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A physically consistent approach is introduced to simulate dynamics of droplets in contact 
with solid substrates. The numerical method is developed by introducing the molecular–
kinetic model within the framework of the level-set/enriched finite element method and 
including the theoretically resolved sub-elemental hydrodynamics. The level-set method 
is customized to comply fully with the model acquired for the moving contact-line. The 
consistency of the proposed method is verified by comparing the simulation results with 
the theoretical predictions. In order to further validate the method, the spreading of 
a droplet is numerically modeled and compared rigorously with the experimental data 
reported in the literature. The proposed method is also employed to capture the evolution 
of a droplet trapped in a conical pore. All test-cases are simulated on three-dimensional 
computational domains.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Accurate modeling of liquid spreading on a solid surface [1] is of a fundamental importance in the analysis of multi-
phase flows in micro-channels [2,3] as well as porous [4] and fibrous [5] media, which are encountered in a wide range 
of industrial applications. One such application, that motivated the developments of the present work, is the water-air 
transport in the gas channels and fibrous diffusion layer of polymer electrolyte membrane fuel cells (PEMFCs) [6,7] that is 
an essential factor in the determination of the performance of the cell [8,9].

In the modeling of phenomena associated with the multi-phase flow in the presence of a solid substrate, one of the 
major challenges is to deal with the moving boundary of the three-phase (gas/liquid/solid) interface, the so-called contact-
line, using an appropriate condition [10,11]. Theoretical investigations of the movement of the contact-line [12,13] imply 
that the classical continuum-level hydrodynamics along with the conventional no-slip condition at the solid surface lead to 
an unbounded velocity gradient and consequently a singularity in the stress at the contact-line. The conventional approach 
to alleviate this singularity is to take into account a slip condition in the vicinity of the contact-line [14,15], for which there 
is also some evidence from molecular dynamics simulations [16–18].

Employing the slip condition in the context of the continuum hydrodynamics allows for a theoretical solution for the 
viscous bending phenomenon and leads to the well-established Cox’s relation [19], which gives a correlation between the 
apparent macroscopic contact-angle and the microscopic contact-angle. More recently, it was shown that alleviating the 
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stress singularity can result in a complement to the hydrodynamic theory; Zhang and Mohseni [20] explored the possibil-
ity of integrating the singular stress in the close vicinity of the contact-line in order to obtain a model for the dynamic 
microscopic contact-angle.

Besides the hydrodynamic theory that focuses on the phenomena at the continuum level, molecular–kinetic theory [21]
has also been acquired to derive a model for the moving contact-line. It was shown that the resulting model is consistent 
with the results of the molecular dynamics simulations [22,23]. Both the Cox’s relation and the molecular–kinetic model 
have been examined by fitting the experimentally observed correlation between the contact-angle and the contact-line 
velocity [24–26].

It had been revealed that depending on the features of the set of experiments, one model or another provides a better 
match [27–29]. This can be explained as a result of the fact that the hydrodynamic theory accounts for the viscous dissipa-
tion while the molecular–kinetic theory focuses on the energy dissipation in a very close vicinity of the contact-line [26]. 
Thus, depending on the flow configuration and the velocity of the contact-line, either of these mechanisms is dominant and 
the behavior can be better characterized with the respective model. Based on the experimental results, due to the ambiguity 
in determining the underlying physics and the lack of a systematic approach to determine constitutive parameters [30,20], 
it is not a straightforward task to decide which theory (and the resulting) model should be employed. Therefore, in or-
der to exploit the pros of both the theories, combined models were proposed [31–35], in which the frictional contact-line 
slip is taken into account as well as the viscous dissipation. Recently, utilizing a series of molecular dynamics simulations, 
Fernández-Toledano et al. [36] stated that the hydrodynamic theory is a reliable means for correlating the apparent (ex-
perimentally measurable) contact–angle and the microscopic contact–angle, while the molecular–kinetic theory governs the 
dynamic microscopic contact–angle. This confirms the rationale of developing combined models like the one proposed by 
Petrov and Petrov [31].

In the context of the numerical modeling of the dynamics of the contact-line, the utilization of the generalized Navier-
slip condition [37–39] is a viable choice [40]. Being based on the combination of the Navier-slip condition on the solid 
substrate and the frictional movement of the contact-line due to the unbalanced Young stress, it is consistent with the 
molecular dynamics simulations [37,39] and the thermodynamic principles [30,41] for modeling the wetting phenomena. 
The generalized Navier-slip condition has so far been applied in the numerical simulation of various cases involving moving 
contact-line [42–45]. A numerically different, but fundamentally similar approach is the direct imposition of a friction force 
at the contact-line along with the standard Navier-slip condition [46]. In the numerical modeling, it is also possible to im-
pose the no-slip condition on the solid surface while the force singularity is circumvented by modifying the conventional 
formulation [39]; as a notable choice, diffusion can be introduced as the mechanism underlying the contact-line move-
ment [47] similar to the diffuse interface methods [48–50]. Nevertheless, this approach is out of the scope of the present 
paper and will not be further discussed here.

Besides the utilized slip condition, one of the fundamental issues with the computational methods applied to the moving 
contact-line problem is the mesh-dependence of the results [51,52]. A physical and a numerical factor, at least partially, 
responsible for this issue are the unresolved sub-grid hydrodynamics and the interfacial force smoothing, respectively. 
In the vicinity of the contact-line, hydrodynamic mechanisms act at a small length-scale which, even being far beyond 
the molecular–scale, cannot be adequately resolved unless a prohibitive refinement of the computational mesh is per-
formed [53]. The hydrodynamic theory is a means to circumvent the need for such refinement [54] and helps improving the 
mesh-independence of the numerical results [55–57]. On the other hand, conventional numerical methods typically utilize 
a numerically smooth representation of the physically localized surface tension [58–60] following the so-called “continuum 
force approach” [61]. In the presence of the moving contact-line, the unbalanced Young stress is also smoothed out to act 
similar to a body force centralized at the contact-line [62,45]. This approach is associated with an artificial thickness of the 
interface, which is usually set equal to the length of a few computational cells for the best performance. Therefore, fixing 
the ratio of this smoothing length to the cell size [45], a highly refined mesh is necessary in the vicinity of the interface and 
the contact-line in order to minimize the error. A remedy to this issue is to utilize a computational mesh that is fitted to 
the liquid-gas interface, e.g. [63,64,46]. However, such an approach may result in severely deformed meshes and requires a 
frequent remeshing, which dramatically increases the computational costs, particularly in 3D. Moreover, in case of a severe 
topological change in the liquid phase, this class of approaches may lead to ambiguities in the recognition of the liquid 
boundary.

In this work, a numerical method is presented that by alleviating the above mentioned issues, provides reasonably ac-
curate results on rather coarse meshes. The previously introduced pressure-enriched finite element/level-set model for the 
two-phase flows [65] is further developed by incorporating the requirements of the moving contact-line problems. The 
simplified form of the molecular–kinetic model is implemented along with the Navier-slip condition that acts on the solid 
substrate. Following the methodology presented by Buscaglia and Ausas [66], the implementation of the moving contact line 
condition is done by revising the variational formulation of the method. In order to make the overall numerical algorithm 
consistent, the level-set smoothing procedure [65] is also modified by introducing a boundary condition that is compatible 
with the contact line condition. To account for the sub-elemental hydrodynamics, the simplified form of Cox’s relation [19]
is used under the condition of a small capillary number. In addition, this relation is applied only once the contact angle 
reaches the value within a threshold of the equilibrium contact angle. This ensures that the contact line velocity is lim-
ited and consequently, the Reynolds number is small. Nevertheless, in order to remove these limitations, a more general 
hydrodynamic model [67,54] should be acquired that is a subject of future developments. In this work, an element split-
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ting procedure [65] is performed at each step, which enables representing interface with zero-thickness. Consequently, the 
terms associated with the moving contact-line model are integrated along the curve representing the contact-line while the 
surface tension acts locally at the interface. It must be noted that such domain splitting is fully exploited by incorporating 
an enriched finite element space, which enables pressure (gradient) discontinuity within an element.

In the following section, the governing equations including the contact-line condition are first discussed and then imple-
mented in the variational form. Then, the customized version of the level-set method is briefly described and the additional 
boundary condition required for the smoothing procedure is introduced. The performance of the present method is verified 
by comparing the result with the theoretical relation between the footprint radius and the contact angle of a droplet spread-
ing with a spherical-cap shape [68] at a small Bond number [69]. The results are further validated against the experimental 
data published by Seveno et al. [26] for a droplet of liquid squalane that is spreading on a solid silica substrate. The degree 
of mesh-(in)dependence of the results is shown for both test-cases. All simulations presented in this work are conducted 
for three-dimensional computation domains.

2. Numerical method

The momentum and mass conservation equations for a fluid system can be written as

ρ

(
∂u

∂t
+ u · ∇u

)
= ρb + ∇ · σ in �, (1)

and

∂ρ

∂t
+ ∇ · (ρu) = 0 in �, (2)

respectively. It should be noted that in this work, the homogeneous fluid domains (liquid and gas) are considered to be 
incompressible and consequently, Eq. (2) reduces to ∇ · u = 0 in each phase. The fluid domain, � ⊂ R

d , is bounded by 
boundary ∂� ⊂ R

d−1, where d defines the number of spatial dimensions. This set of equations is subject to the initial 
condition

u(x,0) = u0 in �, (3)

Dirichlet

u(x, t) = uD on ∂�D , (4)

and Neumann

T(x, t) = TN on ∂�N , (5)

boundary conditions. The traction vector is calculated as T = n · σ with the total stress tensor, σ , being obtained from the 
Newtonian constitutive equation

σ = −pI+ μ
(
∇u + ∇uT

)
. (6)

Here, n is a unit vector normal to ∂� and pointing to the outside of �.

