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Abstract We are concerned with unbounded sets of RN whose boundary has con-
stant nonlocal (or fractional) mean curvature, which we call CNMC sets. This is the
equation associated to critical points of the fractional perimeter functional under a vol-
ume constraint. We construct CNMC sets which are the countable union of a certain
bounded domain and all its translations through a periodic integer lattice of dimen-
sion M ≤ N . Our CNMC sets form a C2 branch emanating from the unit ball alone
and where the parameter in the branch is essentially the distance to the closest lattice
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X. Cabré et al.

point. Thus, the new translated near-balls (or near-spheres) appear from infinity. We
find their exact asymptotic shape as the parameter tends to infinity.

1 Introduction

Let α ∈ (0, 1). If A is a smooth oriented hypersurface in RN with unit normal vector
field ν, its nonlocal or fractional mean curvature (abbreviated NMC in the following)
of order α at a point x ∈ A is defined as

H(A; x) = 2dN ,α

α

∫
A

(y − x) · ν(y)

|y − x |N+α
dV (y). (1.1)

Here and in the following, dV stands for the volume element on A, and

dN ,α = 1 − α

(N − 1)|BN−1| = (1 − α)�( N+1
2 )

(N − 1)π(N−1)/2
, (1.2)

where BN−1 is the unit ball in R
N−1. If A is of class C1,β for some β > α and

we assume
∫
A(1 + |y|)1−N−α dV (y) < ∞, then the integral in (1.1) is absolutely

convergent in the Lebesgue sense.
The choice of the constant dN ,α guarantees that, if A is of class C2, the nonlocal

mean curvature H(A; ·) converges, as α → 1, locally uniformly to the classical mean
curvature, i.e., the arithmetic mean of principle curvatures, see [9, Lemma A.1] and
[1, Theorem 12].

There is an alternative expression for H(A; ·) in terms of a solid integral. Suppose
that A = ∂E for some open set E ⊂ R

N and ν is the normal exterior to E . Then, for
all x ∈ A, we have

H(A; x) = dN ,αPV
∫
RN

1Ec (y) − 1E (y)

|y − x |N+α
dy

= dN ,α lim
ε→0

∫
|x−y|>ε

1Ec (y) − 1E (y)

|y − x |N+α
dy, (1.3)

where Ec = R
N\E and 1D denotes the characteristic function of a set D ⊂ R

N .
This can be derived using the divergence theorem and the fact that ∇y · (y −
x)|y − x |−N−α = α|y − x |−N−α.

The nonlocal mean curvature is the Euler–Lagrange equation for the fractional
perimeter functional. Nonlocal minimal surfaces are hypersurfaces with zero NMC
and were introduced by Caffarelli et al. [5]. This paper established the first existence
and regularity theorems. Later, Savin and Valdinoci [18] established that, for N = 2
and anyα, they areC∞. Figalli andValdinoci [13] have proved that if they areLipschitz
in R

N , then they are C∞. See the paper [11] by Dipierro and Valdinoci for more
details. Later, Dávila et al. [9] initiate the study of nonlocal minimal cones in any
dimension, characterizing the stability or instability of α-Lawson cones. Besides,
they also construct surfaces of revolution with zero NMC, for instance the fractional
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Near-sphere lattices with constant nonlocal mean curvature

catenoid. On the other hand, Cinti et al. [6] show that the helicoid, besides having zero
classical mean curvature, has also zero NMC.

There are less works on CNMC hypersurfaces, that is, hypersurfaces with constant
nonlocal mean curvature. To our knowledge, the following articles are the existing
ones. In recent independent works, a result of Alexandrov type has been proved
for the nonlocal mean curvature by Ciraolo et al. [7, Theorem 1.1] and Cabré et
al. [3, Theorem 1.1]. This result states that every bounded (and a priori not neces-
sarily connected) hypersurface without boundary and with constant nonlocal mean
curvature must be a sphere. This result naturally led to questions related to the exis-
tence and shape of unbounded hypersurfaces of constant NMC. Obvious examples
within this class are straight cylinders. In [3] and [4] we proved the existence of peri-
odic and connected hypersurfaces in R

N with constant NMC which bifurcate from a
straight cylinder. These hypersurfaces should be regarded as Delaunay type cylinders
in the nonlocal setting. We point out that, unlike in the local case, straight cylinders
have positive constant NMC in every space dimension N ≥ 2. Thus, our result also
gives periodic bands in R

2 with constant NMC and which bifurcate from a straight
band.

Having constant nonlocalmean curvature is the equation associated to critical points
of the fractional perimeter functional under a volume constraint. Thus, one would
expect that CNMC sets can be constructed variationally. In this direction, the paper [8]
by Dávila, del Pino, Dipierro, and Valdinoci, established variationally the existence of
periodic and cylindrically symmetric hypersurfaces inRN which minimize (under the
volume constraint) a certain fractional perimeter functional adapted to periodic sets.
More precisely, [8] established the existence of a 1-periodic minimizer for every given
volume within the slab {(s, ζ ) ∈ R × R

N−1 : −1/2 < s < 1/2}. We have realized
recently that, in fact, their fractional perimeter functional adapted to periodic sets gives
rise to CNMC hypersurfaces in a weak sense. They would be CNMC hypersurfaces
in the classical sense defined above if one could prove that they are of class C1,β for
some β > α/2—which is not done in [8]. The article also proves that for small volume
constraints, the minimizers tend in measure (more precisely, in the so called Fraenkel
asymmetry) to a periodic array of balls.

Note that sets obtained by minimizing a fractional perimeter functional under a
volume constraint are expected to have Morse index 1—within a proper functional
analytic framework. This will be the case for the CNMC sets constructed in the present
paper—see Remark 1.2(iv). As we will see, the linearized operator at them (acting on
a space of even functions) will have only one negative eigenvalue—all the rest being
positive. Note that looking at the linearized operator in a space of even functions
excludes the eigenfunction with zero eigenvalue produced by the invariance of the
nonlinear problem under translations.

We recall that in the case of classical mean curvature, embedded Delaunay hyper-
surfaces vary from a cylinder to an infinite compound of tangent spheres. However, it
is easy to see that an infinite compound of aligned round spheres, tangent or discon-
nected, does not have constant NMC. Indeed, it is an open problem to establish the
existence of global continuous branches of nonlocal Delaunay cylinders and to study
their limiting configurations.
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In the present paper, we study nonlocal analogues of the set given by an infinite
compound of aligned round spheres, tangent or disconnected. In amore general setting,
we construct CNMC sets which are the countable union of a certain bounded domain
and all its translations through a periodic integer lattice of dimension M ≤ N . Our
CNMC sets form aC2 branch emanating from the unit ball alone, where the parameter
in the branch is essentially the distance to the closest lattice point. Thus, the new
translated near-balls (or near-spheres) appear from infinity. We point out that it is
necessary to consider infinite lattices in this problem—a finite disjoint union of two or
more bounded sets cannot have constant NMC by the Alexandrov type rigidity result
in [3,7].

We expect (but we do not prove) that, when the distance from two consecutive near-
spheres is large enough, our periodic CNMC set made of near-spheres is a minimizer
of the fractional perimeter under the volume and periodicity constraints. Note that,
after rescaling, large distance from two consecutive near-spheres turns into a fixed
distance (or period) but now with a very small volume constraint—as in the result of
[8] mentioned above.

To be precise, we now assume N ≥ 2 and let

S := SN−1 ⊂ R
N

denote the unit sphere of RN . For M ∈ N with 1 ≤ M ≤ N we regard R
M as a

subspace of RN by identifying x ′ ∈ R
M with (x ′, 0) ∈ R

M × R
N−M = R

N . Let
{a1; . . . ; aM } be a basis of RM . By the above identification, we then consider the
M-dimensional lattice

L =
{

M∑
i=1

kiai : k = (k1, . . . , kM ) ∈ Z
M

}
(1.4)

as a subset of RN . In the case where {a1; . . . ; aM } is an orthogonal or an orthonormal
basis, we say that L is a rectangular lattice or a square lattice, respectively.

We define, for r > 0,

S + rL :=
⋃
p∈L

(
S + rp

)
⊂ R

N . (1.5)

Then, for r > 2(inf p∈L \{0} |p|)−1, the set S+rL is the union of disjoint unit spheres
centered at the lattice points in rL . Consequently, S+rL is a set of constant classical
mean curvature (equal to one). In contrast, as a consequence of our main result, we
shall see that the NMC H(S+ rL ; ·) is in general not constant on this periodic set. It
is therefore natural to ask if the sphere S can be perturbed smoothly to a set Sϕ , such
that Sϕ + rL , for r > 0 large enough, has constant NMC.

To answer this question, we fix β ∈ (α, 1) and define the set

O := {ϕ ∈ C1,β(S) : ‖ϕ‖L∞(S) < 1}.
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Near-sphere lattices with constant nonlocal mean curvature

We then consider the deformed sphere

Sϕ := {(1 + ϕ(σ))σ : σ ∈ S}, ϕ ∈ O. (1.6)

Provided that r > 0 is large enough, the deformed sphere lattice (or near-sphere
lattice)

Sϕ + rL :=
⋃
p∈L

(
Sϕ + rp

)

is a noncompact hypersurface of class C1,β , which by construction is periodic with
respect to rL -translations.

The main result of the present paper is the following.

Theorem 1.1 Let α ∈ (0, 1), β ∈ (α, 1), N ≥ 2, 1 ≤ M ≤ N and L be an
M-dimensional lattice as given in (1.4). Then, there exist r0 > 0, and a C2-curve
(r0,+∞) → C1,β(S), r �→ ϕr , with the following properties:

(i) ϕr → 0 in C1,β(S) as r → +∞;
(ii) For every r ∈ (r0,+∞), the function ϕr : S → R is even (with respect to

reflection through the origin of RN );
(iii) For every r ∈ (r0,+∞), the hypersurface Sϕr +rL has constant nonlocal mean

curvature given by H(Sϕr + rL ; ·) ≡ H(S; ·).
(iv) Letting L∗ := L \{0}, the function ϕr expands as

ϕr (θ) = r−N−α

⎛
⎝−κ0 + r−2

⎧⎨
⎩κ1

∑
p∈L∗

(θ · p)2
|p|N+α+4 − κ2

⎫⎬
⎭+ o

(
r−2

)⎞⎠

for θ ∈ S as r → +∞,

with positive constants κ0, κ1 and κ2 (see Remark 1.2 below for their explicit
values) and with r2o(r−2) → 0 in C1,β(S) as r → +∞.

(v) If 1 ≤ M ≤ N − 1, then the functions ϕr , r > r0, are non-constant on S.

Moreover, if r1 > r0 and (r1,+∞) → C1,β(S), r �→ ϕ̃r is another (not necessarily
continuous) curve satisfying (i), (i i) and (i i i), then ϕ̃r = ϕr for r sufficiently large.

The curve r �→ ϕr is not C3, in general. It is not C3 for instance when N = 2. This
is due to the presence of the factor |τ |N+α = r−N−α in our functional equation (2.7).

To establish the theorem it will be essential to analyze the linearized operator for
the NMC H at the unit sphere S. We will see that the linearization is given by the
operator

ϕ �→ 2dN ,α(Lαϕ − λ1ϕ), (1.7)

where

Lα : C1,β(S) → Cβ−α(S), Lαϕ(θ) = PV
∫
S

ϕ(θ) − ϕ(σ)

|θ − σ |N+α
dV (σ ), (1.8)
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λ1 is defined next in (1.9), and ϕ is a deformation of S in the direction of its normal—
as in (1.6). The operator Lα can be seen as a spherical fractional Laplacian, and the
above integral is understood in the principle value sense, i.e.,

PV
∫
S

ϕ(θ) − ϕ(σ)

|θ − σ |N+α
dV (σ ) := lim

ε→0

∫
S\Bε(θ)

ϕ(θ) − ϕ(σ)

|θ − σ |N+α
dV (σ ) for ε → 0.

The operator Lα has the spherical harmonics as eigenfunctions corresponding to the
increasing sequence λ0 = 0 < λ1 < λ2 < ... of eigenvalues given by

λk = π(N−1)/2�((1 − α)/2)

(1 + α)2α�((N + α)/2)

(
�
( 2k+N+α

2

)
�
( 2k+N−α−2

2

) − �
( N+α

2

)
�
( N−α−2

2

)
)

, (1.9)

see [17, Lemma 6.26] and Sect. 5 below. Here, as before, � is the Gamma function.
We shall also see, as a consequence of (2.6) and (5.5), that the NMC of the unit sphere
S = SN−1 ⊂ R

N is given by

H(S; ·) ≡ 2dN ,α

α
λ1 on S. (1.10)

Now that λ1 and λ2 have been introduced, we can give the value of the constants
in Theorem 1.1(iv). In the following remark, we also comment on the size of the
near-spheres depending on the parameter r , as well as on their smoothness.

Remark 1.2 (i) The constants in Theorem 1.1(iv) are given by

κ0 = |S|
Nλ1

∑
p∈L∗

1

|p|N+α
, κ1 = |S|(N + α)(N + α + 2)

6N (λ2 − λ1)
and

κ2 = |S|
6

{
(N + α)(N + α + 2)

N 2(λ2 − λ1)
+ 2(N + α)(N + 1)(α + 2)

N 2(N + 2)λ1

} ∑
p∈L∗

1

|p|N+α+2 ,

where λ1, λ2 are given in (1.9).
(ii) Since κ0 > 0, the expansion in Theorem 1.1(iv) shows that, for large r , the

perturbed spheres Sϕr become smaller than S as the perturbation parameter r decreases.
With regard to the order r−N−α , the shrinking process is uniform on S, whereas non-
uniform deformations of the spheres may appear at the order r−N−α−2. In particular,
we shall detect these non-uniform deformations in the case M ≤ N −1, and from this
we will then deduce part (v) of Theorem 1.1. In the case M = N , it remains an open
problem to characterize the lattices which give rise to non-uniform deformations. We
conjecture that H(S + rL ; ·) is non-constant for any N -dimensional lattice L and
large r .

(iii) The smoothness (i.e., the C∞-character) of our C1,β hypersurfaces Sϕr + rL ,
and in general of C1,β hypersurfaces in R

N with constant NMC which are, locally,
Lipschitz graphs, follows (since β > α) from the methods and results of Barrios,
Figalli, and Valdinoci [2] on nonlocal minimal graphs. This holds for all N ≥ 2. More
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generally, to deduce the C∞ regularity, [2] needs to assume that the hypersurface is
C1,β for some β > α/2 and that has constant nonlocal mean curvature in the viscosity
sense; this fact can be found in Section 3.3 of [2]. Here, the notion of viscosity solution
is needed since the expression (1.1) for the NMC is only well defined for C1,β sets
when β > α.

(iv) As already remarked above, the CNMC sets constructed in Theorem 1.1 have
Morse index 1 within our functional analytic framework. More precisely, for r > r0
sufficiently large, the linearization of the nonlocal mean curvature operator

O → Cβ−α(S), ϕ �→
[
σ �→ H(Sϕ + rL ; (1 + ϕ(σ))σ )

]

at ϕr has exactly one negative eigenvalue when restricted to even functions inC1,β(S),
whereas all other eigenvalues are positive. This property follows from the fact that
the linearization at ϕr converges to the operator 2dN ,α(Lα − λ1), given by (1.7)–
(1.8), as r → ∞. This convergence is a mere consequence of the C2-smoothness
of the operator H̃ defined in (1.15) below, and the fact that 2dN ,α(Lα − λ1) is the
linearization at the unit sphere S = limr→∞ Sϕr by Lemma 5.1. Finally, one uses
the spectral decomposition of Lα − λ1, already mentioned previously, and sees that,
among even functions, its eigenvalues are given by −λ1 < λ2 − λ1 < λ4 − λ1 < · · · .
The first one is negative and all others are positive.

As a corollary of Theorem 1.1, we obtain the following more explicit form of ϕr in
the case of rectangular lattices.

Corollary 1.3 Assume thatL is a rectangular lattice of dimension M ∈ {1, . . . , N }.
Then the function ϕr in Theorem 1.1 expands as

ϕr (θ) = r−N−α
(
−κ0 + r−2

{
κ1
∑M

j=1 μ jθ
2
j − κ2

}
+ o(r−2)

)

for θ ∈ S as r → +∞, (1.11)

where μ j = ∑
p∈L∗

p2j
|p|N+α+4 . If, in particular, L is a square lattice then

ϕr (θ) = r−N−α
(
−κ0 + r−2

{
κ̃1
∑M

j=1 θ2j − κ2

}
+ o(r−2)

)

for θ ∈ S as r → +∞, (1.12)

where κ̃1 = κ1
M

∑
p∈L∗

1
|p|N+α+2 .

