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ABSTRACT

Radio Frequency Interference (RFI) is an increasing problem
in Microwave Radiometry, particularly for Earth Observation,
because the antennas are pointing towards the Earth. RFI has
been observed at L-band in ESA’s SMOS (Soil Moisture and
Ocean Salinity) Earth Explorer mission, as well as in NASA’s
SMAP (Soil Moisture Active and Passive) and Aquarius mis-
sions, as well as in AMSR-E and WindSat missions at 10.7
GHz and 18.7 GHz [1]. Therefore, dedicated on-board sys-
tems are nowadays a must to detect and remove contami-
nated measurements, improving radiometric accuracy, and in-
creasing the spatial coverage. In this work, a novel detection
technique, specially tailored for Synthetic Aperture Interfero-
metric Radiometers (SAIR), is proposed and its performance
analysed. It is based on the change of the shape of the cross-
correlation function at lags different from zero under the pres-
ence of RFI. The performance of the proposed technique is
compared to other common RFI detection algorithms, and its
limitations and advantages are discussed. Post-correlation de-
tection performance is found to out-perform other commonly
used algorithms such as Kurtosis. In addition, it presents
some convenient properties for its practical application in cor-
relation and real aperture radiometers.

Index Terms— Microwave, Radiometer, Interferometer, RFI,
Detection, Mitigation, Correlation, Quantization

1. INTRODUCTION

Microwave radiometers are seriously affected by Radio Fre-
quency Interference (RFI). The high radiometric resolution
required is prone to be interfered by non-natural signals, usu-
ally of much larger power than the radiometric emissions.
These interferences conceal the underlying natural signal,
corrupting, or even preventing, the retrieval of geophysical
variables. Passive remote sensing bands are protected by
ITU-R recommendations, and considerable effort is devoted
to enforce proper spectrum usage [2]. Nevertheless, RFI
remains a considerable threat to the accuracy and spatial cov-
erage of passive instruments. RFI are prevalent in large areas

of the Earth, making the retrieval of geophysical parameters
difficult or impossible over wide regions. Its impact has been
noticed in several Earth Observation applications [3]. Some
affected missions are: at L-band (1.4 GHz) ESA’s SMOS
(Soil Moisture and Ocean Salinity) Earth Explorer mission
[4, 5, 6], as well as NASA’s SMAP (Soil Moisture Active and
Passive) and Aquarius missions, and at Ku-band (10.7 GHz
and 18.7 GHz) in AMSR-E and WindSat missions [1]. While
there is an ongoing effort to track and identify RFI sources in
order to switch them off [6], it is unlikely that the problem is
going to be solved in a near future.

The adoption of on-board detection and mitigation techniques
is then required to reduce the impact of RFI, increasing the
radiometric accuracy and data reliability, and improving the
spatial coverage over areas prevalently obscured by interfer-
ence. A wide range of RFI detection techniques has been de-
veloped over the last years. Some examples include paramet-
ric techniques (where the RFI type is known a priori), statisti-
cal detection methods (where the statistics of the received sig-
nal are estimated and compared to Gaussian ones, e.g. [7, 8]),
polarimetric methods (where the cross-polarization compo-
nents may indicate the presence of RFI, [9]), and time and/or
frequency analysis (where the Time/Frequency properties of
the signal are studied to infer the presence of RFI, [10]). In
the present work, a new family of techniques is proposed,
based on the changes induced by the RFI to the autocorre-
lation shape of the signal.

In the next sections, the practicalities and limits of using the
correlation shape as an RFI detection method are discussed
in detail. Thanks to the widespread access to fast correlators,
this novel RFI-detection technique is applicable to all kinds
of radiometers, but it is specially useful in radiometer archi-
tectures where the computation of the correlations is central,
such as in SAIRs [11] and some types of spectrometers or po-
larimetric radiometers [12]. It should be noted that, for the
sake of simplicity, the analysis presented here is for the auto-
correlation, but the same concepts can be applied to the cross-
correlation between pairs of antennas looking at the same ra-
diometric source as well, or even to the cross-correlation be-



tween the outputs of the ports of a single antenna (e.g. in
polarimetric radiometers).