2.1. Multi-phase flow

Let us consider a system consisting of two immiscible fluids and a solid substrate (see Fig. 1). Then, the domain � can 
be separated into �1 and �2 with � = (�1 ∩ �2) and � = (�1 ∪ �2). The separating interface � is a constituent part of 
both ∂�1 and ∂�2, while it coincides with the solid substrate only at the contact-line ∂� = (∂� ∩ �), where the three 
phases (both fluids 1 and 2 along with the solid substrate) come into contact and three surface tensions, γ , γ1s , and γ2s , 
act simultaneously on the fluid 1-fluid 2, fluid 1-solid, and fluid 2-solid interfaces, respectively (see Fig. 2).

Being internal to the fluid domain �, the interfacial conditions can be interpreted as a jump in the traction due to the 
surface tension

�T(x, t)� = −γ κnint on �, (7)

and continuity of the velocity field

�u(x, t)� = 0 on �, (8)

where nint is the normal to the interface, �, and for any variable A the jump operator reads �A� = A1 − A2 with subscripts 
1 and 2 denoting the value in the corresponding phase domains.
3
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Fig. 1. Schematic of the fluid domain � = �1 ∪ �2.

Fig. 2. Schematic of a droplet contacting a solid surface. Liquid-gas, liquid-solid, and gas-solid surface tensions with respective coefficients of γ , γ1s , and 
γ2s are depicted in this figure.

At the contact–line for the equilibrium state [70] (θ = θY ), Young’s relation [71] states that [10,72]

γ cos(θY ) + γ1s = γ2s. (9)

Therefore, one can simply write cos(θY ) = (γ2s −γ1s)/γ . In case the configuration deviates from the equilibrium, the unbal-
anced Young stress (force per unit length) is defined as [32,50]

τY = γ [cos(θY ) − cos(θ)] . (10)

Here, τY can be interpreted as the net (effective) tension that acts parallel to the solid substrate at the contact-line and is 
responsible for its movement. Based on the molecular–kinetic theory [21], the movement of the contact-line is associated 
with an energy dissipation that is usually referred to as a friction force acting on a moving contact-line [33,39,50]. Denoting 
the slip–velocity associated with the movement of the contact–line with uslip , this underlying mechanism can be represented 
by [25,36]

uslip = 2k0λ sinh

(
λ2τY

2kB T

)
on ∂�, (11)

where parameters k0 and λ are the characteristic frequency and the average distance of the (random thermal) molecular 
displacements in the vicinity of the contact–line, respectively. In Eq. (11), kB is the Boltzmann constant and T denotes the 
absolute temperature. In its simplest form, if the argument of sinh in Eq. (11) is small, the formula of the molecular–kinetic 
theory reads

τY = ζuslip on ∂�, (12)

with ζ = kB T /k0λ3 representing the coefficient of friction at the contact–line [26]. Furthermore, in order to avoid the 
singularity in the vicinity of the contact-line [73], the no-slip condition on the solid substrate is substituted by the Navier-
slip boundary condition that can be formulated as [39,66,74]

ns · u = 0 on ∂�s, (13)

and

Is · T = −βIs · u = −βu on ∂�s, (14)

where ns is the normal to solid substrate ∂�s , and Is = (I− ns ⊗ ns) denotes the surface unit tensor with I being the 
identity tensor. In this work, the slip condition (13) is implemented using the local rotation of the unknown velocities at 
solid surface ∂�s as discussed in [75].
4



M.R. Hashemi, P.B. Ryzhakov and R. Rossi Journal of Computational Physics 442 (2021) 110480
Fig. 3. Schematic of the computationally reproduced and the physically expected interface.

It is worth mentioning that the combination of (12) and (14) is essentially equivalent to the so-called “generalized Navier 
boundary condition” [39]. Another important point to mention is that so far, no systematic approach has been introduced 
for a priori determination of parameters β and ζ to be used in a numerical simulation [45]. In section 3.2, it is shown that 
for the present method, ζ can be set according to the corresponding parameter obtained by fitting the experimental data 
by a comparable model (e.g. see [26]).

2.1.1. Sub-element hydrodynamics
Considering the practical difficulties in computationally resolving the hydrodynamics in the vicinity of the contact-line 

with micrometer length-scales [76,53,77], the well-established hydrodynamic theory is utilized to incorporate the sub-
element variation of the contact angle that occurs due to the so-called “viscous bending” phenomenon [25,1] (see Fig. 3). 
In this work, the formulation is based on the simplified linear form [68] of the asymptotic solution to the hydrodynamic 
theory [19] as

θ3 = (
θnum)3 − 9Ca ln(

he

lmicro
), (15)

where the capillary number is defined as Ca = uclμ/γ and lmicro is the microscopic slip length-scale. If he is considered to be 
equal to the length-scale associated with the conventional experimental measurements of the contact-angle, ln(he/lmicro) ∼
10 would be expected [25,68]. It is worth noting that the simultaneous incorporation of Eqs. (12) and (15) leads to the 
simplified form of the combined molecular–kinetic/hydrodynamic model proposed by Petrov and Petrov [31,26].

The original Cox’s relation [19] is valid for Ca 	 1 and small Reynolds number while its simplified form in Eq. (15)
can be utilized in cases of a small contact angle, θ < 3π/4, with a vanishing viscosity ratio, μ2/μ1 	 1 (considering 
μ2 for the surrounding fluid �2) [68]. For the test-cases solved in this paper, Eq. (15) is applied only for Ca < 0.3 and 
θnum − θY < 2π/10. The latter condition prevents the application of Eq. (15) in situations that a large difference between 
the dynamic contact-angle and θY leads to a rather large contact-line velocity and consequently, a fairly large Reynolds 
number. In order to alleviate this condition, one can follow the approach presented in [67]; however, in order to keep the 
simplicity of the formulation, it is not implemented in this work.

Although it is known that the microscopic length-scale lmicro is in the order of one nanometer, it is generally obtained 
by performing a proper data-fitting [26,68]. In this sense, lmicro is added to the list of unknown model parameters [35]
along with β and ζ . For the cases considered in this work, microscopic length-scale is set to lmicro = 10−9 m that gives 
ln(he/lmicro) ∼ 10 for the employed computational meshes. Numerical simulations also show that slight variation of lmicro
does not lead to any significant changes in the results. Combining Eq. (15) with the generalized Navier condition, Yamamoto 
et al. has also reported that lmicro ∼ 10−9 m led to the most satisfactory results in their capillary rise simulations [56].

2.2. Variational formulation

The variational form of the momentum equation (1) can be written for the whole fluid domain as [65]∫
�

ρ

(
∂u

∂t
+ u · ∇u

)
· wd� =

∫
�

ρb · wd� +
∫
�

p∇ · wd�

−
∫
�

μ
(
∇u + ∇uT

)
: ∇wd� +

∫
∂�

T · wd(∂�), (16)

where w is a test function in 
[
H1(�)

]d
that vanishes at the Dirichlet boundary conditions. For separate incompressible fluid 

domains, �1 and �2, the variational form of the continuity equation (2) becomes
5
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Fig. 4. Schematic of a possible cut in a tetrahedral element. The interface, �e , is shaded by yellow and the matching faces are marked with the same color. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)∫

�

qρ (∇ · u)d� = 0, (17)

with q being a test-function in L2(�). The boundary integral term 
∫
∂�

T · wd(∂�) on the right–hand–side of Eq. (16)
essentially includes the Neumann boundary (5), interfacial (7), and Navier-slip (14) conditions as well as the surface tension 
along with the molecular–kinetic model (11) acting at the contact line. Considering unit vectors tint and ts being tangential 
to the interface and the solid substrate, respectively (as shown in Fig. 2), one has Is · tint = − cos(θ)ts and consequently, the 
molecular–kinetic model (11) can be rewritten as

(γ2s − γ1s)ts + γ Is · tint − 2kB T

λ2
sinh−1

( uslip

2k0λ

)
ts = 0 on ∂�. (18)

Substituting the corresponding relations into Eq. (16), one obtains∫
�

ρ

(
∂u

∂t
+ u · ∇u

)
· wd� =

∫
�

ρb · wd� +
∫
�

p∇ · wd�

−
∫
�

μ
(
∇u + ∇uT

)
: ∇wd� +

∫
∂�N

TN · wd(∂�)

−
∫

∂�s

βu · wd(∂�) −
∫
�

γ κnint · wd�

+
∫
∂�

[(γ2s − γ1s)ts + γ Is · tint

−2kB T

λ2
sinh−1

( uslip

2k0λ

)
ts

]
· wd(∂�). (19)

Here, the slip–velocity at the contact–line reads uslip = ts · u. Simplifying the molecular–kinetic model (11) to its linear 
form (12), one obtains∫

∂�

2kB T

λ2
sinh−1

( uslip

2k0λ

)
ts · wd(∂�) =

∫
∂�

ζ(ts · u)ts · wd(∂�). (20)

For the sake of simplicity and in order to facilitate comparisons with the references chosen in the present work (where ζ is 
provided), the linear approximation (Eq. (20)) is used if not mentioned otherwise.

It must be noted that a similar variational formulation for the contact line dynamics has been derived by Buscaglia 
and Ausas [66] using the principle of virtual work. Conventionally, the variational formulation is derived by smoothing the 
surface tensions based on the continuum force approach (see [42] for example).

In this work, the accurate integration of the terms appearing in the variational formulation (19) is done by splitting 
of the cut elements. In Fig. 4, this procedure is schematically shown for a sample element cut by the interface. Elemental 
integration domains �e,cut

1 and �e,cut
2 are split into tetrahedra to facilitate the integration. The integration of the terms 

associated with the elemental interface (�e ), contact-line (∂�e), and solid substrate (∂�e
s ) are performed by utilizing the 

quadrature points as schematically illustrated in Fig. 5. By employing a high–order (two points for line-segments, three 
points for triangles, and four points for tetrahedra) Gaussian quadrature, one can assure that the integration procedure does 
not introduce further error to the solution (i.e. the number of Gauss points is sufficient for the integration of functions up to 
third–order). The conventional alternative to the element splitting procedure is the incorporation of a smoothed numerical 
6
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Fig. 5. Schematic of a possible cut in a tetrahedral element contacting the solid surface. ∂�e is marked with a red solid line and quadrature points are 
represented by black dots.

approximation of the delta function; in the continuum force approach, this is essentially needed to formulate the surface 
tension and the contact–line model. In the present approach, due to the employment of the splitting methodology, such an 
approximation is not required and the associated errors are alleviated.

