
 Interuniversity Master
 in Statistics and

Operations Research
UPC-UB

Title: Covid-19 detection based on cough analysis using
statistical learning methods

Author: Matteo Perillo

Advisor: Jordi Castro Pérez

Department: Statistics and Operations Research

University: Universitat Politècnica de Catalunya

Academic year: 2020/2021

2

Table of Contents

1 Introduction 5
1.1 COVID-19: A global emergency 5
1.2 Coughing: the voice of the respiratory diseases 6
1.3 Detecting COVID19: A new challenge for Machine Learning . . . 6
1.4 Purpose of this work . 7

2 The analysed data 9
2.1 The Coswara dataset . 9
2.2 Exploratory analysis: Dataset composition 10
2.3 Data preprocessing . 12

3 Feature extraction 15
3.1 Mel frequency cepstral coefficients, velocity and acceleration . . . 16
3.2 Log Energies . 17
3.3 Zero-crossing rate (ZCR) . 18
3.4 Kurtosis . 18
3.5 Merging features . 18

4 Methods 21
4.1 Synthetic Minority Over-sampling Technique (SMOTE) 21
4.2 Logistic regression . 22
4.3 Support Vector Machine . 23
4.4 Multilayer Perceptron . 25

5 Classification process 27
5.1 Hyperparameters tuning . 27
5.2 Area under ROC curve (AUC) 29

6 Results 31
6.1 Training and validation . 31

6.1.1 Logistic regression . 31
6.1.2 Support Vector Machine 33
6.1.3 Multilayer Perceptron . 33

6.2 Retraining and testing on new data 35

3

4 TABLE OF CONTENTS

6.2.1 Logistic regression . 35
6.2.2 Multilayer perceptron . 37

7 Discussion 41

8 Conclusions and future works 45

References 47

Appendices 51

A Plots about the test set 53

B Python code 55
B.1 Exploratory analysis . 55
B.2 Data preprocessing . 56
B.3 Features extraction . 57
B.4 Logistic regression (cross validation) 59
B.5 Multilayer perceptron (cross validation) 61

Chapter 1

Introduction

1.1 COVID-19: A global emergency

COVID-19 (COronaVirus Disease of 2019), caused by the Severe Acute Respi-
ratory Syndrome (SARS-CoV2) virus, was announced as a global pandemic on
February 11, 2020 by the World Health Organization (WHO) (Cucinotta and
Vanelli, 2020).
The most common symptoms of COVID-19 are fever, fatigue and a dry cough
(Wang et al., 2020). Other symptoms include shortness of breath, joint pain,
muscle pain, gastrointestinal symptoms and loss of smell or taste (Carf̀ı et al.,
2020). At the time of writing, the global pandemic is still ongoing, and al-
most 171 million COVID-19 cases have been detected, along with more than
3,550,000 deaths confirmed to be due to the disease (Johns Hopkins University,
2021). This situation has caused a lot of health systems all over the world to
be overrun not only by the significant need of cares for the people affected by
the disease, but also by the need of testing people to detect who has the dis-
ease. This point is crucial in order to promptly treat the patients who present
COVID-19 and isolate them, avoiding the chain of infection to keep growing.
For this reason, in the last year a lot of researchers have been focusing on trying
to set up a fast, economic and reliable instrument to test people for COVID-19.
In particular, relying on other studies which in the past brought satisfying re-
sults in the detection of other respiratory diseases, several attempts of detecting
the presence of COVID-19 using the analysis of the cough sounds have been
carried out. Some of them have obtained pretty encouraging results, even if
they still present some issues to overcome and need to go through more robust
validation before being considered clinically reliable as COVID-19 testing tools.

5

6 CHAPTER 1. INTRODUCTION

1.2 Coughing: the voice of the respiratory dis-
eases

Coughing is one of the predominant symptoms of COVID-19. A cough, also
known as tussis, is a voluntary or involuntary act that clears the throat and
breathing passage of foreign particles, microbes, irritants, fluids, and mucus,
through the rapid expulsion of air from the lungs. A cough in composed by
three phases: first the inhalation (breathing in), then the increase of the pres-
sure in the throat and lungs with the vocal cords closed, and at the end the
explosive release of air when the vocal cords open, giving a cough its character-
istic sound (Newman, 2017).
Coughing is a symptom of more than 100 diseases. These diseases can be pretty
different among them and therefore affect differently the respiratory system. In
most cases, the infection is in the upper respiratory tract and affects the throat:
examples are flu, common cold and laryngitis. In other cases, such as bronchitis
or pneumonia, also the lungs and/or the airways lower down from the windpipe
are infected. Some people are also affected by chronic cough, which can be
due to chronic respiratory diseases like asthma or due to other chronic diseases
such as gastro-oesophageal reflux disease, or even due to other conditions like
smoking.
Consequently, coughs caused by different conditions can be pretty different
among themselves. In particular the behaviour of the glottis has been proven
to change according to the disease affecting the respiratory system, causing
the cough of the sick people to be in turn different depending on their disease
(Korpáš et al., 1996; Knocikova et al., 2008).
Based on these premises, several studies have been conducted to analyse the
acoustics of the cough and classify people based on the disease which affects
them. Some of them obtained remarkable results (Pramono et al., 2016; Rudraraju
et al., 2020). All these studies tried to use machine learning algorithms of dif-
ferent type and complexity to process cough recordings and classify the obser-
vations, dividing the subjects in healthy and unhealthy (binary classification
problems), and/or trying to identify the disease affecting the unhealthy people
(multi class problems).

1.3 Detecting COVID19: A new challenge for
Machine Learning

Trying to follow what has been done in the past for other respiratory diseases,
in the last year a lot of researchers have analysed different type of audio data
in order to understand better the effects of COVID-19 on the respiratory sys-
tem and develop some tool which automatically carries out a diagnosis for the
disease. Besides cough, other respiratory data such as breathing, sneezing and
speech have been processed by machine learning algorithms to diagnose COVID-
19. Nevertheless, for now the analysis of cough recordings seems to be the one

1.4. PURPOSE OF THIS WORK 7

which better can accomplish the task. Two remarkable examples in this sense
are Cough against Covid-19 (Bagad et al., 2020) and AI4COVID19 (Imran et
al., 2020).
Usually the work of these research teams starts from the collection of the data,
i.e. the recordings of people coughing, using websites and mobile apps created
ad hoc. Here the first issues appear, as collecting a consistent number of audio
data respecting certain standards of quality can be pretty difficult. This is a rel-
evant issue, since usually the machine learning algorithms need a dataset with a
pretty big number of observations to build a model which understands correctly
the patterns in the data and is able to achieve good predictive performances.
To increment the number of people submitting their recordings, the only possi-
bility is to advertise these projects and raise awareness in the population about
the potential which ”donating a cough” could have for the purposes of scientific
research. For now, one of the largest crowdsourced datasets existing is the one
who is being collected for the project Coughvid (Orlandic et al., 2020).
Another issue related to these datasets is that the portion of people positive to
COVID-19 which appear in them is pretty small. This has to be taken in ac-
count while trying to build a classifier on these data, since the dataset imbalance
usually deteriorates the performances of the classification models. Nevertheless,
the scientific literature provides a bunch of methods to deal with this situa-
tion, such as weighting, bootstrap and oversampling. The latter has already
been proved effective in one study about COVID-19 cough (Pahar et al., 2020),
in which the Synthetic Minority Oversampling Technique (SMOTE) has been
applied in order to balance the dataset. This balancing technique, along with
Artificial Neural Networks and Deep Neural Networks, has proved to be pretty
effective in distinguishing the subjects with COVID-19 from subjects without
COVID-19.
The final aim of the majority of the research groups which are working on the
task right now is to build a website or a mobile app able to analyse an inputted
audio and return a prediction about the state of the subject. Having such a
tool available would increase dramatically the capacity of detecting COVID-19
for all the health systems all over the world, as in order to have a reliable di-
agnosis for the disease it would be enough to have a smartphone with an app
installed or an internet connection. Both things (especially the former) are
pretty widespread nowadays also in the developing countries, where otherwise
it would be pretty difficult and expensive to get a test, due to the limitations
of the health and infrastructural system. A very good result would already be
to construct a high-sensitivity classifier to use as preliminary screening in order
to select the people who actually could have COVID-19 and test them with the
classical medical tools.

1.4 Purpose of this work

In this work I have tried to reproduce part of what has been done in the last
year by the scientific community about the detection of COVID-19 through the

8 CHAPTER 1. INTRODUCTION

analysis of the cough. In particular, I have drawn inspiration from the work
”COVID-19 Cough Classification using Machine Learning and Global Smart-
phone Recordings” (Pahar et al., 2020), in which the Coswara data set (Sharma
et al., 2020) has been analysed to build a predictive tool for COVID-19 us-
ing several classification models such as Logistic Regression, Support Vector
Machine, Multilayer Perceptron, Convolutional Neural Network and Resnet50
classifier. The latter showed the best results, which seem to be very promising
in order to use this tool as an approved medical means.
Here only Logistic Regression, Support Vector Machine and Multilayer Percep-
tron have been used. The raw audio data from the Coswara repository have
been treated in a way was thought as a simplified version of the state of the art
for audio signal preprocessing of cough. The results obtained are pretty far from
the ones of the reference work (Pahar et al., 2020), but examining the procedure
can be useful to have and idea of how this kind of analysis is performed.

Chapter 2

The analysed data

2.1 The Coswara dataset

As mentioned before, the collection of useful and consistent data for this type
of analysis is not trivial, and it makes pretty difficult the task of the researchers
who are trying to build a diagnostic tool for COVID-19 based on cough sound.
Concurrently, for who wants to engage in this type of analysis without collecting
their own data it can be pretty challenging to find some reliable and publicly
available data set.
One of the few which are available online and present data collected in a pretty
consistent way is the CoSwara (Co = COVID-19, Swara = ”sound” in sanskrit)
data set. This data set has been constructed by the Indian Institute of Science
of Bengaluru, and is publicly available on the corresponding GitHub reposi-
tory (https://github.com/iiscleap/Coswara-Data). At the time of writing (May
2021) the repository contains observations from around 2000 subjects, but at
the time in which this work has been started (February 2021) it contained 1486
subjects, which are the ones used to train the predictive models. The new sub-
jects inserted afterwards in the study have been used as test set, guaranteeing
the blindness of the model in the training phase with respect to the test set.
This splitting has been done based on the assumption that the characteristics of
the cough sound are not changing in time, which seem to be reasonable under
an acoustic and medical point of view, but should be tested more deeply at a
later stage in order to give a stronger validation to the results of the work and
avoid any downwards bias in the estimation of the predictive capacity of the
models.
The collected audio are of 4 types: coughing (hard and shallow), breathing
(deep and shallow), counting (normal and fast) and pronouncing vowels (”a”,
”e” and ”o”). In this work, as in the reference paper (Pahar et al., 2020), only
the hard coughing has been analysed, but, as has been proven by studies for
other respiratory diseases, also the other types of data could have an interesting
potential in achieving good diagnosing performances for COVID-19.

9

10 CHAPTER 2. THE ANALYSED DATA

Figure 2.1: The sampling rate of the collected recordings for all the subjects composing
the dataset. The majority of them (1311) has uploaded recordings sampled at 48 kHz,
while the others have recorded at a sampling rate of 44100 Hz (148 subjects), 16 kHz
(25 subjects) and 192 kHz (2 subjects). As described in Section 2.3, the 25 recordings
sampled at 16 kHz have been excluded from the study, while the others have been
resampled at 44.1 kHz.

The sampling frequency of the majority of the audio is 48 kHz, with some other
audio sampled at 44.1 kHz, 16kHz and 192kHz (Figure 2.1). The recordings
have been resampled in the stage of data preprocessing in order to homogenize
the sampling frequencies for all the data analyzed.