As observed in Theorem 1.1, for M ≤ N − 1 the perturbation ϕr is nonconstant
on S, i.e., the NMC of H(S + rL ; ·) is nonconstant for r large enough. On the other
hand, ifL is a square lattice of dimension N , then by (1.12) we have

ϕr (θ) = r−N−α
(
−κ0 + r−2

(
κ̃1 − κ2

)
+ o(r−2)

)
as r → ∞,

hence the deformation of the lattice Sϕr + rL is uniform up to the order r N−α−2.
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In order to explain the idea of the proof of Theorem 1.1, it is convenient first to pay
some attention to the linearized operator at S ⊂ R

N for the classical mean curvature
(α = 1). Since S is a CMC surface, it is well known (see for instance Section 6 of
[12]) that the linearization of the mean curvature operator (recall that we take as mean
curvature the arithmetic mean of the principal curvatures) agrees with (N−1)−1 times
the second variation of perimeter, and thus is given by the Jacobi operator

Jϕ := (N − 1)−1{−�Sϕ − c2ϕ} = (N − 1)−1{−�Sϕ − (N − 1)ϕ} on S,

(1.13)

where �S is the Laplace–Beltrami operator on S and c2 = N − 1 is the sum of the
squares of the principal curvatures of S. Here ϕ is a normal deformation as in (1.6).
Recall that �S has the spherical harmonics as eigenfunctions, corresponding to the
increasing sequence k(k + N − 2) of eigenvalues, with k ≥ 0. Thus, J has the same
eigenfunctions but with eigenvalues

μk − μ1 := (N − 1)−1{k(k + N − 2) − (N − 1)}. (1.14)

Thus, the first eigenvalue is negative and corresponds to constant functions on S
(that is, to the perturbation corresponding to changing the radius of the sphere S).
The third and next eigenvalues are all positive. But the second one (k = 1) is zero
and has θi = xi/|x | for i = 1, . . . , N (the spherical harmonics of degree one) as
eigenfunctions. It is simple to see that this zero eigenvalue corresponds to translations
of S inRN , which do not change themean curvature and thus provide a zero eigenvalue.

As mentioned above, the linearized operator at S ⊂ R
N for the NMC H is given by

(1.7)–(1.8). It coincides, thus, with the second variation at S of fractional perimeter.
This nice formula is not immediate at all. We will derive it in Sect. 5 in the Fréchet
sense of linearization, after proving the smoothness of the NMC operator in Sect. 4.
In a restricted sense related to the existence of directional derivatives, this formula
for the linearization also follows from results of Dávila et al. [9, Appendix B] and
of Figalli et al. [12, Section 6]. These interesting papers found—at any hypersurface
A–a simple expression for the linearization of NMC with respect to any given normal
boundary variation. Note here that the NMC as defined in these two papers agrees
with our H/dN ,α; see (1.3).

Note that the linearizationofNMCat S, (1.7)–(1.8), has also the spherical harmonics
as eigenfunctions—asmentioned above. In addition, its second eigenvalue 2dN ,α(λk−
λ1) (which corresponds to k = 1) vanishes—as in the local case. We will see below
that, to apply the implicit function theorem, we must get rid of this zero eigenvalue.
For this, we will work only with perturbations of the sphere S which are even with
respect to the origin of RN .

Just for consistency, we can now check that the eigenvalues of our nonlocal lin-
earized operator (1.7) satisfy

2dN ,α(λk − λ1) → μk − μ1 = (N − 1)−1{k(k + N − 2) − (N − 1)} as α → 1.
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Indeed, using the fact that �(z) = (z − 1)�(z − 1), we get

�
( 2k+N+1

2

)
�
( 2k+N−3

2

) − �
( N+1

2

)
�
( N−3

2

) = k(k + N − 2)

and ((1 − α)/2)�((1 − α)/2) = �((3 − α)/2). From these identities and recalling
(1.2) and (1.9), we deduce that

lim
α→1

2dN ,αλk = lim
α→1

2(1 − α)�((N + 1)/2)

(N − 1)π(N−1)/2

× π(N−1)/2 2

(1 − α)(1 + α)2α�((N + 1)/2)
k(k + N − 2)

= (N − 1)−1k(k + N − 2)

for k ∈ N.
We can now outline the idea of the proof of Theorem 1.1, which is based on the

implicit function theorem. Let c > 0 be sufficiently small such that the translates
Sϕ + rp, p ∈ L do not intersect each other for r > 1/c and ϕ ∈ O = {ϕ ∈ C1,β(S) :
‖ϕ‖L∞(S) < 1}. We then rewrite the problem in the variable τ = 1/r and show that
the nonlinear operator

H̃ : (−c, c) × O → Cβ−α(S)

given by

H̃(τ, ϕ)(θ) :=
{
H
(
Sϕ + 1

τ
L ; (1 + ϕ(θ))θ

)
for τ ∈ (−c, c)\{0}, ϕ ∈ O

H(Sϕ; (1 + ϕ(θ))θ) for τ = 0, ϕ ∈ O
(1.15)

is of class C2 in a neighborhood of (τ, ϕ) = (0, 0), and that its linearization at
this point is given by Dϕ H̃(0, 0) = 2dN ,α{Lα − λ1} : C1,β(S) → Cβ−α(S). As
mentioned earlier, λ1 is the first nontrivial eigenvalue of the operator Lα with cor-
responding eigenspace spanned by the coordinate functions θ1, . . . , θN . This yields
an N -dimensional kernel for the linearized NMC operator Dϕ H̃(0, 0). As mentiones
above, this kernel comes from the invariance of the NMC operator under translations
in RN .

Thus, in order to apply the implicit function theorem, we need to introduce function
subspaces contained in a complement of this kernel. We consider

X = {ϕ ∈ C1,β(S) : ϕ(−θ) = ϕ(θ) for all θ ∈ S} (1.16)

and

Y = {ϕ ∈ Cβ−α(S) : ϕ(−θ) = ϕ(θ) for all θ ∈ S}, (1.17)
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the spaces of normal deformations which are even with respect to the origin ofRN . In
terms of the orthogonal basis given by the spherical harmonics, X and Y are generated
by the spherical harmonics of even degree. We then consider the restriction of H̃ :
(−c, c) × (O ∩ X) → Y , which takes values in Y—and thus is well defined—
thanks to the invariance of the latticeL under reflection through the origin. Moreover,
Dϕ H̃(0, 0) = 2dN ,α{Lα − λ1} : X → Y will be an isomorphism.

Establishing the regularity of the operator H̃ turns out to be the most difficult step
in the proof of Theorem 1.1. This will be done in Sect. 4.

The computation of the expansion in part (iv) of Theorem 1.1 is not straightfor-
ward and requires some care. In particular, we note that this is an expansion of order
o(|τ |N+α+2), whereas we shall see from (2.11) below that H̃ fails to have more than
CN -regularity in the τ -variable.

The paper is organized as follows. In Sect. 2 we set up the functional analytic
formulation of the problem in order to apply the implicit function theorem. We also
state Theorem 2.1 (to be proved in Sect. 4) on the smoothness of the NMC operator
acting on perturbed spheres. In Sect. 3 we complete the proof of our main result,
Theorem 1.1, after having stated in Theorem 3.1 the main properties of the linearized
NMC operator at the unit sphere. This theorem is proved in Sect. 4, while the one on
the nonlinear NMC (Theorem 2.1) is established in Sect. 4.

2 Preliminaries and functional analytic formulation of the problem

Throughout the remainder of the paper, we let N ≥ 2, andwe let S ⊂ R
N and B ⊂ R

N

denote the unit sphere and unit ball, respectively. Let M ∈ N with 1 ≤ M ≤ N , and
let L ⊂ R

N be an M-dimensional lattice as defined in (1.4). Throughout this paper,
we put

L∗ := L \{0} and Z
M∗ := Z

M\{0}.

We note that

inf
p∈L∗

|p| =: c0 > 0 (2.1)

and

∑
p∈L∗

1

|p|N+α
< ∞. (2.2)

As in the introduction, we fix β ∈ (α, 1) and define

O := {ϕ ∈ C1,β(S) : ‖ϕ‖∞ < 1}. (2.3)

Moreover, for ϕ ∈ O, we consider the perturbed sphere

Sϕ := {(1 + ϕ(σ))σ : σ ∈ S}
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and its parameterization over the standard sphere defined by

Fϕ : S → Sϕ, Fϕ(σ ) = (1 + ϕ(σ))σ. (2.4)

For τ ∈ (−c0/4, c0/4)\{0}, we then define

Sτ
ϕ :=

⋃
p∈L

(
Sϕ + p

τ

)
= Sϕ + 1

τ
L .

By (2.1) and since Sϕ ⊂ B2(0), the set Sτ
ϕ is a noncompact hypersurface of class

C1,β , consisting of disjoint connected perturbed spheres and periodic with respect to
the lattice 1

τ
L . Due to the translation invariance properties of the latticeL , the NMC

of Sτ
ϕ is completely determined by its values on Sϕ . More precisely, we have

H

(
Sτ

ϕ ; x + p

τ

)
= H(Sτ

ϕ ; x) for every p ∈ L and x ∈ Sϕ. (2.5)

Thus, our aim is to solve the equation

H(Sτ
ϕ ; Fϕ(θ)) = H(S; θ) = 2dN ,α

α

∫
S

1 − σ · θ

|σ − θ |N+α
dV (σ ) for every θ ∈ S.

(2.6)

Note that H(S; θ) is constant in θ .
In the following, for ϕ ∈ O, we also let Bϕ denote the unique open bounded set

such that ∂Bϕ = Sϕ , i.e.,

Bϕ := {
r Fϕ(σ ) = r (1 + ϕ (σ)) σ : 0 ≤ r < 1, σ ∈ S

}
.

Moreover, we let νSϕ denote the unit outer normal vector field on Sϕ = ∂Bϕ , andwe let
dVSϕ denote the volume element on Sϕ . For τ ∈ (−c0/4, c0/4)\{0}, and x ∈ Sϕ ⊂ Sτ

ϕ ,
we then have

α

2dN ,α

H(Sτ
ϕ ; x) =

∫
Sτ

ϕ

(z − x) · νSτ
ϕ
(z)

|z − x |N+α
dVSτ

ϕ
(z)

=
∑
p∈L

∫
Sϕ

(y − x + p
τ
) · νSϕ (y)

|y − x + p
τ
|N+α

dVSϕ (y)

=
∫
Sϕ

(y − x) · νSϕ (y)

|y − x |N+α
dVSϕ (y)

+ |τ |N+α

τ

∑
p∈L∗

∫
Sϕ

(τ (y − x) + p) · νSϕ (y)

|τ(y − x) + p|N+α
dVSϕ (y).
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It will be convenient to use an alternative expression of the integrals appearing in
the sum which does not involve boundary integration and which immediately shows
that the sum is well defined. For this we note that, for fixed τ ∈ (−c0/4, c0/4)\{0},
p ∈ L∗ and x ∈ Sϕ , the function y �→ |τ(y − x) + p|−N−α+2 is smooth in Bϕ , and
for all y ∈ Bϕ we have

∇y |τ(y − x) + p|−N−α = (−N − α)τ(τ (y − x) + p)|τ(y − x) + p|−N−α−2.

Since Sϕ = ∂Bϕ , the divergence theorem leads to

∫
Sϕ

(
τ(y − x) + p

) · νSϕ (y)

|τ(y − x) + p|N+α
dVSϕ (y) =

∫
Bϕ

divy

(
τ(y − x) + p

)
|τ(y − x) + p|N+α

dy

= −ατ

∫
Bϕ

1

|τ(y − x) + p|N+α
dy.

Consequently, writing x = Fϕ(θ) with θ ∈ S, we have

α

2dN ,α

H(Sτ
ϕ ; Fϕ(θ)) = h(ϕ)(θ) + |τ |N+α

∑
p∈L∗

Gp(τ, ϕ)(θ) (2.7)

for θ ∈ S and τ ∈ (−c0/4, c0/4)\{0}, where

h(ϕ)(θ) :=
∫
Sϕ

(y − Fϕ(θ)) · νSϕ (y)

|y − Fϕ(θ)|N+α
dVSϕ (y) (2.8)

and

Gp(τ, ϕ)(θ) := −α

∫
Bϕ

1

|τ(y − Fϕ(θ)) + p|N+α
dy for p ∈ L∗. (2.9)

Note that h(ϕ)(θ) is precisely the NMC of Sϕ at Fϕ(θ).
In the following, we will need that both h and G := ∑

p∈L∗ Gp define smooth
nonlinear operators between open subsets of suitable function spaces. The following
is the key result of the present paper in this regard.

Theorem 2.1 With O defined by (2.3), expression (2.8) gives rise to a well defined
map

h : O → Cβ−α(S)

which is of class C∞.

In the following, and with some abuse due to multiplicative constants, we will
also call h the nonlocal mean curvature operator over the sphere S. The proof of
Theorem 2.1 is long and technically involved due to the singularity in the integrand
in (2.8). Nevertheless, the result is a key step in our approach, and we believe that it
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might be of independent interest. We postpone the proof of Theorem 2.1 to Sect. 4;
see Theorem 4.11 below.

With regard to Gp, we have a similar result.

Proposition 2.2 For p ∈ L∗ and O defined by (2.3), expression (2.9) gives rise to a
well defined map

G p :
(
−c0

4
,
c0
4

)
× O → Cβ−α(S)

which is of class C∞. Moreover, the map

G :=
∑
p∈L∗

Gp :
(
−c0

4
,
c0
4

)
× O → Cβ−α(S) (2.10)

is well defined and of class C∞.

The proof of Proposition 2.2 is also lenghty if all details are carried out, but it is
much easier than the proof of Theorem 2.1 since the integrand in (2.9) is not singular.
We will outline the proof of Proposition 2.2 at the end of Sect. 4 below.

We conclude this section by introducing the nonlinear operator

H : (−c0/4, c0/4) × O → Cβ−α(S)

given by

H(τ, ϕ)(θ) := h(ϕ)(θ) + |τ |N+αG(τ, ϕ)(θ) (2.11)

for τ ∈ (−c0/4, c0/4), ϕ ∈ O and θ ∈ S. By construction, we then have

H(τ, ϕ)(θ) = α

2dN ,α

H(Sτ
ϕ ; Fϕ(θ)) for τ ∈ (−c0/4, c0/4)\{0}, (2.12)

i.e., the valueH(τ, ϕ)(θ) equals theNMCofSτ
ϕ at the point Fϕ(θ)up to amultiplicative

constant.Wemay thus formulate the parameter-dependent equation (2.6) as anoperator
equation in Hölder spaces. More precisely, we need to study the set of parameters
τ ∈ (−c0/4, c0/4) and functions ϕ ∈ O satisfying

H(τ, ϕ) = h(0) in Cβ−α(S). (2.13)

Note that we will have

H ∈ C2((−c0/4, c0/4) × O,Cβ−α(S)
)

(2.14)

as a consequence of Theorem 2.1, Proposition 2.2 and the fact that the map τ �→
|τ |N+α is of class C2 since N ≥ 2. Moreover, we have

DϕH(0, 0) = Dh(0) ∈ L(C1,β(S),Cβ−α(S)
)
. (2.15)
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In the next section we restrict our attention to even functions and use the implicit
function theorem to find a locally unique solution curve τ �→ (τ, ϕ(τ )) solving
Eq. (2.13) and with ϕ(0) = 0.

3 Completion of the proof of Theorem 1.1

For fixed α ∈ (0, 1) and β ∈ (α, 1), we consider, as in the introduction, the spaces

X = {ϕ ∈ C1,β(S) : ϕ(−θ) = ϕ(θ) for all θ ∈ S},
Y = {ϕ ∈ Cβ−α(S) : ϕ(−θ) = ϕ(θ) for all θ ∈ S}.

We claim that the operator H defined in (2.11) restricts to a map

(−c0/4, c0/4) × (O ∩ X) → Y,

which we will also denote byH in the following. Indeed, for ϕ ∈ O∩ X and θ ∈ S we
have that −Sϕ = Sϕ , Fϕ(−θ) = −Fϕ(θ) and νSϕ (−y) = −νSϕ (y) for y ∈ S. Thus,
by a change of variables in (2.8), we have that

h(ϕ)(−θ) =
∫
Sϕ

(y + Fϕ(θ)) · νSϕ (y)

|y + Fϕ(θ)|N+α
dVSϕ (y)

=
∫
Sϕ

(Fϕ(θ) − y) · νSϕ (−y)

|y − Fϕ(θ)|N+α
dVSϕ (y)

=
∫
Sϕ

(y − Fϕ(θ)) · νSϕ (y)

|y − Fϕ(θ)|N+α
dVSϕ (y) = h(ϕ)(θ).

Similarly, from (2.9), (2.10) and the fact that −L∗ = L∗, we derive that

G(τ, ϕ)(−θ) = G(τ, ϕ)(θ) for (τ, ϕ) ∈ (−c0/4, c0/4) × (O ∩ X) and θ ∈ S.

Consequently, it follows from (2.11) that H maps (−c0/4, c0/4) × (O ∩ X) into Y ,
as claimed.

