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Abstract We are concerned with unbounded sets of RY whose boundary has con-
stant nonlocal (or fractional) mean curvature, which we call CNMC sets. This is the
equation associated to critical points of the fractional perimeter functional under a vol-
ume constraint. We construct CNMC sets which are the countable union of a certain
bounded domain and all its translations through a periodic integer lattice of dimen-
sion M < N. Our CNMC sets form a C? branch emanating from the unit ball alone
and where the parameter in the branch is essentially the distance to the closest lattice
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X. Cabré et al.

point. Thus, the new translated near-balls (or near-spheres) appear from infinity. We
find their exact asymptotic shape as the parameter tends to infinity.

1 Introduction

Leta € (0, 1). If A is a smooth oriented hypersurface in R"Y with unit normal vector
field v, its nonlocal or fractional mean curvature (abbreviated NMC in the following)
of order « at a point x € A is defined as

2dN o O —=x)-v()

H(A; x) = o L4y v

dv(y). (1.1)

Here and in the following, d V' stands for the volume element on .4, and

. l-a  (-—ordfh
(N =D[BNT (N = g (V=D/2

dN.« (1.2)

where BN~ is the unit ball in RV=!. If A is of class C!"# for some f > « and
we assume fA(l + |y|)1_N_°‘ dV(y) < oo, then the integral in (1.1) is absolutely
convergent in the Lebesgue sense.

The choice of the constant dy o guarantees that, if A is of class C 2 the nonlocal
mean curvature H (A4; -) converges, as « — 1, locally uniformly to the classical mean
curvature, i.e., the arithmetic mean of principle curvatures, see [9, Lemma A.1] and
[1, Theorem 12].

There is an alternative expression for H(A; -) in terms of a solid integral. Suppose
that A = 9 E for some open set E C RY and v is the normal exterior to E. Then, for
all x € A, we have

H(A: ) =dN,aPV/ Lge(y) — 1e(y)

RV |y —x|Nte
. lge(y) —1e(y)
=dy, lim ——dy, (1.3)
“e0 x—y|=e 1Y — x|Nte

where E¢ = RN\E and 1p denotes the characteristic function of a set D c RV,
This can be derived using the divergence theorem and the fact that V, - (y —
0ly = x|V = aly —x|7V7

The nonlocal mean curvature is the Euler-Lagrange equation for the fractional
perimeter functional. Nonlocal minimal surfaces are hypersurfaces with zero NMC
and were introduced by Caffarelli et al. [5]. This paper established the first existence
and regularity theorems. Later, Savin and Valdinoci [18] established that, for N = 2
and any «, they are C°. Figalli and Valdinoci [13] have proved that if they are Lipschitz
in RV, then they are C*°. See the paper [11] by Dipierro and Valdinoci for more
details. Later, Ddvila et al. [9] initiate the study of nonlocal minimal cones in any
dimension, characterizing the stability or instability of «-Lawson cones. Besides,
they also construct surfaces of revolution with zero NMC, for instance the fractional
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Near-sphere lattices with constant nonlocal mean curvature

catenoid. On the other hand, Cinti et al. [6] show that the helicoid, besides having zero
classical mean curvature, has also zero NMC.

There are less works on CNMC hypersurfaces, that is, hypersurfaces with constant
nonlocal mean curvature. To our knowledge, the following articles are the existing
ones. In recent independent works, a result of Alexandrov type has been proved
for the nonlocal mean curvature by Ciraolo et al. [7, Theorem 1.1] and Cabré et
al. [3, Theorem 1.1]. This result states that every bounded (and a priori not neces-
sarily connected) hypersurface without boundary and with constant nonlocal mean
curvature must be a sphere. This result naturally led to questions related to the exis-
tence and shape of unbounded hypersurfaces of constant NMC. Obvious examples
within this class are straight cylinders. In [3] and [4] we proved the existence of peri-
odic and connected hypersurfaces in R with constant NMC which bifurcate from a
straight cylinder. These hypersurfaces should be regarded as Delaunay type cylinders
in the nonlocal setting. We point out that, unlike in the local case, straight cylinders
have positive constant NMC in every space dimension N > 2. Thus, our result also
gives periodic bands in R? with constant NMC and which bifurcate from a straight
band.

Having constant nonlocal mean curvature is the equation associated to critical points
of the fractional perimeter functional under a volume constraint. Thus, one would
expect that CNMC sets can be constructed variationally. In this direction, the paper [8]
by Davila, del Pino, Dipierro, and Valdinoci, established variationally the existence of
periodic and cylindrically symmetric hypersurfaces in R which minimize (under the
volume constraint) a certain fractional perimeter functional adapted to periodic sets.
More precisely, [8] established the existence of a 1-periodic minimizer for every given
volume within the slab {(s, ) € R x RV=! : —1/2 < s < 1/2}. We have realized
recently that, in fact, their fractional perimeter functional adapted to periodic sets gives
rise to CNMC hypersurfaces in a weak sense. They would be CNMC hypersurfaces
in the classical sense defined above if one could prove that they are of class C'-# for
some 8 > o/2—which is not done in [8]. The article also proves that for small volume
constraints, the minimizers tend in measure (more precisely, in the so called Fraenkel
asymmetry) to a periodic array of balls.

Note that sets obtained by minimizing a fractional perimeter functional under a
volume constraint are expected to have Morse index 1—within a proper functional
analytic framework. This will be the case for the CNMC sets constructed in the present
paper—see Remark 1.2(iv). As we will see, the linearized operator at them (acting on
a space of even functions) will have only one negative eigenvalue—all the rest being
positive. Note that looking at the linearized operator in a space of even functions
excludes the eigenfunction with zero eigenvalue produced by the invariance of the
nonlinear problem under translations.