2.2 Exploratory analysis: Dataset composition

For each subject also a bunch of metadata have been collected. This metadata
contains general information such as home region and/or country, age and sex,
and clinical information such as smoking state, symptoms at the time of record-
ing and pre-existing diseases (e.g. asthma).
Clearly, each subject has declared their current COVID-19 status. Also people
currently having some other respiratory disease different from COVID-19 ap-
pear in the data repository, but in this study they are grouped with the healthy
subjects, composing the ”Negative to COVID-19” group.
The Figure 2.2 show some general information about the type of subjects present
in the data set. We can see that we have a pretty wide age range, even if the
majority of the people is aged between 20 and 55 (Figure 2.2a). We can also see
that there is a prevalence of males in the study (Figure 2.2b), and clearly a huge

2.2. EXPLORATORY ANALYSIS: DATASET COMPOSITION 11

portion of the people in the dataset are from India. People from all the other
continents appear in the dataset, but they are significantly underrepresented
compared to Asia (Figure 2.2c). As mentioned before, the subjects positive to
COVID-19 are consistently outnumbered by the negative ones: in the dataset
considered for training the models the subjects positive to COVID-19 are 107
against the 1379 people negative to COVID-19 (Figure 2.2d, i.e. the positive
subjects represent slightly more than the 7% of the total population under study.
This proportion changes in the test set, where the people positive to COVID-19
represent the 27% of the whole test (as show in Figure A.1), meaning that in the
last months more people positive to COVID-19 have submitted their recording
in the repository. Also for what concerns the other aspects such as gender and
geographical origin the test set is slightly more balanced (plots in Appendix A).

(a) (b)

(c) (d)

Figure 2.2: Coswara dataset composition at 15/02/2021. The 89% of the subjects is
aged between 20 and 55 years, the 76% of them is male, and only the 7.2% is affected by
COVID-19. The 89% of the subjects is from India, while apart from Asia only North
America and Europe get to compose more than the 1% of the dataset (respectively
5.5% and 2.8%). The other continents are represented just by 1 or 2 people. These
numbers undergo some slight changes after the process of selection of the subjects
which are actually inserted in the dataset to analyse.

12 CHAPTER 2. THE ANALYSED DATA

Figure 2.3: The scheme of the data preprocessing phase. Starting with 1486 recordings,
after filtering the data according to their sample rate and dropping the empty or
silent recordings, we end up with 1441 audio files, which are resampled at 44.1 kHz,
normalized and cut to delete the silent intervals

2.3 Data preprocessing

The specific acoustic characteristics of the coughing make the analysis of this
kind of data pretty tricky, as only a small part of the recording, namely the
intervals in which the person coughs, is actually bringing useful information.
As the first step of the work, the raw audio data (in format .wav) downloaded
from the CoSwara GitHub repository, have been extracted, and the audio signals
have been normalized. This has been done in order to avoid biases in the analysis
due to differences in the loudness of the collected recording, which can occur
when the recording is not performed in a controlled way, as the loudness of the
obtained signal depends on factors such as the device used to record and the
distance kept from it during the recording.
At this stage, the recordings with a sampling frequency larger than 44.1 kHz
have been downsampled from their original frequency to 44.1 kHz, while the
recordings with a sampling frequency smaller than 44.1 kHz (25 recordings) have
been discarded from the dataset. Moreover, some recordings which resulted to
be empty or totally silent have been dropped, leaving the dataset with 1441
observations.

2.3. DATA PREPROCESSING 13

(a) In the plot of the original
audio (not preprocessed) it
is possible to spot 3 pairs of
coughs divided by intervals
of approximately one second
of silence.

(b) The silent intervals have
been cut out in the prepro-
cessing phase. The length
of the preprocessed audio is
more or less half of the orig-
inal one.

(c) The selected 1-second
interval brings contains a
pair of coughs (the first
pair). The audio wave is
also rescaled in order to
have a range 0-1 for the ab-
solute values of the samples.

Figure 2.4: Plot of the audio waves regarding the subject with ID
0zexHIcM7tQDdnFiEj2Eb0v3g212 (recorded in April 2020).

Subsequently, the silence has been removed from the remaining audio signals,
simply by cutting out all the intervals of 50ms or more presenting energy and
zero crossing rate values below a specified threshold (Cohen-McFarlane et al.,
2019; Bachu et al., 2010). The Figure 2.4 shows the plot of the audio signal of
one recording before and after the preprocessing work. Comparing the frequency
distributions of the lengths of original and preprocessed signals, it is possible
to notice that during the preprocessing process the length of the recordings has
been practically halved (Figure 2.6). It is also important to notice that the
range of preprocessed audio duration is pretty wide, and so it is also the range
of the number of coughs that each person has done in the submitted recording
(it goes from 2 up to more than 7 for a single recording).

At this point, it is necessary to select intervals from each recording which
carry useful information and are comparable among them. In the last years
a bunch of studies has been conducted in the field of event detection through
audio processing applied to medicine, and some of these studies have their main
focus on the recognition of cough (Liu et al., 2014; Amoh and Odame, 2015).
The field is still in development, but some satisfactory results have already been
achieved. Researchers have been able to set up some algorithms which can be
used to analyse audio recording from hospital rooms where the patients are
under control h24. The algorithms have been proven able to detect the cough
of people with their starting and ending instant, and to distinguish the sound
of the cough from other types of sound (Barry et al., 2006).
In this work, not disposing of tools of this type, I have tried to mimic the
rationale of these algorithms, but in a much more simplified way. The idea
is to select from each recording the interval which has more acoustic energy
(i.e., the loudest interval). The length of the interval is the same for all the
individuals in order to make the data easily comparable. As the duration of a

14 CHAPTER 2. THE ANALYSED DATA

Figure 2.6: Histograms of the length of original and preprocessed audio files. It is
possible to see how the shape of the distribution is pretty similar, apart from an
excess of recordings of length 0 in the first plot, which were detected as problematic
and dropped from the dataset. The values of the distribution are more or less rescaled
by 0.5, and the central 90% of preprocessed recordings has length between 0.96s and
5.14 seconds. This is an indication of the fact that some recordings have significantly
more coughs or, in the worst case, more noise than others.

cough is generally between 0.4s and 0.8s, the chosen value for the length of the
interval is of 1s, in order to be sure that a complete coughing enters the interval.
Some other values have been tried out, but some preliminary analysis assessing
the different settings through cross validation proved this one to ensure the
best performance to the models. A potential drawback of using this method to
select the audio intervals to analyse is that there is no way to check if external
noises or multiple coughs are included in the interval. This could affect the
analysis since, especially with pretty simple models, the inputted audio features
should in some way be synchronized in respect to time in order to be analysed
efficiently.

The extraction of the audio waves and their normalization has been per-
formed in Python 3.7 using the librosa package (McFee et al., 2015). The
silence removal and the detection of the loudest interval have been coded from
scratch, relying on the numpy package.

Chapter 3

Feature extraction

After preprocessing the data, the audio features have been extracted from the
recordings. These features carry important information about the audio under
analysis and are supposed to show different patterns in the case in which the
sounds from which they are extracted are different.
In the last years, with the arrival of the deep learning algorithms, also the ”end
to end” strategy has become pretty widespread for audio analysis. It consists
in feeding to the model the raw or preprocessed audio signal and letting it learn
how to extract meaningful features from it. Nevertheless, this kind of strategy
requires powerful computing machines and complex deep learning algorithms to
work, and in several aspects it is still a bleeding edge for audio processing, as it
doesn’t give any control to the analyst about the features to extract. For these
reasons, the classical strategy has been adopted in this study, and the features
have been extracted manually.
To perform the feature extraction, the selected audio intervals have been divided
in frames of 2048 samples, with a hop length of 512 (i.e. the first frame goes
from the 1st to the 2048th sample, the second one goes from the 513th to the
2560th sample, and so on). Hence, each interval of 1 second has been divided
in 87 overlapping frames. From each frame the following features have been
extracted: mel frequency cepstral coefficients, along with its first and second
derivative, log energies, zero-crossing rate and kurtosis.
These features are widely used in the field of audio signal processing, and in
particular when it comes to cough analysis. The first three are specific features
of audio signals, while the other three are more basic ”statistical” features which
also carry import information about the audio signals. In this work the MFCCs,
its derivatives and the zero crossing rate are extracted using the Python package
librosa, which provides specific functions for this purpose, while for the kurtosis
the formula from the package scipy is used, and the log energy is computed by
implementing its formula in the code from scratch.

15

16 CHAPTER 3. FEATURE EXTRACTION

Figure 3.1: The steps for computing the MFCCs from an audio signal. The signal
is split into overlapping frames of fixed dimensions and step between them, and on
each frame the procedure for the extraction of the MFCCs is performed. Once the
coefficients are available, the desired subset of coefficients is kept, and they are all
stacked together to form the matrix of mel frequency cepstral coefficients of the audio
signal.

3.1 Mel frequency cepstral coefficients, velocity
and acceleration

Mel Frequency Cepstral Coefficents (MFCCs) (Davis and Mermelstein, 1980)
are a feature widely used in audio signal processing, in particular in the fields of
automatic speech and speaker recognition (Han et al., 2006). In the last years
they have been also used in some studies about cough analysis, being proved
to be able to distinguish dry cough from wet cough (Chatrzarrin et al., 2011;
Huang et al., 2001).
The MFCCs are coefficients that try to describe mathematically how the sound
is perceived by the human hearing starting from its short time power spectrum.
These coefficients provide a description of the shape of the vocal tract, which
filters and determines the sound produced by a person when speaking, coughing
or breathing. The strength of these features relies in the fact that they carry at
the same time information on the time domain and on the frequency domain of
the signal.
The MFCCs are computed for each frame of audio signal. These frame have to
last enough to bring some useful information, but still need to be short enough
so that the series of samples can be considered statistically stationary. In this
study each frame lasts approximately 46 milliseconds.

To compute the coefficients for a frame, first the power spectrum is computed
by constructing its periodogram, describing how much each sound frequency is
present in the frame. Then the periodogram bins are grouped in overlapping
bands of frequency and summed up to get an idea of how much energy there is
in each frequency region. Usually the number of groups fixed between 26 and

3.2. LOG ENERGIES 17

40.
These groups are not equally spaced, since it would not reproduce the way in
which the human hearing perceives sounds. In fact, humans are not able to
distinguish slightly different frequencies when they are both high as precisely as
they are able to distinguish them when they are both low. The human ear is
more ”precise” at low frequencies.
To space the groups in a way that mimics this structure, the Mel filterbank is
used. The filterbanks are equally spaced on the Mel scale, which is a scale of
perceived frequency. The formula shown below is used to convert a frequency f
to its corresponding to Mel scale value M(f):

M(f) = 2595× log10(1 +
f

700
)

Hence, in the Mel filterbank the first filters, indicating how much acoustic energy
is concentrated at low frequencies, are very narrow, and as the frequencies get
higher the filters get wider, giving only a rough idea of how much energy occurs
at each spot.
Once obtained the filterbank energies, their logarithm is computed. This is a
way of rescaling the magnitude, motivated by the fact that humans don’t hear
loudness on a linear scale. The final step is to compute the discrete cosine
transform of the log filterbank energies. This is done because, as our filterbanks
are all overlapping, the filterbank energies are quite correlated with each other
and this can be a problem with the majority of the classification models. The
DCT decorrelates them avoiding this issue.
Once all of this has been done, the higher order coefficients are discarded, as
they are the ones who bring less useful information in the context of sound
classification. Usually keeping only the first 13 coefficients is enough to build
a good model in the field of speech process, as the higher order coefficients
represent fast changes in the filterbank energies, which can even degrade the
performance of some models.
Nevertheless, sometimes more coefficients are included in order to try to obtain
better performances. In the reference study (Pahar et al., 2020) the number of
coefficients has been treated as a hyperparameter to optimize in order to select
the optimal number of coefficients for each model. In this work only the first 13
MFCCs have been kept to perform the analysis for the sake of simplicity.
The Figure 3.1 summarizes all the steps performed in order to compute the
MFCCs.

3.2 Log Energies

The energy of an audio signal is the mean of the squared wave function. The
logarithm of this value has been proven to be a feature which improves the
performance of neural networks for the analysis of time series (Samiee et al.,
2014). The formula below shows how the log energy is computed for a frame of

18 CHAPTER 3. FEATURE EXTRACTION

N samples in which the signal for the sample at time t is represented as s(t).

L = log10(ε+

∑
|s(t)|2

N
)

The letter epsilon represents a small number (in this work 10−7) used to avoid
having 0 as argument of the logarithm.

3.3 Zero-crossing rate (ZCR)

The zero-crossing rate (ZCR) of a frame is the number of times the signal
changes sign within the frame itself. Representing as λ) the indicator function,
we can compute the zero-crossing rate for each frame through the following
formula.

