.2 None
IT class 50% class 0.5 FL 8.6 30

schedule




Table E.2 Thermal conductivity for envelope elements in RB.BCN.C1

U-value Thickness Heat capacity

Element Material Location [W/m2K] [m] [kJ/m?K]

External walls 280 mm brick, air cavity, 80 mm brick, 15 mm All 1.073 0.450 124.920
plaster

Ground floor Ceramic tiles, 30 mm screed, 200 mm Al 1.791 0.250 221.000

suspended concrete slab

Vinyl floor covering, 40 mm screed, 200 mm Classrooms, 1.602 0.250 i

suspended concrete slab library
Roof Ballast, 120 mm XPS, waterproofing, 75 mm
screed, 300 mm concrete waffle slab, air  Top floor 0.226 1.050 10.500

cavity, 12.5 mm ceiling tiles
Waterproofing, 75 mm screed, 300 mm

concrete waffle slab, 15 mm plaster First floor 1832 0.400 127.270
Floor / ceiling Ceramic tlles,.30 m.m screed, 300 mm co.ncrete Al 1176 0.700 143.050
waffle slab, air cavity, 12.5 mm ceiling tiles
Party walls 15 mm plaster, 70 mm brick, 15 mm plaster All 2.273 0.100 63.720
Windows 6 mm single clear glazing in aluminium frames All 5.770 0.003
Door Hardwood All 2.774 0.040 22.400

Conductivity of construction materials or assemblies retrieved from [50]
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Figure E.2 Calibration and uncertainty in model prediction for indoor air temperature in RB.BCN.C1

Reference School RB.BCN.C2

This typology represents 26 schools in Barcelona and accounts for 29.43% of this stock total
floor area. It has two multi-storey parallel blocks with three storeys in the front block and four
storeys in the rear. The front block is oriented southward to an open courtyard, while the rear
block faces a multi-story residential building. This school is located in a medium built-up
density area with narrow canyon streets on two sides and a park located on its entrance side.
This school has 18 classrooms and serves 250 students. This building was monitored from 2"
September to 11" December 2019 for indoor environmental parameters and during the third



week in January 2020 for envelope thermal conductivity.
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Figure E.3 Exploded axonometric for RB.BCN.C2 showing internal distribution and position of monitoring equipment.

Dataloggers (DG).

Table E.3 Internal gains per type of space in RB.BCN.C2

Schedule Occupancy Lighting  Lighting Power density Equipment
[people/m2] Type [W/m2] [W/m2]
Classrooms 9:00-11:00 0.5 FL 8.6 4.5
11:30-12:30
15:00-16:30
Offices 9:00-16:30 0.15 FL 5.0 15
Teachers 9.00-16:30 0.15 FL 7.6 4.5
rooms
Dining room 12:30-15:00 0.2 FL 6.6 50 (kitchen)
Library 9:00-16:30 0.15 FL 7.3 3.5
Hall 8:30-18:00 0.05 FL 3.0 None
IT class 50% class 0.5 FL 8.6 30
schedule
Table E.4 Thermal conductivity for envelope elements in RB.BCN.C2
Element Material Location U-value Thickness Heat
capacity
[W/m?K] [m] [ki/m?K]
External walls 130 mm brick, air cavity, 80 mm hollow Front and rear 1.328 0.300 131.720
double brick, 15 mm plaster facades
20 mm plaster, 130 mm brick, air cavity, = East and west 1.269 0.300 131.720
80 mm hollow double brick, 15 mm facades
plaster
130 mm concrete cast, air cavity, 80 mm  Below grade, 1.622 0.300 131.720
hollow double brick, 15 mm plaster rear facade
Ground floor Ceramic tiles, 30 mm screed, 150 mm All 2.558 0.300 226.000

concrete slab, gravel, PE film



Vinyl floor covering, 30 mm screed, 150 Ground floor 2.496 0.300 225.800
mm concrete slab, gravel, PE film classrooms

Roof Clay tiles, 40 mm cement plaster, Top floor 0.388 0.500 127.700
waterproofing, 75 mm screed, 60 mm
XPS, 250 mm concrete waffle slab, 15 mm
internal rendering
Waterproof roof covering, 60 mm XPS, First floor 0.396 0.400 127.700
75mm screed, 250 mm concrete waffle
slab, 15 mm plaster

Floor / ceiling  Ceramic tiles, 30 mm screed, 250 mm All 1.697 0.300 143.400
concrete waffle slab, 15 mm internal
rendering

Party walls 15 mm plaster, 70 mm brick, 15 mm All 2.273 0.100 63.720
plaster

Windows 6 mm single clear glazing in aluminium All 5.770 0.003
frames

Door Hardwood All 2.774 0.040 22.400

Conductivity of construction materials or assemblies retrieved from [50]
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Figure E.4 Calibration and uncertainty in model prediction for indoor air temperature in RB.BCN.C2

Reference School RB.UIO.C1

This model is the most common in Quito and represents 112 schools. It is composed of
lightweight steel-frame modular classrooms. However, this model accounts for only 40.48% of
the stocks area because of its small floor area. The modules can house one to floor classrooms
that are accessible from the exterior. This reference school has a cross-shape distribution,
occupies a large terrain, and locates in a low-density urban area. This schools plot limits with
streets on three sides and low-rise residential buildings on its fourth side. This reference school
has 16 classrooms and serves 638 students. The building complex includes a two-story
independent building functioning as a first-aid centre. Classrooms were monitored from 3™ April
3™ to 2" July 2019. All building blocks are free-floating, do not have domestic hot water nor
mechanical ventilation. There is a small kitchen in an independent shed.
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Figure E.5 Axonometric for RB.UIO.C1 showing internal distribution and position of monitoring equipment.
Dataloggers (DG).