We recall that in the case of classical mean curvature, embedded Delaunay hyper-
surfaces vary from a cylinder to an infinite compound of tangent spheres. However, it
is easy to see that an infinite compound of aligned round spheres, tangent or discon-
nected, does not have constant NMC. Indeed, it is an open problem to establish the
existence of global continuous branches of nonlocal Delaunay cylinders and to study
their limiting configurations.
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X. Cabré et al.

In the present paper, we study nonlocal analogues of the set given by an infinite
compound of aligned round spheres, tangent or disconnected. In a more general setting,
we construct CNMC sets which are the countable union of a certain bounded domain
and all its translations through a periodic integer lattice of dimension M < N. Our
CNMC sets form a C2 branch emanating from the unit ball alone, where the parameter
in the branch is essentially the distance to the closest lattice point. Thus, the new
translated near-balls (or near-spheres) appear from infinity. We point out that it is
necessary to consider infinite lattices in this problem—a finite disjoint union of two or
more bounded sets cannot have constant NMC by the Alexandrov type rigidity result
in [3,7].

We expect (but we do not prove) that, when the distance from two consecutive near-
spheres is large enough, our periodic CNMC set made of near-spheres is a minimizer
of the fractional perimeter under the volume and periodicity constraints. Note that,
after rescaling, large distance from two consecutive near-spheres turns into a fixed
distance (or period) but now with a very small volume constraint—as in the result of
[8] mentioned above.

To be precise, we now assume N > 2 and let

S:=SVN"1cRrY

denote the unit sphere of RY. For M e Nwith1 < M < N we regard RM a5 a
subspace of R" by identifying x’ € RM with (x’,0) € RY x RV"M = RV Let
{a;;...;ay) be a basis of RM, By the above identification, we then consider the
M -dimensional lattice

M
f:{Zkiai :k:(kl,...,kM)eZM} (1.4)

i=1

as a subset of RV . In the case where {a;; ...; ap}isan orthogonal or an orthonormal
basis, we say that . is a rectangular lattice or a square lattice, respectively.
We define, for r > 0,

s+r2 = (S+rp) c RV (1.5)
pelf

Then, for r > 2(inf ,c o\ (0) [P~ I the set S+ r.% is the union of disjoint unit spheres
centered at the lattice points in ».Z. Consequently, S +r.Z is a set of constant classical
mean curvature (equal to one). In contrast, as a consequence of our main result, we
shall see that the NMC H (S +r.%; -) is in general not constant on this periodic set. It
is therefore natural to ask if the sphere S can be perturbed smoothly to a set S,, such
that S, +r.Z, for r > 0 large enough, has constant NMC.

To answer this question, we fix 8 € («, 1) and define the set

O :={p e C(S) : llgllLecs) < 1}.
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Near-sphere lattices with constant nonlocal mean curvature

We then consider the deformed sphere
Sy ={0+¢(0)o : 0es}, 0. (1.6)

Provided that » > 0 is large enough, the deformed sphere lattice (or near-sphere
lattice)

Sy +r2 = U (S¢ —I—rp)
peZ

is a noncompact hypersurface of class C!*#, which by construction is periodic with
respect to r.Z-translations.
The main result of the present paper is the following.

Theorem 1.1 Let « € (0,1), B € (a, 1), N > 2,1 < M < N and & be an

M -dimensional lattice as given in (1.4). Then, there exist ro > 0, and a C 2_curve

(ro, +00) — CYB(S), r — @, with the following properties:

(i) ¢r — 0in CLP(S) asr — +oo;

(ii) For every r € (rg, +00), the function ¢, : S — R is even (with respect to
reflection through the origin of RN );

(iii) Foreveryr € (ro, +00), the hypersurface Sy, +r. has constant nonlocal mean
curvature given by H(Sy, +r.Z; ) = H(S; ).

(iv) Letting L, := ZL\{0}, the function ¢, expands as

N _ © - p)* _
or@) =r N =g+ Kk Y [pVratd k2 +o(r?)
pes

for0 e Sasr — +o0,

with positive constants ko, k1 and ky (see Remark 1.2 below for their explicit
values) and with r*o(r=%) — 0in C“P(S) as r — +o0.
(v) If1 <M < N — 1, then the functions @, r > ro, are non-constant on S.

Moreover, ifry > rgand (r1, +00) — CLB(S), r — @ is another (not necessarily
continuous) curve satisfying (i), (ii) and (iii), then ¢, = @, for r sufficiently large.

The curve r — ¢, isnot C 3, in general. It is not C 3 for instance when N = 2. This
is due to the presence of the factor |7|Y 7% = r =V~ in our functional equation (2.7).

To establish the theorem it will be essential to analyze the linearized operator for
the NMC H at the unit sphere S. We will see that the linearization is given by the
operator

¢ = 2dy o (Lap — 119), (L.7)
where

P(0) —¢(0)

. LB B—a _
Ly :CVP(S)—>C (S), Lqy@®) =PV 10 —o Nt

dv(c), (1.8)
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A1 is defined next in (1.9), and ¢ is a deformation of S in the direction of its normal—
as in (1.6). The operator L, can be seen as a spherical fractional Laplacian, and the
above integral is understood in the principle value sense, i.e.,

PV/ 90) —¢(0) 9(0) —¢(0)
S

0 — o |V dV (o) := lim g

dV (o) fore — 0.
e=0Js\B.0) 10

The operator L, has the spherical harmonics as eigenfunctions corresponding to the
increasing sequence Ao = 0 < A; < Ay < ... of eigenvalues given by

Ak

_ _ .19
(I + 2T (N +a)/2) \ T (EE=e=2) F(N_z_)> -

aN=D27((1 = a)/2) < I (2tha) I (Mie)
a—2

see [17, Lemma 6.26] and Sect. 5 below. Here, as before, I" is the Gamma function.
We shall also see, as a consequence of (2.6) and (5.5), that the NMC of the unit sphere
§ = SN=1 c R¥ is given by

2dN,a

H(S; ) = A1 onS. (1.10)

Now that A1 and A have been introduced, we can give the value of the constants
in Theorem 1.1(iv). In the following remark, we also comment on the size of the
near-spheres depending on the parameter r, as well as on their smoothness.