2. EFFECT OF RFI OVER THE CORRELATION
SHAPE OF A SIGNAL

Without loss of generality, assuming a sharp band-pass filters
whose frequency response can be approximated by a rectan-
gular function of bandwitdh B,,, the auto-correlation of the
Low-Pass Equivalent (LPE) signal of an uncorrelated white
noise source is given by:

Ry, (t) =T4 - sinc(By - t), (1

where T'4 is the so-called noise temperature, with P,, = T4 -
B, - kp, kp being the Boltzmann constant, B,, the system
bandwidth, and P, the noise power. If the radiometric signal
is contaminated by RFI, however, this expression is no longer
valid. In this latter case, s; = n; + r;, where n; is the radio-
metric signal and 7; the RFI. The auto-correlation can then be
expressed as a function of the thermal noise and RFI compo-
nents:

R, (t) = Ry, (t) + Ry, (t) + Rni,m (t) + Rm,m (t)> (2)

where I,.; denotes the autocorrelation of the RFI, and R,,, ,,
and R,, ,, the cross-correlation between n; and r;. Since
the RFI and radiometric noise are uncorrelated, R, ,, =
R, », = 0and R, is then just the sum of the auto-correlation
of the separate components:

R, (t) = Ry, (t) + Ry, (t) 3

By substituting eq. 1 in eq. 3,

R.(t) = T4 - sinc(By - t) + R.(t), 4)

where R, is the autocorrelation of the RFI signal. The noise
autocorrelation shape will be therefore modified by the au-
tocorrelation shape of the RFI. This fact can be used as an
indicator of RFI presence.

The shape of the fringe-wash function is directly dependent
on the frequency contents of the RFI. Spectrally narrow sig-
nals will present distinctive autocorrelation signatures, and
are therefore more prone to detection. For example, CW sig-
nals present distinctive cosinus-like behaviour, easy to dis-
criminate from the ‘sinc-shaped’ baseline at long correlation
lags. On the contrary, spectrally wide signals, as per exam-
ple some types of PRN sequences, have nearly sinc-shaped
autocorrelations. In these cases, the resulting shape of the

combined signal will be nearly sinc-shaped as well, and the
only factor to discriminate the RFI will be the signal power,
assuming it is known beforehand. Moreover, it is well known
that the autocorrelation of a generic sine-wave follows the fol-
lowing expression:

R, (1) =P, -cos(2nfT), (5)

where P, is the power of the sine-wave and f its frequency.
The dependence of the autocorrelation shape on the central
frequency of the RFI signal (and not only on its bandwidth)
is readily observable. The dependence on the RFI type and
Time-Frequency properties is not exclusive of this new family
of detection methods, and indeed it is a common limitation in
most techniques (see for example [10, 13, 14, 15]).

Note that, in a real system, filters cannot be considered ideally
sharp. In this case, and assuming that h(t) is the filter’s im-
pulse response, the autocorrelation of an RFI-free noise signal
is:

Ry (t) = Ta- (h*h)(t), (6)

where * is the convolution operator. In this work, all filters
have been assumed ideal for simplicity, but the same princi-
ples apply if the filters’ impulse response is known.

3. METHODOLOGY

The implementation of the RFI detection method is described
hereafter. Indeed, multiple implementations may exist for the
same basic principle, the fact that a non-sinc shaped correla-
tion is indicative of RFI presence. Without trying to be ex-
haustive, some possibilities are presented here.

3.1. Zero-crossing Correlation Ratio (ZCR)

If sampling at the Nyquist frequency is considered, the au-
tocorrelation function (eq. 1) is sampled exactly at the zero-
crossings. Therefore, in RFI-free conditions, the autocorrela-
tion of signal s is just:

2 S
Rao(r) = {"S =0 )

0 otherwise,

where o2 is the variance of the signal s. It should be noted,
however, that in practical terms, the exact value of R in
unknown, so an estimator is used to approximate it. Being
R, the unbiased estimator of R,:
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Its variance follows [16, eq. 14.1.27]:
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+ Res(n+m)Rss(n—m), (9)

that, under the assumptions on sampling of eq. 7, simplifies
to:
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As it has been seen, RFI presence may induce non-zero corre-
lation values for 7; # 0. This may be used as a metric to infer
RFI presence. Let’s define the Zero-Crossing Correlation Ra-
tio of R, as:

an

That is, the ratio of Ry(71), the the correlation at the first
zero crossing of the correlation (77), with its maximum at 0
(i.e. the variance 02). By design, ZC' = 0 in RFI-free con-
ditions, and hence, if ZC' # 0 indicates RFI presence. How-
ever, both the numerator and denominator of equation 11 are
only known through estimation. Therefore, it is necessary to
define ZC' as an estimator of ZC'

Rss (Tl)
Rys(0)

ZC = 12)

Being an estimator, ZC will be a random variable with its own
statistics. Even in the RFI-free case, there is a non-negligible
probability that the decision metrics depart from O enough
to trigger the detection of RFI. It is necessary then to define
a confidence interval, for witch an acceptable probability of
False Alarm (Py,) must be set. A high Py, implies a con-
servative approach with a large number of false alarms, but
it also implies a prompt reaction of the method when an RFI
appears. On the contrary, a low Py, implies a lower number
of false alarms, but it also means more laxity on RFI detec-
tion. The value of Py, to be chosen depends on the specific
application, but it enables to define the confidence intervals
and decision thresholds. To do so, the specific statistics of the
decision variable must be known or estimated.