ZCR =
1

T − 1

T−1∑
t=1

λ(st ∗ st−1 < 0)

3.4 Kurtosis

In probability theory and statistics, the kurtosis is the fourth standardized mo-
ment of a probability distribution of a real-valued random variable. It is a mea-
sure of the ”tailedness” of the probability distribution itself (DeCarlo, 1997). In
the field of audio signal processing, the kurtosis of an audio signal indicates the
scarceness of high amplitudes, i.e. a frame with high amplitudes (in absolute
value) has low kurtosis.
The generic formula for the kurtosis for a random variable X with mean µ and
4-th moment σ4 is the following.

Λx =
E[(xi(k)− µ)4]

σ4

3.5 Merging features

After extracting and standardizing all the features, the frames are grouped and
the features of frames composing the same group are averaged. In this way
the dimension of the feature space is reduced, which can be helpful to improve
the performances of some models. Different options for the number of frames
composing a group have been tried out during some preliminary analysis, and
in the end it has been decided to group 5 frames at a time. Differently from the
frames themselves, the groups are not overlapping.
After performing the merging of features we end up with a features space of 756
dimensions (42 features × 18 groups of frames) for our data.

3.5. MERGING FEATURES 19

Figure 3.2: Plots of the features extracted from the raw audio of the subject with ID
0zexHIcM7tQDdnFiEj2Eb0v3g212.
Comparing the plots among them and with the plots in 2.4, it is possible to notice
how the ZCR and the log energy, as expected, increase when the person coughs. The
kurtosis has the opposite behaviour, showing some peaks in correspondence of the
silent intervals. At the same time, also the MFCCs show a quite clear pattern based
on the alternance of cough and silence. When the person coughs, also the values of
the MFCCs change, with the coefficients of lower grade increasing their value.

20 CHAPTER 3. FEATURE EXTRACTION

Figure 3.3: Plots of the features regarding the interval of 1 second selected from the
audio of the subject with ID 0zexHIcM7tQDdnFiEj2Eb0v3g212.
Here the values of the various features are more constant through the different frames,
as there is almost no silence in the whole interval. Still, it can be noticed pretty clearly
how the features change throughout the different phases of the cough: from the initial
”explosive” phase (high ZCR and log energy, low kurtosis, MFCCs dominated by the
low frequency) to the final ”bedding” phase (low ZCR and log energy, how kurtosis,
MFCCs dominated by the high frequency).
The red vertical lines in the plots show how the 87 frames are grouped in the phase
of features merging.

Chapter 4

Methods

As mentioned before, three different algorithms of supervised learning have been
used to analyse the data and build models classifying the subjects as affected
or non-affected by COVID-19. Before constructing the predictive models, the
observations of the class ”Positive” have been oversampled in order to balance
the dataset.

4.1 Synthetic Minority Over-sampling Technique
(SMOTE)

As already mentioned, the dataset under study suffers from a very strong un-
balancing. This can be a big issue for machine learning techniques like the ones
which have been used in this work, as the huge difference in cardinality between
the two classes can induce the model to systematically misclassify subjects from
the underrepresented class.
To compensate for this imbalance, Synthetic Minority Over-sampling Technique
(SMOTE) (Chawla et al., 2002) has been applied. This technique, which has
already been used successfully in the past for other tasks regarding cough detec-
tion and classification (Windmon et al., 2018), consists in generating synthetic
samples for the minor class (or classes), based on a k-neighbours scheme.
The algorithm works in the following way: observations of the class to upsample
are selected in a random order, and for each of them one of the k nearest neigh-
bours is randomly chosen. The synthetic observation is generated constructing
a new point in the features space lying in the straight line connecting the two
starting points (both existing in the original dataset). The position on this
line is in turn chosen randomly by drawing a number u from a Uniform dis-
tribution between 0 and 1. The formula below describes the generation of one
synthetic observation, xSMOTE , starting from a point x and one of its k-nearest
neighbours, xNN .

xSMOTE = x+ u× (xNN − x), u ∼ Unif(0, 1)

21

22 CHAPTER 4. METHODS

In this work the number of neighbours is fixed as 5, and the upsampling rate
is above 1200 percent, meaning that each subject positive to COVID-19 has
been used as base observation for the generation of synthetic samples at least
12 times. Only a subset of this group has been used for the 13th round of
upsampling.
When upsampling an imbalanced dataset with SMOTE, it is crucial to do that
only inside the training set after having performed the training/validation or
train/test split. In this way synthetic observations generated from observations
in the training set don’t belong to the validation or test set (and vice versa),
as this would cause an overoptimism bias Santos et al., 2018, consisting in a
systematic overestimation of the performances of the model. For this reason,
when the cross-validation scheme has been used to tune the hyperparameters,
the SMOTE has been applied for each fold on specific the training subset of
that specific fold, leaving the validation set (used to measure the performances
of the model) out of the oversampling process (Figure 5.2). In the final stage
of the work, when the final models have been trained on the whole training set,
the SMOTE has been applied on all of it, but always keeping the test set blind
with respect to this procedure (as to all the training process).

4.2 Logistic regression

The logistic regression (LR) is a statistical model belonging to the family of
the generalized linear models. It is used to estimate statistical relations when
the response variable is dichotomous (i.e. for binary classification problems).
This model has been successfully used in the past in some clinical prediction
tasks, and in this study it is used as a baseline against which we measure any
improvements provided by more complex classification methods, as in some
tasks in the past they have not been able to outperform the logistic regression
(Christodoulou et al., 2019).
The most common version of this model, used in this work, requires the use of
a logit link function, consisting in assuming the following relation between the
predictors and the expected value of the response variable.

ln(
PX

1− PX
) = α+Xβ

Considering the two possible outcomes of the experiment as baseline and case,
the value PX can be interpreted as the probability of belonging to the ”case”
class for a subject with observed features X. In this work, the baseline class is
”Negative” and the case class is ”Positive”. Inverting the function, it is easy
to notice that this probability is obtained by applying the so-called sigmoid
function to the linear combination of the features, as shown in the following
formula.

PX =
1

1 + e−(α+Xβ)

At this point the response values are predicted as case if the estimated prob-
ability is larger than a specified threshold and as control otherwise. Generally

4.3. SUPPORT VECTOR MACHINE 23

the threshold value is 0.5, but often using other thresholds can be helpful to
improving the predictive performances of the model.
In this work, it has not been fitted the basic logistic regression. Two special
versions of this model have been applied instead, called lasso (Tibshirani, 1996)
and ridge regression (Le Cessie and Van Houwelingen, 1992). These methods,
belonging to the family of regularized regression or penalized regression, consist
in putting a penalty on, respectively, the absolute value and the squares of the
coefficients to be estimated. In practice, the default loss function to optimize

Lunreg(α̂, β̂) =
∑
i=1

n log(exp(−yi(α+Xβ)) + 1)

is changed in the following for the lasso regression (l1 penalty):

Ll1(α̂, β̂) = ||β||1 + C
∑
i=1

n log(exp(−yi(α+Xβ)) + 1)

and in the following for the ridge (l2 penalty):

Ll2(α̂, β̂) =
1

2
βTβ + C

∑
i=1

n log(exp(−yi(α+Xβ)) + 1)

From the formula it is clear that as the value of C decreases the first term
(the penalty) gets more importance in the computation of the loss function.
As this happens, the model is forced to have null or very small coefficients for
the predictors which don’t have a big impact on the variability of the response
variable. This can be seen as an automatic way to perform features selection,
which can be very important to avoid overfitting when dealing with a dataset
with a number of features fairly large if compared to the number of observa-
tions. Moreover, performing regularization improves the numerical stability of
the model.
The magnitude of the regularization parameters C has been included in the
models as a hyperparameter, and tuned through cross validation in the first
stage of the analysis (Section 5.1).

4.3 Support Vector Machine

The support vector machine (SVM) is another algorithm which can be used for
binary classification. It consists in dividing the features space in two parts with
a hyperplane separating the subjects belonging to different groups: each new
observed subject lying at one side of the hyperplane will be then classified as
belonging to one class, while the subjects on the other side will be classified as
belonging to the other class. A good separation is achieved by the hyper-plane
that has the largest distance to the nearest training data points of any class
(so-called functional margin), since in general the larger the margin the lower
the generalization error of the classifier.
In order to improve the efficiency of the algorithm, the original features are

24 CHAPTER 4. METHODS

transformed through a function φ, and the hyperplane is used to split the space
of transformed features. The scalar product between two transformed points
K(x, y) = φ(x)Tφ(y) is said kernel, and is what actually needs to be fixed in
order to define the support vector machine (while it is not necessary to define
explicitly the corresponding function φ).
Moreover, as it is practically impossible to find two groups which are perfectly
linearly separable, the support vector machine usually involves the use of soft
margins, a regularization technique which allows the model to mispredict some
observations during the fitting procedure, or correctly predict them but letting
them lie between the margins. This is a way to avoid overfitting and ensure
a better capacity of generalization to the model, and it is particularly useful
when the number of observations is outnumbered by the number of features,
or when the observations are pretty noisy. The loss function optimized by the
SVM algorithm with soft margins is:

min
w,b,ξ

1

2
wtw + C

N∑
i=1

ξi

s.t. yi(wφ(xi) + b) + ξi − 1 ≥ 0

ξi ≥ 0, i = 1, ..., n

The function φ is the transformation function, sign(φ(xi) + b) is the prediction
for xi and yi is its true value (true class, labelled with +1 or -1).
Intuitively, we’re trying to maximize the margin (by minimizing wtw), while in-
curring a penalty ξi when a sample is misclassified or within the margin bound-
ary. The penalty term C controls the strength of this penalty, acting as an
inverse regularization parameter: the smaller the parameter, the stronger the
regularization (i.e. the algorithm allows more easily for misclassification).
In this work, the value of this parameter has been tuned through cross valida-
tion, as it has been done for the logistic regression model, and the algorithm
has been used with linear, cubic and radial kernels. The formulas of the kernels
are the following:

Klinear(x, y) = xT y

Kcubic(x, y) = [γ(xT y) + r]3

Kradial(x, y) = exp(−γ||x− y||2)

Here the intercept r for the cubic kernel has been fixed as 0, while the value of
γ in the cubic and the radial kernels has been fixed as

γ =
1

p ∗ var(Xtrain)

where p is the number of columns of X (p = 756) and var(Xtrain) depends on
the specific subset of the training set on which the model is being fitted, and on
how this subset has been oversampled.
In the literature there are already different studies available in which the SVM
has been used as a binary or multiclass classifier to detect and classify cough
events (Tracey et al., 2011; Bhateja et al., 2019).

4.4. MULTILAYER PERCEPTRON 25

Figure 4.1: The scheme of a fully connected multilayer perceptron neural network.
The one represented has two hidden layers and more than one neuron in the output
layer. In this work the output layer has only one neuron, while the number and the
dimensions of the hidden layers are treated as a hyperparameter. The dimensions of
the input layer depend on the duration of the analysed audio and on the length of a
single frame.
The figure has been taken from https://learnopencv.com/image-classification-using-
feedforward-neural-network-in-keras/

4.4 Multilayer Perceptron

A multilayer perceptron (MLP) is a neural network with input layer and output
layer connected by multiple hidden layers of neurons. These models can be
used for classification and regression tasks, having much more flexibility than
the classical statistical models in learning nonlinear patterns. The price to pay
for this flexibility is an increased number of parameters to optimize, and a way
reduced interpretability of the parameters themselves (Olmedo et al., 2018).
In the past these models have already been used with good results for cough
detection and to discriminate influenza cough from other coughs (Sarangi et al.,
2016).
The structure of the multilayer perceptron is the one observed in the figure 4.1.
Each layer has a number of neurons which are connected with all the neurons
of the previous and next layer. Given the vector of values x observed in a layer,
the value of one neuron of the next layer is computed as the linear combination
of these values, to which an activation function is applied, as the formula below
shows.

y = φ(wTx+ b)

The weights w and b are optimized in the supervised training phase, while the
activation function φ is chosen a priori.
In this study the rectified liner unit (ReLu) has been used as activation func-
tion for the hidden layers, while the sigmoid function is used for the output

26 CHAPTER 4. METHODS

layer. Hence, the output of the neural network is a value between 0 and 1 for
each observation, which can be interpreted exactly as the output of the logistic
regression. In fact, it is interesting to notice that the logistic regression is an ar-
tificial neural network without hidden layers, in which the information directly
passes from the input layer to the output neuron through a linear combination
and a sigmoid transformation.
As done for the linear regression, also for this model a l2 regularization pro-
cedure has been used for each neuron, together with the dropout technique.
The dropout (Srivastava et al., 2014) is a method which consists in randomly
inactivating, or dropping, some neurons for one or more layer at each epoch of
the training process, in order to force the fitted model not to give too much
importance to a small set of neurons, which could be a source of overfitting.
This technique approximates training many neural networks with different ar-
chitectures in parallel.
The different candidate values for dropout rate, regularization strength, learn-
ing rate and batch size are specified in the Table 5.2. The best combination
of all these hyperparameters has been found through cross-validation during
the hyperparameters tuning phase (Section 5.1). The number of layers and the
number of neurons in each layer have been fixed before this stage, based on the
results of some preliminary analysis. The model used contains 10 hidden layers,
with the number of neurons exponentially decreasing from 1024 (210) to 2 (21).