Table E.5 Internal gains per type of space in RB.UIO.C1

Space Location Schedule Unit Occupancy  Lighting Lighting Equipment
Area [people/m?] Type Power density [W/m?]
[m?] [W/m2]
Classrooms SB 7:15-9:15 37.3 0.95 LED 3.85 None
MB 9:45-12:35 30.6 0.80 LED 7.05 None
MB 53.3 0.65 FLC 2.25 None
Offices 7:00-13:30 0.15 FLC 4.10 10
Auditorium 2 hours per week 1.4 FLC 2.25 10
Waiting 7:00-13:30 0.2 FLC 2.8 None
room
Table E.6 Thermal conductivity for envelope elements in RB.UIO.C1
H
U-value Thickness ea?
Element Material Location capacity
[W/m2K] [m] [kJ/m2K]
150 mm medium weight concrete block, 20 mm
External dense plaster SB 1.973 0.190 105.500
walls
130 mm solid brick, 20 mm dense plaster MB 2.279 0.170  158.590
Ceramic tl|(.ES, 30 mm screed, 100 mm cast concrete, $8, Admin 2505 0.240 152.690
gravel, PE film
Ground ;
floor 19 mm timber, 10 mm screed, 100 mm cast Classrooms MB  2.375  0.230  159.320
concrete, gravel, PE film
10 mm carpet, 30 mrT\ screed, 100 mm cast Principal office  2.331 0.240 )
concrete, gravel, PE film
§ mm asbestos-cement sheet 0|_1_250 mm conf:r_ete MB 2157 0.220 }
joists, 12.5 mm plasterboard ceiling between joists
§ mm asbestos-cement sheet on 150 mm steel B 6.452 0.006 4560
Roof joists
4 mm zinc sheet_ Qn 100 mm steel joists, 12.5 mm  Between blocks 2352 0120 .
plasterboard ceiling MB
30 mm screed, 150 mm cast concrete, 13 mm dense MB 3.696 0180  234.000

plaster



Ceiling 12.5 mm plasterboard ceiling All 3.790 0.015 2.850
Part 150 mm medium weight concrete block, 13 mm B 1.863 0.180 96.430
y dense plaster
walls
130 mm solid brick, 13 mm dense plaster MB 1.891 0.160 158.590
Windows 3 mm single clear glazing in iron cast frames All 5.894  0.003
Hardwood MB 2.557 0.040 35.130
Door
Steel sheet on iron frame SB 3.124  0.003 11.920

Conductivity of construction materials or assemblies retrieved from [47]
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Figure E.6 Calibration and uncertainty in model prediction for indoor air temperature in RB.UI0.C1

Reference School RB.UIO.C2

14 16 18

20 22 24

(e} Prediction error

26 28
Measured air temperature |°C]

This building model groups 102 schools in Quito and 59.52% of the stock’s area. This model has
larger floor areas than the modular typology, and some buildings surpass the 10000 m?. Large
schools usually have several independent buildings belonging to this typology. This reference
school is a two-story L-shaped building open to a central courtyard. All circulations are external
and only covered by the roof slab. This building has a concrete frame structure and waffle slabs.
This school has no construction setbacks and shares a party wall. Its main facade (entrance) is
oriented due northeast, has 14 classrooms, and serves 631 students. This school complex also
houses two modular units with similar characteristics as those in RB.UIO.C1. This building was
monitored from 4™ April to 2" July 2019. It is also free-floating, lacks domestic hot water and
mechanical ventilation. A small independent shed serves as a kitchen.
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Figure E.7 Exploded axonometric for RB.UIO.C2 showing internal distribution and position of monitoring equipment.

Dataloggers (DG)

Table E.7 Internal gains per type of space in RB.UIO.C2

Space Location Schedule Occupancy Lighting Lighting Power Equipment
[people/m?] Type density [W/m?] [W/m?]
Classrooms PB 7:15-10:15 0.55 LED 2.25 None
10:45-12:35
7:15-10:15
10:45-12:35
PA 13:15-16:15 0.65 LED 2.25 None
16:45-18:35 0.85
Offices 7:00-16:00 0.1 LED 1.50 10
Toilets 7.00-18:45 0.05 FLC 1.2 None
Table E.8 Thermal conductivity for envelope elements in RB.UIO.C2
. Heat
Element Material Location U-value Thickness capacity
[W/m2K] [m] [kJ/m2K]
Externalwalls 200 MM medium weight concrete block, All 1.814 0.240 99.450
20 mm dense plaster
Ground floor  Ceramic tiles, 30 mm screed, 100 mm Al 3.045 0.240 238.580
cast concrete, gravel, PE film
Roof 60 mm screed, 200 mm reticular All 2.310 0.270 230.780
concrete slab, 13 mm dense plaster
Floor / ceiling -0 ™™ timber, 20 mm screed, 100 mm All 2.150 0.150 218.960
concrete slab, 13 mm dense plaster
Party walls 200 mm medium weight concrete block, Al 1.559 0.240 99.450
20 mm dense plaster
Windows 3 mm single clear glazing in iron cast Al 5894 0.003
frames
Door Hardwood All 2.557 0.040 35.130

Conductivity of construction materials or assemblies retrieved from [47]
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Figure E.8 Calibration and uncertainty in model prediction for indoor air temperature in RB.UI0.C2
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