The presented formulation is implemented withing the framework of the stabilized pressure enriched finite element 
method proposed in [65]. Within element e, the standard finite element approximation of the flow variables reads

u(x, t) =
∑

I∈N e

uI (t)Ne
I (x), (21)

and

p(x, t) =
∑

I∈N e

pI (t)Ne
I (x), (22)

where N e denotes the set of associated nodes and Ne
I is the shape function corresponding to node I . However, using 

the standard finite element approximation, it is impossible to capture the intra-element discontinuity in the presence of 
material interfaces; in the context of multi-phase flows [65], this is the source of the so-called “spurious currents”. In order 
to resolve this issue, the pressure approximation within an element cut by the interface can be enriched by accounting for 
a “jump” as

p(x, t) =
∑

I∈N e,cut

pI (t)Ne,cut
I (x) +

∑
I∈N e,cut

pe,cut
I,enr (t)Ne,cut

I,enr (x), (23)

with enriched nodal pressure pe,cut
I,enr being local to the cut element.

In this work, enriched shape function NI,enr is constructed based on standard continuous shape function NI as

NI,enr(x) =
{

NI (x) if (xI ∈ �1 and x ∈ �2) or (xI ∈ �2 and x ∈ �1)

0 else
(24)

Using this set of enriched shape functions, both the jump in the pressure and discontinuity in its gradient can be cap-
tured within a cut element. After introducing the enrichment terms, the variational multiscale methodology with the 
well–established algebraic sub-grid scale stabilization [78] along with a special small–cut treatment approach is utilized 
to stabilize the method as proposed in [65]. The momentum equation is then linearized using the generalized Newton’s 
method and solved along with the mass conservation equation in a fully implicit monolithic manner. One of the remark-
able features of this enrichment procedure is that upon the creation of the local elemental system of equations, pressure 
condensation procedure [65] is performed at the elemental level, thus, omitting the introduction of the additional enriched 
pressure degrees of freedom. Therefore, the degrees of freedom, and consequently, the size of the assembled global system 
of equations is the same as that of the standard finite element method.

2.3. Level-set

In the present method, the evolution of the interface is captured using the level-set method [79], which is based on 
the introduction of the continuous function φ that represents the signed distance to the interface. The level-set function is 
convected according to the velocity field by solving

∂φ

∂t
+ u · ∇φ = 0 in �. (25)

In the present work, this pure convection equation is stabilized following the methodology proposed by Codina [80]. The 
level-set function gradually loses its regularity due to its deviation from a distance function [81] and high frequency noise 
7
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(oscillatory interface) [82]. The first problem can be resolved by frequent reinitialization of the level-set function in a way 
that ‖∇φ‖ ≈ 1 is satisfied [83]. Due to the hyperbolic nature of the conventional level-set reinitialization formulation, it 
is necessary to take into account the so-called “blind-spot region” in the vicinity of the solid surface [84]. Nonetheless, in 
the present work, the marching level-set reinitialization procedure proposed by Elias et al. [85] is performed for the whole 
domain once in every 50 time-steps.

Following the idea presented in [86], the high frequency oscillations can be effectively cured by solving a diffusion 
equation for the level-set function as

φ̃ − ε∇2φ̃ = φ in �, (26)

where φ̃ and φ are the smoothed (non-oscillatory) and original level-set functions, respectively. Here, ε = 5 × 103�th2
e , with 

�t being the size of the time-step and he the element size. In the absence of contact with a solid, Eq. (26) can be solved 
without introducing any specific boundary condition [86,82,65]. In the present method, a Neumann boundary condition is 
implemented on the solid substrate as

ns · ∇φ̃ = ns · ∇φ on ∂�s. (27)

Combining Eqs. (10), (12), and (15),

θnum =
{(

cos−1
[

ζ

γ
uslip + cos(θY )

])3

+ 9Ca ln(
he

lmicro
)

}1/3

, (28)

at the cut elements, boundary condition (27) is substituted by

ns · ∇φ̃ = −‖∇φ‖ cos(θnum) on ∂�e,cut
s . (29)

It should be noted that in case of the application of the full form of the molecular–kinetic model, Eq. (28) should be 
rewritten incorporating Eq. (11).

The main shortcoming of the presented level-set smoothing scheme is the probability of a slight droplet shrinkage. As 
proposed in [65], this issue can be resolved by performing a correction step as

φI = φ̃I − 1

NI

NI∑
J

(
φ̃ J − φ J

)
, (30)

where NI is the number of nodes J that are connected to node I . In this work, in order not to perturb the contact angle, 
a modified correction procedure is proposed by separating the set of nodes interior to the fluid domain from those that lie 
on the solid substrate, i.e.

J ∈
{

� \ ∂�s if I ∈ (� \ ∂�s)

∂�s if I ∈ ∂�s
(31)

Above, all the ingredients of the proposed method are detailed. The summary of the overall strategy is presented in 
Algorithm 1.

3. Results

The proposed numerical method is implemented within KRATOS Multiphysics [87] an open-source framework for multi-
physics computations. The second order backward difference (BDF2) time integration is applied to the flow equations and 
the Crank–Nicolson scheme is used for time-marching of the level-set convection equation. Algebraic multigrid library 
(AMGCL [88]) was used to solve the linear system of equations using the GMRES(m) method (with restart parameter 
m = 40). The convergence tolerance of the linear solver is set to 10−9, while a relative tolerance of 10−5 is considered 
to check the convergence of velocity and pressure.

In the following, the performance of proposed numerical method is first verified by comparing the simulation results 
with the theoretical relation obtained for the footprint radius of a liquid droplet spreading on a solid substrate at small 
Bond numbers. The method is further validated against the experimental data published in the literature for a millimeter-
sized squalane droplet spreading on a substrate of silicone wafer. In the end, the capability of the method is assessed by 
simulating a droplet trapped inside conical pores. In all cases solved in this paper, gravity g = 9.8 m/s2 acts in the negative 
z–direction, and �2 is composed of air with ρ = 1.0 kg/m3 and μ = 1.0 × 10−5 Pa s. For the sake of convenience, the 
contact-angle is reported in degrees in the rest of this paper.

Remark. Before assessing the results of the proposed method, it is worth to provide an insight of the computational costs 
associated with its application: using a mesh with ∼ 500 K elements, the total run–time per time–step is around 62 s, of 
which almost 80% corresponds to the two-phase flow solver, 4% to the level–set convection, 8% to the level–set smoothing 
procedure, and about 8% is consumed for the level–set re-initialization procedure.
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Algorithm 1: Summary of the proposed method.
Input: u0, uD , TN , and φ0

Output: uI , pI , and φI ; node I ∈ �

1 n = 1
2 t = 0
3 while t < run-time do

4 solve Eq. (25) for φ(n+1/2)
I with half time-step

5 if n = {50,100,150, . . .} then
6 reinitialize φ

7 do smoothing according to Eqs. (26) and (30) with conditions (27) and (29)
8 calculate curvature
9 for all elements e do

10 if e ∩ � 
=∅ then
11 do element splitting
12 calculate contact angle

13 create elemental system of equations

14 do assembling the Linear System of Equations (LSE)

15 solve LSE for 
[

u(n+1)
I , p(n+1)

I

]
16 solve Eq. (25) for φ(n+1)

I with half time-step
17 update n = n + 1
18 update t = n�t

Fig. 6. Schematic of the initial configuration of the liquid droplet inside a solid box.

3.1. Verification with theory

If a droplet retains its spherical-cap shape during spreading on a solid surface, one can write a correlation between 
the footprint radius and the instantaneous contact-angle based on the mass conservation of an incompressible liquid. The 
resulting correlation reads as r(t) = f (θ(t)) with [33]

f (θ) =
{

3V

π

[1 + cos(θ)] sin(θ)

[1 − cos(θ)] [2 + cos(θ)]

}1/3

. (32)

Starting from θ(0) = π/2, the ratio of the terminal radius rY to the initial radius of the droplet R0 is

rY

R0
=

{
2 [1 + cos(θY )] sin(θY )

[1 − cos(θY )] [2 + cos(θY )]

}1/3

. (33)

The basic assumption of a spherical-cap droplet is valid if the Bond number (Bo = ρ1 g R2
0/γ ) is small or equivalently the 

height of the droplet is smaller than the capillary length-scale (lc ∼ √
γ /ρ1 g) [69,33,68]. This condition indicates that gravity 

is dominated by the capillary force and therefore, has a negligible effect on the droplet dynamics. Note that this assumption 
is questionable for fluids with large viscosity, e.g. for polymeric liquids [33].

Here, a liquid droplet with an initially hemispherical shape (initial contact-angle of θ0 = 90◦) and an initial radius of 
R0 = 1.5 mm is spreading on a solid substrate. The system is confined in a box filled by air with no-slip lateral and top 
boundaries. The schematic of the whole system is shown in Fig. 6. The dimensions are L = W = 8 mm and H = 3 mm, liquid 
viscosity is μ1 = 1.0 ×10−3 Pa s, density is ρ1 = 920 kg/m3, and the liquid-air surface tension is γ = 4.26 ×10−2 N/m. This 
gives a Bo = 0.48 or equivalently a capillary length-scale of lc = 2.2 mm. The equilibrium contact-angle is set to θY = 58◦
and the results are obtained using β = 103 Pa s/m and ζ = 1.0 Pa s, noting that this example does not intent to reproduce 
any real-world experiment.
9
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Fig. 7. The effect of the mesh resolution on the time-evolution of the contact angle for a droplet spreading with Bo = 0.48 and θY = 58◦ .

Fig. 8. The effect of the mesh resolution on the time-evolution of the footprint radius of a droplet spreading with Bo = 0.48 and θY = 58◦ .