Remark 1.2 (i) The constants in Theorem 1.1(iv) are given by

[S| 1 [SI(N +a)(N +a+2)
Ko = Z , k= and
Nxi |p|NFe 6N (A2 — A1)
pes
S| [(N+a)(N+a+2) 2(N+a)(N+Da+2) 1
ko =— 2 2 Z Ntat2’
6 N=(h2 — A1) N=(N +2)1 ve? [P

where A1, Ay are given in (1.9).

(i1) Since ko > 0, the expansion in Theorem 1.1(iv) shows that, for large r, the
perturbed spheres S, become smaller than § as the perturbation parameter r decreases.
With regard to the order »~ ¢, the shrinking process is uniform on S, whereas non-
uniform deformations of the spheres may appear at the order » ~V =2 In particular,
we shall detect these non-uniform deformations in the case M < N — 1, and from this
we will then deduce part (v) of Theorem 1.1. In the case M = N, it remains an open
problem to characterize the lattices which give rise to non-uniform deformations. We
conjecture that H (S + r.Z; -) is non-constant for any N-dimensional lattice . and
large r.

(iii) The smoothness (i.e., the C*-character) of our C'-# hypersurfaces S, +1rZ,
and in general of C# hypersurfaces in RY with constant NMC which are, locally,
Lipschitz graphs, follows (since f > «) from the methods and results of Barrios,
Figalli, and Valdinoci [2] on nonlocal minimal graphs. This holds for all N > 2. More
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Near-sphere lattices with constant nonlocal mean curvature

generally, to deduce the C* regularity, [2] needs to assume that the hypersurface is
C!# for some B > /2 and that has constant nonlocal mean curvature in the viscosity
sense; this fact can be found in Section 3.3 of [2]. Here, the notion of viscosity solution
is needed since the expression (1.1) for the NMC is only well defined for C-# sets
when 8 > «.

(iv) As already remarked above, the CNMC sets constructed in Theorem 1.1 have
Morse index 1 within our functional analytic framework. More precisely, for r > rg
sufficiently large, the linearization of the nonlocal mean curvature operator

0 — CPF2s), ¢ [o = H(Sy +r%Z5 (1 +<p(cr))a)]

at ¢, has exactly one negative eigenvalue when restricted to even functions in C1-#(S),
whereas all other eigenvalues are positive. This property follows from the fact that
the linearization at ¢, converges to the operator 2dy o (Ly — A1), given by (1.7)-
(1.8), as r — oo. This convergence is a mere consequence of the C2-smoothness
of the operator H defined in (1.15) below, and the fact that 2dy o(Ly — A1) is the
linearization at the unit sphere § = lim, . Sy, by Lemma 5.1. Finally, one uses
the spectral decomposition of L, — A1, already mentioned previously, and sees that,
among even functions, its eigenvalues are given by —A; < Ay — A < Ag— A < ---
The first one is negative and all others are positive.

As a corollary of Theorem 1.1, we obtain the following more explicit form of ¢, in
the case of rectangular lattices.

Corollary 1.3 Assume that £ is a rectangular lattice of dimension M € {1, ..., N}.
Then the function ¢, in Theorem 1.1 expands as
0r(©) = r =V (=0 + 172 fier DI 162 — i} + 0072)
for0 e Sasr — +o0, (1.11)

2
Py . . . .
where |1 = Zpe:/* W. If, in particular, £ is a square lattice then

0r(0) =1~V (<o + 2 [l XL 02 — ko + 0072))
for0 € Sasr — +o0, (1.12)

~ _ K] 1
where K1 = M Z[)G,g* W.

As observed in Theorem 1.1, for M < N — 1 the perturbation ¢, is nonconstant
on S, i.e., the NMC of H(S + r.%; -) is nonconstant for r large enough. On the other
hand, if . is a square lattice of dimension N, then by (1.12) we have

or(0) =r N (—K() +r2 (121 - /cz) + o(r_2)> asr — 0o,

hence the deformation of the lattice Sy, + r. is uniform up to the order r¥=¢=2,
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In order to explain the idea of the proof of Theorem 1.1, it is convenient first to pay
some attention to the linearized operator at S C R for the classical mean curvature
(¢ = 1). Since S is a CMC surface, it is well known (see for instance Section 6 of
[12]) that the linearization of the mean curvature operator (recall that we take as mean
curvature the arithmetic mean of the principal curvatures) agrees with (N — 1)~ times
the second variation of perimeter, and thus is given by the Jacobi operator

Jo:i=(N—-1D"H=Asp—c*p} = (N — 1) {=Agp — (N — )¢} onS,
(1.13)

where Ag is the Laplace—Beltrami operator on S and ¢> = N — 1 is the sum of the
squares of the principal curvatures of S. Here ¢ is a normal deformation as in (1.6).
Recall that Ag has the spherical harmonics as eigenfunctions, corresponding to the
increasing sequence k(k + N — 2) of eigenvalues, with k > 0. Thus, J has the same
eigenfunctions but with eigenvalues

k== (N = D7 Hk(k+ N —2) — (N = D}. (1.14)

Thus, the first eigenvalue is negative and corresponds to constant functions on S
(that is, to the perturbation corresponding to changing the radius of the sphere ).
The third and next eigenvalues are all positive. But the second one (k = 1) is zero
and has 6; = x;/|x| for i = 1,..., N (the spherical harmonics of degree one) as
eigenfunctions. It is simple to see that this zero eigenvalue corresponds to translations
of S inRY, which do not change the mean curvature and thus provide a zero eigenvalue.