ZC is the ratio of two normal random variables. Let’s denote
a generic random variable ratio as Z = % Such a variable
has no moments in the general case, and its probability den-
sity has an analytic, but very complicated, expression [17, eq.
1 and 2]. Such expression can be found simplified at [18, eq.

1], where the following parametrization is used:

mx oy Oy
=", dy=—, p=—, (13)
Hy Hy ox

being pyy and oy y the mean and standard deviation of
X,Y. Under some conditions on the parameters of eq. 13,
the distribution Z may be considered Gaussian with a high
degree of accuracy. Several bounds for the parameters have
been established empirically and, as a rule of thumb, the ap-
proximation can be done if J,, < 0.1 [18]. In such a case,

Z=N (8,8, (072 +5%)) - (14)

Taking into account eq. 10, for ZC,

0 N 2
Hux =Y, ox = O,
N —m)2°°
v =m) s
Hy = Os, Oy = O'T\;
Therefore, by substitution into equation 13,
B =0,
2
0y = ~ << 0.1, (16)
N-—-m
=12
p=V2—F—,
and, withm =1,
— N

will have Gaussian statistics with a mean value 1= = 0 and
a variance:

N
2
9zc ~ (N_l)Q' (18)

In order to confirm the assumptions on the Gaussianity of ZC,
its exact distribution PDF given by [17, eq. 1 and 2] has been
compared to the approximation given by [18]. As it can be
seen in Fig. 1, for reasonable values of px, 1y, ox and oy,



the agreement is excellent, and it enables to use the approxi-
mation in practical terms'.
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Fig. 1: Comparison between the exact distribution of the ratio
[17] and its Gaussian approximation [18].

Given that the statistics can be approximated by a Gaussian,
bilateral decision thresholds may be computed by integrating
the tails of its PDF. Considering the Cumulative Distribution
Function (CDF) of a generic Gaussian of mean p and standard
deviation o

CDF(z) = % <1+erf (zﬂ:» (19)

The lower threshold, thy, can be obtained by equating eq. 19
with the intended Py, (with the 1/2 factor to account for the
bilaterality of the distribution).

CDF(thy) = % <1 + erf (th\l/ﬁ_g")) = Pg". (20)

Solving for thy yields:

thy = p—ovV2erf (1 — Py,), 1)

where the property erf(—z) = — erf(z) has been used. Given
the symmetry of the Gaussian distribution function, the upper
threshold ths is readily obtained by:

thy = p+ ovV2ert (1 — Py,). (22)

By substituting eq. 18 into 21 and 22:

Note that, since the filters response is known, it is possible to compute
the position and depth of the notches. Also, since the exact expression is
available [17, eq. 1 and 2], it is possible to compute the thresholds numeri-
cally without the Gaussian approximation if deemed necessary.

N

thLQ = :l:\/ierf_l(]. - Pfa) . m

(23)

Performance of the method can be assessed by computing the
detection probability (Pye.) for a certain RFI power and type.
To do so, thy » are applied to the measured ZC. It ZC < thy
or ZC' > thsy, RFI is detected, and the sequence is flagged
as such and discarded. In this work, Py, has been approxi-
mated numerically by conducting N, = 5000 Monte Carlo
simulations:

Ny

Pdec = NMC7

(24)

being N, s; the number of sequences flagged as RFI-affected.
If the thresholds have been properly computed, Pge. =~ Ppq
in the absence of RFI. Performance results of the described
method will be given and discussed in section 5. It will be
shown that, without RFI, Py.. ~ Pj,, demonstrating that all
assumptions discussed above on the Gaussianity of ZC hold.
This is a direct consequence of how the bilateral thresholds
are derived.

It should be noted that the proposed method is only valid if
the sampling conditions of eq. 7 are fulfilled. In a more gen-
eral case (for example, if oversampling is considered, or if
the filters are not perfectly ideal), the correlation may not be
sampled exactly at the zero-crossings. Nonetheless, the same
general idea may be applied at the cost of system complex-
ity by, for example, interpolating the correlation values at the
Zero-crossing.