Moreover, by (2.14) we have that

H ∈ C2((−c0/4, c0/4) × (O ∩ X),Y
)
. (3.1)

Using the implicit function theoremwithin the spaces X and Y , wewill derive a locally
unique curve τ �→ ϕ(τ) ∈ X such that ϕ(0) = 0 and

H(τ, ϕ(τ )) = h(0) in Y

for |τ | sufficiently small. For this we shall need the following invertibility property of
Dh(0) ∈ L(X,Y ), which by (2.15) coincides with DϕH(0, 0) ∈ L(X,Y ).
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Theorem 3.1 The linearized operator Dh(0) ∈ L(C1,β(S),Cβ−α(S)) is given by

1

α
Dh(0)ϕ = Lαϕ − λ1ϕ for ϕ ∈ C1,β(S),

where

Lαϕ(θ) = PV
∫
S

ϕ(θ) − ϕ(σ)

|θ − σ |N+α
dV (σ ) for θ ∈ S

andλ1 is given in (1.9) for k = 1.Moreover, Dh(0) is an isomorphismwhen considered
as a linear operator from X to Y .

The proof of this theorem relies, in particular, on the spectral decomposition of
the operator Lα and regularity estimates between Hölder spaces. It will be given in
Sect. 5; see Lemma 5.1 and Theorem 5.2 below.

The following proposition is the result of applying the implicit function theorem.
In its proof, we will need that

H(−τ, ϕ) = H(τ, ϕ) for τ ∈ (−c0/4, c0/4), ϕ ∈ O, (3.2)

which is as a consequence of (2.11) and the fact that −L∗ = L∗.

Proposition 3.2 There exist τ0 > 0 and an open neighborhood U ⊂ X of 0 for which
there exists a unique curve (−τ0, τ0) → U , τ �→ ϕ(τ), with ϕ(0) = 0 and

H(τ, ϕ(τ )) = h(0) in Y, for − τ0 < τ < τ0. (3.3)

Moreover, ϕ is of class C2, satisfies ϕ(−τ) = ϕ(τ) and the expansion

ϕ(τ) = −|τ |N+α
(
(Dh(0))−1�0 + τ 2

6
(Dh(0))−1�2 + o(τ 2)

)
, (3.4)

where � j := ∂
j
τ G(0, 0) ∈ Y , j = 0, 2, and o(τ 2)

τ 2
→ 0 in C1,β(S) as τ → 0.

Proof Applying the implicit function theorem to the C2-map H : (−c0/4, c0/4) ×
(O ∩ X) → Y at the point (0, 0) ∈ (− c0

4 , c0
4 ) × X and using Theorem 3.1, we find

τ0 ∈ (0, c0/4) and a unique C2-regular curve (−τ0, τ0) → U , τ �→ ϕ(τ) such that
(3.3) holds. By (3.2), we also have that

ϕ(−τ) = ϕ(τ) for every τ ∈ (−τ0, τ0).

It thus remains to prove the expansion (3.4). For this we consider the C2-curve

g : (−τ0, τ0) → Y, g(τ ) := G(τ, ϕ(τ )).
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Then (3.3) can be written as

0 = h(ϕ(τ)) − h(0) + |τ |N+αg(τ ) = Dh(0)ϕ(τ) + O(‖ϕ(τ)‖2X ) + |τ |N+αg(τ ).

Consequently, we have

ϕ(τ) = −|τ |N+α(Dh(0))−1g(τ ) + O(‖ϕ(τ)‖2X ), (3.5)

and thus the curve

τ �→ ψ(τ) := |τ |−N−αϕ(τ) (3.6)

satisfies the expansion ψ(τ) = −(Dh(0))−1g(τ ) + O(|τ |N+α‖ψ(τ)‖2X ) and, in par-
ticular,

ψ(τ) = −(Dh(0))−1g(τ ) + o(τ 2). (3.7)

We also note that

g′(τ ) = ∂τG(τ, ϕ(τ )) + ∂ϕG(τ, ϕ(τ ))ϕ′(τ )

and

g′′(τ ) = ∂2τ G(τ, ϕ(τ )) + 2∂ϕ∂τG(τ, ϕ(τ ))ϕ′(τ )

+ ∂2ϕG(τ, ϕ(τ ))[ϕ′(τ ), ϕ′(τ )] + ∂ϕG(τ, ϕ(τ ))ϕ′′(τ )

for τ ∈ (−τ0, τ0). Moreover, by (3.5) we have ϕ(τ) = O(|τ |N+α), and hence ϕ(0) =
ϕ′(0) = ϕ′′(0) = 0. We deduce

g(0) = G(0, 0), g′(0) = ∂τG(0, 0) and g′′(0) = ∂2τ G(0, 0).

We thus infer that g(τ ) = ∑2
j=0

τ j

j ! ∂
j
τ G(0, 0) + o(τ 2), and together with (3.7) this

yields the expansion

ψ(τ) = −
2∑
j=0

τ j

j ! (Dh(0))−1∂ j
τ G(0, 0) + o(τ 2).

Using this in (3.6), and recalling that ϕ is even in τ (and thus so is ψ), we get the
expansion (3.4), as claimed. ��

In the next two lemmas we compute the precise asymptotic expansion in τ for the
perturbation ϕ.
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Lemma 3.3 The functions � j := ∂
j
τ G(0, 0) ∈ Y , j = 0, 2 are given by

�0 ≡ −α|S|
N

∑
p∈L∗

|p|−N−α on S

and

�2(θ) = a1
∑
p∈L∗

|p|−N−α−2 − a2
∑
p∈L∗

(p · θ)2|p|−N−α−4 for θ ∈ S,

where

a1 = α
(N + α)(N − α)

N (N + 2)
|S| and a2 := α

(N + α)(N + α + 2)

N
|S|. (3.8)

Proof Let p ∈ L∗ and θ ∈ S be fixed. We then have

Gp(τ, 0)(θ) = −αγp(τ ) for τ ∈ (−c0/4, c0/4) with

γp(τ ) =
∫
B

|τ(y − θ) + p|−N−αdy,

where B is the unit ball of RN . We first note that

γp(0) = |p|−N−α|B| = |p|−N−α |S|
N

.

Moreover, for τ ∈ (−c0/4, c0/4) we have

γ ′
p(τ ) = −(N + α)

∫
B
(y − θ) · (τ (y − θ) + p)|τ(y − θ) + p|−N−α−2dy

and

γ ′′
p (τ ) = − (N + α)

∫
B

|y − θ |2|τ(y − θ) + p|−N−α−2dy

+ (N + α)(N + α + 2)∫
B

{(y − θ) · (τ (y − θ) + p)}2 |τ(y − θ) + p|−N−α−4dy.

Consequently, using the fact that odd terms do not contribute to the integral over
B, and recalling that

∫
B y2i dy = N−1

∫
B |y|2dy and that

∫
B |y|2dy = |S|/(N + 2),

we find that
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γ ′′
p (0) = − (N + α)|p|−N−α−2

∫
B
(|y|2 + 1)dy

+ (N + α)(N + α + 2)|p|−N−α−4
∫
B
((p · θ)2 + (p · y)2)dy

= (N + α)(N + α + 2)

N
|S||p|−N−α−4(p · θ)2

− (N + α)|S|
( 1

N + 2
+ 1

N
− (N + α + 2)

N (N + 2)

)
|p|−N−α−2

= (N + α)(N + α + 2)

N
|S||p|−N−α−4(p · θ)2

− (N + α)(N − α)

N (N + 2)
|S||p|−N−α−2

= a2
α

|p|−N−α−4(p · θ)2 − a1
α

|p|−N−α−2,

with a1, a2 defined in (3.8). We thus conclude that

�0(θ) = −α
∑
p∈L∗

γp(0) = −α|S|
N

∑
p∈L∗

|p|−N−α

and

�2(θ) = a1
∑
p∈L∗

|p|−N−α−2 − a2
∑
p∈L∗

(p · θ)2|p|−N−α−4

for θ ∈ S, as claimed. ��
Lemma 3.4 The functions � j := (Dh(0))−1� j ∈ X, j = 0, 2, are given by

�0 ≡ |S|
λ1N

∑
p∈L∗

1

|p|N+α
on S

and

�2(θ) = |S|
{ (N + α)(N + α + 2)

N 2(λ2 − λ1)
+ 2

λ1

(N + α)(N + 1)(α + 2)

N 2(N + 2)

} ∑
p∈L∗

1

|p|N+α+2

− |S|(N + α)(N + α + 2)

N (λ2 − λ1)

∑
p∈L∗

(p · θ)2

|p|N+α+4 for θ ∈ S.

Proof We recall from Theorem 3.1 that

(Dh(0))−1 = 1

α
(Lα − λ1)

−1 : Y → X,
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with Lα given by (1.8). Since Lα maps constant functions to zero, we find that

�0 ≡ 1

α
(Lα − λ1)

−1

⎛
⎝−α|S|

N

∑
p∈L∗

|p|−N−α

⎞
⎠ = |S|

λ1N

∑
p∈L∗

|p|−N−α on S.

To compute �2, we introduce the functions

qe ∈ C1,β(S), qe(θ) = (e · θ)2 − 1

N

for e ∈ S. Since qe is a spherical harmonic of degree two for every e ∈ S, we have

(Dh(0))−1qe = 1

α
(Lα − λ1)

−1qe = 1

α(λ2 − λ1)
qe for e ∈ S.

Moreover, by Lemma 3.3, we have

�2 =
∑
p∈L∗

(
a1 − a2

N
− a2 q p

|p|

)
|p|−N−α−2 in Y

and thus

�2 = 1

α
(Lα − λ1)

−1�2

= −
∑
p∈L∗

{ 1

αλ1

(
a1 − a2

N

)
+ a2

α(λ2 − λ1)
q p

|p|

}
|p|−N−α−2 in X,

i.e.,

�2(θ) =
{ a2
αN (λ2 − λ1)

− 1

αλ1

(
a1 − a2

N

)} ∑
p∈L∗

|p|−N−α−2 − a2
α(λ2 − λ1)

∑
p∈L∗

(p · θ)2

|p|N+α+4 = |S|
{ (N + α)(N + α + 2)

N 2(λ2 − λ1)

− 1

λ1

(N + α){N (N − α) − (N + 2)(N + α + 2)}
N 2(N + 2)

} ∑
p∈L∗

1

|p|N+α+2

− |S|(N + α)(N + α + 2)

N (λ2 − λ1)

∑
p∈L∗

(p · θ)2

|p|N+α+4
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=|S|
{ (N + α)(N + α + 2)

N 2(λ2 − λ1)
+ 1

λ1

(N + α)(2N (α + 2) + 4 + 2α)

N 2(N + 2)

}

×
∑
p∈L∗

1

|p|N+α+2 − |S|(N + α)(N + α + 2)

N (λ2 − λ1)

∑
p∈L∗

(p · θ)2

|p|N+α+4 for θ ∈ S,

as claimed. ��
We may now complete the

Proof of Theorem 1.1 The existence and uniqueness of the curve r �→ ϕr with the
properties of Theorem 1.1(i)–(iii) follow immediately from Proposition 3.2 by setting
ϕr := ϕ( 1r ). To obtain Theorem 1.1(iv), we note that by (3.4) and Lemma 3.4 we have
the expansion

ϕr (θ) = −r−N−α
(
�0(θ) + r−2

6
�2(θ) + o(r−2)

)

= r−N−α
(
−κ0 + r−2

{
κ1

∑
p∈L∗

(θ · p)2
|p|N+α+4 − κ2

}
+ o(r−2)

)

for θ ∈ S as r → +∞,

where

κ0 ≡ �0 = |S|
λ1N

∑
p∈L∗

1

|p|N+α
, κ1 = |S|(N + α)(N + α + 2)

6N (λ2 − λ1)

and

κ2 = |S|
6

{ (N + α)(N + α + 2)

N 2(λ2 − λ1)
+ 2

λ1

(N + α)(N + 1)(α + 2)

N 2(N + 2)

} ∑
p∈L∗

1

|p|N+α+2 .

To prove Theorem 1.1(v), it suffices to show, after making r0 larger if necessary,
that the map

θ �→ f̃ (θ) :=
∑
p∈L∗

(θ · p)2
|p|N+α+4

is non-constant on S if 1 ≤ M ≤ N − 1. We readily observe that f̃ (e1) > 0 and
f̃ (eN ) = 0. The proof of Theorem 1.1 is thus finished.
The last statement of the theorem, on uniqueness, is a direct consequence of the

implicit function theorem. ��
We conclude this section with the
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Proof of Corollary 1.3 By assumption and up to a rotation, we may assume that the
lattice basis satisfies

ai = ρi ei for i = 1, . . . , M,

for some ρi ∈ R\{0}. It is convenient to define the map

J : ZM → L , J (k) :=
M∑
i=1

kiai = (ρ1k1, . . . , ρMkM , 0, . . . , 0) ∈ R
N .

(3.9)

Then we get

∑
p∈L∗

(θ · p)2
|p|N+α+4 =

∑
k∈ZM∗

(θ · J (k))2

|J (k)|N+α+4 =
∑
k∈ZM∗

(θ1ρ1k1 + · · · + θMρMkM )2

|J (k)|N+α+4

=
M∑

i, j=1

∑
k∈ZM∗

θiθ jρiρ j ki k j
|J (k)|N+α+4 ,

whereas for i �= j we have

∑
k∈ZM∗

θiθ jρiρ j ki k j
|J (k)|N+α+4 = 0

by oddness with respect to the reflection of k at the axis {ki = 0}. Hence we conclude
that

∑
p∈L∗

(θ · p)2
|p|N+α+4 =

∑
k∈ZM∗

θ21ρ2
1k

2
1 + · · · + θ2Mρ2

Mk2M
|J (k)|N+α+4 =

M∑
i=1

μiθ
2
i

with

μi =
∑
k∈ZM∗

ρ2
i k

2
i

|J (k)|N+α+4 =
∑
p∈L∗

p2i
|p|N+α+4 .

Together with Theorem 1.1, this gives (1.11). To see (1.12), we note that in the case
of the square lattice we have ρ1 = ρ2 = · · · = ρM and thus

μi = 1

M

M∑
j=1

μ j = 1

M

∑
p∈ZM∗

1

|p|N+α+2 for i = 1, . . . , M.

This ends the proof of Corollary 1.3. ��
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4 Regularity of the NMC operator over the unit sphere

In this section we prove the smoothness of the nonlocal mean curvature h as asserted
in Theorem 2.1.

4.1 Geometric preliminaries

For ϕ ∈ O, we recall the parameterization Fϕ : S → Sϕ of Sϕ , defined in (2.4) by
Fϕ(σ ) = (1 + ϕ(σ))σ . We shall need the following observation.

Proposition 4.1 Let ϕ ∈ C1(S) be such that ‖ϕ‖L∞(S) < 1. Then the unit outer
normal (to the set enclosed by Sϕ) of Sϕ at a point Fϕ(σ ), σ ∈ S is given by

νSϕ (Fϕ(σ )) = (1 + ϕ(σ))σ − ∇ϕ(σ)√
(1 + ϕ(σ))2 + |∇ϕ(σ)|2 .

Moreover, for every continuous function f on R
N , we have

∫
Sϕ

f (y) dVSϕ (y) =
∫
S
f ◦ Fϕ(σ )Jϕ(σ ) dV (σ ) with

Jϕ = (1 + ϕ)N−2
√

(1 + ϕ)2 + |∇ϕ|2. (4.1)

Here and in the following, ∇ϕ denotes the gradient vector field of ϕ on S.

Proof We fix a local parametrization z �→ σ(z) of S, which gives rise to the local
parameterization z → F̂(z) = (1+ ϕ(σ(z)))σ (z) of Sϕ . The tangent vectors of Sϕ at
the point F̂(z) are given by

Zi (z) := ∂zi F̂(z) = (1 + ϕ(σ(z))) ∂zi σ(z) + ∂zi (ϕ ◦ σ)(z) σ (z) (4.2)

with ∂zi (ϕ ◦ σ)(z) = ∇ϕ(σ(z)) · ∂zi σ(z) for i = 1, . . . , N . Since σ · ∇ϕ(σ) = 0
and σ · ∂zi σ = 0 (which follows from |σ |2 = 1), we thus conclude that the unit outer
normal of Sϕ at a point Fϕ(σ ) with σ = σ(z) ∈ S is given by

νSϕ (Fϕ(σ )) = (1 + ϕ(σ))σ − ∇ϕ(σ)√
(1 + ϕ(σ))2 + |∇ϕ(σ)|2 .

We now turn to the proof of (4.1). By the previous relations, the first fundamental
form of Sϕ is given by

gi j = Zi · Z j = (1 + ϕ ◦ σ)2∂zi σ · ∂z j σ + ∂zi (ϕ ◦ σ)∂z j (ϕ ◦ σ). (4.3)

We now compute
√
det(g)(z) at a given point z under the assumption that ∂zi σ(z) ·

∂z j σ(z) = δi j . We then have that

(1 + ϕ(σ(z)))−2(N−1) det(g)(z) = det(id+C)
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with the matrix C = (Ci j )i j given by

Ci j = (1 + ϕ(σ(z)))−2∂zi (ϕ ◦ σ)(z)∂z j (ϕ ◦ σ)(z).