As mentioned above, the linearized operator at S € R" for the NMC H is given by
(1.7)—(1.8). It coincides, thus, with the second variation at S of fractional perimeter.
This nice formula is not immediate at all. We will derive it in Sect. 5 in the Fréchet
sense of linearization, after proving the smoothness of the NMC operator in Sect. 4.
In a restricted sense related to the existence of directional derivatives, this formula
for the linearization also follows from results of Davila et al. [9, Appendix B] and
of Figalli et al. [12, Section 6]. These interesting papers found—at any hypersurface
A-a simple expression for the linearization of NMC with respect to any given normal
boundary variation. Note here that the NMC as defined in these two papers agrees
with our H/dy o; see (1.3).

Note that the linearization of NMC at S, (1.7)—(1.8), has also the spherical harmonics
as eigenfunctions—as mentioned above. In addition, its second eigenvalue 2dy o (Ax —
A1) (which corresponds to k = 1) vanishes—as in the local case. We will see below
that, to apply the implicit function theorem, we must get rid of this zero eigenvalue.
For this, we will work only with perturbations of the sphere S which are even with
respect to the origin of RV,

Just for consistency, we can now check that the eigenvalues of our nonlocal lin-
earized operator (1.7) satisfy

2dyaOk — A1) = pr—pu1 =N =D "k(k+N—2)— (N —1)} asa — L.
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Indeed, using the fact that '(z) = (z — 1)I"(z — 1), we get

rE)  r)
- = k(k+ N —2)
rE=) ri)

and ((1 — a)/2)I'((1 — «)/2) = I'((3 — «)/2). From these identities and recalling
(1.2) and (1.9), we deduce that

. 21— )TN + 1)/2)
iy 2Nk = 0
2 (N=D/2
U= +a)2°T(N 1 D/2)
=(N-1D""%k*k+N=-2)

k(k+ N —2)

fork € N.

We can now outline the idea of the proof of Theorem 1.1, which is based on the
implicit function theorem. Let ¢ > 0 be sufficiently small such that the translates
Sy +rp, p € Z donot intersect each other forr > 1/candp € O = {¢ € clLA(s) -
lollLoe(sy < 1}. We then rewrite the problem in the variable T = 1/r and show that
the nonlinear operator

H: (—c,c)x O— CPS)

given by
- H (S, +12:(1+¢0®)0 for v € (—c,c)\{0}, 9 € O
Argye) = | 150+ ?(6)6) VO
H(Sy: (1 +¢(0))0) fort =0, €O
(1.15)
is of class C2 in a neighborhood of (z,¢) = (0,0), and that its linearization at

this point is given by Dy H(0,0) = 2dy o{Ly — A1} @ CHE(S) — CP7(S). As
mentioned earlier, A| is the first nontrivial eigenvalue of the operator L, with cor-
responding eigenspace spanned by the coordinate functions 61, ..., Oy. This yields
an N-dimensional kernel for the linearized NMC operator D¢I:1 (0, 0). As mentiones
above, this kernel comes from the invariance of the NMC operator under translations
in RV,

Thus, in order to apply the implicit function theorem, we need to introduce function
subspaces contained in a complement of this kernel. We consider

X ={peC"PS) : p(—0) = p(b) forall6 € S} (1.16)
and

Y ={p e CPoS) : p(—0) = ¢(®) forall 6 S}, (1.17)
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the spaces of normal deformations which are even with respect to the origin of RV . In
terms of the orthogonal basis given by the spherical harmonics, X and Y are generated
by the spherical harmonics of even degree. We then consider the restriction of H:
(—c,¢) x (O N X) — Y, which takes values in Y—and thus is well defined—
thanks to the invariance of the lattice . under reflection through the origin. Moreover,
D(pfl(O, 0) =2dn o{La — A1} : X — Y will be an isomorphism.

Establishing the regularity of the operator H turns out to be the most difficult step
in the proof of Theorem 1.1. This will be done in Sect. 4.

The computation of the expansion in part (iv) of Theorem 1.1 is not straightfor-
ward and requires some care. In particular, we note that this is an expansion of order
o(|t|Ntet2), whereas we shall see from (2.11) below that H fails to have more than
C™ -regularity in the T-variable.

The paper is organized as follows. In Sect. 2 we set up the functional analytic
formulation of the problem in order to apply the implicit function theorem. We also
state Theorem 2.1 (to be proved in Sect. 4) on the smoothness of the NMC operator
acting on perturbed spheres. In Sect. 3 we complete the proof of our main result,
Theorem 1.1, after having stated in Theorem 3.1 the main properties of the linearized
NMC operator at the unit sphere. This theorem is proved in Sect. 4, while the one on
the nonlinear NMC (Theorem 2.1) is established in Sect. 4.

2 Preliminaries and functional analytic formulation of the problem
Throughout the remainder of the paper, welet N > 2, and welet S ¢ RY and B ¢ RV
denote the unit sphere and unit ball, respectively. Let M € Nwith 1 < M < N, and
let . c RY be an M-dimensional lattice as defined in (1.4). Throughout this paper,
we put

L, i=2\{0} and ZM .= 7ZM\{0).