3.2. Pearson Correlation Coefficient Detection (PCD)

As it will be shown later, Zero-Crossing Ratio provides good
results with a fairly simple implementation. It relies, how-
ever, only in one sample point (the first zero-crossing of the
correlation), making it prone to blind spots. In order to over-
come some of the drawbacks of the ZCR, a metric based on
the computation of the Pearson correlation coefficient is pro-
posed as well. The Pearson coefficient p of two ensembles
X, Y can be computed as:

_ E [(X - MX)(Y — MY)]
Pry = g : (25)

where p1x v and o x y are the mean and standard deviation of
X, Y, respectively. The Pearson coefficient, which satisfies
—1 < px,y < 1, can be interpreted as metrics of the similar-
ity of the shape of two signals. As our interest is to determine
if a signal is contaminated by RFI, X will be the measured
correlation shape Rss. The reference to compare with, Y,
will be the theoretical correlation shape without RFI, that is,



equation 1. With this definition, a p close to 1 indicates non-
contamination, and a value close to 0 is indicative of severe
contamination. Note that the Pearson coefficient is indepen-
dent of the power of the signals considered, so an estimation
of the radiometric power level is not required.

It is important to remark that, in practical terms, only the sam-
ple correlation coefficient, px y, can be computed, which is
an estimation of the real Pearson coefficient. As the sample
correlation coefficient its derived from a limited number of
samples, it is a random variable itself, with its own statistics.
From eq. 25, and substituting the sample mean and standard
deviation, fi, fiy, and G, 7y, the sample Pearson coefficient
is:

SN (@i — mx) (v — i)

XY = ; (26)

Ox0y
where X = [z7...xn] is the estimation of the correlation
given by eq. 8, and Y = [y;...yn] is a deterministic se-

quence given by appropriately sampling equation 1. It should
be noted that from equation 10, the variance of Rs¢ grows for
large delays, as this is a property of the unbiased estimator of
the autocorrelation. Therefore, in order to keep the correlation
coefficients close to 1, it is better to restrict the computation
to the central 2m + 1 samples of the correlation:

N+m — P
T — _
XY = N-m 17;1)()(317, NY)~ 27)
Ox0y

Several possibilities for m have been evaluated in this work.
The statistics of p are in general non-normal, and the exact
distribution will depend also on the statistics of X and Y. If
they are jointly normal an exact expression for the PDF ex-
ists, but it is not mathematically tractable [19]. Thankfully,
Fisher transformation can be used to approximately normal-
ize its statistics and make possible to compute a confidence
threshold [20]. Fisher transformation is defined as:

z = tanh ™' (z). (28)

Indeed,

2 = tanh ™" (7xy) (29)

is approximately normally distributed. Assuming Gaussianity
of the variable under consideration, bilateral decision thresh-
olds are given by eq. 21 and 22 in order to guarantee a given
P fa-

th1’2 =pu, \/ﬁerf_l(l — Pfa) c Oz, (30)

where i, and o, are the mean and standard deviation of z in
the absence of RFI. Under some requirements on the statis-
tics of X, Y, o, and u, have closed forms. For the case of
interest, however, no closed expression exists, as the distribu-
tion of the sequence X is not Gaussian. Therefore, to con-
duct this exercise, both parameters have been estimated nu-
merically by using an RFI-free sequence X, mimicking, for
example, an internal calibration load. Note that, in order to
apply thi o to the sample Pearson coefficient p, they must be
anti-transformed first by using:

x = tanh(z). 31)

Similarly to the Zero-Crossing Ratio, the performance is
assessed by computing the probability of detection Pjye..
Results are shown and discussed at section 5 of this work,
demonstrating as well that the assumptions taken in the com-
putation of the thresholds are good enough (Pgec ~ Ppq in
the absence of RFI).

As areference to compare with, two additional common met-
rics have been computed: a trivial power detection method
and a signal Kurtosis statistical test.

3.3. Total Power Detection

This trivial detection method relies on the assumption that the
RFI-free signal power is known beforehand. Therefore, the
measured power and the RFI-free power can be compared.
Measured power is derived by using the sample variance of
the LPE signal, being s = (s;...sy) the signal vector with fi5
the sample mean:

_ 1 N 9
2 o
0= 1Zi:() (si —T05)°. 32)
The sample variance follows an scaled chi-squared distribu-
tion of N — 1 degrees of freedom, N"—_lef\,_l [21, eq. 2.11].
For simplicity, if N is large enough, this distribution can be

considered normal for all practical purposes as N/ (02, ]\2,‘7741 )

[22, p. 118], being o2 the true variance of s. Provided that
02 = o2 for the RFI-free case, bilateral decision thresholds
can be computed in order to guarantee a given Py, (egs. 21

and 22):

2
this =02+ 2erf (1 — Pfa)\/%. (33)

The above can only be defined if, as mentioned, the radiomet-
ric signal power o2 is known beforehand, which is of course
not applicable in a general case, as this is usually the param-
eter obscured by the RFI. This simple metric is, however, a
helpful benchmark to compare with in laboratory conditions.
Total Power Detection can also be used as a practical method



if the radiometric power is estimated [23], either by taking
previous measurements as a reference or by comparison with
arange of possible geophysical variation. Performance is then
directly linked to the accuracy of the estimation of the base-
line noise level. This is the fundamental drawback of using
this technique in practical conditions. Note that ZCR, PCD
or Kurtosis, below, do not require any prior estimation on the
signal properties.