Note that C has only one non-zero eigenvalue given by (1+ ϕ(σ(z)))−2|∇ϕ(σ(z))|2
with corresponding eigenvector (∂zi (ϕ ◦ σ)(z))i . We thus have

(1 + ϕ(σ(z)))−2(N−1) det(g)(z) = det(id+C) = 1 + (1 + ϕ(σ(z)))−2|∇ϕ(σ(z))|2,

and hence

√
det(g)(z) = (1 + ϕ(σ(z)))N−2

√
(1 + ϕ(σ(z)))2 + |∇ϕ(σ(z))|2.

We have thus computed the local change of the volume form when passing from Sϕ

to S, and this gives rise to the transformation rule (4.1). ��

4.2 Preliminary differential calculus formulas

For a finite set N , we let |N | denote the number of elements of N . Moreover, we
denoteN� := {1, . . . , �} for � ∈ N. Let Z be a Banach space andU a nonempty open
subset of Z . If T ∈ C�(U,R) and u ∈ U , then D�T (u) is a continuous symmetric
�-linear form on Z whose norm is given by

‖D�T (u)‖ = sup
u1,...,u�∈Z

∣∣D�T (u)[u1, . . . , u�]
∣∣

∏�
j=1 ‖u j‖Z

.

If T1, T2 ∈ C�(U,R), then also T1T2 ∈ C�(U,R), and the �-th derivative of T1T2 at u
is given by

D�(T1T2)(u)[u1, . . . , u�] =
∑

N∈S�

D|N |T1(u)[un]n∈N D�−|N |T2(u)[un]n∈N c ,

(4.4)

where S� is the set of subsets of {1, . . . , �} and N c = {1, . . . , �}\N for N ∈ S�.
If, in particular, L : Z → R is a linear map and |N | ≥ 1, we have

D|N |(LT2)(u)[ui ]i∈N = L(u)D|N |T2(u)[ui ]i∈N
+
∑
j∈N

L(u j )D
|N |−1T2(u)[ui ]i∈N \{ j}. (4.5)
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Furthermore, let B : Z × Z �→ R be a bilinear map and let Q : Z �→ R be its
associated quadratic form (namely Q(ϕ) = B(ϕ, ϕ)). Then

D|N |(QT2)(u)[ui ]i∈N = B(u, u)D|N |T2(u)[ui ]i∈N
+
∑
j∈N

(B(u, u j ) + B(u j , u))D|N |−1T2(u)[ui ]i∈N \{ j}

+
∑

i, j∈N
(B(ui , u j )+B(u j , ui ))D

|N |−2T2(u)[ur ]r∈N \{i, j}.

(4.6)

We close this section by the well known Faá de Bruno formula, see e.g. [15]. We
let T be as above and g : Im(T ) → R be a k-times differentiable map. The Faá de
Bruno formula states that

Dk(g ◦ T )(u)[u1, . . . , uk] =
∑

�∈Pk

g(|�|)(T (u))
∏
P∈�

D|P|T (u)[u j ] j∈P , (4.7)

for u, u1, . . . , uk ∈ U , where Pk denotes the set of all partitions of {1, . . . , k}.

4.3 Regularity of the nonlocal mean curvature operator over the sphere

For every a, b ∈ S, b �= −a we consider the regular curve

γa,b : [0, 1] → S, γa,b(t) = ta + (1 − t)b

|ta + (1 − t)b| , (4.8)

which clearly satisfies γa,b(0) = b and γa,b(1) = a.

Lemma 4.2 Consider the compact subset

S∗ := {(a, b) ∈ S × S : |a − b| ≤ 1} ⊂ S × S.

Then, there exists a constant C > 0 depending only on N with the property that for
(a, b), (a1, b1), (a2, b2) ∈ S∗ and t ∈ [0, 1] we have

|γ̇a,b(t)| ≤ C |a − b|, (4.9)

|γa1,b1(t) − γa2,b2(t)| ≤ C
(
|a1 − a2| + |b1 − b2|

)
and (4.10)

|γ̇a1,b1(t) − γ̇a2,b2(t)| ≤ C
(
|a1 − a2| + |b1 − b2|

)
. (4.11)

Proof For t ∈ [0, 1], consider the function

ϒ : R × R
N × R

N → R, ϒ(t, a, b) = |b + t (a − b)| (4.12)
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Since |a − b| ≤ 1 on S∗ and t (1 − t) ∈ [0, 1
4 ] for t ∈ [0, 1], we see that

√
3

2
≤ ϒ(t, a, b) =

√
1 − t (1 − t)|a − b|2 ≤ 1 for (t, a, b) ∈ [0, 1] × S∗.

(4.13)

By direct computations, we also see that

γ̇a,b(t) = a − b

ϒ(t, a, b)
+ (1 − 2t)|a − b|2

2

b + t (a − b)

ϒ(t, a, b)3
for (t, a, b) ∈ [0, 1] × S∗.

(4.14)

Hence (4.13) yields (4.9) with a suitable constant C > 0.
Next we consider the function

V : R × R
N × R

N → R
N , V(t, a, b) := (1 − 2t)|a − b|2

2

(
b + t (a − b)

)
.

Then we may write

γa,b(t) = ta + (1 − t)b

ϒ(t, a, b)
and γ̇a,b(t) = a − b

ϒ(t, a, b)
+ V(t, a, b)

ϒ(t, a, b)3

for (t, a, b) ∈ [0, 1] × S∗.

By (4.13), we see that the right hand sides of these equalities define C1-functions in
an open neighborhood of the compact set [0, 1] × S∗ in R

2N+1 = R × R
N × R

N .
Therefore, a standard argument shows that these functions are Lipschitz continuous
on [0, 1] × S∗ with respect to the Euclidean distance of R2N+1, and from this (4.10)
and (4.11) follow. ��

The following is an expression for h, as defined in (2.8), where we remove the
dependence on ϕ in the domain of integration.

Proposition 4.3 Let ϕ ∈ O. Then, we have

h(ϕ)(θ) = − (1 + ϕ(θ))

∫
S

ϕ(θ) − ϕ(σ) − (θ − σ) · ∇ϕ(σ)

|θ − σ |N+α

× (1 + ϕ(σ))N−2 Kα(ϕ, σ, θ) dV (σ )

+
∫
S

(ϕ(θ) − ϕ(σ))2

|θ − σ |N+α
(1 + ϕ(σ))N−2 Kα(ϕ, σ, θ) dV (σ )

+ 1 + ϕ(θ)

2

∫
S

1

|θ − σ |N+α−2 (1 + ϕ(σ))N−1Kα(ϕ, σ, θ) dV (σ ),
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where Kα : O × S × S is given by

Kα(ϕ, σ, θ) := 1(
(ϕ(θ)−ϕ(σ))2

|θ−σ |2 + (1 + ϕ(σ))(1 + ϕ(θ))
)(N+α)/2

.

Moreover, all integrals above converge absolutely.

Proof Let ϕ ∈ O. By Proposition 4.1, for every θ ∈ S, we have

− h(ϕ)(θ) =
∫
S

(Fϕ(θ) − Fϕ(σ )) · νSϕ (Fϕ(σ ))

|Fϕ(θ) − Fϕ(σ )|N+α
Jϕ(σ ) dV (σ ) (4.15)

and thus

− h(ϕ)(θ) =
∫
S

(ϕ(θ) − ϕ(σ)) σ · νSϕ (Fϕ(σ )) Jϕ(σ )(
(ϕ(θ) − ϕ(σ))2 + (1 + ϕ(σ))(1 + ϕ(θ))|θ − σ |2)(N+α)/2

dV (σ )

+ (1 + ϕ(θ))

∫
S

(θ − σ) · νSϕ (Fϕ(σ )) Jϕ(σ )(
(ϕ(θ) − ϕ(σ))2 + (1 + ϕ(σ))(1 + ϕ(θ))|θ − σ |2)(N+α)/2

dV (σ ),

where we used that 2(1 − θ · σ) = |θ − σ |2. It follows that

−h(ϕ)(θ) =
∫
S

ϕ(θ) − ϕ(σ)

|θ − σ |N+α
Kα(ϕ, σ, θ)σ · νSϕ (Fϕ(σ )) Jϕ(σ ) dV (σ )

+ (1 + ϕ(θ))

∫
S

θ − σ

|θ − σ |N+α
· νSϕ (Fϕ(σ )) Jϕ(σ )Kα(ϕ, σ, θ) dV (σ ).

(4.16)

Letting ψ = 1 + ϕ, we get

Jϕ(σ ) = ψN−2(σ )

√
ψ2(σ ) + |∇ψ(σ)|2 and

νSϕ (Fϕ(σ )) = σψ(σ) − ∇ψ(σ)√
ψ2(σ ) + |∇ψ(σ)|2

from Proposition 4.1. Consequently,

σ · νSϕ (Fϕ(σ )) = ψ(σ)√
ψ2(σ ) + |∇ψ(σ)|2

and thus

Jϕ(σ )σ · νSϕ (Fϕ(σ )) = ψN−1(σ ).

Furthermore

(θ − σ) · νSϕ (Fϕ(σ )) Jϕ(σ ) = −(θ − σ) · ∇ψ(σ)ψN−2(σ ) + (θ − σ) · σψN−1(σ ).
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Using the latter two identities in (4.16), we find that

− h(ϕ)(θ) =
∫
S

ψ(θ) − ψ(σ)

|θ − σ |N+α
ψN−1(σ )Kα(ϕ, σ, θ) dV (σ )

− ψ(θ)

∫
S

(θ − σ) · ∇ψ(σ)

|θ − σ |N+α
ψN−2(σ )Kα(ϕ, σ, θ) dV (σ )

+ ψ(θ)

∫
S

(θ − σ) · σ

|θ − σ |N+α
ψN−1(σ )Kα(ϕ, σ, θ) dV (σ ).

Therefore

−h(ϕ)(θ) =
∫
S

(ψ(θ) − ψ(σ))ψ(σ) − ψ(θ)(θ − σ) · ∇ψ(σ)

|θ − σ |N+α

× ψN−2(σ )Kα(ϕ, σ, θ) dV (σ )

+ ψ(θ)

∫
S

(θ − σ) · σ

|θ − σ |N+α
ψN−1(σ )Kα(ϕ, σ, θ) dV (σ ).

We add and subtract (ψ(θ) − ψ(σ))ψ(θ) to get

−h(ϕ)(θ) = −
∫
S

(ψ(θ) − ψ(σ))2

|θ − σ |N+α
ψN−2(σ )Kα(ϕ, σ, θ) dV (σ )

+ ψ(θ)

∫
S

ψ(θ) − ψ(σ) − (θ − σ) · ∇ψ(σ)

|θ − σ |N+α

× ψN−2(σ )Kα(ϕ, σ, θ) dV (σ )

+ ψ(θ)

∫
S

(θ − σ) · σ

|θ − σ |N+α
ψN−1(σ )Kα(ϕ, σ, θ) dV (σ ).

We then conclude that

−h(ϕ)(θ) = −
∫
S

(ψ(θ) − ψ(σ))2

|θ − σ |N+α

ψN−2(σ )Kα(ϕ, σ, θ) dV (σ )

+ ψ(θ)

∫
S

ψ(θ) − ψ(σ) − (θ − σ) · ∇ψ(σ)

|θ − σ |N+α

× ψN−2(σ )Kα(ϕ, σ, θ) dV (σ )

− ψ(θ)

2

∫
S

1

|θ − σ |N+α−2ψN−1(σ )Kα(ϕ, σ, θ) dV (σ ). (4.17)

Let us now check that all integrals above converge absolutely. Indeed, it is clear
that
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∫
S

1

|θ − σ |N+α−2ψN−1(σ )Kα(ϕ, σ, θ) dV (σ )

≤ (1 − ‖ϕ‖∞)−N−α

∫
S

1

|θ − σ |N+α−2ψN−1(σ ) dV (σ ) < ∞

and, since (ψ(θ) − ψ(σ))2 ≤ ‖ψ‖2
C1(S)

|θ − σ |2, we also get

∫
S

(ψ(θ) − ψ(σ))2

|θ − σ |N+α
ψN−2(σ )Kα(ϕ, σ, θ) dV (σ ) < ∞.

Next, if |θ − σ | < 1, we can write

ψ(θ) − ψ(σ) − (θ − σ) · ∇ψ(σ) =
∫ 1

0

{∇ψ(γθ,σ (t)) − ∇ψ(γθ,σ (0))
} · γ̇θ,σ (t)dt

with γθ,σ defined in (4.8). By (4.9) we thus have

|ψ(θ) − ψ(σ) − (θ − σ) · ∇ψ(σ)| ≤ C‖ψ‖C1,β (S)|θ − σ |1+β,

and this obviously also holds, by enlargening C > 0 if necessary, for θ, σ ∈ S with
|θ − σ | ≥ 1. From this and the fact that β ∈ (α, 1), we obtain

∫
S

|ψ(θ) − ψ(σ) − (θ − σ) · ∇ψ(σ)|
|θ − σ |N+α

ψN−2(σ )Kα(ϕ, σ, θ) dV (σ ) (4.18)

≤ C(1 − ‖ϕ‖∞)−N−α‖ψ‖N−1
C1,β (S)

∫
S

1

|θ − σ |N+α−1−β
dV (σ ) < ∞. (4.19)

We then have that the integrals in the expression of h converge absolutely. ��

For 0 < r < 2, we now put

B(r) =
{
ψ ∈ C1,β(S) : r < ψ < 2 in S

}
. (4.20)

We consider the map Kα : B(r) × S × S → R defined by

Kα(ψ, σ, θ) := 1(
(ψ(θ)−ψ(σ))2

|θ−σ |2 + ψ(σ)ψ(θ)
)(N+α)/2

. (4.21)
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We also define h̃ : B(r) → L∞(S) by h̃(ψ) := h(ψ − 1). Then, by Proposition 4.3,
we have

h̃(ψ)(θ) = h(ψ − 1)(θ) =
∫
S

(ψ(θ) − ψ(σ))2

|θ − σ |N+α
ψN−2(σ )Kα(ψ, σ, θ) dV (σ )

− ψ(θ)

∫
S

ψ(θ) − ψ(σ) − (θ − σ) · ∇ψ(σ)

|θ − σ |N+α

× ψN−2(σ )Kα(ψ, σ, θ) dV (σ )

+ ψ(θ)

2

∫
S

1

|θ − σ |N+α−2ψN−1(σ )Kα(ψ, σ, θ) dV (σ ). (4.22)

The proof of Theorem 2.1 will be completed once we prove that h̃ : B(r) →
Cβ−α(S) is smooth for every r > 0.

We define �1 : C1,β(S) × S × S → R by

�1(ψ, σ, θ) = ψ(θ) − ψ(σ) − (θ − σ) · ∇ψ(σ)

=
∫ 1

0

{∇ψ(γθ,σ (t)) − ∇ψ(γθ,σ (0))
} · γ̇θ,σ (t)dt

and �2 : C1,β(S) × C1,β(S) × S × S → R by

�2(ψ1, ψ2, σ, θ) = (ψ1(θ) − ψ1(σ ))(ψ2(θ) − ψ2(σ )).

With this notation, we have

h̃(ψ)(θ) =h(ψ − 1)(θ) =
∫
S

�2(ψ,ψ, σ, θ)

|θ − σ |N+α
ψN−2(σ )Kα(ψ, σ, θ) dV (σ )

− ψ(θ)

∫
S

�1(ψ, σ, θ)

|θ − σ |N+α
ψN−2(σ )Kα(ψ, σ, θ) dV (σ )

+ ψ(θ)

2

∫
S

1

|θ − σ |N+α−2ψN−1(σ )Kα(ψ, σ, θ) dV (σ ). (4.23)

Remark 4.4 It will be convenient to modify this representation further such that the
singularity of the integrand does not depend on θ . For this we fix e ∈ S and a Lipschitz
continuous map of rotations S �→ SO(N ), θ �→ Rθ with the property that

Se := {θ ∈ S : θ · e ≥ 0} ⊂ {θ ∈ S : Rθe = θ}. (4.24)

The following is a possible way to construct R. For fixed e ∈ S, consider the map
θ �→ Rθ defined as follows. For θ ∈ S with θ · e ≥ 0, we let Rθ be the rotation of
the angle arccos θ · e which maps e to θ and keeps all vectors perpendicular to θ and
e fixed. We then extend the map θ �→ Rθ to all of S as an even map with respect to
reflection at the hyperplane {θ ∈ R

N : θ · e = 0}.
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By construction, it is clear that

|Rθσ − θ | = |σ − e| for all θ ∈ Se and σ ∈ S. (4.25)

Moreover, the Lipschitz property of the map θ �→ Rθ implies that there is a constant
C > 0 with

‖Rθ1 − Rθ2‖ ≤ C |θ1 − θ2| for all θ1, θ2 ∈ S, (4.26)

where, here and in the following, ‖ · ‖ denotes the usual operator norm with respect
to the Euclidean norm on RN .