Chapter 5

Classification process

5.1 Hyperparameters tuning

As mentioned before, all the stages of this work (data preprocessing, features
extraction, classifiers fitting) present some hyperparameters to be optimized.
For the hyperparameters regarding data preprocessing and features extraction
(i.e. frame dimensions, hop length, number of MFCCs, length of the intervals
and number of frames to merge in each group), it has not been carried out a
real hyperparameter tuning procedure, for sake of computational time. What as
been done is to perform some preliminary analysis with the logistic regression
model, using the cross validation or a bunch of different simple train/validation
splits. These analyses, together with some knowledge drawn from the theory
of audio signal processing and from previous studies on this dataset (Pahar et
al., 2020), are used to fix the values of the non-tuned hyperparameters. These
values are summarized in the Table 5.1 below.

Hyperparameters Stage Fixed value
Samples per frame Data preprocessing 2048
Hop length Data preprocessing 512
Length of the intervals Data preprocessing 1 second
Number of MFCCs Features extraction 26
Number of frames to merge Features extraction 4

Table 5.1: Hyperparameters related to data preprocessing and features extraction.
These hyperparameters have not been included in the systematic tuning process car-
ried out through 5-fold cross validation, but they have been fixed relying on some
well known result regarding audio signal processing and some preliminary analysis
conducted using the logistic regression model.

On the other hand, the hyperparameters regarding the classifiers have been
tuned using the 5-fold cross validation scheme shown in the Figure 5.1. The
training set (N = 1441) has been divided in 5 folds of dimension (nf = 288

27

28 CHAPTER 5. CLASSIFICATION PROCESS

Figure 5.1: The process used to estimate through cross validation the performance of a
model with a given setting of hyperparameters. The SMOTE is applied on the training
subset after each splitting, and the procedure is repeated 5 times. Each estimated
model is evaluated computing the area under ROC curve on the validation subset,
and the evaluation of a specific setting of hyperparameters is obtained by averaging
the 5 results. This procedure is repeated for each combination of hyperparameters,
and at the end the combination providing the best performance is kept to fit the model
on the whole dataset.

5.2. AREA UNDER ROC CURVE (AUC) 29

for f = 1, 2, 3, 4 and nf = 289 for f = 5). The process has been stratified
with respect to the response variable, in order to have a constant percentage of
subjects positive to COVID-19 across the 5 folds. Subsequently, one fold at a
time has been taken out from the training set and the models have been trained
on the remaining observations after oversampling them using SMOTE. This
has been done with all the possible combinations of hyperparameters. Table 5.2
provides an overview of the search sets using for each of them.
Hence, each model has been fitted 5 times on 5 different (overlapping) training
sets, and evaluated on 5 different validation sets (non overlapping among them).
The combination of hyperparameters chosen to fit the final model on the whole
training set is the one which has performed better across the 5 train/validation
splits. As specified before, for each training/validation split the SMOTE has
been applied on the training subset as first step, before fitting the model.

Hyperparameters Classifier Range
l1 regularization penalty (C1) LR 10−7 to 107 in steps of 10i

l2 regularization penalty (C2) LR 10−7 to 107 in steps of 10i

Soft margin reg. penalty (CSVM) SVM 10−7 to 107 in steps of 10i

Kernel function SVM Linear, cubic, radial
l2 regularization penalty (CMLP) MLP 10−7 to 10−3 in steps of 10i

Learning rate MLP 10−5 to 10−3 in steps of 10i

Dropout rate MLP 0.15 to 0.3 in steps of 0.05
Batch size MLP 2k with k = 6, 7, 8

Table 5.2: Search set for the hyperparameters of the three classifiers, optimized using
5-fold cross validation as explained in Figure 5.1.

5.2 Area under ROC curve (AUC)

The receiver operating characteristic (ROC) curve is a graph showing the per-
formance of a classification model at all classification thresholds. In particular,
this curve plots the true positive rate (TPR) or recall against the false positive
rate (FPR) for all the possible classification thresholds. This is a more gen-
eral way of assessing a binary classifier than simply measuring its accuracy, and
it has the strength of suggesting to the researcher the threshold which gives
the best trade off between specificity and sensitivity. A common choice for the
threshold is the one for which the Equal Error Rate is obtained, i.e. the false
positive rate and false negative rate are equal. Clearly, the choice of the thresh-
old is arbitrary, and having the ROC curve can be helpful to understand how
a certain change in the threshold would affect the specificity and sensitivity of
the model.
Moreover, computing the area under the curve of a model it is possible to obtain
a very useful metric to evaluate a binary classifier. In this way the performance
of the model with all the possible thresholds is measured at the same time. This
metric has been used in this work to measure the performances of the models

30 CHAPTER 5. CLASSIFICATION PROCESS

both in the hyperparameters tuning phase and in the analysis on the test set.
In the last stage of the analysis, the threshold corresponding to the Equal Er-
ror Rate and another arbitrary threshold based on the ROC curve have been
computed for each model.

Chapter 6

Results

All analysis has been performed using Python 3.7 and Jupyter Notebook. It
has been carried out on a laptop Asus VivoBook S, with a processor Intel Core
i7-8550U @ 1.80GHz 1.99GHz, 8 GB of RAM and operating system at 64 bit.

6.1 Training and validation

In this phase the models are fitted with all the combination of hyperparameters
listed in the Table 5.2, following the scheme described in the Figure 5.1.

6.1.1 Logistic regression

The logistic regression has been carried out using the function LogisticRegres-
sion of the Python package scikit-learn. As explained before, two different
types of logistic regression are performed, using two different regularization
techniques, i.e. Lasso and Ridge regression. Internally, the function uses two
different solvers (saga and lbfgs, respectively) in order to solve the two different
problems. The parameter C is used to determine the strength of the regular-
ization, following the formula mentioned in the section about the methods.

1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e0 1e1 1e2 1e3 1e4 1e5 1e6 1e7

l1 0.50 0.50 0.50 0.50 0.50 0.59 0.54 0.51 0.50 0.50 0.50 0.50 0.5 0.50 0.50
l2 0.57 0.56 0.55 0.58 0.57 0.54 0.52 0.53 0.53 0.52 0.52 0.52 0.5 0.49 0.49

Table 6.1: Results obtained by cross validation with the logistic regression using 14
different parameters setting. In general, the model works better with a l2 penalty
than with a l1 penalty, even if the best result has been obtained with a l1 penalty and
regularization parameter C = 0.01, for which the score of the model was AUC = 0.59.
The best result for the model with l2 penalty has been obtained with C = 0.0001
(AUC = 0.58).

31

32 CHAPTER 6. RESULTS

Figure 6.1: Results obtained by cross validation with l1 and l2 penalized logistic
regression and different values of the regularization strength. It is possible to see very
clearly that the l2 penalized regression benefits from a strong regularization, as its
performances get worse as the parameter C increases. The l1 penalized regression
obtains the best results with a medium-strong regularization, i.e. with C = 0.001 and
0.01. This is due to the fact that a too strong regularization with l1 penalty can cause
underfitting. It could be interesting to combine the two regularization techniques
using the elastic net with C < 1 and see if it can bring some improvement to the
performances of the model.

The two models with different values of the regularization parameters C are
assessed using the cross validation schema explained in the previous section,
and the results are displayed in the Table 6.1.
As we can see from the table, the best performance has been obtained by the
model using the ridge regularization scheme with the parameter C2 = 0.001.
For what concerns the models fitted using lasso regularization, the best one
turned out to be the one with C1 = 0.01, which is still performing worse than
the majority of the models fitted with the ridge regression.
From the Figure 6.1 we can see better how the two regularization schemes
perform as their regularization strength changes. What is clear is that for
C1 < 0.01, i.e. very strong regularization, the model is not able at all to
correctly classify the subjects in the validation sets (AUC=0.5 corresponds to
the performances of a classifier which randomly guesses the state of a subject).
The performance slightly improves with C1 ≥ 0.01: as already said, C1 = 0.01
gives the best results, but also the other values bring very similar results.
For what concerns the models fitted with l2 penalty, the behaviour is pretty
different: the best performances are obtained with the settings determining
stronger regularization, and the value of the AUC decreases as the regularization
is weakened.
This behaviour is probably related to the fact that a strong regularization on
the absolute value of the parameters generally forces the model to completely
ignore a lot of predictors, maybe too many in this case for our purpose. On the
other hand, in the case of a l2 penalty, the model is usually more ”flexible” in

6.1. TRAINING AND VALIDATION 33

this sense and tends to include more predictors, even though it still forces a lot
of them to have a very low corresponding coefficient.

6.1.2 Support Vector Machine

The support vector machine has been built using the formula SVC of the Python
package svm, specific for support vector machines. The package provides the
possibility to fit the model with different kernels, while fixing also the strength
of the regularization setting the parameter C (as explained in the section about
methods). The different combinations tried for the parameter C and the kernel
function are listed in the table 5.2.
The Table 6.2 summarizes the results for the Support Vector Machine. From
the table it is clear that this model was not able at all to learn the structure of
the data analysed, or at least it was not able to build a prediction model able to
generalize its activity and correctly predict subjects not seen during the phase
of training.

1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e0 1e1 1e2 1e3 1e4 1e5 1e6 1e7

linear 0.503 0.503 0.503 0.503 0.503 0.503 0.498 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
poly 0.503 0.503 0.503 0.503 0.503 0.503 0.498 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
rbf 0.503 0.503 0.503 0.503 0.503 0.503 0.498 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 6.2: The performances of the SVM on the classifying problem with 45 different
combinations of kernel functions and regularization strength. With none of these
combinations the model has been able to achieve performances better than a ”random
guess” (AUC=0.5) on the validation sets.

The analysis of the performances of the support vector machine on the train-
ing subsets has shown how the model was suffering from a very strong overfitting,
as the AUC value for the train subsets was always consistently higher than 0.5.
This means that the model was learning patterns from the training data which
were not generalizable to the validation ones.
Due to the bad performance shown in this phase, this model has not been trained
on the whole dataset to measure its performances on the test set.

6.1.3 Multilayer Perceptron

The multilayer perceptron has been built using the functions provided by the
Python library TensorFlow through its interface Keras, which is one of the most
used for the construction and fitting of neural networks.
It has been constructed a neural network with 10 hidden layers of dimensions 2i

with i ranging from 10 (the first hidden layer had 1024 neurons) to 1 (the last
hidden layer had 2 neurons). The number of neurons of the input layer is equal
to the cardinality of the feature space (i.e. 756), while the output layer has
one neuron, as this is a neural network constructed for the binary classification.

34 CHAPTER 6. RESULTS

The activation function chosen for the hidden layers is the rectified linear unit
function, while for the output layer the sigmoid function has been set, as it is
usually done in neural networks for binary classification.
In this phase the early stopping method is used, with patience of 20 epochs.
This means that the neural network stops training if for 20 epochs in a row the
performances on the validation set are not improving. At that point the weights
that allowed to get the best performances are kept as fitted weights of the net-
work, and the AUC of that model on the validation set is used as estimate for
the performances of the model itself.