3.4. Signal Kurtosis

Signal Kurtosis is, on the other hand, a practical detec-
tion method widely used and tested in the literature [24].
Like similarly-minded statistical tests (see, for example,
Anderson-Darling [8]), it aims to test the statistics of the
signal for a hint of non-normality. Signal Kurtosis relies on
the computation of the scaled fourth moment of the signal
distribution (statistical kurtosis), which provides a metric of
the probability of finding outliers in the data. In other words,
provides a metric on the shape of the PDF, indicating whether
the tails of the probability distribution are fatter (leptokur-
tic) or thinner (platykurtic) when compared to the standard
Gaussian distribution. A purely normal distribution will have
a Kurtosis value of 3. Any divergence from this value indi-
cates deviation from normality and thus RFI contamination.
Kurtosis is defined as:

(34)

with m4 and ms being the fourth and second moments of the
distribution under test, respectively. In practice, Kurtosis is
computed by using the sample kurtosis estimator, K, given

N —\4

(35)

While the probability distribution of the Kurtosis estimator
has no closed form, except for the smallest of the samples, it
reaches almost normality when N is sufficiently large (N >
50000). In practical contexts /N is not so big, so the exact
distribution has to be numerically estimated and accounted
for [15]. The moments for this distribution are well known,
and its variance follows [25]:

24N (N — 1) L2 G

(
(N=3)(N-2)(N+3)(N+5 N

O— =

Nl\')

Regardless of the distribution’s non-normality, in the context
of this work is enough to define the decision thresholds as if

the distribution was normal, that is, N (37 0’%). With this

assumption, symmetric decision thresholds can be computed
as (eqs. 21 and 22):

this =3+ V2erf '(1 - Pyp,) - 0. (37)

As it will be seen, for an N = 1024, the Py, obtained using
thy 2 closely matches the intended value, with a deviation er-
ror of around 1%. As the main objective of this paper is not
evaluating the performance of Kurtosis (a topic extensively
studied in the literature) but to use it as a reference, this ap-
proximation is considered good enough.

4. MATERIALS AND METHODS

In order to evaluate the performance of the methods proposed,
a simulated processing chain has been implemented, mimick-
ing as much as possible the receiving elements of a correlation
radiometer.

The radiometric signal has been simulated as a digital com-
plex random Gaussian process of 300 K of power with N
independent samples. A generic complex waveform of vary-
ing type and power is added into it, simulating contamination
by RFI. The combined signal is then passed through a digi-
tal anti-aliasing filter of B,, = 20 MHz, and sampled at the
Nyquist frequency F's = 2B,,. This simulates the complex
Low-Pass Equivalent (LPE) centered at f. = 0 of the ac-
quired band-pass signal.

In this study, 6 different types of RFI have been considered:

1. A continuous wave (CW): A single tone signal (sinu-
soidal), simulating a narrowband modulation, of con-
figurable frequency.

2. A burst of pulses of 10% duty cycle: a train of Gaussian
pulses with a pulse repetition period (PR) of N/256
samples, a pulse width of PR/10 samples, and con-
figurable central frequency. This is representative of
DME-like signals [26].

3. A burst of pulses of 50% duty cycle: a train of rect-
angular pulses with a pulse repetition period (PR) of
N/128 samples, a pulse width of PR/2 samples, and
configurable central frequency. Kurtosis detection ex-
hibits a blind spot for this duty cycle, and is therefore
interesting to study how correlation-based RFI detec-
tion behave in the same scenario.

4. A narrowband chirp signal: A chirp signal sweeping
linearly with an arbitrary bandwidth of Bw/2 and a
PR = N/16 samples. Chirp signatures are representa-
tive of RADAR signals and jammers.

5. A wideband chirp signal: A chirp signal sweeping lin-
early with an arbitrary bandwidth of Bw and a PR =
N/16 samples.



6. A generic wideband signal modulation: Simulated us-
ing a pseudo-random noise code (PRN) of PR = N/2,
with its bandwidth overlapping the entire noise band-
width. Note that, even if overlapping it, its spectrum its
not flat (see Fig. 2.e), hence being still prone to detec-
tion.