This problem is solved for four different (structured) meshes of R0/he ≈ 7.8, 11.3, 15.3, and 19.1, composed of tetra-
hedral elements with the size of he = (1/6V e)

1/3, where V e is the volume of a single element. The time evolution of the 
contact angle and the footprint (base) radius of the droplet is shown in Figs. 7 and 8, respectively. In this work, the contact-
angle is calculated as the average of θ obtained for all cut elements with �e ∩ ∂� 
= ∅. The reported radius is also the 
average distance of the center of the solid substrate, located at (x, y, z) = (L/2, W /2, 0), to the center of all ∂�e = �e ∩ ∂�. 
In the mentioned figures, the theoretical values of θY and rY obtained from Eq. (33) are shown for comparison. In addition, 
since the Bond number is finite, the corrected equilibrium footprint radius, in the presence of gravity is calculated based on 
the theory developed in [69] and denoted by rY ,g in the following figures.

As seen in Figs. 7 and 8, numerically obtained droplet configuration at equilibrium, i.e. (θeq, req) shows a good consis-
tency with the theoretical prediction (θY , rY ,g); while the error in θeq is around 3.1% and 2.4% for R0/he ≈ 7.8 and 11.3, 
respectively, it is reduced to below 0.5% for two finer meshes of R0/he ≈ 15.3 and 19.1. The corresponding errors in the 
footprint radius at equilibrium in comparison with rY ,g are around 5.0%, 1.1%, 0.6%, and 0.3% for R0/he ≈ 7.8, 11.3, 15.3, 
and 19.1, respectively.

For all the employed meshes, the largest deviation from the theoretical value in terms of the dynamic contact-angle and 
the evolving footprint radius of the droplet, is observed in the middle stages of the spreading. The mesh-convergence of req
is shown in Fig. 9. The equilibrium configuration of the droplet is obviously converging by increasing the mesh resolution. 
In the present test-case, the settings lead to a very small capillary number and therefore, the difference between θ and 
θnum is fairly small.

Considering the initial configuration of the droplet and fact that the height of the droplet, and consequently the effect 
of gravity is constantly decreasing during the spreading, it is expected that the spherical-cap assumption and consequently, 
Eq. (32) can also be applied to the evolution of the radius of the droplet. It is shown in Fig. 10, where the numerically 
obtained footprint radius of the droplet for R0/he ≈ 15.3 is compared to Eq. (32); the agreement is clearly seen. However, 
specially for the initial stages of the spreading, the slight deviation is expected as a result of a finite gravity and the effect 
of inertia.

It should be noted that releasing the droplet from rest with its center-of-gravity initially located above the solid substrate, 
triggers a series of oscillations in the contact-angle (see Fig. 7, it is also directly reflected in Fig. 10 for r = f (θ) curve). These 
10
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Fig. 9. Mesh convergence of the footprint radius of a droplet spreading with Bo = 0.48 and θY = 58◦ . The theoretical value of req is shown by dotted-line.

Fig. 10. Time-evolution of the footprint radius of a droplet spreading with Bo = 0.48 and θY = 58◦ , in comparison with r = f (θ).

are physically expected inertial oscillations with an origin similar to what was theoretically formulated in [89] (art. 275); any 
disturbance in the shape of a droplet in the simultaneous presence of the surface tension and inertia, results in an oscillatory 
behavior. Since the initial triggering disturbance is of a spontaneous nature, these oscillations are eventually damped due to 
viscous dissipation. On the other hand, the persistent high-frequency oscillations of insignificant amplitude in the contact-
angle (particularly evident near the steady-state) occur due to the intermittent level-set re-initialization (performed every 
50 time–steps in the present work).

3.1.1. Obtuse contact–angle
In order to further analyze the performance of the proposed method for an obtuse equilibrium contact–angle, the same 

test–case of the droplet spreading is simulated here with θ0 = 159◦ and θY = 105◦ . Time–evolution of the contact–angle 
as well as the footprint radius is shown in Fig. 11. Here, despite being characterized by the same Bond number (Bo =
0.48), which corresponds to the initial radius of the droplet, the significantly larger height suggests a pronounced effect 
of gravity on the equilibrium shape of the droplet. This explains the rather large difference between rY = 1.30 mm and 
rY ,g = 1.77 mm. In addition, releasing the droplet with its center–of–gravity being initially positioned farther from the solid 
substrate (at z0 = 1.4 mm) triggers more profound inertial oscillations.

The above-presented results show that the present numerical model can successfully capture the configuration of a 
spreading droplet consistently with the theoretical predictions.

3.2. Validation against experimental data

Next, the proposed numerical method is validated by simulating the spreading of a liquid (squalane) droplet on a solid 
(silicone wafer) substrate and comparing the obtained numerical results with the experimental data reported in [26]. In this 
test, besides the time-evolution of the configuration of the droplet at the near-equilibrium stage, the initial stage of the 
droplet spreading (in which inertia also plays an important role) is taken into account. Therefore, this test allows for the 
in-depth validation of the proposed numerical method.
11
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Fig. 11. Time-evolution of (a) the contact–angle and (b) the footprint radius of a droplet spreading with Bo = 0.48 and θY = 105◦ . The solid red line and 
the dotted line correspond to the numerical result and the theoretical prediction (θY , rY ,g), respectively.

Fig. 12. Contact-angle as a function of the velocity of the contact-line; comparison of the experiment [26] with the numerical data obtained for structured 
meshes of different resolutions.

Squalane has a viscosity of μ1 = 3.14 × 10−2 Pa s, density ρ1 = 810 kg/m3, and the liquid-air surface tension γ =
3.11 × 10−2 N/m. The squalane droplet in contact with the surrounding air and the silicone wafer substrate creates an 
equilibrium contact angle of 38.8◦ . Same computational domain as the one used in section 3.1 is chosen (see Fig. 6), while 
the initial radius and contact-angle of the droplet are set to R0 = 0.9 mm and θ0 = 180◦ , respectively. Here, ζ is set to 0.7 
Pa s in order to correspond to the value calculated in [26] by performing a data fitting based on the linear Petrov model. The 
Navier-slip coefficient of β = 103 Pa s/m is chosen so to provide the best match with the experimentally obtained contact 
velocity-angle relation as shown in Fig. 12. It is observed that the experimental data can perfectly be reproduced by the 
implemented model for the moving contact-line. Numerical data are obtained by performing simulations on three different 
structured meshes of tetrahedral elements with R0/he ≈ 4.65, 6.97, and 9.30. Varying the mesh resolution has a negligible 
effect on the contact velocity-angle relation.

In Fig. 13, the experimentally obtained time-evolution of the contact-angle is compared to the numerical value for 
different mesh resolutions. Numerical results are in a good agreement with the experimental data. Mesh-convergence of 
the solution is confirmed by comparing the results obtained for R0/he ≈ 6.97, and 9.30. The mesh-convergence is further 
shown in Fig. 14 for the footprint radius of the droplet during the spreading.

In an attempt to compare the radius of the droplet with data reported in [26], correlation R = r/ cos(θ −π/2) is applied 
to the numerical data. This correlation, based on the assumption that the spreading droplet has a spherical-cap shape, is 
valid in the current test-case only during the final stage of the spreading, for which θ < 70◦ [26]. Fig. 15 illustrates the 
reproduced radius of the droplet for different mesh resolutions in comparison with the experimental data.

Upon validation of the proposed method, in the following, the performance of the method is investigated for the same 
test is simulated on an unstructured mesh. The initial radius to (average) element size ratio of R0/he ≈ 9 is set for the 
elements located on the solid surface, i.e. �e ∩ �s 
= ∅, while the mesh resolution is significantly coarser for internal 
elements with R0/he ≈ 4.5. Keeping parameters β and ζ unchanged, the numerically obtained contact velocity-angle relation 
12
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Fig. 13. Time evolution of the contact-angle; comparison of the experiment [26] with the numerical data obtained for structured meshes of different 
resolutions.

Fig. 14. Time evolution of the footprint radius; comparison of data obtained for structured meshes of different resolutions.

Fig. 15. Radius of the droplet; comparison of the data presented in [26] with the numerical data obtained for structured meshes of different resolutions.

is shown in Fig. 16. Despite a slight deviation, the result is completely satisfactory. The time-evolution of the contact-angle 
obtained for the unstructured mesh is shown in Fig. 17. The result obtained on the unstructured mesh shows a slight 
increase in the high-frequency oscillations comparing to that of the structured mesh during the middle stage of the droplet 
spreading. In order to explore the pressure field, the computational domain is evenly divided and the pressure contours 
are plotted on the division plane in Fig. 18. The results obtained on structured and unstructured meshes exhibit a good 
match. The isometric (three-dimensional) and side view of the droplet-air interface is presented in Fig. 19 at different 
instances. These are obtained by plotting the zero level-set (φ = 0) iso-surfaces obtained for the unstructured mesh. As seen 
in Figs. 19(g) and 19(h), the deviation from the spherical-cap shape is evident for the initial stage of the spreading.
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Fig. 16. Contact-angle as a function of the velocity of the contact-line; comparison between the experimental data [26] and the numerical results obtained 
for the structured and the unstructured meshes.

Fig. 17. Time evolution of the contact-angle; comparison between the experimental data [26] and the numerical results obtained for the structured and the 
unstructured meshes.

Fig. 18. Pressure contours obtained at t = 0.1s for (a) structured and (b) unstructured meshes.

3.3. Droplet trapped in conical pores

In order to assess the capability of the proposed method in a more complex case, in the following the numerical method 
is applied to the evolution of a droplet trapped inside conical pores. The settings of this test-case preclude the straight-
forward application of the conventional schemes, which are basically developed for structured meshes.