Thanks to (4.25), a change of variable gives

h̃(ψ)(θ) =
∫
S

�2(ψ,ψ, Rθσ, θ)

|e − σ |N+α
ψN−2(Rθσ )Kα(ψ, Rθσ, θ) dV (σ )

− ψ(θ)

∫
S

�1(ψ, Rθσ, θ)

|e − σ |N+α
ψN−2(Rθσ )Kα(ψ, Rθσ, θ) dV (σ )

+ ψ(θ)

2

∫
S

ψN−1(Rθσ )

|e − σ |N+α−2Kα(ψ, Rθσ, θ) dV (σ ) for θ ∈ Se. (4.27)

In the following, for a function f : S → R, we use the notation

[ f ; θ1, θ2] := f (θ1) − f (θ2) for θ1, θ2 ∈ S,

and we note the obvious equality

[ f g; θ1, θ2] = [ f ; θ1, θ2]g(θ1) + f (θ2)[g; θ1, θ2] for f, g : S → R, θ1, θ2 ∈ S.

(4.28)

In the next results we collect helpful estimates for the functionals �1 and �2.

Lemma 4.5 There exists a constant C > 0 depending only on N and β such that for
all σ, σ1, σ2, θ, θ1, θ2 ∈ S and ψ ∈ C1,β(S) we have

|�1(ψ, σ, θ)| ≤ C‖ψ‖C1,β (S)|σ − θ |1+β (4.29)

and

|�1(ψ, σ1, θ1) − �1(ψ, σ2, θ2)| ≤ C‖ψ‖C1,β (S) |θ1 − σ1|(|θ1 − θ2|β + |σ1 − σ2|β)

+ C‖ψ‖C1,β (S) |θ2−σ2|β(|θ1−θ2|+|σ1 − σ2|).
(4.30)

Proof To derive the estimates in the lemma, we may assume that

max{|σ − θ |, |θ1 − σ1|, |θ2 − σ2|} < 1 (4.31)
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(otherwise the estimates are easy to prove). Having (4.31) is essential for applying
Lemma 4.2 in the sequel. We have

�1(ψ, σ, θ) = ψ(θ) − ψ(σ) − (θ − σ) · ∇ψ(σ)

=
∫ 1

0

{∇ψ(γθ,σ (t)) − ∇ψ(γθ,σ (0))
} · γ̇θ,σ (t)dt,

where γθ,σ is defined in (4.8). Therefore (4.29) follows from (4.9).
We now prove (4.30). We have

�1(ψ, σ1, θ1) − �1(ψ, σ2, θ2)

=
∫ 1

0

{∇ψ(γθ1,σ1(t)) − ∇ψ(γθ1,σ1(0))
} · γ̇θ1,σ1(t)dt

−
∫ 1

0

{∇ψ(γθ2,σ2(t)) − ∇ψ(γθ2,σ2(0))
} · γ̇θ2,σ2(t)dt

=
∫ 1

0

{∇ψ(γθ1,σ1(t)) − ∇ψ(γθ2,σ2(t)) + ∇ψ(σ2) − ∇ψ(σ1)
} · γ̇θ1,σ1(t)dt

+
∫ 1

0

{∇ψ(γθ2,σ2(t)) − ∇ψ(γθ2,σ2(0))
} · (γ̇θ1,σ1(t) − γ̇θ2,σ2(t))dt.

This implies that

|�1(ψ, σ1, θ1) − �1(ψ, σ2, θ2)|

≤ ‖ψ‖C1,β (S)

∫ 1

0
|γθ1,σ1(t) − γθ2,σ2(t)|β |γ̇θ1,σ1(t)|dt

+ ‖ψ‖C1,β (S)|σ1 − σ2|β
∫ 1

0
|γ̇θ1,σ1(t)|dt

+ ‖ψ‖C1,β (S)

∫ 1

0

∣∣γθ2,σ2(t) − γθ2,σ2(0)
∣∣β |γ̇θ1,σ1(t) − γ̇θ2,σ2(t)|dt

≤ ‖ψ‖C1,β (S)

∫ 1

0
|γθ1,σ1(t) − γθ2,σ2(t)|β |γ̇θ1,σ1(t)|dt

+ ‖ψ‖C1,β (S)|σ1 − σ2|β
∫ 1

0
|γ̇θ1,σ1(t)|dt

+ ‖ψ‖C1,β (S)

∫ 1

0

∣∣∣∣
∫ 1

0
t γ̇θ2,σ2(r t)dr

∣∣∣∣
β

|γ̇θ1,σ1(t) − γ̇θ2,σ2(t)|dt.
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Thanks to (4.9), we get

|�1(ψ, σ1, θ1) − �1(ψ, σ2, θ2)|

≤ C‖ψ‖C1,β (S)|σ1 − θ1|
(∫ 1

0
|γθ1,σ1(t) − γθ2,σ2(t)|βdt + |σ1 − σ2|β

)

+ ‖ψ‖C1,β (S)

∫ 1

0

∣∣∣∣
∫ 1

0
t γ̇θ2,σ2(r t)dr

∣∣∣∣
β

|γ̇θ1,σ1(t) − γ̇θ2,σ2(t)|dt.

From Lemma 4.2, we have that, for every θ1, σ1, θ2, σ2 ∈ S and satisfying (4.31),

|γθ1,σ1(t) − γθ2,σ2(t)| + |γ̇θ1,σ1(t) − γ̇θ2,σ2(t)| ≤ C(|θ1 − θ2| + |σ1 − σ2|)
for every t ∈ [0, 1]

and

∣∣γ̇θ2,σ2(r t)
∣∣ ≤ C |θ2 − σ2| for every t, r ∈ [0, 1].

Therefore

|�1(ψ, σ1, θ1) − �1(ψ, σ2, θ2)| ≤ C‖ψ‖C1,β (S)|θ1 − σ1|
(|θ1 − θ2|β + |σ1 − σ2|β

)
+ C‖ψ‖C1,β (S)|θ2 − σ2|β(|θ1 − θ2| + |σ1 − σ2|).

This ends the proof of (4.30). ��
Corollary 4.6 There exists a constant C > 0, depending only on N and β, such that
for all e ∈ S, σ ∈ S, all θ, θ1, θ2 ∈ Se and all ψ ∈ C1,β(S) we have

|�1(ψ, Rθσ, θ)| ≤ C‖ψ‖C1,β (S)|e − σ |1+β (4.32)

and

|�1(ψ, Rθ1σ, θ1) − �1(ψ, Rθ2σ, θ2)|
≤ C‖ψ‖C1,β (S)

(|e − σ ||θ1 − θ2|β + |e − σ |β |θ1 − θ2|
)
. (4.33)

Proof It suffices to apply (4.29) and (4.30) with σ , σ1 and σ2 replaced byRθσ , Rθ1σ

and Rθ2σ respectively, to use (4.25), and the fact that

|Rθ1σ − Rθ2σ | ≤ ‖Rθ1 − Rθ2‖ ≤ C |θ1 − θ2|.

��
Next, we derive estimates for �2.

Lemma 4.7 There exists a constant C > 0, depending only on N and β, such that
for all e ∈ S, σ ∈ S, all θ, θ1, θ2 ∈ Se and all ψ1, ψ2 ∈ C1,β(S) we have
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|�2(ψ1, ψ2, Rθσ, θ)| ≤ C‖ψ1‖C1,β (S)‖ψ2‖C1,β (S)|e − σ |2 (4.34)

and

|�2(ψ1, ψ2, Rθ1σ, θ1) − �2(ψ1, ψ2, Rθ2σ, θ2)|
≤ C‖ψ1‖C1,β (S)‖ψ2‖C1,β (S)|e − σ |2|θ1 − θ2|β. (4.35)

Proof To prove the lemma, by (4.25) and (4.26) it is easy to see that we may assume
|e − σ | < 1. This implies that

|Rθσ − θ | = |Rθ1σ − θ1| = |Rθ2σ − θ2| = |σ − e| < 1,

and therefore allows us to apply Lemma 4.2 in the following. By (4.9) we have

|ψ(θ) − ψ(Rθσ )| =
∣∣∣
∫ 1

0
∇ψ(γθ,Rθ σ (t)) · γ̇θ,Rθ σ (t)dt

∣∣∣
≤ C‖ψ‖C1,β (S)|θ − Rθσ | = C‖ψ‖C1,β (S)|e − σ | for ψ ∈ C1,β(S) (4.36)

and

|�2(ψ1, ψ2, Rθσ, θ)| = |(ψ1(θ) − ψ1(Rθσ ))||(ψ2(θ) − ψ2(Rθσ ))|
≤ C‖ψ1‖C1,β (S)‖ψ2‖C1,β (S)|e − σ |2,

as claimed in (4.34).
Next, we note that, by (4.14) we have

γ̇θ,Rθ σ (t) = θ − Rθσ

ϒ(t, θ, Rθσ )
+ (1 − 2t)|θ − Rθσ |2

2

Rθσ + t (θ − Rθσ )

ϒ(t, θ, Rθσ )3

= Rθ

{
(e − σ)

ϒ(t, e, σ )
+ (1 − 2t)|e − σ |2

2

σ + t (e − σ)

ϒ(t, e, σ )3

}
= Rθ γ̇e,σ (t),

since |θ − Rθσ | = |Rθ (e − σ)| = |e − σ | and, by (4.12),

ϒ(t, θ, Rθσ ) = |Rθσ + t (θ − Rθσ )|
= |Rθ (σ + t (e − σ))| = |σ + t (e − σ)| = ϒ(t, e, σ ).

Consequently,

∣∣ψ(θ1) − ψ(Rθ1σ) − (
ψ(θ2) − ψ(Rθ2σ)

)∣∣
=
∣∣∣
∫ 1

0

{
∇ψ(γθ1,Rθ1σ (t)) · γ̇θ1,Rθ1σ (t) − ∇ψ(γθ2,Rθ2σ (t)) · γ̇θ2,Rθ2σ (t)

}
dt
∣∣∣

=
∣∣∣
∫ 1

0

{
∇ψ(γθ1,Rθ1σ (t)) · Rθ1 γ̇e,σ (t) − ∇ψ(γθ2,Rθ2σ (t)) · Rθ2 γ̇e,σ (t)

}
dt
∣∣∣
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=
∣∣∣
∫ 1

0

(
∇ψ(γθ1,Rθ1σ (t)) − ∇ψ(γθ2,Rθ2σ (t))

)
· Rθ1 γ̇e,σ (t)

+ ∇ψ(γθ2,Rθ2σ (t)) ·
(
Rθ1 γ̇e,σ (t) − Rθ2 γ̇e,σ (t)

)
dt
∣∣∣

≤‖ψ‖C1,β (S)

∫ 1

0

(
|γθ1,Rθ1σ (t))−γθ2,Rθ2σ (t))|β |γ̇e,σ (t)|+|(Rθ1−Rθ2)γ̇e,σ (t)|

)
dt.

Hence Lemma 4.2 and the Lipschitz continuity of the map θ �→ Rθ give rise to the
estimate

∣∣ψ(θ1) − ψ(Rθ1σ) − (
ψ(θ2) − ψ(Rθ2σ)

)∣∣
≤ C‖ψ‖C1,β (S)|e − σ |

(∫ 1

0
|γθ1,Rθ1σ (t)) − γθ2,Rθ2σ (t))|β dt + ‖Rθ1 − Rθ2‖

)

≤ C‖ψ‖C1,β (S)|e − σ |
(∫ 1

0

(|θ1 − θ2| + |Rθ1σ − Rθ2σ |)β dt + |θ1 − θ2|
)

≤ C‖ψ‖C1,β (S)|e − σ ||θ1 − θ2|β. (4.37)

Using (4.36) and (4.37), applied with ψ replaced by ψ1 and ψ2, we then find that

|�2(ψ1, ψ2, Rθ1σ, θ1) − �2(ψ1, ψ2, Rθ2σ, θ2)|
= |(ψ1(θ1) − ψ1(Rθ1σ))(ψ2(θ1) − ψ2(Rθ1σ))

− (ψ1(θ2) − ψ1(Rθ2σ))(ψ2(θ2) − ψ2(Rθ2σ))|
≤
∣∣∣
(
ψ1(θ1) − ψ1(Rθ1σ) − (

ψ1(θ2) − ψ1(Rθ2σ)
))

(ψ2(θ1) − ψ2(Rθ1σ))

∣∣∣
+
∣∣∣(ψ1(θ2) − ψ1(Rθ2σ))

(
ψ2(θ1) − ψ2(Rθ1σ) − (

ψ2(θ2) − ψ2(Rθ2σ)
))∣∣∣

≤ ‖ψ1‖C1,β (S)‖ψ2‖C1,β (S)|e − σ |2|θ1 − θ2|β,

as claimed in (4.35). ��
The following result provides some estimates related to the kernelKα and its deriva-

tives.

Lemma 4.8 Let r > 0, k ∈ N∪{0}. Then there exists a constant c = c(N , α, β, r, k) >

1 such that for all e ∈ S, σ ∈ S, all θ, θ1, θ2 ∈ Se and ψ ∈ B(r), we have

‖Dk
ψKα(ψ, Rθσ, θ)‖ ≤ c

(
1 + ‖ψ‖C1,β (S)

)c (4.38)

and

‖Dk
ψKα(ψ, Rθ1σ, θ1) − Dk

ψKα(ψ, Rθ2σ, θ2)‖ ≤ c
(
1 + ‖ψ‖C1,β (S)

)c |θ1 − θ2|β.

(4.39)
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Proof Throughout this proof, the letter c stands for different constants greater than
one and depending only on N , α, β, k and r . We assume k ≥ 1 for notation coherence,
but the case k = 0 is simpler and can be proved similarly. We define

Q : C1,β(S) × S × S → R, Q(ψ, σ, θ) = |ψ(θ) − ψ(σ)|2
|θ − σ |2 + ψ(θ)ψ(σ)

= �2(ψ,ψ, σ, θ)

|θ − σ |2 + ψ(θ)ψ(σ)

and, for α > 0,

gα ∈ C∞(R+,R), gα(x) = x−(N+α)/2,

so that

Kα(ψ, Rθσ, θ) = gα (Q(ψ, Rθσ, θ)) . (4.40)

Note that for θ ∈ Se we have

Q(ψ, Rθσ, θ) = �2(ψ,ψ, Rθσ, θ)

|e − σ |2 + ψ(Rθσ )ψ(θ)

Dψ Q(ψ, Rθσ, θ)ψ1 = 2
�2(ψ,ψ1, Rθσ, θ)

|e − σ |2 + ψ(θ)ψ1(Rθσ ) + ψ1(θ)ψ(Rθσ )

D2
ψ Q(ψ, Rθσ, θ)[ψ1, ψ2] = 2

�2(ψ1, ψ2, Rθσ, θ)

|e − σ |2 + ψ2(θ)ψ1(Rθσ )

+ ψ1(θ)ψ2(Rθσ )

for ψ,ψ1, ψ2 ∈ C1,β(S). For a subset P ⊂ {1, 2} and ψ1, ψ2 ∈ C1,β(S), we thus
have, by (4.28) and (4.35),

∣∣[D|P|
ψ Q(ψ, Rθσ, ·)[ψ j ] j∈P ; θ1, θ2]

∣∣≤c(1+‖ψ‖2C1,β (S)
)|θ1−θ2|β

∏
j∈P

‖ψ j‖C1,β (S).

(4.41)

Moreover, by (4.34),

∣∣D|P|
ψ Q(ψ, Rθσ, ·)[ψ j ] j∈P

∣∣ ≤ c(1 + ‖ψ‖2C1,β (S)
)
∏
j∈P

‖ψ j‖C1,β (S) on Se.

(4.42)
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By (4.7) and recalling that Q is quadratic in ψ , we have

Dk
ψKα(ψ, Rθσ, θ)[ψ1, . . . , ψk]
=

∑
�∈P2

k

g(|�|)
α (Q(ψ, Rθσ, θ))

∏
P∈�

D|P|
ψ Q(ψ, Rθσ, θ)[ψ j ] j∈P ,

where P2
k denotes the set of partitions � of {1, . . . , k} such that |P| ≤ 2 for every

P ∈ �. By (4.28), we now have
[
Dk

ψKα(ψ, Rθσ, ·)[ψ1, . . . , ψk]; θ1, θ2

]

=
∑

�∈P2
k

[
g(|�|)
α (Q(ψ, Rθσ, ·)); θ1, θ2

] ∏
P∈�,|P|≤2

D|P|
ψ Q(ψ, Rθσ, θ1)[ψ j ] j∈P

+
∑

�∈P2
k

g(|�|)
α (Q(ψ, Rθσ, θ2))

⎡
⎣ ∏

P∈�,|P|≤2

D|P|
u Q(ψ, Rθσ, ·)[ψ j ] j∈P ; θ1, θ2

⎤
⎦ ,

(4.43)

whereas

g(k)
α (t) = (−1)k2−k

k−1∏
i=0

(N + α + 2i)t−
N+α+2k

2 for k ∈ N and t > 0.