Their spectrograms are presented in Fig. 2, and their nor-
malized autocorrelation is depicted in Fig. 3, along with the
normalized autocorrelation of Gaussian noise for reference.

The real and imaginary components of the LPE signal mimic
the I and ) components of the generic digital receivers. Each
component is then treated independently at separate process-
ing chains. In order to take into account the influence of dig-
italization, a configurable quantizer has been implemented as
well. Quantization is performed following several uniform
quantization schemes: 1 bit, 2 bits, 3 bits, 4 bits, and 8 bits,
in addition to the unquantized option. All quantizers are mid-
riser, where 0 is a decision threshold. Small, near-0 values are
quantized as the first positive or negative level, depending on
their sign. Quantization is applied to each I, () components
separately.

Complex correlation between antennas m, n is computed as:

Rm,n = Rmf,nf +RmQ,nQ +(Rm1,nQ - RmQ,nI) 'j; (33)

where mr ¢ are the IQ components of signal from antenna
m, and ny g the IQ components of signal from antenna n. If
quantization has been applied, then the denormalization func-
tion F' has to be computed following [27] and applied to each
of the correlation components, thus obtaining the unquan-
tized’ correlation. The resulting correlation sequence is tested
for RFI with the detection methods described above, ZCR and
PCD. With regards to the reference metrics (Total Power and
Kurtosis), they are obtained directly from the signal: signal
power is obtained by combining the variance of both I, () sig-
nals, and average signal kurtosis is computed as the mean of
the kurtosis of each I, () chains, a solution often implemented
in practice [28]:

(39)

5. RESULTS

In this section, the performance achieved by the proposed de-
tection methods will be analyzed and compared with the ref-
erence metrics. In the first place, the performance achieved
will be shown, for all RFI types, and a fixed central frequency.
Later, the dependence on central frequency, quantization type
and sample size will be discussed in detail.
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Fig. 2: Spectrograms of the different types of RFI considered
in this study.
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Fig. 3: Autocorrelation of the different types of RFI consid-
ered in this study, being I?,, ,, the autocorrelation of the noise,
and R, , the autocorrelation of the RFL

5.1. Detection performance of Correlation-based RFT de-
tection

As mentioned, the main figure of merit to evaluate the meth-
ods’ performance is the Probability of Detection Py... In
Fig. 4, P,.. has been depicted in function of the Interference
to Noise Ratio (INR = TBgrr;/TBnNoise, Wwhere T Brpy
and T Bpise are the Brightness Temperature for the RFI and
Noise, respectively) for the 6 types of RFI considered in this
study. As a first approximation, RFI central frequency has
been chosen to be f. = 0.3 - B, and N = 1024. Given
that Fy, = 2B,, = 40 MHz, this corresponds to a sequence
length of T' = 25us. The results obtained demonstrate that
the proposed methods work, being able to detect all types of
RFI. Performance is discussed qualitatively for each of the
methods below:

1. Zero-Crossing Ratio: ZCR performs comparatively to
Total Power Detection for narrowband RFI. In these
cases, ZCR is able to detect RFI for INR < 0.2, out-
performing Signal Kurtosis. For spectrally wide RFI,
however, ZCR performs worse. For Wideband Chirp,
for example, ZCR is not able to guarantee detection for
INR < 1. ZCR has a marked dependence of the fre-
quency contents of the RFI. For some selected cases,
performance is notable, even outperforming more com-
plex methods like the Pearson method. For other cases,
however, performance is much poorer. This is related
to how the autocorrelation of the RFI impacts the zero-
crossings of the noise autocorrelation. In Fig. 3 it can
be seen how, for some RFIs, autocorrelation shapes are
very similar to the expected noise autocorrelation at the
first zero-crossing, a fact that impairs RFI detection by
using it. Nevertheless, and taking into account the sim-
plicity of the implementation, ZCR is a strong candi-
date for RFI detection where system complexity is an
issue. It should be remarked how, even if the perfor-
mance obtained is similar than using TPD, the latter
requires a good estimation of the baseline noise level,
while ZCR does not.