The schematic of the configuration of the pore with the initially spherical droplet of radius R0 = 0.9 mm in tangential 
contact with the cone is shown in Fig. 20. Physical parameters are set according to data reported in section 3.2 for the 
squalane droplet on the silicone wafer substrate. Here, the simulations are performed for two conical pores of α = 30◦ and 
60◦ with H = 5.5 mm and 4 mm, respectively. The computational domain is discretized with tetrahedral elements of size 
R0/he ≈ 14.3 adjacent to the solid surface and R0/he ≈ 9 inside the domain.

The evolution of the trapped droplet is shown in Fig. 21 for α = 30◦ . Starting from a perfectly spherical shape, concave 
interfaces are gradually established due to θY < π/2. As shown in Fig. 22, this leads to a reduced (negative) pressure inside 
the droplet at equilibrium. Figs. 22 and 23 present the pressure contours inside the computational domain obtained at 
different time-instances for α = 30◦ and 60◦ , respectively. It is evident that by evolving the interface from a convex to 
14
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Fig. 19. Evolution of the liquid-air interface of the squalane droplet spreading on silicone wafer.

Fig. 20. Schematic of the initial configuration of the droplet trapped in a conical pore.

Fig. 21. Evolution of the liquid-air interface of the droplet trapped inside a conical pore with α = 30◦ .

a concave shape, pressure inside the droplet varies from the maximum to the minimum value. The average value of the 
numerically obtained terminal contact-angle is θeq ≈ 43.3◦ for α = 30◦ , and θeq ≈ 43.9◦ for α = 60◦; this is consistent with 
θY = 38.8◦ set as an input parameter for simulations.

The present set of test-cases required, on average, three to four iterations to reach pressure and velocity convergence in 
each time-step, while the linear solver fulfilled the maximum tolerance condition in about 50 iterations.

4. Summary and conclusion

In order to develop a level-set/enriched finite element method with the capability of treating dynamics of the moving 
contact-line, a systematic and physically consistent methodology was proposed; the role of the molecular–kinetic theory 
and the hydrodynamic theory in the numerical modeling were elaborated along with the necessary customization of the 
boundary conditions including the contact–line dynamics. By applying the proposed method to the spreading of a droplet, 
15
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Fig. 22. Pressure contours for α = 30◦ . At t = 0.2s, the system has almost reached its equilibrium configuration.

an acceptable mesh-convergence was observed. The results were also compared for both the structured and unstructured 
meshes and a good agreement was revealed. Furthermore, the straightforward employment of the proposed method to 
simulate a droplet trapped in a (closed) conical pore, suggests the applicability of the developed numerical tool for pore-
scale multi-phase flows. It must be noted that in this work no mesh-refinement strategy was utilized to locally increase the 
resolution close to the droplet interface.

One of the interesting features of the present method was that in order to obtain physically meaningful results, the 
contact-line dissipation coefficient was set according to the corresponding parameter that was obtained by fitting the linear 
Petrov’s model into the experimental data. This alleviates the ambiguity associated with the setting of this parameter in the 
approaches rely on the generalized Navier-slip condition. However, further investigation with a wider range of liquid/solid 
materials is necessary to further support this affirmation, which would be the topic of a separate research.

Generally, during the initial stage of the droplet spreading, inertial effects are rather significant and therefore, the validity 
of the simplified model used in the present work to resolve the sub-elemental hydrodynamics becomes dubious. Therefore, 
in order to increase the accuracy while capturing the spreading with a finite inertia, a more sophisticated hydrodynamic 
model that also incorporates the terms appearing at finite Reynolds number can be acquired. This is a subject for future 
developments.
16



M.R. Hashemi, P.B. Ryzhakov and R. Rossi Journal of Computational Physics 442 (2021) 110480
Fig. 23. Pressure contours for α = 60◦ . At t = 0.14s, the system has almost reached its equilibrium configuration.

In order to improve the coupling between the momentum equation and the evolving interface that is represented by 
the level-set function, in this work the level-set convection equation is split in time as shown in Algorithm 1. Numerical 
simulations showed that such splitting could positively affect the accuracy of the method and alleviate the need for an 
excessive diffusive level-set smoothing to regularize the interface. Nevertheless, further investigations are needed to quantify 
this improvement.

CRediT authorship contribution statement

Mohammad R. Hashemi: Conceptualization, Methodology, Software, Writing – original draft. Pavel B. Ryzhakov: Concep-
tualization, Funding acquisition, Methodology, Supervision, Writing – review & editing. Riccardo Rossi: Conceptualization, 
Methodology, Supervision, Writing – review & editing.

Declaration of competing interest

The authors of the present work declare that they have no conflict of interests.

Acknowledgements

This work was performed within the framework of AMADEUS project (“Advanced Multi-scAle moDEling of coupled 
mass transport for improving water management in fUel cellS”, reference number PGC2018-101655-B-I00) supported by 
the Ministerio de Ciencia, Innovación y Universidades of Spain. The authors also acknowledge financial support of the men-
tioned Ministry via the “Severo Ochoa Programme” for Centres of Excellence in R&D (reference: CEX2018-000797-S) given 
to the International Centre for Numerical Methods in Engineering (CIMNE).
17



M.R. Hashemi, P.B. Ryzhakov and R. Rossi Journal of Computational Physics 442 (2021) 110480
References

[1] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Wetting and spreading, Rev. Mod. Phys. 81 (2009) 739–805, https://doi .org /10 .1103 /RevModPhys .81.
739.

[2] C.N. Baroud, H. Willaime, Multiphase flows in microfluidics, C. R. Phys. 5 (2004) 547–555, https://doi .org /10 .1016 /j .crhy.2004 .04 .006, http://www.
sciencedirect .com /science /article /pii /S1631070504000854.

[3] L. Shui, J.C.T. Eijkel, A. van den Berg, Multiphase flow in microfluidic systems – control and applications of droplets and interfaces, Adv. Colloid Interface 
Sci. 133 (2007) 35–49, https://doi .org /10 .1016 /j .cis .2007.03 .001, http://www.sciencedirect .com /science /article /pii /S0001868607000590.

[4] K.A. Culligan, D. Wildenschild, B.S.B. Christensen, W.G. Gray, M.L. Rivers, Pore-scale characteristics of multiphase flow in porous media: a com-
parison of air–water and oil–water experiments, Adv. Water Resour. 29 (2006) 227–238, https://doi .org /10 .1016 /j .advwatres .2005 .03 .021, http://
www.sciencedirect .com /science /article /pii /S030917080500120X.

[5] K.E. Thompson, Pore-scale modeling of fluid transport in disordered fibrous materials, AIChE J. 48 (2002) 1369–1389, https://doi .org /10 .1002 /aic .
690480703, http://aiche .onlinelibrary.wiley.com /doi /abs /10 .1002 /aic .690480703.

[6] X. Zhu, P. Sui, N. Djilali, Three-dimensional numerical simulations of water droplet dynamics in a PEMFC gas channel, J. Power Sources 181 (2008) 
101–115, https://doi .org /10 .1016 /j .jpowsour.2008 .03 .005, https://linkinghub .elsevier.com /retrieve /pii /S0378775308004989.

[7] M. Andersson, S.B. Beale, M. Espinoza, Z. Wu, W. Lehnert, A review of cell-scale multiphase flow modeling, including water management, in polymer 
electrolyte fuel cells, Appl. Energy 180 (2016) 757–778, https://doi .org /10 .1016 /j .apenergy.2016 .08 .010, http://www.sciencedirect .com /science /article /
pii /S0306261916310972.

[8] A.Z. Weber, R.L. Borup, R.M. Darling, P.K. Das, T.J. Dursch, W. Gu, D. Harvey, A. Kusoglu, S. Litster, M.M. Mench, R. Mukundan, J.P. Owejan, J.G. Pharoah, M. 
Secanell, I.V. Zenyuk, A critical review of modeling transport phenomena in polymer-electrolyte fuel cells, J. Electrochem. Soc. 161 (2014) F1254–F1299, 
https://doi .org /10 .1149 /2 .0751412jes, https://iopscience .iop .org /article /10 .1149 /2 .0751412jes.

[9] A. Jarauta, P. Ryzhakov, Challenges in computational modeling of two-phase transport in polymer electrolyte fuel cells flow channels: a review, Arch. 
Comput. Methods Eng. 25 (2018) 1027–1057, https://doi .org /10 .1007 /s11831 -017 -9243 -2, http://link.springer.com /10 .1007 /s11831 -017 -9243 -2.

[10] J.H. Snoeijer, B. Andreotti, Moving contact lines: scales, regimes, and dynamical transitions, Annu. Rev. Fluid Mech. 45 (2013) 269–292, https://doi .org /
10 .1146 /annurev-fluid -011212 -140734, http://www.annualreviews .org /doi /10 .1146 /annurev-fluid -011212 -140734.

[11] Y.D. Shikhmurzaev, Moving contact lines and dynamic contact angles: a ‘litmus test’ for mathematical models, accomplishments and new challenges, 
Eur. Phys. J. Spec. Top. 229 (2020) 1945–1977, https://doi .org /10 .1140 /epjst /e2020 -900236 -8.

[12] C. Huh, L.E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci. 35 (1971) 85–101.
[13] E.B. Dussan, S.H. Davis, On the motion of a fluid-fluid interface along a solid surface, J. Fluid Mech. 65 (1974) 71–95, https://doi .org /10 .1017 /

S0022112074001261, https://www.cambridge .org /core /product /identifier /S0022112074001261 /type /journal _article.
[14] L.M. Hocking, A moving fluid interface, Part 2: the removal of the force singularity by a slip flow, J. Fluid Mech. 79 (1977) 209–229, https://doi .org /10 .