Consequently, by (4.41) and since ψ ∈ B(r), we have the estimates

∣∣∣
[
g(�)
α (Q(ψ, Rθσ, ·)); θ1, θ2

]∣∣∣
≤
∣∣∣∣[Q(ψ, Rθσ, ·); θ1, θ2]

∫ 1

0
g(�+1)
α (τQ(ψ, Rθσ, θ1)+(1−τ)Q(ψ, Rθσ, θ2))dτ

∣∣∣∣
≤ c

(
1 + ‖ψ‖2C1,β (S)

)
|θ1 − θ2|β (4.44)

and

|g(�)
α (Q(ψ, Rθσ, ·))| ≤ c

(
1 + ‖ψ‖C1,β (S)

)c (4.45)

for � = 0, . . . , k. Combining (4.41), (4.42), (4.43), (4.44) and (4.45), we obtain

∣∣∣
[
Dk

ψKα(ψ, Rθσ, ·)[ψ1, . . . , ψk]; θ1, θ2

]∣∣∣
≤ c

(
1 + ‖ψ‖C1,β (S)

)c|θ1 − θ2|β
∑

�∈P2
k

∏
P∈�

∏
j∈P

‖ψ j‖C1,β (S)

≤ c
(
1 + ‖ψ‖C1,β (S)

)c |θ1 − θ2|β
k∏

i=1

‖ψi‖C1,β (S).
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This yields (4.39). Furthermore we easily deduce from (4.42) and (4.45) that

∣∣∣Dk
ψKα(ψ, Rθσ, θ)[ψ1, . . . , ψk]

∣∣∣ ≤ c
(
1 + ‖ψ‖C1,β (S)

)c k∏
i=1

‖ψi‖C1,β (S),

completing the proof. ��
We now derive estimates for functions of a specific form which will appear in

formulas for the derivatives of the transformed NMC operator h̃ in (4.27).

Lemma 4.9 Let ψ ∈ B(r), with r > 0. Let k ∈ N, e ∈ S, � ∈ C1,β(S) and
ω,ω1, ψ1, . . . , ψk ∈ C1,β(S). Define the functions F1,F2,F3 : Se → R by

F1(θ) =
∫
S

�1(ω, Rθσ, θ)

|e − σ |N+α
�(Rθσ ) Dk

ψKα(ψ, Rθσ, θ)[ψi ]i=1,...,k dV (σ ),

F2(θ) =
∫
S

�2(ω, ω1, Rθσ, θ)

|e − σ |N+α
�(Rθσ ) Dk

ψKα(ψ, Rθσ, θ)[ψi ]i=1,...,k dV (σ )

and

F3(θ) =
∫
S

�(Rθσ )

|e − σ |N+α−2 D
k
ψKα(ψ, Rθσ, θ)[ψi ]i=1,...,k dV (σ ). (4.46)

Then, there exists a constant c = c(N , α, β, k, r) > 1 such that

‖F1‖Cβ−α(Se) ≤ c
(
1 + ‖ψ‖C1,β (S)

)c ‖ω‖C1,β (S)‖�‖C1,β (S)

k∏
i=1

‖ψi‖C1,β (S), (4.47)

‖F2‖Cβ (Se) ≤ c
(
1 + ‖ψ‖C1,β (S)

)c ‖ω‖C1,β (S)‖ω1‖C1,β (S)‖�‖C1,β (S)

k∏
i=1

‖ψi‖C1,β (S)

(4.48)

and

‖F3‖Cβ (Se) ≤ c
(
1 + ‖ψ‖C1,β (S)

)c ‖�‖C1,β (S)

k∏
i=1

‖ψi‖C1,β (S). (4.49)

Proof Let θ1, θ2 ∈ Se. We first note that, for σ ∈ S,

|�(Rθ1σ) − �(Rθ2σ)| ≤ C‖�‖C1,β (S)|Rθ1σ − Rθ2σ | ≤ C‖�‖C1,β (S)|θ1 − θ2|.
(4.50)

To prove estimate (4.47) for F1, we recall that by (4.33) we have

|�1(ω, Rθ1σ, θ1) − �1(ω, Rθ2σ, θ2)| ≤ C‖ω‖C1,β (S)μ(σ, θ1, θ2),
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where

μ(σ, θ1, θ2) := |e − σ ||θ1 − θ2|β + |e − σ |β |θ1 − θ2|.

Combining this with the fact that

|�1(ω, Rθσ, θ)| ≤ C‖ω‖C1,β (S) |Rθσ − θ |1+β

= C‖ω‖C1,β (S) |e − σ |1+β for σ ∈ S, θ ∈ Se

by (4.32), we find that

|�1(ω, Rθ1σ, θ1) − �1(ω, Rθ2σ, θ2)| ≤ C‖ω‖C1,β (S) min(|e − σ |1+β, μ(σ, θ1, θ2)).

(4.51)

Using inductively (4.28) together with Lemma 4.8, (4.50) and (4.51), we get the
estimate

|[F1; θ1, θ2]| ≤ c
(
1 + ‖ψ‖C1,β (S)

)c ‖ω‖C1,β (S)‖�‖C1,β (S)

k∏
i=1

‖ψi‖C1,β (S)

×
(

|θ1 − θ2|β
∫
S
|e − σ |1+β−N−αdV (σ ) +

∫
S

min(|e − σ |1+β, μ(σ, θ1, θ2))

|e − σ |N+α
dV (σ )

)

(4.52)

for all θ1, θ2 ∈ S. Since

∫
S

min(|e − σ |1+β, μ(σ, θ1, θ2))

|e − σ |N+α
dV (σ )

≤
∫

|e−σ |≤|θ1−θ2|
|e − σ |1+β−N−αdV (σ ) +

∫
|θ1−θ2|≤|e−σ |

μ(σ, θ1, θ2)

|e − σ |N+α
dV (σ )

≤
∫

|e−σ |≤|θ1−θ2|
|e − σ |1+β−N−αdV (σ )

+
∫

|θ1−θ2|≤|e−σ |
{|θ1 − θ2|β |e − σ |1−N−α + |θ1 − θ2||e − σ |β−N−α}dV (σ )

≤ C |θ1 − θ2|β−α,

we thus deduce from (4.52) that

|[F1; θ1, θ2]|≤c|θ1−θ2|β−α
(
1+‖ψ‖C1,β (S)

)c ‖ω‖C1,β (S)‖�‖C1,β (S)

k∏
i=1

‖ψi‖C1,β (S).
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Since, by a similar but easier argument, we have

|F1| ≤ c
(
1 + ‖ψ‖C1,β (S)

)c ‖ω‖C1,β (S)‖�‖C1,β (S)

k∏
i=1

‖ψi‖C1,β (S) on Se,

(4.47) follows.
Next we consider F2. For this we recall that

|�2(ω, ω1, Rθσ, θ)| ≤ C‖ω‖C1,β (S)‖ω1‖C1,β (S) |e − σ |2

by (4.34), and that

|�2(ω, ω1, Rθ1σ, θ1) − �2(ω, ω1, Rθ2σ, θ2)|
≤ C‖ω1‖C1,β (S)‖ω‖C1,β (S)|e − σ |2|θ1 − θ2|β

by (4.35). Consequently, we find that

|[F2; θ1, θ2]| ≤ c
(
1 + ‖ψ‖C1,β (S)

)c ‖ω‖C1,β (S)‖ω1‖C1,β (S)

× ‖�‖C1,β (S)

k∏
i=1

‖ψi‖C1,β (S)

× |θ1 − θ2|β
∫
S
|e − σ |2−N−αdV (σ ) ≤ c

(
1 + ‖ψ‖C1,β (S)

)c ‖ω

‖C1,β (S)‖ω1‖C1,β (S)‖�‖C1,β (S)|θ1 − θ2|β
k∏

i=1

‖ψi‖C1,β (S). (4.53)

Moreover, by a similar but easier argument,

|F2|≤c
(
1+‖ψ‖C1,β (S)

)c ‖ω‖C1,β (S)‖ω1‖C1,β (S)‖�‖C1,β (S)

k∏
i=1

‖ψi‖C1,β (S) on Se.

(4.54)

Combining (4.53) and (4.54), we get (4.48), as claimed. We skip the proof of (4.49),
which is similar but easier. ��

The following result contains all what is needed to prove the regularity of h̃ and
hence of h.

Proposition 4.10 Let k ∈ N∪{0}, r > 0,ψ1, . . . , ψk ∈ C1,β(S) and letMi : S → R

with i = 1, 2, 3, be defined by

Mi (θ) =
∫
S
Dk

ψMi (ψ, σ, θ)[ψ1, . . . , ψk] dV (σ ),
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where M1, M2, M3 : B(r) × S × S → R are given by

M1(ψ, σ, θ) = �1(ψ, σ, θ)

|θ − σ |N+α
Kα(ψ, σ, θ) ψN−2(σ ),

M2(ψ, σ, θ) = �2(ψ,ψ, σ, θ)

|θ − σ |N+α
Kα(ψ, σ, θ) ψN−2(σ ),

M3(ψ, σ, θ) = 1

|θ − σ |N+α−2Kα(ψ, σ, θ) ψN−1(σ ).

Then, for i = 1, 2, 3, Mi ∈ Cβ−α(S), and there exists a constant c =
c(N , α, β, k, r) > 1 such that

‖Mi‖Cβ−α(S) ≤ c(1 + ‖ψ‖C1,β (S))
c

k∏
i=1

‖ψi‖C1,β (S), (4.55)

understanding that the last product equals 1 if k = 0.

Proof To prove (4.55), it suffices to fix e ∈ S and show that

|Mi (θ)| ≤ c(1 + ‖ψ‖C1,β (S))
c

k∏
i=1

‖ψi‖C1,β (S) (4.56)

and

|Mi (θ1) − Mi (θ2)| ≤ c|θ1 − θ2|β−α(1 + ‖ψ‖C1,β (S))
c

k∏
i=1

‖ψi‖C1,β (S) (4.57)

for θ, θ1, θ2 ∈ Se, where Se is defined in (4.24) and c > 1 does not depend on e. For
this, we define a Lipschitz continuous map θ �→ Rθ of rotations as in Remark 4.4
corresponding to e, so that the inclusion in (4.24) holds. By a change of variable, we
then have

Mi (θ) =
∫
S
Dk

ψMi (ψ, Rθσ, θ)[ψ1, . . . , ψk] dV (σ ) for θ ∈ Se.

We first consider the case i = 1, and we note that

M1(ψ, Rθσ, θ) = T1(ψ, σ, θ)

|e − σ |N+α
ψN−2(Rθσ ) for θ ∈ Se,

where

T1 : B(r) × S × Se → R defined by T1(ψ, σ, θ) = �1(ψ, Rθσ, θ)Kα(ψ, Rθσ, θ).
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By (4.4), we thus have

Dk
ψM1(ψ, Rθσ, θ)[ψ1, . . . , ψk]
= 1

|e − σ |N+α

∑
N∈Sk

�N (Rθσ )D|N |
ψ T1(ψ, σ, θ)[ψi ]i∈N ,

where �N = ψN−2 when k = |N |, and

�N :=
k−|N |−1∏

�=0

(N − 2 − �) ψN−2−(k−|N |) ∏
j∈N c

ψ j when k > |N |

(noting that |N c| = k − |N |). By (4.5) we have, if |N | ≥ 1,

D|N |
ψ T1(ψ, σ, θ)[ψi ]i∈N = �1(ψ, Rθσ, θ)D|N |

ψ Kα(ψ, Rθσ, θ)[ψi ]i∈N
+
∑
j∈N

�1(ψ j , Rθσ, θ)D|N |−1
ψ Kα(ψ, Rθσ, θ)[ψi ]i∈N\{ j}.

Consequently,

Dk
ψM1(ψ, Rθσ, θ)[ψ1, . . . , ψk] =

∑
N∈Sk

MN
1 (σ, θ), (4.58)

where

MN
1 (σ, θ) = �N (Rθσ )

|e − σ |N+α

(
�1(ψ, Rθσ, θ)D|N |

ψ Kα(ψ, Rθσ, θ)[ψi ]i∈N
+
∑
j∈N

�1(ψ j , Rθσ, θ)D|N |−1
ψ Kα(ψ, Rθσ, θ)[ψi ]i∈N \{ j}

)
,

where the second summand does not appear if |N | = 0. Clearly we also have that

‖�N ‖C1,β (S) ≤ c(1 + ‖ψ‖C1,β (S))
c
∏
i∈N c

‖ψi‖C1,β (S). (4.59)

Denoting

MN
1 : Se → R, MN

1 (θ) =
∫
S
MN

1 (σ, θ) dV (σ ),

by Lemma 4.9 it follows that MN
1 ∈ Cβ−α(Se) and that

‖MN
1 ‖Cβ−α(Se) ≤ c(1 + ‖ψ‖C1,β (S))

c‖�N ‖Cβ (S)

∏
i∈N

‖ψi‖C1,β (S)
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with a constant c > 1 depending only on N , α, β, r , and |N | (in particular, independent
of e ∈ S). Since

M1(θ) =
∑

N∈Sk

MN
1 (θ) for θ ∈ Se

by (4.58), we thus obtain the estimates (4.56) and (4.57) for i = 1, as desired.
The estimate for M2 follows the same arguments as above but using (4.6) in the

place of (4.5) while the one for M3 is similar but easier. In theses two cases, we get
a Cβ(S) estimate for M2 and M3, and in particular a Cβ−α(S) estimate. ��

We are now in position to prove the regularity of the NMC operator of perturbed
spheres, thereby completing the proof of Theorem 2.1.

Theorem 4.11 With O defined by (2.3), the map h : O → Cβ−α(S) defined by (2.7)
is smooth.

Proof We fix r > 0. By (4.17), we have

h(ϕ) = −(1 + ϕ) h̃1(1 + ϕ) + h̃2(1 + ϕ) + 1 + ϕ

2
h̃3(1 + ϕ) (4.60)

for ϕ ∈ O with ϕ > r − 1 on S, where the maps h̃ j : B(r) → Cβ−α(S) are given by

h̃ j (ψ)(θ) =
∫
S
M j (ψ, σ, θ) dV (σ )

for j = 1, 2, 3 and the function Mj is defined in Proposition 4.10—which guarantees
that h̃ j takes values in Cβ−α(S). Thus, it suffices to establish that h̃ j , for j = 1, 2, 3,
are smooth on B(r) for every r > 0.

For this, we only need to prove that, for k ∈ N,

Dkh̃ j (ψ) =
∫
S
Dk

ψMj (ψ, σ, ·) dV (σ ) in Fréchet sense (4.61)

for j = 1, 2, 3. Then the continuity of Dkh̃ j is a well known consequence of the
existence of Dk+1h̃ j in Fréchet sense. To prove (4.61), we proceed by induction. For
k = 0, the statement is true by definition. Let us now assume that the statement holds
true for some k ≥ 0. Then Dkh̃ j (ψ) is given by

Dkh̃ j (ψ)[ψ1, . . . , ψk](θ) =
∫
S
Dk

ψMj (ψ, σ, θ)[ψ1, . . . , ψk] dV (σ ). (4.62)

We fix ψ1, . . . , ψk ∈ C1,β(S). Moreover, for ψ ∈ B(r) and v ∈ C1,β(S), we put

�(ψ, v, θ) =
∫
S
Dk+1

ψ Mj (ψ, σ, θ)[ψ1, . . . , ψk, v] dV (σ ).
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Let ψ ∈ B(r) and v ∈ C1,β(S) with ‖v‖C1,β (S) < r/2. We have

Dkh̃ j (ψ + v)[ψ1, . . . , ψk](θ) − Dkh̃ j (ψ)[ψ1, . . . , ψk](θ) − �(ψ, v, θ)

=
∫
S

∫ 1

0

{
Dk+1

ψ Mj (ψ + ρv, σ, θ) − Dk+1
ψ Mj (ψ, σ, θ)

}
[ψ1, . . . , ψk, v]dρdV (σ )

=
∫ 1

0
ρ

∫ 1

0
Hρ,τ (θ)dτdρ,

where

Hρ,τ (θ) :=
∫
S
Dk+2

ψ Mj (ψ + τρv, σ, θ)[ψ1, . . . , ψk, v, v] dV (σ ).

Note that ψ + τρv ∈ B(r/2) for every τ, ρ ∈ [0, 1]. By Proposition 4.10, we have

‖Hρ,τ‖Cβ−α(S) ≤ c(1 + ‖ψ + τρv‖C1,β (S))
c‖v‖2C1,β (R)

k∏
i=1

‖ui‖C1,β (S)

≤ c(1 + ‖ψ‖C1,β (S) + ‖v‖C1,β (S))
c‖v‖2C1,β (S)

k∏
i=1

‖ψi‖C1,β (S)

with a constant c > 1 independent of ρ, τ, ψ,ψ1, . . . , ψk and v. Consequently,

‖Dkh̃ j (ψ + v)[ψ1, . . . , ψk] − Dkh̃ j (ψ)[ψ1, . . . , ψk] − �(ψ, v, ·)‖Cβ−α(S)

≤ c(1 + ‖ψ‖C1,β (S) + ‖v‖C1,β (S))
c‖v‖2C1,β (S)

k∏
i=1

‖ψi‖C1,β (S).