We note that

pien;* [pl =:co >0 2.1)
and
1 2.2

As in the introduction, we fix 8 € (o, 1) and define
O:={peC"P(©S): llglo < 1}. (2.3)
Moreover, for ¢ € O, we consider the perturbed sphere

Sy ={(1+¢(0))o : 0 €S}
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and its parameterization over the standard sphere defined by
Fyp:8— 8y, Fylo)=(1+¢(0))o. 2.4

For 7 € (—cp/4, co/4)\{0}, we then define

1
Sp = U(S¢+£):S¢+—$.
et T T

By (2.1) and since S, C B>(0), the set S(; is a noncompact hypersurface of class
C!#, consisting of disjoint connected perturbed spheres and periodic with respect to
the lattice %.,Sf . Due to the translation invariance properties of the lattice ., the NMC
of S(; is completely determined by its values on S,,. More precisely, we have

H <S(; DX+ g) = H(S;;x) foreveryp e . andx € S,. 2.5)

Thus, our aim is to solve the equation

l1—0-0
0—9|N+"‘

2d
H(S;; Fy(0)) = H(S;0) = N / | dV(c) foreveryf € S.
o S

(2.6)
Note that H(S; 6) is constant in 6.

In the following, for ¢ € O, we also let B, denote the unique open bounded set
such that 9B, = Sy, i.e.,

By, :={rFy0c)=r(1+¢()o :0=<r<1,0¢€S}
Moreover, we let Vs, denote the unit outer normal vector field on S, = 9 By, and we let
d Vs, denote the volume elementon S,. For T € (—co/4, co/4)\{0},andx € S, C S,

we then have

o
2dy o

(z —x) - vsr(2)
H(ST; x) =/ —WdVS;(Z)

S‘; |Z —x|N+O‘

_y (v —x+2) v, ()

s D oxr o W)
pe LY T
(y—x)-vs, (y)
=), Ty a4V )
¢

N ||Vt / (T(y —x)+ p) - vs, ()
S‘P

dVs,(y).
— p N+o 4
peLs [Ty —x) |
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It will be convenient to use an alternative expression of the integrals appearing in
the sum which does not involve boundary integration and which immediately shows
that the sum is well defined. For this we note that, for fixed t € (—co/4, co /H\{0},
p € % andx € S,, the function y > |t(y — x) + p|~¥~%*2 is smooth in Bw, and
forall y € B we have

Vylt(y =x) + pI ™V = (=N — o)t (x(y —x) + p)lt(y — x) + p| V772

Since S, = 0By, the divergence theorem leads to

dV = div
o —x tpre 4V é Yt —x) + plVie

¢

/ (t(y —x)+p) - vs,(») (t—x)+p)
S‘P

1
= —at dy.
/Bw [T(y —x) + p|V+

Consequently, writing x = Fy,(9) with 6 € S, we have

ZdNaH(ST’ Fy(0)) = h(p)(0) + |t|N T Z G,(t,9)(0) 2.7
peZs
for6 € Sand t € (—cp/4, co/4)\{0}, where

(v = Fp(8)) - vs, (»)
s, 1y — @)V

h(g)(©®) = dVs,(y) (2.8)

and

1
G,(t, 0) = —
p(5 90 “Lﬂﬂy—@w»+mma

Note that /() (0) is precisely the NMC of S, at F,(0).

In the following, we will need that both 4 and G := pez, Gp define smooth
nonlinear operators between open subsets of suitable function spaces. The following
is the key result of the present paper in this regard.

dy for p € %,. 2.9)

Theorem 2.1 With O defined by (2.3), expression (2.8) gives rise to a well defined
map

h:O— CPs)

which is of class C*°.

In the following, and with some abuse due to multiplicative constants, we will
also call & the nonlocal mean curvature operator over the sphere S. The proof of
Theorem 2.1 is long and technically involved due to the singularity in the integrand
in (2.8). Nevertheless, the result is a key step in our approach, and we believe that it
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might be of independent interest. We postpone the proof of Theorem 2.1 to Sect. 4;
see Theorem 4.11 below.
With regard to G ,, we have a similar result.

Proposition 2.2 For p € £, and O defined by (2.3), expression (2.9) gives rise to a
well defined map

Gp: (—%", 64—0) x O — CPe(s)

which is of class C*°. Moreover, the map

Gi= Y Gpi(-3.7)x0—CPs) (2.10)
= 44

is well defined and of class C*°.

The proof of Proposition 2.2 is also lenghty if all details are carried out, but it is
much easier than the proof of Theorem 2.1 since the integrand in (2.9) is not singular.
We will outline the proof of Proposition 2.2 at the end of Sect. 4 below.

We conclude this section by introducing the nonlinear operator

H : (—co/4, co/4) x O — CP(S)
given by
H(z, 9)O) := h(@)®) + [TIN T G(z, ) () (2.11)

for T € (—co/4, co/4), ¢ € O and 6 € S. By construction, we then have

o

H(z, 9)(0) = 3y

H(SL; F,(0)) fort € (—co/4, co/H\{0},  (2.12)

i.e., the value H(z, ¢)(0) equals the NMC of S; at the point F, (9) up to a multiplicative
constant. We may thus formulate the parameter-dependent equation (2.6) as an operator
equation in Holder spaces. More precisely, we need to study the set of parameters
T € (—co/4, co/4) and functions ¢ € O satisfying

H(z, ) = h(0) in CF7(S). (2.13)
Note that we will have
H € C*((—co/4, co/4) x O, CP7(S)) (2.14)

as a consequence of Theorem 2.1, Proposition 2.2 and the fact that the map 7 +—
|7|¥+e is of class C? since N > 2. Moreover, we have

D,H(0,0) = Dh(0) € L(CHE(S), CF(5)). (2.15)
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In the next section we restrict our attention to even functions and use the implicit
function theorem to find a locally unique solution curve T +— (7, ¢(7)) solving
Eq. (2.13) and with ¢(0) = 0.