1017 /S0022112077000123, https://www.cambridge .org /core /product /identifier /S0022112077000123 /type /journal _article.
[15] L.M. Hocking, A.D. Rivers, The spreading of a drop by capillary action, J. Fluid Mech. 121 (1982) 425, https://doi .org /10 .1017 /S0022112082001979, 

http://www.journals .cambridge .org /abstract _S0022112082001979.
[16] P.A. Thompson, M.O. Robbins, Simulations of contact-line motion: slip and the dynamic contact angle, Phys. Rev. Lett. 63 (1989) 766.
[17] T. Qian, X.-P. Wang, P. Sheng, Power-law slip profile of the moving contact line in two-phase immiscible flows, Phys. Rev. Lett. 93 (2004) 094501, 

https://doi .org /10 .1103 /PhysRevLett .93 .094501, https://link.aps .org /doi /10 .1103 /PhysRevLett .93 .094501.
[18] T. Qian, X.-P. Wang, P. Sheng, Molecular hydrodynamics of the moving contact line in two-phase immiscible flows, preprint, arXiv:cond -mat /0510403, 

2005.
[19] R.G. Cox, The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, J. Fluid Mech. 168 (1986) 169, https://doi .org /10 .1017 /

S0022112086000332, http://www.journals .cambridge .org /abstract _S0022112086000332.
[20] P. Zhang, K. Mohseni, Theoretical model of a finite force at the moving contact line, Int. J. Multiph. Flow 132 (2020) 103398, https://doi .org /10 .1016 /j .

ijmultiphaseflow.2020 .103398, http://www.sciencedirect .com /science /article /pii /S0301932220305073.
[21] T.D. Blake, J.M. Haynes, Kinetics of liquid/liquid displacement, J. Colloid Interface Sci. 30 (1969) 421–423, https://doi .org /10 .1016 /0021 -9797(69 )90411 -

1, http://www.sciencedirect .com /science /article /pii /0021979769904111.
[22] T.D. Blake, A. Clarke, J. De Coninck, M.J. de Ruijter, Contact angle relaxation during droplet spreading: comparison between molecular kinetic theory 

and molecular dynamics, Langmuir 13 (1997) 2164–2166, https://doi .org /10 .1021 /la962004g.
[23] M.J. de Ruijter, T.D. Blake, J. De Coninck, Dynamic wetting studied by molecular modeling simulations of droplet spreading, Langmuir 15 (1999) 

7836–7847, https://doi .org /10 .1021 /la990171l.
[24] J.G. Petrov, J. Ralston, M. Schneemilch, R.A. Hayes, Dynamics of partial wetting and dewetting in well-defined systems, J. Phys. Chem. B 107 (2003) 

1634–1645, https://doi .org /10 .1021 /jp026723h.
[25] T.D. Blake, The physics of moving wetting lines, J. Colloid Interface Sci. 299 (2006) 1–13, https://doi .org /10 .1016 /j .jcis .2006 .03 .051, https://linkinghub .

elsevier.com /retrieve /pii /S0021979706002463.
[26] D. Seveno, A. Vaillant, R. Rioboo, H. Adao, J. Conti, J. De Coninck, Dynamics of wetting revisited, Langmuir 25 (2009) 13034–13044.
[27] M.J. de Ruijter, J. De Coninck, T.D. Blake, A. Clarke, A. Rankin, Contact angle relaxation during the spreading of partially wetting drops, Langmuir 13 

(1997) 7293–7298, https://doi .org /10 .1021 /la970825v.
[28] S.R. Ranabothu, C. Karnezis, L.L. Dai, Dynamic wetting: hydrodynamic or molecular-kinetic?, J. Colloid Interface Sci. 288 (2005) 213–221, https://

doi .org /10 .1016 /j .jcis .2005 .02 .074, http://www.sciencedirect .com /science /article /pii /S0021979705002316.
[29] A. Mohammad Karim, S.H. Davis, H.P. Kavehpour, Forced versus spontaneous spreading of liquids, Langmuir 32 (2016) 10153–10158, https://doi .org /

10 .1021 /acs .langmuir.6b00747.
[30] W. Ren, D. Hu, W. E, Continuum models for the contact line problem, Phys. Fluids 22 (2010) 102103, https://doi .org /10 .1063 /1.3501317, https://

aip -scitation -org .recursos .biblioteca .upc .edu /doi /full /10 .1063 /1.3501317.
[31] P. Petrov, I. Petrov, A combined molecular-hydrodynamic approach to wetting kinetics, Langmuir 8 (1992) 1762–1767.
[32] F. Brochard-Wyart, P.G. de Gennes, Dynamics of partial wetting, Adv. Colloid Interface Sci. 39 (1992) 1–11, https://doi .org /10 .1016 /0001 -8686(92 )80052 -

Y, http://www.sciencedirect .com /science /article /pii /000186869280052Y.
[33] M.J. de Ruijter, J. De Coninck, G. Oshanin, Droplet spreading: partial wetting regime revisited, Langmuir 15 (1999) 2209–2216, https://doi .org /10 .1021 /

la971301y.
[34] M.J. de Ruijter, M. Charlot, M. Voué, J. De Coninck, Experimental evidence of several time scales in drop spreading, Langmuir 16 (2000) 2363–2368, 

https://doi .org /10 .1021 /la990769t.
[35] C.M. Phan, A.V. Nguyen, G.M. Evans, Combining hydrodynamics and molecular kinetics to predict dewetting between a small bubble and a 

solid surface, J. Colloid Interface Sci. 296 (2006) 669–676, https://doi .org /10 .1016 /j .jcis .2005 .09 .062, http://www.sciencedirect .com /science /article /pii /
S0021979705010076.

[36] J.-C. Fernández-Toledano, T.D. Blake, J. De Coninck, Taking a closer look: a molecular-dynamics investigation of microscopic and apparent dynamic 
contact angles, J. Colloid Interface Sci. 587 (2021) 311–323, https://doi .org /10 .1016 /j .jcis .2020 .12 .013, https://www.sciencedirect .com /science /article /
pii /S0021979720316672.
18

https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1016/j.crhy.2004.04.006
http://www.sciencedirect.com/science/article/pii/S1631070504000854
http://www.sciencedirect.com/science/article/pii/S1631070504000854
https://doi.org/10.1016/j.cis.2007.03.001
http://www.sciencedirect.com/science/article/pii/S0001868607000590
https://doi.org/10.1016/j.advwatres.2005.03.021
http://www.sciencedirect.com/science/article/pii/S030917080500120X
http://www.sciencedirect.com/science/article/pii/S030917080500120X
https://doi.org/10.1002/aic.690480703
https://doi.org/10.1002/aic.690480703
http://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690480703
https://doi.org/10.1016/j.jpowsour.2008.03.005
https://linkinghub.elsevier.com/retrieve/pii/S0378775308004989
https://doi.org/10.1016/j.apenergy.2016.08.010
http://www.sciencedirect.com/science/article/pii/S0306261916310972
http://www.sciencedirect.com/science/article/pii/S0306261916310972
https://doi.org/10.1149/2.0751412jes
https://iopscience.iop.org/article/10.1149/2.0751412jes
https://doi.org/10.1007/s11831-017-9243-2
http://link.springer.com/10.1007/s11831-017-9243-2
https://doi.org/10.1146/annurev-fluid-011212-140734
https://doi.org/10.1146/annurev-fluid-011212-140734
http://www.annualreviews.org/doi/10.1146/annurev-fluid-011212-140734
https://doi.org/10.1140/epjst/e2020-900236-8
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib4EAD1E4970D4A9F71EBBDA8DA8F7FDD2s1
https://doi.org/10.1017/S0022112074001261
https://doi.org/10.1017/S0022112074001261
https://www.cambridge.org/core/product/identifier/S0022112074001261/type/journal_article
https://doi.org/10.1017/S0022112077000123
https://doi.org/10.1017/S0022112077000123
https://www.cambridge.org/core/product/identifier/S0022112077000123/type/journal_article
https://doi.org/10.1017/S0022112082001979
http://www.journals.cambridge.org/abstract_S0022112082001979
http://refhub.elsevier.com/S0021-9991(21)00375-2/bibA49BE25A992836367FC054E3377E5961s1
https://doi.org/10.1103/PhysRevLett.93.094501
https://link.aps.org/doi/10.1103/PhysRevLett.93.094501
http://refhub.elsevier.com/S0021-9991(21)00375-2/bibDF95552455289A2336B69790BCFE2BB4s1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bibDF95552455289A2336B69790BCFE2BB4s1
https://doi.org/10.1017/S0022112086000332
https://doi.org/10.1017/S0022112086000332
http://www.journals.cambridge.org/abstract_S0022112086000332
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103398
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103398
http://www.sciencedirect.com/science/article/pii/S0301932220305073
https://doi.org/10.1016/0021-9797(69)90411-1
https://doi.org/10.1016/0021-9797(69)90411-1
http://www.sciencedirect.com/science/article/pii/0021979769904111
https://doi.org/10.1021/la962004g
https://doi.org/10.1021/la990171l
https://doi.org/10.1021/jp026723h
https://doi.org/10.1016/j.jcis.2006.03.051
https://linkinghub.elsevier.com/retrieve/pii/S0021979706002463
https://linkinghub.elsevier.com/retrieve/pii/S0021979706002463
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib942ABC82FDAC181BA591F9DD27B38A73s1
https://doi.org/10.1021/la970825v
https://doi.org/10.1016/j.jcis.2005.02.074
https://doi.org/10.1016/j.jcis.2005.02.074
http://www.sciencedirect.com/science/article/pii/S0021979705002316
https://doi.org/10.1021/acs.langmuir.6b00747
https://doi.org/10.1021/acs.langmuir.6b00747
https://doi.org/10.1063/1.3501317
https://aip-scitation-org.recursos.biblioteca.upc.edu/doi/full/10.1063/1.3501317
https://aip-scitation-org.recursos.biblioteca.upc.edu/doi/full/10.1063/1.3501317
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib4F1276E551EAB48B35432528F5E5189Bs1
https://doi.org/10.1016/0001-8686(92)80052-Y
https://doi.org/10.1016/0001-8686(92)80052-Y
http://www.sciencedirect.com/science/article/pii/000186869280052Y
https://doi.org/10.1021/la971301y
https://doi.org/10.1021/la971301y
https://doi.org/10.1021/la990769t
https://doi.org/10.1016/j.jcis.2005.09.062
http://www.sciencedirect.com/science/article/pii/S0021979705010076
http://www.sciencedirect.com/science/article/pii/S0021979705010076
https://doi.org/10.1016/j.jcis.2020.12.013
https://www.sciencedirect.com/science/article/pii/S0021979720316672
https://www.sciencedirect.com/science/article/pii/S0021979720316672


M.R. Hashemi, P.B. Ryzhakov and R. Rossi Journal of Computational Physics 442 (2021) 110480
[37] T. Qian, X.-P. Wang, P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E 68 (2003) 016306.
[38] T. Qian, X.-P. Wang, P. Sheng, A variational approach to moving contact line hydrodynamics, J. Fluid Mech. 564 (2006) 333, https://doi .org /10 .1017 /

S0022112006001935, http://www.journals .cambridge .org /abstract _S0022112006001935.
[39] W. Ren, W. E, Boundary conditions for the moving contact line problem, Phys. Fluids 19 (2007) 022101.
[40] X. Xu, Y. Di, H. Yu, Sharp-interface limits of a phase-field model with a generalized Navier slip boundary condition for moving contact lines, J. 