This shows that Dk+1h̃ j (ψ) exists in Fréchet sense, and that

Dk+1h̃ j (ψ)[ψ1, . . . , ψk, v] = �(ψ, v, ·) ∈ Cβ−α(S).

We conclude that (4.61) holds for k + 1 in place of k, and thus the proof is finished. ��
We close this section with an outline of the proof of Proposition 2.2, which is

concerned with the maps G and Gp. Since the definition of these functions in (2.9)
and (2.10) does not involve singular integrals, the proof ismuch easier than the proof of
Theorem 2.1 but still somewhat lengthy if all details are carried out. In the following,
we point out the main steps.

Sketch of the proof of Proposition 2.2 We fix c1 ∈ (0, c0) arbitrarily, and we note that
it clearly suffices to prove the statement with c0 replaced by c1. For p ∈ L∗, we then
use polar coordinates to write Gp as follows:
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− 1

α
Gp(τ, ϕ)(θ) =

∫
Bϕ

1

|τ(y − Fϕ(θ)) + p|N+α
dy

=
∫
S

∫ 1+ϕ(σ)

0

r N−1

|τ(rσ − Fϕ(θ)) + p|N+α
dr dV (σ )

=
∫
S

∫ 1

0

(1 + ϕ(σ))NρN−1

|τ {ρ(1 + ϕ(σ))σ − (1 + ϕ(θ))θ} + p|N+α
dρ dV (σ )

=
∫
S

∫ 1

0

(1 + ϕ(σ))NρN−1

|Dp(τ, ϕ)(ρ, σ, θ)|N+α
dρ dV (σ ), (4.63)

with

Dp(τ, ϕ)(ρ, σ, θ) := τ {ρ(1 + ϕ(σ))σ − (1 + ϕ(θ))θ} + p.

We point out that, for ϕ ∈ O, τ ∈ (− c1
4 , c1

4 ), p ∈ L∗, ρ ∈ [0, 1] and σ, θ ∈ S we
have

|Dp(τ, ϕ)(ρ, σ, θ)| ≥ |p| − |τ |
∣∣∣ρ(1 + ϕ(σ))σ − (1 + ϕ(θ))θ

∣∣∣
≥ |p| − c1

4
(2 + 2‖ϕ‖L∞(S))

≥ |p| − c1 ≥ c0 − c1 > 0 (4.64)

by the definition of c0 in (2.1).
We now claim that Gp is of class Ck for all k ∈ N ∪ {0}, and that every partial

derivative ∂γ Gp of order |γ | = k with respect to τ and ϕ can be written as

∂γ Gp(τ, ϕ)[ψ1, . . . , ψ�](θ)

=
∫
S

∫ 1

0

∑
N⊂S�

∏
i∈N

ψi (θ)
∏
j∈N c

ψ j (σ )
Pγ,N (τ, ρ, σ, θ, ϕ(σ ), ϕ(θ), p)

|Dp(τ, ϕ)(ρ, σ, θ)|N+α+2k dρ dV (σ )

for ψ1, . . . , ψ� ∈ C1,β(S), θ ∈ S. Here, � ≤ k is the number of derivatives with
respect to ϕ, S� is is the set of subsets of {1, . . . , �} and N c = {1, . . . , �}\N for
N ∈ S�. Moreover, the functions Pγ,N are polynomials in all variables which are
of degree at most 2k in the variable p = (p1, . . . , pN ). This representation follows
easily from (4.63). We use it, together with a similar induction argument as in the
proof of Theorem 4.11, to show that Gp is a smooth map. In this step we also use the
embeddings C1,β(S) ↪→ C1(S) ↪→ Cβ−α(S) and the estimate

∥∥∥ ∑
N⊂S�

∏
i∈N

ψi (·)
∏
j∈N c

ψ j (σ )
Pγ,�(τ, ρ, σ, ·, ϕ(σ ), ϕ(·), p)
|Dp(τ, ϕ)((ρ, σ, ·+)|N+α+2k

∥∥∥
C1(S)

≤ cγ

(
1 + ‖ϕ‖C1(S)

)cγ |p|−N−α
�∏

i=1

‖ψ�‖C1(S), (4.65)
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which can be deduced from (4.64) since |p|−c1 = |p|−(c1/c0)c0 ≥ |p|(1−c1/c0) >

0. Here cγ > 1 is a constant which depends on γ but not on τ, ρ, σ and p.
It thus follows that Gp : (− c1

4 , c1
4 ) × O → Cβ−α(S) is of class C∞, and that

∥∥∥∂γ Gp(τ, ϕ)[ψ1, . . . , ψ�]
∥∥∥
Cβ−α(S)

≤ dγ

(
1 + ‖ϕ‖C1,β (S)

)dγ |p|−N−α
�∏

i=1

‖ψi‖C1,β (S)

(4.66)

for every partial derivative ∂γ Gp of the form above, and with a constant dγ > 0
independent of τ and p. Consequently, the series

∑
p∈L∗ ∂γ Gp(τ, ϕ) is convergent

in the space Cβ−α(S), and the convergence is uniform in τ ∈ (− c1
4 , c1

4 ) and ϕ ∈ O.
From this we deduce that the map

G =
∑
p∈L∗

Gp :
(
−c1

4
,
c1
4

)
× O → Cβ−α(S)

is of class C∞, as claimed. ��

5 The linearized NMC operator

In this section, we compute a simple expression for the linearization at zero of the
nonlocal mean curvature operator h defined in (2.8), and we study its invertibility
properties between suitably chosen function spaces. As we mentioned in the intro-
duction, once the Fréchet differentiability of h is proved—as we have done—, the
expression can also be derived from the results of [9, Appendix, Proposition B.2] and
[12, Section 6] applied to the special case of the sphere S. For completeness, we give
a direct proof in our setting based on formula (4.60).

Lemma 5.1 Let α ∈ (0, 1), β ∈ (α, 1), and let h : O ⊂ C1,β(S) → Cβ−α(S) be
defined by (2.8). Then, we have

1

α
Dh(0)ϕ = Lαϕ − λ1ϕ in Cβ−α(S) for ϕ ∈ C1,β(S), (5.1)

with

Lαϕ(θ) = PV
∫
S

ϕ(θ) − ϕ(σ)

|θ − σ |N+α
dV (σ ) for θ ∈ S (5.2)

and λ1 given in (1.9) for k = 1. In addition, Lα defines a continuous linear operator
C1,β(S) → Cβ−α(S).

Before proving the lemma,wefirst discuss the spectral representationof the operator
Lα and the special role of λ1. For k ∈ N, we let Ek be the space of spherical harmonics
of degree k, and we denote by nk its dimension. We recall that n0 = 1 and that E0
consists of constant functions, whereas n1 = N and E1 is spanned by the coordinate
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functions θ �→ θi for i = 1, . . . , N . As already mentioned in the introduction, we
have

Lαψ = λkψ for every k ∈ N and ψ ∈ Ek, (5.3)

where

λk = π(N−1)/2�((1 − α)/2)

(1 + α)2α�((N + α)/2)

(
�
( 2k+N+α

2

)
�
( 2k+N−α−2

2

) − �
( N+α

2

)
�
( N−α−2

2

)
)

, (5.4)

see e.g. [17, Lemma 6.26]. Here � denotes the usual Gamma function, see e.g. [14,
Section 8.3] for its generalization to negative non-integer real numbers. For the proof
of Lemma 5.1, it will be useful to represent the eigenvalue λ1 in a different form. For
this we note that, if θ ∈ S is fixed, then the function σ �→ Yθ (σ ) := σ ·θ is a spherical
harmonic of degree one, so that

λ1 = λ1Yθ (θ) = LαYθ (θ) =
∫
S

1 − σ · θ

|θ − σ |N+α
dV (σ ) =

∫
S

(σ − θ) · σ

|θ − σ |N+α
dV (σ ).

(5.5)

Comparing this with (1.1), we see that 2
α
dN ,αλ1 equals the NMC of the sphere S, as

stated in (1.10). Moreover, since |θ − σ |2 = 2(1 − σ · θ), we may rewrite the first
integral in (5.5) to obtain the equality

λ1 = 1

2

∫
S

1

|θ − σ |N+α−2 dV (σ ), (5.6)

which will be used in the proof of Lemma 5.1.

Proof of Lemma 5.1 By (4.60), we have

h(ϕ) = −(1 + ϕ) h̃1(1 + ϕ) + h̃2(1 + ϕ) + 1 + ϕ

2
h̃3(1 + ϕ) (5.7)

with

h̃ j (ψ)(θ) =
∫
S
M j (ψ, σ, θ) dV (σ ),

for j = 1, 2, 3, where the functions Mj are defined in Proposition 4.10. Let ϕ ∈
C1,β(S). By (4.61), the functions Dh̃ j (1)ϕ ∈ C0,β−α(S) are given by

(
Dh̃ j (1)ϕ

)
(θ) =

∫
S
∂ψMj (1, σ, θ)ϕ dV (σ ). (5.8)
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For σ, θ ∈ S, σ �= θ we have

M1(1, σ, θ) = M2(1, σ, θ) = 0, M3(1, σ, θ) = 1

|θ − σ |N+α−2

and

∂ψM1(1, σ, θ)ϕ = �1(ϕ, σ, θ)

|θ − σ |N+α
= ϕ(θ) − ϕ(σ) − (θ − σ) · ∇ϕ(σ)

|θ − σ |N+α
,

∂ψM2(1, σ, θ)ϕ = 0,

∂ψM3(1, σ, θ)ϕ = ∂ψKα(1, σ, θ)ϕ + (N − 1)ϕ(σ )

|θ − σ |N+α−2

= − N+α
2 (ϕ(θ) + ϕ(σ)) + (N − 1)ϕ(σ )

|θ − σ |N+α−2

= − (N + α)ϕ(θ) + (2 + α − N )ϕ(σ )

2|θ − σ |N+α−2 ,

since �1(1, ·, ·) ≡ 0 and �2(1, ·, ·) ≡ ∂ψ�2(1, ·, ·)ϕ ≡ 0 on S × S. Combining this
with (5.7) and (5.8), and also using (5.5) or (5.6), we find that

(Dh(0)ϕ) (θ) =
∫
S

{
−∂ψM1(1, σ, θ)ϕ + ∂ψM2(1, σ, θ)ϕ

+ ϕ(θ)M3(1, σ, θ) + ∂ψM3(1, σ, θ)ϕ

2

}
dV (σ )

= −
∫
S

ϕ(θ) − ϕ(σ) − (θ − σ) · ∇ϕ(σ)

|θ − σ |N+α
dV (σ )

−
∫
S

(N + α − 2)ϕ(θ) + (2 + α − N )ϕ(σ )

4|θ − σ |N+α−2 dV (σ )

= −
∫
S

ϕ(θ) − ϕ(σ) − (θ − σ) · ∇ϕ(σ)

|θ − σ |N+α
dV (σ ) − αλ1ϕ(θ)

− N − α − 2

2

∫
S

(1 − σ · θ)(ϕ(θ) − ϕ(σ))

|θ − σ |N+α
dV (σ ). (5.9)

Next, for θ ∈ S, we let Bε(θ) be a ball on S centered at θ ∈ S with radius ε ∈ (0, 1).
We have

∫
S

ϕ(θ) − ϕ(σ) − (θ − σ) · ∇ϕ(σ)

|θ − σ |N+α
dV (σ )

= lim
ε→0

∫
S\Bε(θ)

ϕ(θ) − ϕ(σ) + (σ − θ) · ∇ϕ(σ)

|θ − σ |N+α
dV (σ ), (5.10)
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and, for ε > 0 small, integrating by parts,

∫
S\Bε(θ)

(σ − θ) · ∇ϕ(σ)

|θ − σ |N+α
dV (σ ) =

∫
∂Bε(θ)

(σ − θ) · ν̃(σ )(ϕ(σ ) − ϕ(θ))

|θ − σ |N+α
dṼ (σ )

+
∫
S\Bε(θ)

(ϕ(θ) − ϕ(σ))divσ

Pσ (σ − θ)

|θ − σ |N+α
dV (σ ). (5.11)

Here and in the following, ∂Bε(θ) denotes the relative boundary of Bε(θ) in S, dṼ
denotes the (N − 2)-dimensional Hausdorff measure on ∂Bε(θ) and ν̃ the unit outer
normal vector field of ∂Bε(θ) on S. Moreover, the differential operators ∇ = ∇σ ,
divσ , and �σ on the sphere S are all defined with respect to the standard metric on S,
and

Pσ (σ − θ) = σ − θ − ((σ − θ) · σ) σ = σ − θ − (1 − θ · σ)σ = (θ · σ)σ − θ

(5.12)

is the orthogonal projection of σ − θ onto the tangent space Tσ S. Since

ϕ(σ) − ϕ(θ) = ∇ϕ(θ) · (σ − θ) + O(|σ − θ |1+β) as |σ − θ | → 0,

and, by antisymmetry with respect to reflection at the axis Rθ ,

∫
∂Bε(θ)

((σ − θ) · ν̃(σ ))(∇ϕ(θ) · (σ − θ))

|θ − σ |N+α
dṼ (σ ) = 0,

we find that

lim
ε→0

∫
∂Bε(θ)

(σ − θ) · ν̃(σ )(ϕ(σ ) − ϕ(θ))

|θ − σ |N+α
dṼ (σ ) = 0. (5.13)

Now we note that, by (5.12), we have

−∇σ (σ · θ) = −{θ − (θ · σ)σ } = Pσ (σ − θ) on S,

and therefore

divσ Pσ (σ − θ) = −�σ (σ · θ) = (N − 1)(σ · θ).
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Consequently,

divσ

Pσ (σ − θ)

|θ − σ |N+α
=(N − 1)

σ · θ

|θ − σ |N+α
+ Pσ (σ − θ) · ∇|θ − σ |−N−α

=(N − 1)
σ · θ

|θ − σ |N+α
− (N + α)((θ · σ)σ − θ) · σ − θ

|θ − σ |N+α+2

=(N − 1)
σ · θ

|θ − σ |N+α
− N + α

2

1 + σ · θ

|θ − σ |N+α

= − (2 + α − N )σ · θ + (N + α)

2|θ − σ |N+α
. (5.14)

Combining (5.10), (5.11), (5.13) and (5.14), we conclude that

∫
S

ϕ(θ) − ϕ(σ) − (θ − σ) · ∇ϕ(σ)

|θ − σ |N+α
dV (σ ) (5.15)

= 1

2
lim
ε→0

∫
S\Bε(θ)

{(2 − N − α) + (N − 2 − α)σ · θ} (ϕ(θ) − ϕ(σ))

|θ − σ |N+α
dV (σ )

(5.16)

and thus, by (5.9),

(Dh(0)ϕ)(θ) = 1

2
lim
ε→0

∫
S\Bε(θ)

{(α+N−2) + (2 + α − N )σ · θ} (ϕ(θ) − ϕ(σ))

|θ − σ |N+α
dV (σ )

− N − α − 2

2
lim
ε→0

∫
S\Bε(θ)

(1−σ · θ)(ϕ(θ)−ϕ(σ))

|θ − σ |N+α
dV (σ ) − αλ1ϕ(θ)

=α lim
ε→0

∫
S\Bε(θ)

ϕ(θ) − ϕ(σ)

|θ − σ |N+α
dV (σ ) − αλ1ϕ(θ),

as claimed.
The last statement—that Lα is continuous between C1,β(S) → Cβ−α(S)—is a

direct consequence of our nonlinear result of Theorem 2.2. ��
Next, we wish to study invertibility properties of the linearized operator Dh(0)

between suitably chosen function spaces. The following theorem is the main result of
this section.

Theorem 5.2 Let α ∈ (0, 1), β ∈ (α, 1), and let the subspaces X ⊂ C1,β(S), Y ⊂
Cβ−α(S) be defined by (1.16) and (1.17). Then, the restriction to X of the linearized
NMC operator Dh(0) : X → Y is an isomorphism onto Y .

The remainder of this section is devoted to the proof of this theorem.
In the following, for k ∈ N ∪ {0}, we let Pk : L2(S) → L2(S) denote the 〈·, ·〉L2 -

orthogonal projections onEk—the space of spherical harmonics of degree k. Forρ ≥ 0,
we then define the Sobolev space

Hρ(S) :=
{
u ∈ L2(S) :

∞∑
k=0

(1 + k2)ρ‖Pku‖2L2(S)
< ∞

}
, (5.17)
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which is a Hilbert space with the scalar product

(u, v) �→
∞∑
k=0

(1 + k2)ρ〈Pku, Pkv〉L2 for u, v ∈ Hρ(S). (5.18)

We need the following result on the mapping properties of the operator Lα with
regard to the scale of Sobolev spaces Hρ(S).