2. Pearson Coefficient Detection: Pearson outperforms
Kurtosis for all types of RFI, and even Total Power De-
tection in selected cases. For RFI with well-concentrated
spectra, such as the Pulse Train and CW, Pearson is able
to detect RFI of the order of INR = 0.05. For wider
spectra RFI, Pearson performs worse, but achieving
comparable results to Signal Kurtosis. There is a no-
table dependence on the number of samples considered
to compute Pearson. Indeed, for spectrally narrow
RFI, these differences are minor, with larger samples
implementation giving marginally better results. For
spectrally-wide RFI, however, lower sample computa-
tion exhibits lower performance or even non-detection
for INR < 1 (see, as an example, Fig. 4.e). The origin
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Fig. 4: P, in function of the INR for several RFI typologies

for this poor performance is explained because, in this
case, only the lower delays of the correlation are sam-
pled. As the main lobe of the correlation is less prone
to distortion, this makes detection harder. As it can be
appreciated in Fig. 4), if m is chosen to be m > 12, de-
tection is achieved with reasonable performance for all
the cases studied, providing a good trade-off between
performance and system complexity.

It should be stressed how, for an INR = 0, all detection meth-
ods give a Pjec = Ppq. This confirms the approximations
done for some thresholds computation, as explained in detail
in section 3.

In order to quantitatively compare the performance of the
methods, it is interesting to define the Minimum Detectable
RFI. For a given RFI type and Py, this can be defined arbi-

trarily as the minimum required INR to detect an RFI with a
probability equal to 1 — Py,:

INR pin, = INR(1 — Pp,). (40)

In table 1, INR,,;, is given for each type of RFI, under the
same conditions than Fig. 4.

5.2. Effects of RFI frequency on Correlation-based RFI
detection

As discussed in section 1, the autocorrelation shape of the RFI
is directly depending on its frequency contents. Therefore,
any technique that relies on checking the autocorrelation may
have a dependence on it. In this section, the effect of choosing
a different central frequency for the RFI on the performance
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Fig. 5: P,;.. in function of the INR for CW of different frequencies

of the proposed techniques is studied. In Fig. 5, Py.. as a
function of the INR has been plotted for an CW RFI with four
different central frequencies: 0.2, 0.4, 0.6 and 0.8.

As it can be seen, ZCR is considerably affected by frequency.
This is related to the fact that only one non-central sample is
taken into consideration. As the CW the central frequency of
the RFI determines the zero-crossings of its autocorrelation,
depending on where they are located the sensitiveness of the
detection varies. The limiting case is for 0.5: the first zero
crossing of the RFI autocorrelation is located exactly at 7 =
B%J’ constituting a blind spot for detection. This latter case is
exemplified in Figs. 6 and 7. Pearson Correlation Detection,
on the other hand, does not exhibit significant variation across
frequencies. This is due to the fact that a much larger number
of samples is taken into consideration, effectively removing

the frequency dependence for the CW.
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Fig. 6: Autocorrelation of an CW RFI with f. = 0.5

5.3. Quantization effects on Correlation-based RFI de-
tection

It is interesting to consider the effects of digitalization in
the correlation shape. Real-time computation of the cross-

Table 1: INR,,,;,, to guarantee detection for all types of RFI considered

H Total Power Kurtosis PCD(m=6) PCD(m=12) PCD(m=24) ZCR H
Continuous Wave 0.13 0.77 0.05 0.04 0.03 0.12
10% DC Pulse Train 0.13 0.40 0.11 0.13 0.11 0.15
50% DC Pulse Train 0.14 N/D 0.06 0.05 0.06 0.13
Narrowband Chirp 0.13 0.85 0.19 0.20 0.19 0.11
Wideband Chirp 0.12 0.89 N/D 0.93 0.54 N/D
Wideband Modulation 0.07 0.58 0.29 0.33 0.39 0.15
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correlation is a costly procedure when considering finely
quantized signals. Consequently, it is usually implemented
efficiently using coarse-quantization schemes (e.g., 1-bit
quantization) prior to the correlation. Thanks to some prop-
erties of the radiometric signals, the original, non-quantized
correlation of Gaussian signals can be recovered from the
correlation of quantized signals [29]. If the quantized signal
is Gaussian, a denormalization function can be computed
regardless of the specific quantization scheme used [27].
Quantization, and specially but not limited to the coarser
schemes, has been demonstrated to be a limiting factor for
several RFI mitigation families. For example, quantization
impairs considerably the performance of Time/Frequency
techniques [30], and statistical methods [15]. By using the
correlation shape, however, these limitations can be overcome
thanks to the denormalization function. In this section, the
impact of quantization is studied numerically to demonstrate
the applicability of the proposed techniques to SAIR. In order
to apply the proposed methods to the quantized case, some
additional considerations must be taken into account with re-
gards the computation of the thresholds, as some assumptions
do not longer hold. In particular, the thresholds for ZCR have
been recalculated by estimating numerically 0.