C LR DR BS Avg AUC AVG Ep
1.000000e-03 0.00010 0.25 128 0.653997 32.8
1.000000e-06 0.00010 0.15 256 0.644895 38.4
1.000000e-06 0.00001 0.30 128 0.642774 39.2
1.000000e-03 0.00100 0.15 128 0.641747 26.8
1.000000e-03 0.00100 0.20 64 0.638234 26.2
1.000000e-06 0.00010 0.25 64 0.638218 30.4
1.000000e-03 0.00010 0.30 256 0.637396 45.0
1.000000e-03 0.00010 0.20 128 0.637343 45.0
1.000000e-06 0.00100 0.20 128 0.636996 31.8
1.000000e-04 0.00001 0.15 256 0.636870 78.4
1.000000e-07 0.00100 0.30 64 0.635344 31.6
1.000000e-07 0.00010 0.20 64 0.633503 32.2
1.000000e-03 0.00100 0.30 128 0.633076 36.0
1.000000e-04 0.00010 0.20 256 0.632655 29.6
1.000000e-04 0.00001 0.15 64 0.632414 32.8
1.000000e-03 0.00010 0.15 64 0.631706 24.0
1.000000e-06 0.00010 0.25 128 0.630149 27.0
1.000000e-03 0.00001 0.15 64 0.630104 41.4
1.000000e-07 0.00010 0.30 64 0.630095 40.6
1.000000e-04 0.00001 0.20 64 0.630071 58.8

Table 6.3: The 20 best combinations of hyperparameters of the multilayer perceptron
in terms of performances on the test set. The best combination is: regularization
parameter C = 0.0001, learning rate LR = 0.0001, dropout rate DR = 0.25, batch
size BS = 128. All the first 20 combinations exceed the value of 0.63 for the AUC,
which is far from the desirable results but already shows an improvement with respect
to the results obtained with the Logistic Regression. It is interesting to see how, as
expected, the average number of epochs before the stop of the algorithm is linked with
the fixed learning rate.

It has been used Adam as a solver, setting its learning rate as a hyper-
parameter. As shown in the table 5.2, also the strength of the regularization
parameter l2, the dropout rate and the batch size are used as hyperparameters.
The whole 5-fold cross validation procedure is designed to check 180 different
combinations of hyperparameters.

6.2. RETRAINING AND TESTING ON NEW DATA 35

The table 6.3 shows the evaluation of the performances of the multilayer per-
ceptron for the 20 best combinations of hyperparameters. From this table we
can see that this model seems to be able to improve the performances of the
Logistic Regression, since all the first 20 combination exceed the AUC value of
0.63, outperforming consistently the results obtained with the logistic regres-
sion.
The best combination of hyperparameters for this model on these data turned
out to be the following: regularization parameter C = 0.0001, learning rate
LR = 0.0001, dropout rate DR = 0.25, batch size BS = 128. This combination
returns an average AUC on the 5 folds of 0.65, while the average number of
epochs is equal to 33, which means that the best weights for the model were
found after 13 epochs.

6.2 Retraining and testing on new data

At this point, the logistic regression and the multilayer perceptron have been
trained again on the whole dataset using the combinations of hyperparameters
identified as the best by the tuning through cross validation.
The support vector machine has been excluded by this phase, since it returned
very poor results during the hyperparameters tuning phase, showing that no
one of the hyperparameters’ combination tried out was actually useful to build
a model able to learn a pattern from the training subset which could be gener-
alizable on the unseen validation subset.
The models built on the whole training set showed performances slightly worse
than the ones obtained during the hyperparameters tuning phase. The analysis
of these results can help in understanding better the characteristics of the two
models and how they are built and assessed.

6.2.1 Logistic regression

The model has been fitted on the whole training set using the l1 penalty with
regularization parameter C = 0.01. The obtained classifier has been used to
predict the class of the subjects in the test set.
Since the training set has been oversampled with SMOTE before fitting the
model, the whole procedure has a random nature. So the training and assessing
schema has been repeated 10 times setting 10 different seeds on the SMOTE
procedure in Python in order to understand how much the model depends on
this randomness, and to assess the model in a way which would not depend too
much on the oversampling performed in a single case. The results are shown
in the Table 6.4, from where we can see that the performances of the model do
not depend that much on the random nature of the SMOTE procedure. On
the other hand, the performances seem to be consistently worse than the ones
obtained by the same model on the training set with 5-fold cross validation: the
average AUC through the 10 runs is AUC = 0.51, which is only slightly better
than a random guess.

36 CHAPTER 6. RESULTS

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Avg Std
AUC 0.513 0.51 0.514 0.521 0.505 0.511 0.502 0.524 0.52 0.513 0.513 0.0065

Table 6.4: The values of the AUC for the final logistic regression model with 10
different seeds for the SMOTE function. The table displays also the average and the
standard deviation of the 10 AUC value.

It can be useful to focus on one single ”fitting and assessing” procedure and
to analyse it in details. To do so, the run which performed better (the 7th run)
is considered.
This classifier shows an area under the ROC curve of AUCtest = 0.524 on
the test set, while re-classifying with it the subjects of the training brings an
AUCtraining = 0.702. This means that the models suffers from overfitting,
which is a problem that had already been noticed during the hyperparameters
tuning phase.
The False Positive Rate and the False Negative Rate with different thresholds
are considered in order to build the curve the ROC curve of the model, which
is shown in Figure 6.4, and to find the best threshold γ that one would use to
optimize the performance of this particular classifier. Two different methods are
used: the Equal Error Rate and the ”largest distance from the random classifier
line”.

Figure 6.2: The values of FPR and FNR for one fitted logistic regression. The plot
shows the typical ”X” shape, with EER represented by the value of the two functions
where the two curves cross. The lowest estimated probability in this case is around
0.2, while the highest is around 0.8, and this is reflected in the plot, from which we
can see that thresholds below 0.2 and above 0.8 would just predict all the subjects as
Positive or as Negative, respectively.

The threshold at Equal Error Rate, as explained in the section 5.2, is the
threshold for which the FNR and the FPR are equal. For this particular problem
it is equal to γEER = 0.42, which brings a False Positive Rate of TPR = 0.465
and, by definition, the same value of the False Negative Rate. This means that

6.2. RETRAINING AND TESTING ON NEW DATA 37

with this classifier and this threshold, each subject (positive or negative) of the
test set would have a probability of being correctly classified of about 53.5%.
The other method consists in finding the point on the ROC curve which has
the largest distance from the ROC curve of a random classifier (AUC = 0.5),
represented in the Figure 6.4 at the end of the section as an orange dashed line.
In some sense, this is the point which guarantees the best possible improving
with respect to the performances of a ”coin toss” classification method. The
best threshold according to this method is γDRC = 0.45, which brings a True
Positive Rate of TPR = 0.500 and a True Negative Rate of TNR = 0.625. This
means that using this threshold, a subject with COVID-19 has the 50% of prob-
ability of being correctly diagnosed of the disease, while a healthy subject has
the 37.5% of probability of being incorrectly classified as affected by COVID-19.
Basically, choosing γDRC over γEER would mean to trade the slight improve-
ment in terms of sensitivity (capacity of correctly identify unhealthy subjects)
that γEER ensures with respect to a random classifier, obtaining in exchange a
bigger improvement in terms of specificity (capacity of not misclassifying healthy
subjects). Knowing this, one can choose the threshold who prefers and that fits
better their objectives while using this model (which can also be different from
the two proposed here).

6.2.2 Multilayer perceptron

The model has been refitted with the hyperparameters found to be optimal in
Section 6.1.3. In this model the sources of randomness are numerous and are in-
trinsic to the structure of the model itself. Aside from the randomness brought
by the SMOTE, the model used in this work presents randomness due to the
random nature of the initialization of the values for the weights and to the use
of the dropout regularization technique.
As done for logistic regression, the multilayer perceptron has been fitted 10
times with different seeds in order to estimate its performances more precisely,
and simultaneously estimate the variability of the performances, which are due
to the random components of the model. The results are shown in the Table
6.5, from which we can see that on the test set the model performed way worse
than during the hyperparameters tuning phase (AUC = 0.53), and also it has
an increased variability of performances with respect to the logistic regression
classifier.

Run 0 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Avg Std
AUC 0.512 0.517 0.5 0.537 0.531 0.535 0.528 0.555 0.527 0.56 0.53 0.0175

Table 6.5: The values of the AUC for the final multilayer perceptron with 10 different
seeds for the SMOTE function. The table displays also the average and the standard
deviation of the 10 AUC value.

Analysing in details the scores predicted by these models for the observa-
tions of the test set, it is possible to identify a strange behaviour of the models

38 CHAPTER 6. RESULTS

which could be a source of issues when it comes to practically apply it to per-
form prediction. Basically, in almost all the constructed models, the majority
of the predicted scores are about 0.45 and 0.55. With predicted probabilities
that are so squeezed and close between each other, it can be very difficult to
find an optimal threshold for the models, as a very small change in the value of
the threshold can totally change the behaviour of the model.
The Figure 6.3 shows the evolution of the AUC value and of the loss function
for one trained model across all the epochs. It is possible to notice how in the
beginning the performances on the training and test set are very similar, and
as the model trains it improves a lot its capacity of predicting elements of the
training set, but the same does not happen on the test set. So in this case the
model is strongly overfitting the training data despite the use of the regulariza-
tion techniques.
The Figure 6.4 in the next page shows the ROC curve constructed for one par-
ticular model, together with two proposed thresholds, computed as done before
for the logistic regression classifier. In this particular case, the two proposed
thresholds coincide, and we have γEER = γDRC = 0.52. This brings to a very
low True Positives Rate (TPR = 0.109 and a very high True Negatives Rate
(TNR = 0.981), meaning that one person without COVID-19 has the 98.1%
of probability to be classified as negative, but also a person with COVID-19
has a very high probability (89.1%) of being classified as negative. Basically,
using that threshold, the model will predict almost everyone as not affected by
COVID-19. This is a behaviour that we want to avoid, so it could be worth it
to look for another threshold for this model, even if given the low AUC value
every threshold will determine a model with some big drawback.

Figure 6.3: The evolution of the AUC and loss function values of one multilayer
perceptron during its training. The green vertical lines represent the epoch in which
the highest AUC on the test set has been observed (AUC = 0.54, at epoch 54). It is
possible to see how in both plots after the first 10 epochs the curve for training and
test set start to diverge, with the model learning very good how to classify the subjects
of the training set, but struggling a lot with the ones of the test set. The loss function
on the test set keeps decreasing for the whole training, but its behaviour shows more
and more fluctuations as the training proceeds. For what concerns the AUC, the test
set reaches its highest value after improving pretty constantly but very slowly for 54
epochs. The training lasted 74 epochs, which is way more than what it had taken in
the phase of hyperparameters tuning with the same hyperparameters.

6.2. RETRAINING AND TESTING ON NEW DATA 39

Figure 6.4: The ROC curves of one of the 10 fitted models for each classifier.
The curve of the logistic regression describes a classifier with performances very similar
to the random classifier for extreme thresholds (bottom-left and top-right corners of
the plot) and some improvement for intermediate values of the threshold. Here it is
possible to see how the threshold γEER is a bit better than γDRC in terms of sensitivity
(the yellow point on the blue curve is slightly higher than the green point), but the
latter guarantees a good improving in terms of specificity (it is significantly more at
the left).
The curve of the multilayer perceptron shows the largest improvements over the ran-
dom classifier for thresholds who favour the specificity over the sensitivity (bottom-left
corner). The MLP classifier gets closer and closer to a random classifier as the thresh-
old is lifted. The performances of the MLP, differently from the ones of the LR, never
get worse than the ones of the random classifier (the curve never crosses the orange
line).