Fluid Mech. 849 (2018) 805–833, https://doi .org /10 .1017 /jfm .2018 .428, https://www.cambridge .org /core /product /identifier /S0022112018004287 /type /
journal _article.

[41] W. Ren, E. Weinan, Derivation of continuum models for the moving contact line problem based on thermodynamic principles, Commun. Math. Sci. 
9 (2011) 597–606, https://doi .org /10 .4310 /CMS .2011.v9 .n2 .a13, http://www.intlpress .com /site /pub /pages /journals /items /cms /content /vols /0009 /0002 /
a013/.

[42] S. Manservisi, R. Scardovelli, A variational approach to the contact angle dynamics of spreading droplets, Comput. Fluids 38 (2009) 406–424.
[43] S. Guo, M. Gao, X. Xiong, Y.J. Wang, X. Wang, P. Sheng, P. Tong, Direct measurement of friction of a fluctuating contact line, Phys. Rev. Lett. 111 (2013) 

026101, https://doi .org /10 .1103 /PhysRevLett .111.026101.
[44] Y. Yamamoto, T. Ito, T. Wakimoto, K. Katoh, Numerical simulations of spontaneous capillary rise with very low capillary numbers using a front-tracking 

method combined with generalized Navier boundary condition, Int. J. Multiph. Flow 51 (2013) 22–32.
[45] J. Zhang, P. Yue, A level-set method for moving contact lines with contact angle hysteresis, J. Comput. Phys. (2020) 109636.
[46] E. Mahrous, A. Jarauta, T. Chan, P. Ryzhakov, A.Z. Weber, R.V. Roy, M. Secanell, A particle finite element-based model for droplet spreading analysis, 

Phys. Fluids 32 (2020) 042106.
[47] S. Zahedi, K. Gustavsson, G. Kreiss, A conservative level set method for contact line dynamics, J. Comput. Phys. 228 (2009) 6361–6375.
[48] D. Jacqmin, Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech. 402 (2000) 57–88, https://doi .org /10 .1017 /S0022112099006874, https://

www.cambridge .org /core /product /identifier /S0022112099006874 /type /journal _article.
[49] P. Yue, J.J. Feng, Wall energy relaxation in the Cahn–Hilliard model for moving contact lines, Phys. Fluids 23 (2011) 012106, https://doi .org /10 .1063 /1.

3541806, https://aip -scitation -org .recursos .biblioteca .upc .edu /doi /full /10 .1063 /1.3541806.
[50] Y. Sui, H. Ding, P.D. Spelt, Numerical simulations of flows with moving contact lines, Annu. Rev. Fluid Mech. 46 (2014) 97–119, https://doi .org /10 .1146 /

annurev-fluid -010313 -141338.
[51] O. Weinstein, L. Pismen, Scale dependence of contact line computations, Math. Model. Nat. Phenom. 3 (2008) 98–107.
[52] F. Schönfeld, S. Hardt, Dynamic contact angles in CFD simulations, Comput. Fluids 38 (2009) 757–764, https://doi .org /10 .1016 /j .compfluid .2008 .05 .007, 

http://www.sciencedirect .com /science /article /pii /S0045793008001916.
[53] J.-B. Dupont, D. Legendre, Numerical simulation of static and sliding drop with contact angle hysteresis, J. Comput. Phys. 229 (2010) 2453–2478.
[54] Y. Sui, P.D. Spelt, An efficient computational model for macroscale simulations of moving contact lines, J. Comput. Phys. 242 (2013) 37–52.
[55] S. Afkhami, S. Zaleski, M. Bussmann, A mesh-dependent model for applying dynamic contact angles to VOF simulations, J. Comput. Phys. 228 (2009) 

5370–5389.
[56] Y. Yamamoto, K. Tokieda, T. Wakimoto, T. Ito, K. Katoh, Modeling of the dynamic wetting behavior in a capillary tube considering the macroscopic–

microscopic contact angle relation and generalized Navier boundary condition, Int. J. Multiph. Flow 59 (2014) 106–112.
[57] J. Luo, X.Y. Hu, N.A. Adams, Curvature boundary condition for a moving contact line, J. Comput. Phys. 310 (2016) 329–341, https://doi .org /10 .1016 /j .

jcp .2016 .01.024, http://www.sciencedirect .com /science /article /pii /S0021999116000322.
[58] S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys. 100 (1992) 25–37.
[59] Y.-C. Chang, T. Hou, B. Merriman, S. Osher, A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. 

Phys. 124 (1996) 449–464.
[60] M. Sussman, S. Uto, A computational study of the spreading of oil underneath a sheet of ice, CAM Rep. 114 (1998) 146–159.
[61] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 335–354.
[62] J.-J. Xu, W. Ren, A level-set method for two-phase flows with moving contact line and insoluble surfactant, J. Comput. Phys. 263 (2014) 71–90, https://

doi .org /10 .1016 /j .jcp .2014 .01.012, https://linkinghub .elsevier.com /retrieve /pii /S0021999114000394.
[63] A. Jarauta, P. Ryzhakov, M. Secanell, P.R. Waghmare, J. Pons-Prats, Numerical study of droplet dynamics in a polymer electrolyte fuel cell gas chan-

nel using an embedded Eulerian-Lagrangian approach, J. Power Sources 323 (2016) 201–212, https://doi .org /10 .1016 /j .jpowsour.2016 .05 .030, https://
linkinghub .elsevier.com /retrieve /pii /S0378775316305687.

[64] P.B. Ryzhakov, A. Jarauta, M. Secanell, J. Pons-Prats, On the application of the PFEM to droplet dynamics modeling in fuel cells, Comput. Part. Mech. 4 
(2017) 285–295, https://doi .org /10 .1007 /s40571 -016 -0112 -9.

[65] M.R. Hashemi, P.B. Ryzhakov, R. Rossi, An enriched finite element/level-set method for simulating two-phase incompressible fluid flows with sur-
face tension, Comput. Methods Appl. Mech. Eng. 370 (2020) 113277, https://doi .org /10 .1016 /j .cma .2020 .113277, http://www.sciencedirect .com /science /
article /pii /S004578252030462X.

[66] G.C. Buscaglia, R.F. Ausas, Variational formulations for surface tension, capillarity and wetting, Comput. Methods Appl. Mech. Eng. 200 (2011) 
3011–3025.

[67] R.G. Cox, Inertial and viscous effects on dynamic contact angles, J. Fluid Mech. 357 (1998) 249–278, https://doi .org /10 .1017 /
S0022112097008112, http://www.cambridge .org /core /journals /journal -of -fluid -mechanics /article /inertial -and -viscous -effects -on -dynamic -contact -
angles /02C101E9C7C2119FCC2EEE58BDF14C1F.

[68] M. Wörner, X. Cai, H. Alla, P. Yue, A semi-analytical method to estimate the effective slip length of spreading spherical-cap shaped droplets using Cox 
theory, Fluid Dyn. Res. 50 (2018) 035501, https://doi .org /10 .1088 /1873 -7005 /aaaef6.

[69] Y.D. Shikhmurzaev, Spreading of drops on solid surfaces in a quasi-static regime, Phys. Fluids 9 (1997) 266–275, https://doi .org /10 .1063 /1.869147, 
https://aip .scitation .org /doi /abs /10 .1063 /1.869147.

[70] E.B. Dussan, On the spreading of liquids on solid surfaces: static and dynamic contact lines, Annu. Rev. Fluid Mech. 11 (1979) 371–400, https://
doi .org /10 .1146 /annurev.fl .11.010179 .002103, http://www.annualreviews .org /doi /10 .1146 /annurev.fl .11.010179 .002103.

[71] T. Young III, An essay on the cohesion of fluids, Philos. Trans. R. Soc. Lond. 95 (1805) 65–87, https://doi .org /10 .1098 /rstl .1805 .0005, https://
royalsocietypublishing -org .recursos .biblioteca .upc .edu /doi /abs /10 .1098 /rstl .1805 .0005.

[72] D. Seveno, T.D. Blake, J. De Coninck, Young’s equation at the nanoscale, Phys. Rev. Lett. 111 (2013) 096101, https://doi .org /10 .1103 /PhysRevLett .111.
096101.

[73] L.M. Pismen, Some singular errors near the contact line singularity, and ways to resolve both, Eur. Phys. J. Spec. Top. 197 (2011) 33, https://doi .org /10 .
1140 /epjst /e2011 -01433 -0.

[74] D.N. Sibley, N. Savva, S. Kalliadasis, Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet 
spreading on a horizontal planar substrate as a prototype system, Phys. Fluids 24 (2012) 082105, https://doi .org /10 .1063 /1.4742895, https://
aip .scitation .org /doi /abs /10 .1063 /1.4742895.

[75] R. Zorrilla, A. Larese, R. Rossi, A modified Finite Element formulation for the imposition of the slip boundary condition over embedded volumeless 
geometries, Comput. Methods Appl. Mech. Eng. 353 (2019) 123–157.