3 Completion of the proof of Theorem 1.1
For fixed @ € (0, 1) and B € («, 1), we consider, as in the introduction, the spaces

X ={peClh(S) : p(—0) = p®) foralld € S},
Y ={p e CPS) : p(—0) = ¢(0) forall§ € S}.

We claim that the operator H defined in (2.11) restricts to a map
(—co/4,co/4) x (ONX) =Y,

which we will also denote by H in the following. Indeed, forp € ONX and 6 € S we
have that —S, = Sy, Fy(—0) = —Fy(0) and vs, (—y) = —vg,(y) for y € S. Thus,
by a change of variables in (2.8), we have that

(5 + Fy(6)) - vs,(»)
dV.
s, bt E@me VW

(Fp(8) = y) - vs, (=)
= A%
A RO ARG Y

(e F(p(e)) . USW()’)
- dVv. —h 0).
s, |y — Fy@)|Nte s, () = h(p)(©®)

h()(=0) =

Similarly, from (2.9), (2.10) and the fact that —.%, = .%,, we derive that
G(t,p)(—0) = G(t,p)(0) for(z,¢) € (—cp/4,co/4) x (ONX)and O € S.
Consequently, it follows from (2.11) that H maps (—co/4, co/4) x (O N X) into Y,
as claimed.
Moreover, by (2.14) we have that
H e C*((—co/4, co/4) x (ONX),Y). (3.1)

Using the implicit function theorem within the spaces X and Y, we will derive a locally
unique curve T — @(t) € X such that ¢(0) = 0 and

H(z,p(r)) =h(0) inY

for |t| sufficiently small. For this we shall need the following invertibility property of
Dh(0) € L(X,Y), which by (2.15) coincides with D, H (0, 0) € L(X, Y).
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Theorem 3.1 The linearized operator Dh(0) € L(CYA(S), CP~(S)) is given by
;Dh(O)(p = Lop — Mg forgp € CP(S),

where

90) —¢(0)

Lop(®) = PV
a9 (6) 19 — oV

dV (o) forf e S

and Ay is givenin (1.9) fork = 1. Moreover, Dh(0) is an isomorphism when considered
as a linear operator from X to Y.

The proof of this theorem relies, in particular, on the spectral decomposition of
the operator L, and regularity estimates between Holder spaces. It will be given in
Sect. 5; see Lemma 5.1 and Theorem 5.2 below.

The following proposition is the result of applying the implicit function theorem.
In its proof, we will need that

H(=71,¢) = H(z,9) fort € (—co/4, co/H). ¢ €O, (3.2)
which is as a consequence of (2.11) and the fact that —.%, = .%,.

Proposition 3.2 There exist tg > 0 and an open neighborhood U C X of O for which
there exists a unique curve (—19, 79) — U, T — ¢(), with ¢(0) = 0 and

H(t,o(r)) =h©) inY, for —19<7<T10. (3.3)

Moreover;, ¢ is of class C2, satisfies o(—1) = ¢(t) and the expansion
N+a -1 o —1 2
o(r) = ItV ((DhO) '@+ —(DhO) ' B2 +0()). (B4

where ®; = 3/G(0,0) € Y, j = 0,2, and %2) - 0inCLA(S)ast — 0.
Proof Applying the implicit function theorem to the C2-map H : (—co/4, co/4) x
(ONX) — Y at the point (0,0) € (=, ) x X and using Theorem 3.1, we find
70 € (0, co/4) and a unique Cz—regular curve (—19, T790) — U, T — @(t) such that
(3.3) holds. By (3.2), we also have that
o(—1) = @(r) foreveryt € (—10, T0).
It thus remains to prove the expansion (3.4). For this we consider the C?-curve

g:(=1.7) =Y, g(1):=G(1,0(0)).
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Then (3.3) can be written as
0= h(p(r)) — h(0) + |z|Ng(1) = Dh(0)p(x) + O(lle(D)II%) + IT1V g (2).
Consequently, we have
o(r) = —|t|N (D (0) " g(r) + O(lle (D)%) (3.5)
and thus the curve
T Y() = [t TV () (3.6)

satisfies the expansion ¥ (7) = —(Dh(0) " 'g(t) + O(|r |V ¥ ||y (1) ||§() and, in par-
ticular,

Y (1) = —(Dh(0)~'g(r) + o(r?). 3.7
We also note that
/(1) = 0:G (1, (1)) + 3,G (1, p(1))¢' (1)
and

¢"(1) =32G(t, p(1)) + 28,9: G (1, 9(1))¢' (7)
+ ;G (T, p(t)IY (1), ¢ (D] + 8,6 (1, 9(1))¢" (7)

for T € (=70, T0). Moreover, by (3.5) we have ¢(t) = O(|7|V*%), and hence ¢(0) =
¢'(0) = ¢"(0) = 0. We deduce

2(0) = G(0,0), g'(0)=09.G(0,0) and g"(0) = 8,2G(0, 0).