40 CHAPTER 6. RESULTS

Chapter 7

Discussion

The results obtained in this work are far from being as promising as other results
which have been obtained in different published works during the last year.
The logistic regression model, which has been used as a baseline to compare the
results obtained by other models, has performed poorly (AUC = 0.58 in the
hyperparameters tuning phase, AUC = 0.51 on the test set), but has been able
to recognize some useful patter in order to perform better than a ”toss of coin”
predictor (random guess of the class).
The support vector machine has not been able at all to learn some generalizable
patterns from the test set, proving itself unable to predict better than a ”toss of
coin predictor” on the validation set (AUC = 0.5 in the hyperparameters tuning
phase). This result a bit of surprising, since in the study of Pahar et al. the
SVM performed consistently better than the logistic regression. One possible
cause for this poor performance with respect to the logistic regression could
have been the way in which the data set has been standardized. In fact, each of
the 42 features has been standardized on an individual basis, in order to obtain
for each subject 42 vectors of 18 entries (number of groups of frames) with zero
mean and unitary standard deviation. This is the standard practice for audio
signal processing and ensures also to have a good grade of comparability for the
magnitude of different features.
Nevertheless, relying on the robustness of this first standardization, it has
not been performed a proper standardization of the features across the whole
dataset before performing the analysis, which would have rescaled each of the
756 columns of the dataset in order to obtain mean zero and unitary standard
deviation for each of them. This could have deteriorated the performances of
the support vector machine, as it is a method based on the distances between
data points, and its performances can be affected consistently from a range of
magnitude of the features which is too wide. The Figure 7.1 shows the value of
the mean and standard deviation for all the 756 columns of the training data
set.

On the other hand, the multilayer perceptron has shown some interesting
improvements in the performances with respect to the logistic regression in the

41

42 CHAPTER 7. DISCUSSION

Figure 7.1: Mean and standard deviation for each column of the final dataset. They
seem to follow a pretty systematic periodic scheme, with 18 well identifiable repetitions
of it. This is easily explained by the structure of the dataset, which can be considered
as 18 repetitions of the same set of features.
For what concerns the standard deviation, which is the one that can affect the perfor-
mance of the classification algorithms, we can notice that its range is between 0.5 and
1.1, i.e. the column with minimum variability has half the s.d. of the one with the
maximum one. This does not seem an exaggeratedly extreme situation, but still could
be improved by standardizing each column before performing the analysis. The red
lines in the plots represent the mean and standard deviation that one would obtain
by doing that.

hyperparameter tuning phase (AUC = 0.65), but it turned out to perform a lot
worse on the test set (AUC = 0.53). Moreover, in the several performed runs,
the model often showed some strange values in terms of predicted probabilities
on the validation or test set, which were usually all very close to 0.5, and almost
always not less than 0.4. This is an undesirable behaviour, and it could be
useful to change something in the structure of the classifier in order to avoid
this ”squeezing” of estimated probabilities.
Also, the causes of the dramatic deterioration of the performances on the unseen
data should be subject of deeper analysis, as not only it could be due to some
issue of the model, but it could also be caused by some systematic difference
in the features of the audio of the training and test set. In that case, it could
be worth to consider re-designing the analysis adding a stratification based on
the time of submission when splitting the recordings between train and test set.
Clearly, this was not possible in this work as the data used as test set were not
available at the time in which the work has become.
The gap between the performances of the models in this study and in the one of
Pahar et al., 2020 is most likely due to the fact that in this work several simpli-
fications with respect to what is done in high-level studies has been performed
at different stages of the work, from the data preprocessing to the feature ex-
traction and the fit of the model.
In particular, the data preprocessing, as already mentioned before, has been per-

43

formed in a way that mimics only superficially the optimal way of proceeding
to analyse recordings of people coughing. To overcome the issue of not having a
good algorithm of cough detection at my disposal, I merely selected the loudest
interval of one second from each recording, since in general it should include the
loudest coughing for each person.
This way of proceeding can be a source of issues at different levels. First, even if
the structure of the recordings ensures with some confidence that in the loudest
second appears a cough, there is a high risk that in the audio recorded in noisy
conditions the loudest second will also include a high level of noise, which results
in feeding some bad data to the models. At the same time, even if we are pretty
sure that one cough will be selected by finding the loudest 1-second window in
the recording, every cough will appear in a different part of the interval, i.e. it
can appear in the first half second, in the middle, in the end, in the worst case,
it could even appear in the interval but be cut, as the last part of the cough
is usually pretty quiet. On the other hand, in some case one interval of one
second could contain two coughing, if they were short enough and not too far
in time. This general lack of synchrony between the selected intervals which are
used to build the models can be a problem especially for pretty simple models
such as logistic regression and support vector machine, for which it is difficult to
expect that they would learn from the data which part of the selected intervals
is the useful one and how to automatically synchronize this part for different
observations.
Another issue related with this way of selecting the data is that it discards a lot
of potentially useful information from some observations. In fact, as seen in the
Figure 2.6, more than a half of the recordings have a length larger than 5s, which
means that selecting just 1s out of that recording corresponds to automatically
discard the 80% or more of the recording. A way to avoid this issue could be
to select multiple intervals for each observation and perform the analysis us-
ing some extensions of the models presented in this work which are built for
datasets containing multiple observations from the same subject. This solution
could also be a good way to increase the number of observations actually fed
to the models, but at the same time it would force us to drop from the dataset
the subjects which have uploaded recordings too short to provide the desired
number of (non-overlapping) intervals, diminishing the already small number of
different subjects included in the study.
For what concerns the features extraction and the training of the models, in or-
der to avoid obtaining computational times exaggeratedly long, it was necessary
to reduce the space of the hyperparameters tried out for the different models.
As already mentioned, the number of mel frequency cepstral coefficients to keep
in the model has been fixed to 13 were after some preliminary analysis proved
that larger numbers did not improve the performances of the logistic regression.
Anyway, the results of the study of Pahar et al., 2020 would suggest that it
could be interesting to fit the multilayer perceptron keeping more MFCCs to
see if this brings some improvement.
For what concerns the logistic regression model, the number of hyperparame-
ters tried out has been significantly reduced with respect to the study of Pahar

44 CHAPTER 7. DISCUSSION

et al., 2020, as in that paper in addition to l1 and l2 penalties it has been tried
out also the linear combination of the two (elastic net) with the weight to give
to each penalty used as additional hyperparameter to optimize.
Speaking of the multilayer perceptron, for the sake of computational time, the
optimal dimension of the net, i.e. the optimal number of layers and neurons for
each layer, have been fixed a priori. At the same time, also the set of potential
values for the other hyperparameters has been reduced with respect to the one
explored by the study of Pahar et al., 2020. In order to select which values to
keep in the parameters set to explore, some preliminary analysis with different
possible combination of hyperparameters have been performed.

Chapter 8

Conclusions and future
works

In this work I have tried to use logistic regression, support vector machine and
multilayer perceptron to build a prediction tool for the COVID-19 based on the
sound of the cough of people.
Among the three classifiers, the one which has worked better is the multilayer
perceptron with 10 hidden layers, as it was expected at the beginning. The
logistic regression has performed worse than the MLP, but still better than
the support vector machine, which was not able to classify the unseen subjects
better than a model which randomly guesses the correct class.
As already stated before, this work is inspired on some works already published
on the topic, but did not have the aim to obtain the same results, due to some
obvious differences from the point of view of the availability of tools, knowledges
and resources of the people involved. Nevertheless, this could be an interesting
starting point for some work on audio signal processing able to actually classify
coughs in a robust manner and to correctly identify people affected by COVID-
19 based on this type of analysis.
The crucial change to perform in order to improve the results of the model
could be the introduction of an algorithm able to detect the coughs from the
recording. In this way the selection of intervals of fixed length, which is a very
naive method, would be substituted by the selection of coughs, which is what
actually matters for the purpose of this work.
At that point, as the coughs are of different length, the frames would be merged
by fixing the number of groups of frames to obtain, as it has been done by
Pahar et al. in their work. In this way the same number of features would
be extracted from all the coughs, regardless their duration, and at the same
time the dimensionality of the feature space would be reduced. Moreover, this
style of merging would divide the features according to the phase of the cough
to which they correspond, ensuring a synchronization of the features among
different coughs which can be an important attribute for the dataset in order

45

46 CHAPTER 8. CONCLUSIONS AND FUTURE WORKS

to improve the performances of the predicting model.

Figure 8.1: An overview of how the algorithm for the selection of the coughs cur-
rently works. The green lines represent the beginning of a cough, while the red lines
represent the end. On the left we can see how the algorithm is able to identify the
coughs on the audio with ID 0zexHIcM7tQDdnFiEj2Eb0v3g212, but it is able to cor-
rectly annotate the pair of coughs as two different events just for one pair out of
three (the third); the other two pairs are considered as two unique events. This could
seem a trivial issue, but can actually be very harmful for the analysis, and proba-
bly it is not solvable if not considering other features in the algorithm more than
the loudness of each frame. On the right there is an example of a pretty noisy au-
dio (ID: eP8gEM0KcBU6S5JpMdycX74KP3p2), in which the presence of continuous
background noise prevents the algorithm to identify when one cough ends, so the whole
audio is (wrongly) annotated as a cough. To overcome this problem it could be enough
to tune properly the threshold below which the signal is considered silent, in order to
discard more noise, but this could bring some other problems, so it needs to be tackled
carefully.

Here too, a further improvement for the work could be obtained by selecting
more than one cough for each subject. This should be doable without discarding
any observations (or very few) since almost all the recordings have at least 2
coughs. Once extracted the desired number of coughs per subject, the data
would be analysed to some extension of the logistic regression and the multilayer
perceptron binary classifier for repeated observations.
A very basic algorithm for the identification of the coughs has already been
constructed, but it was impossible to introduce it in this work since it is still
unable to properly distinguish cough from continued noise, neither to identify
two coughs not intercut by a pretty long silence as two different events. Anyway,
it has already been proven effective on some audio of the dataset, and hopefully
it will be a good starting point to improve this work. The Figure 8.1 shows how
this algorithm for cough identification works on two different audio present in
the CoSwara data set.

References

Amoh, J., & Odame, K. (2015). Deepcough: A deep convolutional neural net-
work in a wearable cough detection system. 2015 IEEE Biomedical Cir-
cuits and Systems Conference (BioCAS), 1–4.

Bachu, R., Kopparthi, S., Adapa, B., & Barkana, B. D. (2010). Voiced/un-
voiced decision for speech signals based on zero-crossing rate and en-
ergy. Advanced techniques in computing sciences and software engineer-
ing (pp. 279–282). Springer.

Bagad, P., Dalmia, A., Doshi, J., Nagrani, A., Bhamare, P., Mahale, A., Rane,
S., Agarwal, N., & Panicker, R. (2020). Cough against covid: Evidence
of covid-19 signature in cough sounds. arXiv preprint arXiv:2009.08790.

Barry, S. J., Dane, A. D., Morice, A. H., & Walmsley, A. D. (2006). The auto-
matic recognition and counting of cough. Cough, 2 (1), 1–9.

Bhateja, V., Taquee, A., & Sharma, D. K. (2019). Pre-processing and classifica-
tion of cough sounds in noisy environment using svm. 2019 4th Inter-
national Conference on Information Systems and Computer Networks
(ISCON), 822–826.

Carf̀ı, A., Bernabei, R., Landi, F., et al. (2020). Persistent symptoms in pa-
tients after acute covid-19. Journal of the American Medical Associa-
tion, 324 (6), 603–605.

Chatrzarrin, H., Arcelus, A., Goubran, R., & Knoefel, F. (2011). Feature extrac-
tion for the differentiation of dry and wet cough sounds. 2011 IEEE in-
ternational symposium on medical measurements and applications, 162–
166.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote:
Synthetic minority over-sampling technique. Journal of Artificial Intel-
ligence Research, 16, 321–357.

Christodoulou, E., Ma, J., Collins, G. S., Steyerberg, E. W., Verbakel, J. Y.,
& Van Calster, B. (2019). A systematic review shows no performance
benefit of machine learning over logistic regression for clinical prediction
models. Journal of Clinical Epidemiology, 110, 12–22.

Cohen-McFarlane, M., Goubran, R., & Knoefel, F. (2019). Comparison of silence
removal methods for the identification of audio cough events. 2019 41st
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), 1263–1268.

47

48 REFERENCES

Cucinotta, D., & Vanelli, M. (2020). Who declares covid-19 a pandemic. Acta
Bio Medica: Atenei Parmensis, 91 (1), 157.

Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 28 (4),
357–366.

DeCarlo, L. T. (1997). On the meaning and use of kurtosis. Psychological Meth-
ods, 2 (3), 292.

Han, W., Chan, C.-F., Choy, C.-S., & Pun, K.-P. (2006). An efficient mfcc ex-
traction method in speech recognition. 2006 IEEE international sym-
posium on circuits and systems, 4–pp.

Johns Hopkins University. (2021). Covid-19 dashboard by the center for systems
science and engineering (csse).