Fig. 8 shows P, as a function of the INR for 1-bit quantiza-
tion. As a reference, the same metrics in the unquantized case
has been included. As it can be readily observed, the use of
the denormalization function prior of RFI detection allows to
obtain almost equivalent results for Pearson Coefficient De-
tection, albeit marginally degraded. This is confirmed for the
most coarse quantization, using just 1-bit to quantize the 1Q)
components. Identically, ZCR exhibits similar results, with an
slightly degraded performance with respect the unquantized
case. Nevertheless, in both cases the observed performances
are still comparable with Total Power Detection, making them
viable candidates as detection techniques if quantization is re-
quired. Given the considerable advantages that 1-bit quantiz-
ers have in the framework of correlation radiometers, this is
an important result towards the practical implementation of
RFI detection for SAIRs.

5.4. Sample size impact for Correlation-based RFI detec-
tion

The above study has been conducted, without loss of gen-
erality, for a sample size of N = 1024. This demonstrates
the applicability of the methods for reduced integration times
(e.g., with Fy = 40 MHz, T},; = 25us). It is interesting
however to evaluate which is the impact of the sample size in
the method’s performance. As described in detail in section
3, decision thresholds are a function of the standard devia-
tion of the estimator used. As the standard deviation directly
depends on the number of independent samples considered,
sample size impacts performance in a direct way. In general,
larger sample sizes will allow better performances (i.e. detec-
tion for lower power RFI) and vice-versa.

As described, larger samples sizes allow to detect smaller RFI
powers. This, however, leds to flag entire ensembles of data
as contaminated by RFI. Lower sample sizes, albeit provid-
ing lower raw performance, may allow to use them in com-
bination with time binning, that is, splitting N samples in M
bins, and apply the correlation detection method individually
to each bin. This kind of implementation provides the capa-
bility to remove only those bins that are contaminated, and
therefore, allows the use of the rest of the signal. There is
a compromise between raw performance and data availabil-
ity that has to be tailored to the specific application and RFI
environment where the instrument has to operate.

In order to illustrate the performance dependence on the sam-
ple size, the INR,,,;,, (eq. 40) has been computed for each de-
tection method for different number of sample sizes between
two extreme scenarios: on one hand, an N = 32 samples, and
on the other, more than 1 million samples (i.e. 220 samples).
This latter scenario is representative of an instrument with a
Tint = 26 ms assuming Fy; = 40 MHz. Results are shown in
Fig. 9 for a CW RFI with f. = 0.3.

From Fig. 9, it is apparent that for N > 103, INRin
decreases proportionally as N~'/2. This demonstrates that
correlation-based RFI detection methods are capable of de-
tecting arbitrary low power RFIs at the cost of increasing the
number of samples considered. In all cases, correlation-based
methods are capable of detecting lower power RFI than Total
Power or Kurtosis detection, evidencing that the better per-
formance shown in previous sections is observed regardless
the number of samples considered.

6. CONCLUSIONS

In this work, a new family of RFI detection methods is pro-
posed. They are based on the computation of the autocorrela-
tion of the received signal, and the comparison with the theo-
retical autocorrelation of the radiometric noise, which should
be an approximately sinc-shaped function in RFI-free condi-
tions. Two implementations based on this idea have been pro-
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posed in this work: the Zero-Crossing Ratio (ZCR), based on
measuring the correlation at its zero-crossings, and the Pear-
son Coefficient Detection (PCD), based on the goodness of fit
of the autocorrelation with the ‘sinc-shaped’ baseline. Their
performance has been tested and evaluated by simulation for
several types of RFI types, demonstrating that they outper-
form the reference metrics for most of the considered cases.
Correlation methods are well suited for detection of frequency
concentrated signals. For example, for a CW RFI of 0.3 fre-
quency, and considering 1024 samples, PCD is able to detect
RFI for INR =~ 0.03, and ZCR for INR > 0.12 outperform-
ing Total Power Detection (INR > 0.13) or Kurtosis methods
(detection for INR > 0.77, see Fig. 4.a). The dependence
of the performance with frequency and sample size has been
studied, confirming the applicability of the proposed meth-
ods in practical conditions. In addition, the proposed meth-
ods do not require any assumption on the RFI type or proper-
ties, nor the baseline noise level to operate. This makes them
good candidates with respect other techniques with compara-
ble performance levels, such as Total Power detection, which
requires a good estimation of the noise level. The proposed
novel detector family is suitable for a wide range of radiome-

ter topologies, such as Real Aperture Radiometers, Polarimet-
ric Radiometers, etc. In addition, it has been demonstrated
that correlation detection methods are applicable to quantized
signals as well, opening the door for its application to digital
systems, in particular to 1-bit quantized Synthetic Aperture
Radiometers.
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