We thus infer that g(7) = Zz 24 G{G(O, 0) + o(z?), and together with (3.7) this

j=07r
yields the expansion
2 ‘L'j '
VOEESY F(Dh(O))_IH-{ G(0,0) + o(t?).
j=0""

Using this in (3.6), and recalling that ¢ is even in 7 (and thus so is 1), we get the
expansion (3.4), as claimed. O

In the next two lemmas we compute the precise asymptotic expansion in t for the
perturbation ¢.
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Lemma 3.3 The functions ®; := 8gG(O, 0) eY, j=0,2 are given by

__alsl ~N-a
pei

and

Q) =ar Y pI™V T —ay Y (p-0)pITN Tt foroes,

peZs peZs
where
N N — N N 2
g =g N TON =@ o d gy N TONFEFD) o e
N(N +2) N

Proof Let p € %, and 0 € S be fixed. We then have
Gp(7,0)(0) = —ayp(r) fort € (—co/4, co/4) with

yo(7) = /B t(y — 0) + p| N "dy,

where B is the unit ball of R . We first note that

15|

0) = —N—«a Bl = —N—«
yp(0) = |p] |B| = |pl N

Moreover, for T € (—co/4, co/4) we have

VI/;(T) =—(N +Ol)/B(y —0)-T(y—60)+plr(y —0)+ p|—N—a—2dy
and

vy (1) =— (N —|—a)/B ly — 021t (y — 6) + p| N2y
+ (N +a)(N +a+2)
/ {(y—=0) - z(y —0) + p)}2 lt(y — 0) + p|—N—(x—4dy.
B
Consequently, using the fact that odd terms do not contribute to the integral over

B, and recalling that [, y?dy = N~! [, |y|>dy and that [, |y|*dy = |S|/(N + 2),
we find that
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y/©) = — (N +a)lpl N2 /B Iy + Ddy

+ (N +a)(N +a+2)|p N7 /B((p 0+ (p-»)Hdy

N N 2
— W OWEEED g1 p-o=s(p 67

N
_ b (N4ed2)y  va
<N+a)|S|(N+2+N NV S )il
(Nt (N+a+2)
o N
N+ a)(N —w) Newn
N sl
a»

Ny — ai N —o—
=—|pI™NH(p.o)? — = |p TN,
o (07

ISl pI N4 (p - 0)?

with ay, a> defined in (3.8). We thus conclude that

S
Do(0) = —a Y ¥,(0) = el > IpINe

pes N peZ
and
Dy (0) = ay Z Ipl N2 gy Z (p-0)?|p|N—o*
pesy pes
for 6 € §, as claimed. O

Lemma 3.4 The functions V; := (Dh(O))_ICDj € X, j=0,2, are given by

S 1
\Ilo—|| Z onS

= N+a
MN e, [P
and
(N+a)(N+a+2) 2 (N+a)N+1a+2) 1
U (0) =[S = o
2(6) =1 |[ N2(x2 — A1) Al N2(N +2) } Z |p|Ntat2

pes;

forf e S.

_ISIN + )N +a +2) 3 (p-6)?
N2 — A1) | p| N+t

pes
Proof We recall from Theorem 3.1 that

(DhO) " = L(La =21 Y > X,
o

@ Springer



Near-sphere lattices with constant nonlocal mean curvature

with L, given by (1.8). Since L, maps constant functions to zero, we find that

_1 -1 alS| —N—a B —N—a«
Vo= —(La =27 | === D 17l =N > lpl on S.
pes peZs

To compute V>, we introduce the functions

ge € CHP(S), qe(0) = (e-0)* — %

for e € S. Since ¢, is a spherical harmonic of degree two for every e € S, we have

1

R fore € S.
aGa— e ¢

_ 1 _
(DR(O)™'ge = —(La = 1) 'ge =
Moreover, by Lemma 3.3, we have

_ _ a_z _ —N—a-2
by = Z (al N2 Qﬁ>lpl inY
pes

and thus

1 _
Wy =~ (La = h1) Lo,

1 a a } “N—a—2 -
= — —_— - - X’
Z{akl <‘” N>+a(xz—xl)qﬁ Pl n
pes

ie.,

Y RS S A e
w2(9)_{aN(kz—)»1) @i (al N)} Z P a(ry — A1)

pes
Z (p.0)2 :|S|[(N+a)(N+a+2)
S IpINrers N2(h2 = 1)
_LE NN ) WA HW +at D)) 5 ]
A NZ(N—I—Z) |p|N+a+2

pes

CISIN +)(N +a +2) ¥ (p-0)°

— N+a+4
Nea=a) 2 pl
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(N+a)(N+a+2) 1 (N+a)2N(@+2)+4+2a)

=Is1{

N2(ha — A1) A N2(N +2)
1 IS|(N +a)(N +a +2) (p-0)?
x Z |p|N+a+2 - N — Ap) Z |p|N+a+4 for6 €S,
pes
as claimed. |

We may now complete the

Proof of Theorem 1.1 The existence and uniqueness of the curve r +— ¢, with the
properties of Theorem 1.1(i)—(iii) follow immediately from Proposition 3.2 by setting
O = (p(%). To obtain Theorem 1.1(iv), we note that by (3.4) and Lemma 3.4 we have
the expansion

r—2
0r(0) = =1~V (Wy(0) + ——¥2(0) +0(r?))

N= "‘( Ko+71~ {/q Z |I(,9|Nfa)i4 —Kz}—l—o(r*z))

pes
forf € Sasr — +o0o,

where

S| 1 [SI(N +a)(N +a+2)

K()E\IJ(): Z N s K1 =
MN |p|N+e 6N (A2 — A1)
peZs

and

_@{(N+a)(1v+a+2) £(N+oz)(N+1)(a+2)}Z 1
“T e U NG i N2(N +2) |p[NFa2”

To prove Theorem 1.1(v), it suffices to show, after making r( larger if necessary,
that the map

~ 0 - p)?
pef*p

is non-constant on S if 1 < M < N — 1. We readily observe that f (e1) > 0 and
f (en) = 0. The proof of Theorem 1.1 is thus finished.

The last statement of the theorem, on uniqueness, is a direct consequence of the
implicit function theorem. O

We conclude this section with the
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Proof of Corollary 1.3 By assumption and up to a rotation, we may assume that the
lattice basis satisfies

a; = pje; fori=1,..., M,
for some p; € R\{0}. It is convenient to define the map
M
JIM 2. J) =Y kaj = (piki..... pukn.0.....0) €RN.
- (3.9)

Then we get

3 ©-p? 3 ©-Jk)* 3 O1p1ki + - - - + O parkar)?