Lemma 5.3 Let α ∈ (0, 1) and β ∈ (α, 1).

(i) For given ρ ≥ 0, the map

v �→ L̃αv :=
∞∑
k=0

λk Pkv =
∞∑
k=0

LαPkv (5.19)

defines a continuous linear operator L̃α : Hρ+1+α(S) → Hρ(S).
Moreover, L̃α + id : Hρ+1+α(S) → Hρ(S) is an isomorphism.

(ii) We have C1,β(S) ⊂ H1+α(S) and

Lαψ = L̃αψ in L2(S) for ψ ∈ C1,β(S) (5.20)

with L̃α : H1+α(S) → L2(S) given in (5.19).
(iii) The operator Lα + id restricts to a bijective map C∞(S) → C∞(S).

Proof (i) Since

lim
τ→+∞

�(τ + �)

�(τ)τ�
= 1 for all � ∈ R

(see e.g. [16, Page 15, Problem 7]), we deduce from (5.4) that

lim
k→+∞

λk

k1+α
= π(N−1)/2�((1 − α)/2)

(1 + α)2α�((N + α)/2)
∈ (0,∞). (5.21)

Using this and the fact that λk ≥ 0 for all k ∈ N ∪ {0}, we infer that L̃α , as defined in
(5.19), is a well defined continuous linear operator Hρ+1+α(S) → Hρ(S), and that
L̃α + id is an isomorphism.

(ii) In the following, we let C1,C2, . . . denote positive constants depending only
on N , α and β. For ψ ∈ C1,β(S), by Lemma 5.1, we have

‖Lαψ‖L2(S) ≤ C1‖Lαψ‖Cβ−α(S) ≤ C2‖ψ‖C1,β (S)

and thus

‖Lαψ‖L2(S) + ‖ψ‖L2(S) ≤ C3‖ψ‖C1,β (S). (5.22)
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Next we remark that, as a consequence of the spectral representation of the Laplace–
Beltrami operator on S, we have

C∞(S) =
⋂
ρ∈N

Hρ(S) =
⋂
ρ≥0

Hρ(S). (5.23)

Moreover, for ψ ∈ C∞(S) the series
∑∞

k=0 λk Pkψ converges in L2(S) and the series∑∞
k=0 Pkψ converges in Cm(S) for every m ∈ N. From this and (5.22) we deduce

that

Lαψ = lim
�→∞ Lα

�∑
k=0

Pkψ = lim
�→∞

�∑
k=0

LαPkψ = L̃αψ for ψ ∈ C∞(S).

Combining this with (i) and (5.22), we find that

‖ψ‖H1+α(S) ≤ C4

(
‖Lαψ‖L2(S) + ‖ψ‖L2(S)

)
≤ C5‖ψ‖C1,β (S) for ψ ∈ C∞(S).

(5.24)

Next, letψ ∈ C1,β(S), and letψn ∈ C∞(S), n ∈ N satisfyψn → ψ inC1,β(S). Then
(5.24) implies that (ψn)n∈N is a Cauchy sequence in H1+α(S), and by completeness
this forces ψ ∈ H1+α(S). Moreover, by passing to the limit, we deduce that ψn → ψ

in H1+α(S), which implies that

L̃αψ = lim
n→∞ L̃αψn = lim

n→∞ Lαψn in L2(S).

Since moreover Lαψ = limn→∞ Lαψn in Cβ−α(S) by Lemma 5.1, we obtain (5.20).
(iii) This follows immediately from (i), (ii) and (5.23). ��
The following lemma provides an analogue for Lα + id of the classical interior

Hölder regularity estimate for the classical fractional Laplacian. In the proof, we will
apply a series of changes of variables to reduce our problem to one where regularity
for the classical fractional Laplacian can be applied.

Lemma 5.4 Let α ∈ (0, 1), β ∈ (α, 1). Then there exists a constant C =
C(N , α, β) > 0 such that

‖ψ‖C1,β (S) ≤ C‖Lαψ + ψ‖Cβ−α(S) for all ψ ∈ C∞(S). (5.25)

To establish this lemma we need a standard interpolation estimate. We include a
simple proof for the convenience of the reader.

Lemma 5.5 Let β ∈ (0, 1). Then for every ε > 0 there exists K = K (ε, N , β) > 0
such that

‖ψ‖Cβ (S) ≤ ε‖ψ‖C1(S) + K‖ψ‖L2(S) for every ψ ∈ C1(S). (5.26)
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Proof In the following, we let C1,C2, . . . , denote positive constants which only
depend on N . As a consequence of (4.9), we have

|ψ(θ) − ψ(σ)| ≤ C1‖ψ‖C1(S)|θ − σ | for θ, σ ∈ S, (5.27)

and thus

|ψ(θ) − ψ(σ)|
|θ − σ |β ≤ C1|θ − σ |1−β‖ψ‖C1(S) ≤ C1δ

1−β‖ψ‖C1(S)

for θ, σ ∈ S with |θ − σ | ≤ δ.

Moreover,

|ψ(θ) − ψ(σ)|
|θ − σ |β ≤ 2

δβ
‖ψ‖L∞(S) for θ, σ ∈ S with |θ − σ | ≥ δ.

Combining these inequalities, we find that

|ψ(θ) − ψ(σ)|
|θ − σ |β ≤ C1δ

1−β‖ψ‖C1(S) + 2

δβ
‖ψ‖L∞(S) for θ, σ ∈ S. (5.28)

Next, for 0 < r < 1 and θ ∈ S, we let dr denote the (N − 1)-dimensional volume
of the ball Br (θ) on S, which clearly does not depend on θ . By (5.27) we then have

∣∣∣ψ(θ) − 1

dr

∫
Br (θ)

ψ(σ ) dV (σ )

∣∣∣ ≤ 1

dr

∫
Br (θ)

|ψ(θ) − ψ(σ)| dV (σ )

≤ C1

dr
‖ψ‖C1(S)

∫
Br (θ)

|θ − σ | dV (σ ) ≤ rC2‖ψ‖C1(S) for all θ ∈ S,

and thus

‖ψ‖L∞(S) ≤ rC2‖ψ‖C1(S) + max
θ∈S

∣∣∣ 1
dr

∫
Br (θ)

ψ(σ ) dV (σ )

∣∣∣

≤ rC2‖ψ‖C1(S) + ‖ψ‖L1(S)

dr
≤ rC2‖ψ‖C1(S) + |S|1/2

dr
‖ψ‖L2(S).

(5.29)

Combining (5.28) and (5.29), we find that

‖ψ‖Cβ (S) = sup
θ,σ∈S
θ �=σ

|ψ(θ) − ψ(σ)|
|θ − σ |β + ‖ψ‖L∞(S)

≤ C1δ
1−β‖ψ‖C1(S) +

( 2

δβ
+ 1

)
‖ψ‖L∞(S)

≤
{
C1δ

1−β + rC2

( 2

δβ
+ 1

)}
‖ψ‖C1(S) + |S|1/2

dr

( 2

δβ
+ 1

)
‖ψ‖L2(S).
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For a given ε > 0, we may now choose δ > 0 such that C1δ
1−β ≤ ε

2 and then

r > 0 such that rC2

(
2
δβ + 1

)
≤ ε

2 . Then (5.26) follows with K = |S|1/2
dr

(
2
δβ + 1

)
. ��

We can now give the

Proof of Lemma 5.4 In the following, the letter C stands for positive constants which
may change from line to line but only depend on N , α and β. Let ψ ∈ C∞(S) and
g := Lαψ +ψ ∈ C∞(S). We define u ∈ C∞(RN\0)∩L∞(RN ) by u(x) = ψ(x/|x |)
for x �= 0. For x ∈ R

N\{0}, a change of variable in polar coordinates gives, with
r = |x | and θ = x

|x | ,

(−�)(1+α)/2u(x) = C
∫
RN

u(x) − u(y)

|x − y|N+1+α
dy

= C
∫ ∞

0

∫
S

ψ(θ) − ψ(σ)

((ρ − r)2 + rρ|θ − σ |2)(N+1+α)/2
ρN−1 dV (σ )dρ.

We make the change of variable t = ρ−r
|θ−σ | to get

(−�)(1+α)/2u(x)

= C
∫
S

ψ(θ) − ψ(σ)

|θ − σ |N+α

∫ ∞

0

(t |θ − σ | + r)N−1

(t2 + r(t |θ − σ | + r))(N+1+α)/2
dtdV (σ ).

(5.30)

To further simplify this expression, we define the function

Q : [0,∞) × (0,∞) → R, Q(a, b) := C
∫ ∞

0

(ta + b)N−1

(t2 + b(ta + b))(N+1+α)/2
dt.

Using the change of variable s = t
b , we see that

Q(a, b) = b−1−αC
∫ ∞

0

(sa + 1)N−1

(s2 + sa + 1)(N+1+α)/2
ds.

From this we see that Q ∈ C∞([0,∞) × (0,∞)). Moreover, from (5.30) we get that

(−�)(1+α)/2u(x) =
∫
S

ψ(θ) − ψ(σ)

|θ − σ |N+α
Q(|θ − σ |), r)dV (σ )

=Q(0, r) Lαψ(θ)

+
∫
S

ψ(θ) − ψ(σ)

|θ − σ |N+α

(
Q(|θ − σ |), r) − Q(0, r)

)
dV (σ )

=Q(0, r) (g(θ) − ψ(θ))

+
∫
S

ψ(θ) − ψ(σ)

|θ − σ |N+α−1

∫ 1

0
∂aQ(τ |θ − σ |, r) dτdV (σ ).
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Next, we define

Qg,ψ (x) := Q(0, |x |)(g(x/|x |) − ψ(x/|x |))

and

Gψ(x) =
∫
S

ψ(θ) − ψ(σ)

|θ − σ |N+α−1

∫ 1

0
∂aQ(τ |θ − σ |, r) dτdV (σ )

for x ∈ R
N\{0}, r = |x |, θ = x

|x | ,

so that

(−�)(1+α)/2u(x) = Qg,ψ (x) + Gψ(x) for x ∈ R
N\{0}. (5.31)

We also put A := {x ∈ R
N : 1

2 ≤ |x | ≤ 2}. We have Qg,ψ ∈ Cβ−α(A) and

‖Qg,ψ‖Cβ−α(A) ≤ C
(‖g‖Cβ−α(S) + ‖ψ‖Cβ−α(S)

)
. (5.32)

Next we show that

Gψ ∈ Cβ−α(A) with ‖Gψ‖Cβ−α(A) ≤ C‖ψ‖Cβ (S). (5.33)

To this end, we write

Gψ(x) =
∫
S

ψ(θ) − ψ(σ)

|θ − σ |N+α−1

∫ 1

0
∂aQ(τ |θ − σ |, r) dτdV (σ )

= ∂aQ(0, r)Lα−1ψ(θ) + G̃ψ(x)

with

Lα−1ψ(θ) :=
∫
S

ψ(θ) − ψ(σ)

|θ − σ |N+α−1 dV (σ )

and

G̃ψ(x) :=
∫
S

ψ(θ) − ψ(σ)

|θ − σ |N+α−2

∫ 1

0

∫ 1

0
τ∂2a Q(λτ |θ − σ |, r) dτdλdV (σ )

for ψ ∈ S. We will show that

‖Lα−1ψ‖Cβ−α(S) ≤ C‖ψ‖Cβ (S) (5.34)

and that
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‖G̃ψ‖Cβ−α(A) ≤ C‖ψ‖Cβ (S). (5.35)

From this (5.33) follows, since ∂q Q(0, r) is equal to a constant times r−1−α .
To show (5.34) and (5.35), it suffices to fix e ∈ S arbitrarily, and prove that

‖Lα−1ψ‖Cβ−α(Se) ≤ C‖ψ‖Cβ (S) with Se := {θ ∈ S : θ · e ≥ 0} (5.36)

and that

‖G̃ψ‖Cβ−α(Ae)
≤ C‖ψ‖Cβ (S) with Ae := {x ∈ A : x · e ≥ 0}. (5.37)

To show these estimates, we consider again a Lipschitz continuous map of rotations
S �→ SO(N ), θ �→ Rθ with the property that (4.24) (4.25) holds, so that by a change
of variable we have

Lα−1ψ(θ) =
∫
S

ψ(θ) − ψ(Rθσ )

|e − σ |N+α−1 dV (σ ) for θ ∈ Se. (5.38)

Since

∣∣∣{ψ(θ1) − ψ(Rθ1σ)} − {
ψ(θ2) − ψ(Rθ2σ)

}∣∣∣
≤ C‖ψ‖Cβ (S) min{|θ1 − θ2|β, |θ1 − Rθ1σ |β + |θ2 − Rθ2σ |β}
≤ C‖ψ‖Cβ (S) min{|θ1 − θ2|β, |e − σ |β} for θ1, θ2 ∈ Se and σ ∈ S,

wemay deduce by a similar integration as in the proof of Lemma 4.9 that (5.36) holds.
To prove (5.37), we write, again by a change of variable,

G̃ψ(x) =
∫
S

ψ(θ) − ψ(Rθσ )

|e − σ |N+α−2 q(r, σ )dV (σ ) for x = rθ ∈ Ae, (5.39)

with

q ∈ C∞([1/2, 2] × S), q(r, σ ) :=
∫ 1

0

∫ 1

0
τ∂2a Q(λτ |e − σ |, r) dτdλ.

Since the function σ �→ 1
|e−σ |N+α−2 is integrable over S, it is then easy to deduce that

‖G̃ψ‖Cβ−α(Ae)
≤ C‖G̃ψ‖Cβ(Ae)

≤ C‖ψ‖Cβ (S).

Hence (5.37) holds as well.
In view of (5.31), (5.32) and (5.35), we can thus apply local Hölder regularity

estimates for the fractional Laplacian. A version suited for our situation is that of
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Theorem 1.3 of [10], which we apply rescaled and with k = 0 and γ = β − α. We
conclude that u ∈ C1,β

loc (A), and that

‖ψ‖C1,β (S) ≤C
(‖g‖Cβ−α(S) + ‖ψ‖Cβ (S) + ‖u‖L∞(RN )

)
≤C

(‖g‖Cβ−α(S) + ‖ψ‖Cβ (S)

)
.

We finally combine this with Lemma 5.5, applied with ε = 1
2C . We also apply

the isomorphism statement in Lemma 5.3(i) to get that ‖ψ‖L2(S) ≤ ‖ψ‖H1+α(S) ≤
C‖g‖L2(S). We conclude the estimate

‖ψ‖C1,β (S) ≤ C
(‖g‖Cβ−α(S) + ‖ψ‖L2(S)

)
≤ C

(‖g‖Cβ−α(S) + ‖g‖L2(S)

) ≤ C‖g‖Cβ−α(S).

Thus (5.25) holds. ��
By a density argument, we may now deduce the following proposition from

Lemma 5.3(iii) and Lemma 5.4.

Proposition 5.6 Let α ∈ (0, 1), β ∈ (α, 1), and let the operator Lα be given by (5.2).
Then the operator

Lα + id : C1,β(S) → Cβ−α(S)

is an isomorphism.

Proof We first show that Ker (Lα + id) = {0}. Let ψ ∈ C1,β(S) with Lαψ + ψ = 0
in Cβ−α(S). By Lemma 5.3(ii) we then have L̃αψ + ψ = Lαψ + ψ = 0 in L2(S),
and thus ψ = 0 by Lemma 5.3(i).

Next we show that Lα + id is onto. For this, we let g ∈ Cβ−α(S) and let gn ∈
C∞(S) be a sequence such that gn → g in Cβ−α(S). By Lemma 5.3(iii), there exists
ψn ∈ C∞(S), n ∈ N, with Lαψn + ψn = gn . Moreover, by Lemma 5.4 we have

‖ψn − ψm‖C1,β (S) ≤ C‖gn − gm‖Cβ−α(S) for n,m ∈ N.

Consequently, the sequence (ψn)n is a Cauchy sequence in C1,β(S), so that ψn → ψ

in C1,β(S). Moreover, by continuity we have

Lαψ + ψ = lim
n→∞(Lαψn + ψn) = lim

n→∞ gn = g in Cβ−α(S).

It follows that the continuous linear map Lα + id : C1,β(S) → Cβ−α(S) is bijective,
and thus it is an isomorphism by the open mapping theorem. ��
Proof of Theorem 5.2 (completed) By Proposition 5.6, we have that

Lα + id : X → Y is an isomorphism. (5.40)
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Since the inclusion id : X → Y is a compact operator, it follows that

L := Lα − λ1 id : X → Y is a Fredholm operator of index zero.

Moreover, by Lemma 5.3(ii) and (5.3), we have that KerL = X ∩ E1 = {0} since
X is made of even functions and E1 contains only odd ones. Consequently, L is an
isomorphism, and thus Dh(0) = αL : X → Y is an isomorphism as well. ��
Acknowledgements The first author would like to thank Joan Solà-Morales for many interesting discus-
sions in the subject of this paper.
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