Huang, X., Acero, A., Hon, H.-W., & Reddy, R. (2001). Spoken language pro-
cessing: A guide to theory, algorithm, and system development. Prentice
hall PTR.

Imran, A., Posokhova, I., Qureshi, H. N., Masood, U., Riaz, M. S., Ali, K.,
John, C. N., Hussain, M. I., & Nabeel, M. (2020). Ai4covid-19: Ai en-
abled preliminary diagnosis for covid-19 from cough samples via an app.
Informatics in Medicine Unlocked, 20, 100378.

Knocikova, J., Korpas, J., Vrabec, M., & Javorka, M. (2008). Wavelet analysis of
voluntary cough sound in patients with respiratory diseases. J Physiol
Pharmacol, 59 (Suppl 6), 331–40.

Korpáš, J., Sadloňová, J., & Vrabec, M. (1996). Analysis of the cough sound:
An overview. Pulmonary Pharmacology, 9 (5-6), 261–268.

Le Cessie, S., & Van Houwelingen, J. C. (1992). Ridge estimators in logistic
regression. Journal of the Royal Statistical Society: Series C (Applied
Statistics), 41 (1), 191–201.

Liu, J.-M., You, M., Wang, Z., Li, G.-Z., Xu, X., & Qiu, Z. (2014). Cough detec-
tion using deep neural networks. 2014 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), 560–563.

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., &
Nieto, O. (2015). Librosa: Audio and music signal analysis in python.
Proceedings of the 14th python in science conference, 8, 18–25.

Newman, T. (2017). All about coughs and their causes.
Olmedo, M. T. C., Paegelow, M., Mas, J.-F., & Escobar, F. (2018). Geomatic

approaches for modeling land change scenarios. Springer.
Orlandic, L., Teijeiro, T., & Atienza, D. (2020). The coughvid crowdsourcing

dataset: A corpus for the study of large-scale cough analysis algorithms.
arXiv preprint arXiv:2009.11644.

Pahar, M., Klopper, M., Warren, R., & Niesler, T. (2020). Covid-19 cough
classification using machine learning and global smartphone recordings.
arXiv preprint arXiv:2012.01926.

Pramono, R. X. A., Imtiaz, S. A., & Rodriguez-Villegas, E. (2016). A cough-
based algorithm for automatic diagnosis of pertussis. PloS One, 11 (9),
e0162128.

REFERENCES 49

Rudraraju, G., Palreddy, S., Mamidgi, B., Sripada, N. R., Sai, Y. P., Vodnala,
N. K., & Haranath, S. P. (2020). Cough sound analysis and objec-
tive correlation with spirometry and clinical diagnosis. Informatics in
Medicine Unlocked, 19, 100319.

Samiee, K., Kovacs, P., & Gabbouj, M. (2014). Epileptic seizure classification
of eeg time-series using rational discrete short-time fourier transform.
IEEE Transactions on Biomedical Engineering, 62 (2), 541–552.

Santos, M. S., Soares, J. P., Abreu, P. H., Araujo, H., & Santos, J. (2018). Cross-
validation for imbalanced datasets: Avoiding overoptimistic and over-
fitting approaches. IEEE Computational Intelligence Magazine, 13 (4),
59–76.

Sarangi, L., Mohanty, M. N., & Pattanayak, S. (2016). Design of mlp based
model for analysis of patient suffering from influenza. Procedia Com-
puter Science, 92, 396–403.

Sharma, N., Krishnan, P., Kumar, R., Ramoji, S., Chetupalli, S. R., Ghosh,
P. K., Ganapathy, S., et al. (2020). Coswara–a database of breath-
ing, cough, and voice sounds for covid-19 diagnosis. arXiv preprint
arXiv:2005.10548.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from over-
fitting. The Journal of Machine Learning Research, 15 (1), 1929–1958.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological), 58 (1), 267–
288.

Tracey, B. H., Comina, G., Larson, S., Bravard, M., López, J. W., & Gilman,
R. H. (2011). Cough detection algorithm for monitoring patient recovery
from pulmonary tuberculosis. 2011 Annual international conference of
the IEEE engineering in medicine and biology society, 6017–6020.

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H.,
Cheng, Z., Xiong, Y., et al. (2020). Clinical characteristics of 138 hos-
pitalized patients with 2019 novel coronavirus–infected pneumonia in
wuhan, china. Journal of the American Medical Association, 323 (11),
1061–1069.

Windmon, A., Minakshi, M., Bharti, P., Chellappan, S., Johansson, M., Jenk-
ins, B. A., & Athilingam, P. R. (2018). Tussiswatch: A smart-phone
system to identify cough episodes as early symptoms of chronic ob-
structive pulmonary disease and congestive heart failure. IEEE Journal
of Biomedical and Health Informatics, 23 (4), 1566–1573.

50 REFERENCES

Appendices

51

Appendix A

Plots about the test set

The plots below show the general information on the subjects in the test set.
From them, it is possible to notice that the test set is slightly more balanced in
terms of gender, and that the proportion of subjects positive to COVID-19 is
higher than the proportion on the training set (27%).

(a) State of Covid-19 on the test set.

(b) Distribution in the age of the test set.
(c) Origin of the subjects in the test set.

Figure A.1

53

54 APPENDIX A. PLOTS ABOUT THE TEST SET

Figure A.2: Length of the recordings in the test set before and after the preprocessing.

Appendix B

Python code

The following pages contain the majority of the Python code used for the anal-
ysis, including the exploratory analysis, data preprocessing, features extraction
and hyperparameters tuning phase for logistic regression and multilayer percep-
tron.
The lines of code used to produce plots have not been included for the sake of
brevity.

B.1 Exploratory analysis

import j s on
import pandas as pd
import numpy as np
from pandas import r ead c sv
import matp lo t l i b . pyplot as p l t
import os
import pycountry convert as pc

d a t e d i r = [o for o in os . l i s t d i r (d)
i f os . path . i s d i r (os . path . j o i n (d , o))]

#where d the d i r e c t o r y wi th a l l the s u b f o l d e r s
#c o n t a i n i n g the audio f i l e s

i d d i r s = [os . path . j o i n (d , b , o)
for b in os . l i s t d i r (d)

i f os . path . i s d i r (os . path . j o i n (d , b))
for o in os . l i s t d i r (b)

i f os . path . i s d i r (os . path . j o i n (d , b , o))]

metadata = {}

55

56 APPENDIX B. PYTHON CODE

for i d d i r in i d d i r s :
f i l e = i d d i r + ”\metadata . j son ”
with open(f i l e) as j s o n f i l e :

metadata [i d d i r [−2 8 :]] = j son . load (j s o n f i l e)

combined data = pd . DataFrame (metadata) .T. drop (' id ' , a x i s = 1)

combined data [' t e s t s t a t u s ']
[np . array ([type (combined data [' t e s t s t a t u s '] [i])

for i in range (len (combined data))]) == f loat] = ' na '

which pos = np . where ([combined data [' c o v i d s t a t u s '] [i] [0] == 'p '
for i in range (len (combined data))]) [0]

combined data [' Label '] = np . z e ro s (len (combined data) , int)
combined data [' Label '] [which pos] = int (1)

B.2 Data preprocessing

import l i b r o s a
import l i b r o s a . d i s p l a y

heavy cough = ”\\cough−heavy . wav”

def a c c e s s a u d i o (aud io type) :
paths = [d i r e c t + audio type for d i r e c t in i d d i r s]
audios = [l i b r o s a . load (f i l e , s r=None) for f i l e in paths]
s i g n a l s = [audios [i] [0] for i in range (len (audios))]
s amp le ra t e s = [audios [i] [1] for i in range (len (audios))]
l eng th s = [len (audios [i] [0]) / audios [i] [1] \

for i in range (len (audios))]

return s i g n a l s , sample rates , l eng th s

#FUNCTION FOR REMOVING SILENCE USING AUDIO ENERGY
def r emove s i l en c e (s i gna l , th r e sho ld =0.01 , frame dim =2048 , \

hop length =512):
s t a r t f r a m e = np . arange (0 , s i g n a l . shape [0] , hop length)
end frame = s t a r t f r a m e+frame dim
#zero padding
s i g n a l = np . pad (s i gna l , (0 , end frame [−1]− s i g n a l . shape [0]))

to remove = np . array ([])

for i in range (len (s t a r t f r a m e)) :

B.3. FEATURES EXTRACTION 57

f rame idx = range (s t a r t f r a m e [i] , end frame [i])
i f np .max(np . abs (s i g n a l [f rame idx])) <= thre sho ld :

to remove = np . append (to remove , f rame idx)

to remove = np . unique (to remove) . astype (int)

s i g n a l = np . d e l e t e (s i gna l , to remove)

return s i g n a l

i d c o d e s = combined data . index

h c s i g n a l s , hc s r , h c l e ng th s = a c c e s s a u d i o (heavy cough)
#a cce ss a l l the f i l e s c a l l e d ”cough−heavy . wav”

hc = pd . DataFrame (l i s t (zip (h c s i g n a l s , hc s r , h c l e ng th s)) ,
columns = [” S igna l ” , ”Sampling Rate” , \

” Recording l ength ”] ,
index = i d c o d e s)

hc = hc . l o c [hc [”Sampling Rate”] >= 44100 , :]
hc = hc . l o c [[len (a)>0 for a in hc [” S i gna l ”]] , :]
hc = hc . l o c [[np . abs (a) .max()>0 for a in hc [' S igna l ']] , :]

p r o c s i g n a l s = []
p r o c l e n g t h s = []

for idx in hc . index :
s i g n a l = hc . l o c [idx , ” S i gna l ”]
s r = hc . l o c [idx , ”Sampling Rate”]
i f s r > 44100 :

s i g n a l = l i b r o s a . resample (s i gna l , sr , 44100)
s i g n a l = remove s i l en c e (l i b r o s a . u t i l . normal ize (s i g n a l))
l ength = l i b r o s a . g e t du ra t i on (s i gna l , s r = 44100)
p r o c s i g n a l s . append (s i g n a l)
p r o c l e n g t h s . append (l ength)

hc [” Processed s i g n a l ”] = p r o c s i g n a l s
hc [” Processed audio l ength ”] = p r o c l e n g t h s

hc = pd . concat ([combined data [' Label '] , hc] , a x i s = 1 , j o i n = ” inner ”)

B.3 Features extraction

import l i b r o s a

58 APPENDIX B. PYTHON CODE

import l i b r o s a . d i s p l a y
from s c ipy . s t a t s import k u r t o s i s
from s k l e a rn . p r e p r o c e s s i n g import StandardSca ler

def f e a t u r e s (s i gna l , f rame length = 2048 , hop length =512 , n mfcc =13):

#mfcc , d e l t a , d e l t a d e l t a and z cr e x t r a c t e d us ing l i b r o s a
mfccs = l i b r o s a . f e a t u r e . mfcc (s i gna l ,

n f f t=frame length , hop length=hop length , n mfcc=n mfcc)
mfccs = StandardSca ler () . f i t t r a n s f o r m (mfccs .T) .T
mfc c s de l t a = l i b r o s a . f e a t u r e . d e l t a (mfccs)
mf c c s de l t a =
StandardSca ler () . f i t t r a n s f o r m (mfc c s de l t a .T) .T
mfcc s de l t a2 = l i b r o s a . f e a t u r e . d e l t a (mfccs , order =2)
mfcc s de l t a2 = StandardSca ler () . f i t t r a n s f o r m (mfcc s de l t a2 .T) .T
zc r = l i b r o s a . f e a t u r e . z e r o c r o s s i n g r a t e (s i gna l ,

f rame length=frame length , hop length=hop length)
#l o g energy and k u r t o s i s e x t r a c t e d r e c u r s i v e l y
l o g ene rgy = np . array ([

np . l og (1 e−7 + sum(abs (s i g n a l [i : i+f rame length]∗∗2)) / f rame length)
for i in range (0 , len (s i g n a l) , hop length)

])
kurt = np . array ([

k u r t o s i s (s i g n a l [i : i+f rame length])
for i in range (0 , len (s i g n a l) , hop length)