[76] Y. Wei, E. Rame, L.M. Walker, S. Garoff, Dynamic wetting with viscous Newtonian and non-Newtonian fluids, J. Phys., Condens. Matter 21 (2009) 
464126, https://doi .org /10 .1088 /0953 -8984 /21 /46 /464126.
19

http://refhub.elsevier.com/S0021-9991(21)00375-2/bib994C79C7483D68BD00DACF27E9DB7C19s1
https://doi.org/10.1017/S0022112006001935
https://doi.org/10.1017/S0022112006001935
http://www.journals.cambridge.org/abstract_S0022112006001935
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib8D8A8C02ABFDA0DE364C96FC3FEFAAA0s1
https://doi.org/10.1017/jfm.2018.428
https://www.cambridge.org/core/product/identifier/S0022112018004287/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112018004287/type/journal_article
https://doi.org/10.4310/CMS.2011.v9.n2.a13
http://www.intlpress.com/site/pub/pages/journals/items/cms/content/vols/0009/0002/a013/
http://www.intlpress.com/site/pub/pages/journals/items/cms/content/vols/0009/0002/a013/
http://refhub.elsevier.com/S0021-9991(21)00375-2/bibD3FF7DCC08BB004300D346B8178E2481s1
https://doi.org/10.1103/PhysRevLett.111.026101
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib36A2B011E24536656CFAC3D93403AD76s1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib36A2B011E24536656CFAC3D93403AD76s1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib8537F0A1C1C8450DB42DBF203B50339Bs1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib23D3B8EBB8D1E49BB042F9A7D3CD4C2Bs1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib23D3B8EBB8D1E49BB042F9A7D3CD4C2Bs1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib9C2EC70CA05609E90035C8FDBBD3EDF4s1
https://doi.org/10.1017/S0022112099006874
https://www.cambridge.org/core/product/identifier/S0022112099006874/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112099006874/type/journal_article
https://doi.org/10.1063/1.3541806
https://doi.org/10.1063/1.3541806
https://aip-scitation-org.recursos.biblioteca.upc.edu/doi/full/10.1063/1.3541806
https://doi.org/10.1146/annurev-fluid-010313-141338
https://doi.org/10.1146/annurev-fluid-010313-141338
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib9216230CF208055E5483790C6C981B5Bs1
https://doi.org/10.1016/j.compfluid.2008.05.007
http://www.sciencedirect.com/science/article/pii/S0045793008001916
http://refhub.elsevier.com/S0021-9991(21)00375-2/bibAD86ED5E215B3465D81814D6B679E5BCs1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib7F643B7A9CED9CBFC3A13574138F71CFs1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bibC57A1B08A81534A249E480F18F1E5BEDs1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bibC57A1B08A81534A249E480F18F1E5BEDs1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib665547F6F434CC30A20BAC3E2BA376DAs1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib665547F6F434CC30A20BAC3E2BA376DAs1
https://doi.org/10.1016/j.jcp.2016.01.024
https://doi.org/10.1016/j.jcp.2016.01.024
http://www.sciencedirect.com/science/article/pii/S0021999116000322
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib090635CEAA6F6C50CE4332E9609F4212s1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib0DE34FA3B1037F1D3F58A64834470639s1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib0DE34FA3B1037F1D3F58A64834470639s1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib4CFD24F4652DEA18DA13B286E6EBD996s1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib5A4F80FC40660A02668423701D3D2815s1
https://doi.org/10.1016/j.jcp.2014.01.012
https://doi.org/10.1016/j.jcp.2014.01.012
https://linkinghub.elsevier.com/retrieve/pii/S0021999114000394
https://doi.org/10.1016/j.jpowsour.2016.05.030
https://linkinghub.elsevier.com/retrieve/pii/S0378775316305687
https://linkinghub.elsevier.com/retrieve/pii/S0378775316305687
https://doi.org/10.1007/s40571-016-0112-9
https://doi.org/10.1016/j.cma.2020.113277
http://www.sciencedirect.com/science/article/pii/S004578252030462X
http://www.sciencedirect.com/science/article/pii/S004578252030462X
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib3F108564F0DCFF5C0F495C30165E2FC4s1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib3F108564F0DCFF5C0F495C30165E2FC4s1
https://doi.org/10.1017/S0022112097008112
https://doi.org/10.1017/S0022112097008112
http://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/inertial-and-viscous-effects-on-dynamic-contact-angles/02C101E9C7C2119FCC2EEE58BDF14C1F
http://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/inertial-and-viscous-effects-on-dynamic-contact-angles/02C101E9C7C2119FCC2EEE58BDF14C1F
https://doi.org/10.1088/1873-7005/aaaef6
https://doi.org/10.1063/1.869147
https://aip.scitation.org/doi/abs/10.1063/1.869147
https://doi.org/10.1146/annurev.fl.11.010179.002103
https://doi.org/10.1146/annurev.fl.11.010179.002103
http://www.annualreviews.org/doi/10.1146/annurev.fl.11.010179.002103
https://doi.org/10.1098/rstl.1805.0005
https://royalsocietypublishing-org.recursos.biblioteca.upc.edu/doi/abs/10.1098/rstl.1805.0005
https://royalsocietypublishing-org.recursos.biblioteca.upc.edu/doi/abs/10.1098/rstl.1805.0005
https://doi.org/10.1103/PhysRevLett.111.096101
https://doi.org/10.1103/PhysRevLett.111.096101
https://doi.org/10.1140/epjst/e2011-01433-0
https://doi.org/10.1140/epjst/e2011-01433-0
https://doi.org/10.1063/1.4742895
https://aip.scitation.org/doi/abs/10.1063/1.4742895
https://aip.scitation.org/doi/abs/10.1063/1.4742895
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib504F4A9E786CD334D5028014CEA85EB1s1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib504F4A9E786CD334D5028014CEA85EB1s1
https://doi.org/10.1088/0953-8984/21/46/464126


M.R. Hashemi, P.B. Ryzhakov and R. Rossi Journal of Computational Physics 442 (2021) 110480
[77] L. Chen, J. Yu, H. Wang, Convex nanobending at a moving contact line: the missing mesoscopic link in dynamic wetting, ACS Nano 8 (2014) 
11493–11498, https://doi .org /10 .1021 /nn5046486.

[78] R. Codina, S. Badia, J. Baiges, J. Principe, Variational multiscale methods in computational fluid dynamics, Second Edition, in: Encyclopedia of Compu-
tational Mechanics, Wiley Online Library, 2018, pp. 1–28.

[79] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146–159.
[80] R. Codina, A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Comput. Methods Appl. 

Mech. Eng. 110 (1993) 325–342, https://doi .org /10 .1016 /0045 -7825(93 )90213 -H, http://www.sciencedirect .com /science /article /pii /004578259390213H.
[81] M.F. Trujillo, L. Anumolu, D. Ryddner, The distortion of the level set gradient under advection, J. Comput. Phys. 334 (2017) 81–101.
[82] S. Groß, V. Reichelt, A. Reusken, A finite element based level set method for two-phase incompressible flows, Comput. Vis. Sci. 9 (2006) 239–257.
[83] C. Min, On reinitializing level set functions, J. Comput. Phys. 229 (2010) 2764–2772.
[84] G. Della Rocca, G. Blanquart, Level set reinitialization at a contact line, J. Comput. Phys. 265 (2014) 34–49.
[85] R.N. Elias, M.A. Martins, A.L. Coutinho, Simple finite element-based computation of distance functions in unstructured grids, Int. J. Numer. Methods 

Eng. 72 (2007) 1095–1110.
[86] A.-K. Tornberg, B. Engquist, A finite element based level-set method for multiphase flow applications, Comput. Vis. Sci. 3 (2000) 93–101.
[87] P. Dadvand, R. Rossi, E. Oñate, An object-oriented environment for developing finite element codes for multi-disciplinary applications, Arch. Comput. 

Methods Eng. 17 (2010) 253–297, https://doi .org /10 .1007 /s11831 -010 -9045 -2, http://link.springer.com /10 .1007 /s11831 -010 -9045 -2.
[88] D. Demidov, AMGCL: an efficient, flexible, and extensible algebraic multigrid implementation, Lobachevskii J. Math. 40 (2019) 535–546.
[89] H. Lamb, Hydrodynamics, University Press, 1924.
20

https://doi.org/10.1021/nn5046486
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib49D261B0282796C455B8F90D85CAE5D0s1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib49D261B0282796C455B8F90D85CAE5D0s1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib4B8E2FB1F46D5AE9EB4E3A282DCC0400s1
https://doi.org/10.1016/0045-7825(93)90213-H
http://www.sciencedirect.com/science/article/pii/004578259390213H
http://refhub.elsevier.com/S0021-9991(21)00375-2/bibD208FE4A109857068553576FA03FA07Cs1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bibE12951FD891DE5F5278BD8767D9AF3DBs1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib396C71BC4E5E38FA9FB417113536555Ds1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib46219B71FDCB031C98ABE7374A35F545s1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib2A8A3F8FE1826749DCC34691ED3EDE9As1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib2A8A3F8FE1826749DCC34691ED3EDE9As1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bibCF58F4E70ABDF51F4606B3B1A1D85BC9s1
https://doi.org/10.1007/s11831-010-9045-2
http://link.springer.com/10.1007/s11831-010-9045-2
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib6B7CB3251A04FFA32B821B7E7B88F59As1
http://refhub.elsevier.com/S0021-9991(21)00375-2/bib4248F449FB6EEA9F63280A40C7441E76s1

	Three dimensional modeling of liquid droplet spreading on solid surface: An enriched finite element/level-set approach
	1 Introduction
	2 Numerical method
	2.1 Multi-phase flow
	2.1.1 Sub-element hydrodynamics

	2.2 Variational formulation
	2.3 Level-set

	3 Results
	3.1 Verification with theory
	3.1.1 Obtuse contact--angle

	3.2 Validation against experimental data
	3.3 Droplet trapped in conical pores

	4 Summary and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