])
z c r = StandardSca ler () . \
f i t t r a n s f o r m (zc r . reshape (−1 , 1)) . reshape (1 , −1)
l og ene rgy = StandardSca ler () . \
f i t t r a n s f o r m (l og ene rgy . reshape (−1 , 1)) . reshape (1 , −1)
kurt = StandardSca ler () . \
f i t t r a n s f o r m (kurt . reshape (−1 , 1)) . reshape (1 , −1)

return mfccs , mfcc s de l ta , mfccs de l ta2 , zcr , l og energy , kurt

def s ea rch bes t s egment (p r o c e s s e d s i g n a l s , s r =44100 , dur=1, hop =0.5) :
bes t segments = []
for s i g n a l in p r o c e s s e d s i g n a l s :

i f s i g n a l . shape [0]< s r ∗dur :
s i g n a l = np . pad (s i gna l , (0 , int (1+ s r ∗dur−s i g n a l . shape [0])))

d = s i g n a l . shape [0]
s t = np . arange (0 , int (d−dur∗ s r) , int (hop∗ s r))
e n e r g i e s = [np . abs (s i g n a l [int (s) : int (s+(dur∗ s r))]) . sum() \

for s in s t]
p = np . argmax (e n e r g i e s)
s = s t [p]

B.4. LOGISTIC REGRESSION (CROSS VALIDATION) 59

best segments . append (l i b r o s a . u t i l . normal ize (\
s i g n a l [int (s) : int (s+(dur∗ s r))]))

return best segments

def e x t r a c t f e a t u r e s (best segments) :
ex t rac t ed = []
for p r o c e s s e d s i g n a l in best segments :

mfccs , mfcc de l ta , mfcc de l ta2 , zcr ,
l og energy , kurt = f e a t u r e s (p r o c e s s e d s i g n a l)
i f l o g ene rgy . shape [1] != mfccs . shape [1] :

print (mfccs . shape [1] − l o g ene rgy . shape [1])
ex t rac t ed . append (np . concatenate ((mfccs ,

mfcc de l ta , mfcc de l ta2 , zcr , l og energy , kurt)))

return ex t rac t ed

def merge f ea tu r e s (f e a t u r e s l i s t , segment width =5):
merged = []
sw = segment width
f s = [f . shape [1] for f in f e a t u r e s l i s t] [0]
for f e a t u r e s in f e a t u r e s l i s t :

merged . append (np . array ([f e a t u r e s [: , i : i+sw] . mean(a x i s =1)
for i in np . arange (0 , f s , sw)]) . reshape (1 , −1))

return merged

l = search bes t s egment (hc [' S igna l '] , dur = 1)
e = e x t r a c t f e a t u r e s (l)
m = merge f ea tu r e s (e , segment width = 5)
X = np . concatenate (m)
y = hc [' Label ']

B.4 Logistic regression (cross validation)

from s k l e a rn . m o d e l s e l e c t i o n import Strat i f i edKFold ,
c r o s s v a l s c o r e , t r a i n t e s t s p l i t , GridSearchCV , c r o s s v a l i d a t e
from s k l e a rn . l i n ea r mode l import L o g i s t i c R e g r e s s i o n
from imblearn . over sampl ing import SMOTE
from s k l e a rn . met r i c s import r o c auc s co r e , \
con fus ion matr ix , a c cu racy s co r e

#f u n c t i o n to p r i n t the metr ic o f the model
def predict ion summary (y , y pred) :

60 APPENDIX B. PYTHON CODE

s e t d imens ion = len (y)
tn , fp , fn , tp = con fus i on matr ix (y , y pred) . r a v e l ()
accuracy = accu racy s co r e (y , y pred)
auc = r o c a u c s c o r e (y , y pred)

print (” Set dimension : {}” . format (s e t d imens ion))
print (”True P o s i t i v e s : {} \nFalse P o s i t i v e s : {} \
\nTrue Negat ives : {} \nFalse Negat ives : {}” . format (tp , fp , tn , fn))
print (”Accuracy : {}” . format (round(accuracy , 3)))
print (”Area Under ROC Curve : {}” . format (round(auc , 3)))

#loop f o r the c r o s s v a l i d a t i o n (oversample , f i t , a s s e s s)
def score mode l (model , params , X, y , cv , r s =777):

smoter = SMOTE(random state=r s)

s c o r e s = []

for t r a i n f o l d i n d e x , v a l f o l d i n d e x in cv . s p l i t (X, y) :
X t r a i n f o l d , y t r a i n f o l d = X[t r a i n f o l d i n d e x] , \

y [t r a i n f o l d i n d e x]
X va l f o ld , y v a l f o l d = X[v a l f o l d i n d e x] , y [v a l f o l d i n d e x]

X tra in fo ld upsample , y t r a i n f o l d u p s a m p l e = \
smoter . f i t r e s a m p l e (X t r a i n f o l d , y t r a i n f o l d)
model obj = model (∗∗ params) . \
f i t (X tra in fo ld upsample , y t r a i n f o l d u p s a m p l e)
s co r e = r o c a u c s c o r e (y v a l f o l d , model obj . p r e d i c t (X v a l f o l d))
s c o r e s . append (s co r e)

return np . array (s c o r e s)

s k f = St ra t i f i edKFo ld (n s p l i t s =5, random state =7, s h u f f l e=True)

l r t r a c k e r = []
Cs = []
pens = [' l 1 ' , ' l 2 ']
l r = L o g i s t i c R e g r e s s i o n
for C in np . l og space (−7 , 7 , 1 5) :

l o = []
Cs . append (str (C))
for s o l v e r in [' saga ' , ' l b f g s '] :

i f s o l v e r == ' saga ' :
pena l ty = ' l 1 '

else :
pena l ty = ' l 2 '

print ('C: ' + str (C) + ' , Penalty : ' + penal ty)
sc = score mode l (l r , { 'C ' : C, ' max iter ' : 10000 , \

B.5. MULTILAYER PERCEPTRON (CROSS VALIDATION) 61

' s o l v e r ' : s o l v e r , ' pena l ty ' : pena l ty } , X, y , cv = s k f)
print (sc . mean ())
l o . append (sc . mean ())

l r t r a c k e r . append (l o)

l r t r k = pd . DataFrame (l r t r a c k e r)
l r t r k . index = Cs

B.5 Multilayer perceptron (cross validation)

from t en s o r f l ow . keras . models import Sequent i a l
from t en s o r f l ow . keras . l a y e r s import Dense , \
Dropout , Conv2D , BatchNormalization , MaxPool2D , F lat ten
from t en s o r f l ow . keras . u t i l s import plot mode l
from t en s o r f l ow . keras . met r i c s import AUC
from t en s o r f l ow . keras . wrappers . s c i k i t l e a r n import K e r a s C l a s s i f i e r
from t en s o r f l ow . keras . c a l l b a c k s import EarlyStopping
from t en s o r f l ow . keras . op t im i z e r s import Adam
from t en s o r f l ow . keras . r e g u l a r i z e r s import l 2

s k f = St ra t i f i edKFo ld (n s p l i t s =5, random state =7, s h u f f l e=True)

def bu i l t m lp (dr = 0 . 2 , C = 1e−2, l r = 1e −4, input shape = X. shape [1]) :

model = Sequent i a l ()
model . add (Dense (1024 , input dim = input shape , a c t i v a t i o n = ' r e l u '))

model . add (Dense (512 , k e r n e l r e g u l a r i z e r=l 2 (C) , \
b i a s r e g u l a r i z e r=l 2 (C) , a c t i v a t i o n = ' r e l u '))

model . add (Dropout (dr))
model . add (Dense (256 , k e r n e l r e g u l a r i z e r=l 2 (C) , \

b i a s r e g u l a r i z e r=l 2 (C) , a c t i v a t i o n = ' r e l u '))
model . add (Dropout (dr))
model . add (Dense (128 , k e r n e l r e g u l a r i z e r=l 2 (C) , \

b i a s r e g u l a r i z e r=l 2 (C) , a c t i v a t i o n = ' r e l u '))
model . add (Dropout (dr))
model . add (Dense (64 , k e r n e l r e g u l a r i z e r=l 2 (C) , \

b i a s r e g u l a r i z e r=l 2 (C) , a c t i v a t i o n = ' r e l u '))
model . add (Dropout (dr))
model . add (Dense (32 , k e r n e l r e g u l a r i z e r=l 2 (C) , \

b i a s r e g u l a r i z e r=l 2 (C) , a c t i v a t i o n = ' r e l u '))
model . add (Dropout (dr))
model . add (Dense (16 , k e r n e l r e g u l a r i z e r=l 2 (C) , \

b i a s r e g u l a r i z e r=l 2 (C) , a c t i v a t i o n = ' r e l u '))

62 APPENDIX B. PYTHON CODE

model . add (Dropout (dr))
model . add (Dense (8 , k e r n e l r e g u l a r i z e r=l 2 (C) , \

b i a s r e g u l a r i z e r=l 2 (C) , a c t i v a t i o n = ' r e l u '))
model . add (Dropout (dr))
model . add (Dense (4 , k e r n e l r e g u l a r i z e r=l 2 (C) , \

b i a s r e g u l a r i z e r=l 2 (C) , a c t i v a t i o n = ' r e l u '))
model . add (Dropout (dr))
model . add (Dense (2 , k e r n e l r e g u l a r i z e r=l 2 (C) , \

b i a s r e g u l a r i z e r=l 2 (C) , a c t i v a t i o n = ' r e l u '))
model . add (Dropout (dr))

model . add (Dense (1 , a c t i v a t i o n = ' s igmoid '))

model . compile (l o s s = ' b ina ry c ro s s en t ropy ' , \
opt imize r = Adam(l e a r n i n g r a t e = l r) , \
metr i c s = [' accuracy ' , AUC(name = ' auc ')])

return model

def c v s c o r e (X, y , dr = 0 . 2 , C = 1e−2, l r = 1e−4, \
cv = skf , ep = 20 , bs = None) :

i f bs == None :
bs = X. shape [1]

aucs = []
epochs = []

for t r a i n f o l d i n d e x , v a l f o l d i n d e x in s k f . s p l i t (X, y) :
X t r a i n f o l d , y t r a i n f o l d = \
X[t r a i n f o l d i n d e x] , y [t r a i n f o l d i n d e x]
X va l f o ld , y v a l f o l d = \
X[v a l f o l d i n d e x] , y [v a l f o l d i n d e x]

X tr2 , y t r 2 = \
SMOTE() . f i t r e s a m p l e (X t r a i n f o l d , y t r a i n f o l d)
monitor = EarlyStopping (monitor= ' va l auc ' , \

min de l ta =0, pat i ence =20, verbose = 0 ,
mode = 'max ' , r e s t o r e b e s t w e i g h t s = True)

model = bu i l t m lp (dr = dr , C = C , l r = l r)
model obj = model . f i t (X tr2 , y tr2 , epochs = ep , verbose = 0 \

b a t c h s i z e = bs , c a l l b a c k s = [monitor] , \
v a l i d a t i o n d a t a = (X va l f o ld , y v a l f o l d))

auc = np . array (model obj . h i s t o r y [' va l auc ']) .max()
aucs . append (auc)
epoch = len (model obj . h i s t o r y [' l o s s '])
epochs . append (epoch)

B.5. MULTILAYER PERCEPTRON (CROSS VALIDATION) 63

return aucs , epochs

drs = np . arange (0 . 1 5 , 0 . 31 , 0 . 0 5)
Cs = np . l og space (−7 , −3, 5)
l r s = np . l og space (−5 , −3, 3)
bss = [6 4 , 128 , 256]

mlp tracker = pd . DataFrame (columns = ['C ' , 'LR ' , \
'DR ' , 'BS ' , 'AUC ' , 'Avg AUC ' , 'Ep ' , 'AVG Ep '])

for C in Cs :
for l r in l r s :

for dr in drs :
for bs in bss :

r e s = c v s c o r e (X = X, y = y , dr = dr , C = C, \
l r = l r , ep = 1000 , bs = bs)

mean auc = np . array (r e s [0]) . mean ()
mean epochs = np . array (r e s [1]) . mean ()
new row = { 'C ' : C, 'LR ' : l r , 'DR ' : dr , 'BS ' : bs , \

'AUC ' : np . array (r e s [0]) , 'Avg AUC ' : mean auc , \
'Ep ' : np . array (r e s [1]) , 'AVG Ep ' : mean epochs}

mlp tracker = mlp tracker . append (new row ,
i g n o r e i n d e x = True)