= |p|N+a+d - fors? | T (k)| N+a+4 B fors? | T (k)| N+at4d
Yy Sy
VT (k) |N+at4’
2 G 1T

whereas for i # j we have

3 00 pipjkik;

ot |j(k)|N+ot+4 -

by oddness with respect to the reflection of k at the axis {k; = 0}. Hence we conclude
that

Z ©-p? Z 07 ikt + - + 0505 ki Z 0
|p|N+a+4 - |,_7(k)|N+°‘+4
PGZ* kEZ*M

with

2 2

ck; D;

Hi = Z |j(k)|N+“+4 = Z |p|N+¢x+4’
kezM pes

Together with Theorem 1.1, this gives (1.11). To see (1.12), we note that in the case
of the square lattice we have p; = pp = - - - = pyr and thus

M
1 1 1

P = — P=— ——0 fori=1,..., M.

" M,Z:;M] M Z |p|N+a+2

pezZM

This ends the proof of Corollary 1.3. O
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4 Regularity of the NMC operator over the unit sphere

In this section we prove the smoothness of the nonlocal mean curvature & as asserted
in Theorem 2.1.

4.1 Geometric preliminaries
For ¢ € O, we recall the parameterization F, : S — S, of Sy, defined in (2.4) by
Fy(0) = (1 4+ ¢(0))o. We shall need the following observation.
Proposition 4.1 Let ¢ € C'(S) be such that lellzoosy < 1. Then the unit outer
normal (to the set enclosed by S,) of Sy at a point Fy(o), o € § is given by

(I 4+ ¢(0))o — V(o)
VI +90)? + Vo)

vs, (Fy(0)) =
Moreover, for every continuous function f on RN, we have

/S f(y)dvsw(y)=/Sf0F¢(o)J¢,(a)dV(a) with
14
Jo =0+ )"/ + )2+ |Vg|2. .1

Here and in the following, V¢ denotes the gradient vector field of ¢ on S.

Proof We fix a local parametrization z — o (z) of S, which gives rise to the local
parameterjgation 7 — F(2) = (14+¢(0(2))o(z) of S,. The tangent vectors of S, at
the point F(z) are given by

Zi(2) =0, F () = (1 + ¢(0(2))) 3,0 (2) + 9z, (9 0 0)(2) 0 (2) (4.2)

with 9, (¢ 0 0)(2) = Vg(0(2)) - 9,0(z) fori = 1,...,N. Since 0 - Vp(o) =0
and o - 9;;0 = 0 (which follows from |o |2 = 1), we thus conclude that the unit outer
normal of S, at a point Fy,(c) with 0 = o (z) € S is given by

(I +¢l0))a —Ve(o)

F, = .
s ) = o T IVe )

We now turn to the proof of (4.1). By the previous relations, the first fundamental
form of S, is given by

gij=2i Zj=(0+¢00) 0,0 9,0 +0,(@o00)d,(pos).  (43)

We now compute +/det(g)(z) at a given point z under the assumption that d;,0 (z) -
dz;0(z) = &;j. We then have that

(1 + (0 (2)) 2NV det(g) () = det(id +C)

@ Springer



Near-sphere lattices with constant nonlocal mean curvature

with the matrix C = (Cj;);; given by
Cij = (1 +9(0(2)) 20 (9 0 0)(2)0;; (¢ 0 0)(2).

Note that C has only one non-zero eigenvalue given by (1 + ¢ (0 (z))) 2|V (o (2))|?
with corresponding eigenvector (9, (¢ o 0)(z));. We thus have

(14 ¢(0(2)) 2N Ddet(g)(z) = det(id +C) = 1 + (1 + ¢(0(2))) 2|Ve(o (2)%

and hence

Vdet(9)2) = (1 + (0 @D V(1 + ¢(0(2))? + V(o ().

We have thus computed the local change of the volume form when passing from S,
to S, and this gives rise to the transformation rule (4.1). O

4.2 Preliminary differential calculus formulas

For a finite set A/, we let |A/| denote the number of elements of A/. Moreover, we
denote Ny := {1, ..., £} for £ € N. Let Z be a Banach space and U a nonempty open
subset of Z. If T € CY(U,R) and u € U, then D*T (u) is a continuous symmetric
£-linear form on Z whose norm is given by

DT ()[uy, ..., ug]
IDT )| = sup | 7 }~
ULy UgEZ Hj:l ||l/l] ”Z

If Ty, T» € C*(U, R), then also T3 7> € CY(U, R), and the ¢-th derivative of T; 7> at u
is given by

DY)l ....ud= Y DNIT@unluen DN T [un]nene.
Ne,
“4.4)

where .7} is the set of subsets of {1, ..., ¢} and N¢ = {1, ..., ¢}\N for N € ..
If, in particular, L : Z — R is a linear map and || > 1, we have

DVULT) ) uilien = L) DV Ty (u)[uiliens

+ ) LupDNT D@ uilienn).  (45)
jeN
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Furthermore, let B : Z x Z +— R be a bilinear map and let Q : Z — R be its
associated quadratic form (namely Q(¢) = B(¢, ¢)). Then
DN W) uilien = B, w) DN T @) uilien

+ Y (B uj) + Buj. 1) DN ) wiliean )
jeN
+ > (Bl up)+ By, u) DN renryi )
i,jeN
(4.6)

We close this section by the well known Fad de Bruno formula, see e.g. [15]. We

let T be as above and g : Im(7) — R be a k-times differentiable map. The Faa de
Bruno formula states that

DX(go TY@lur, ..., ml= Y g™ (@@ [ D¥IT@wlujljer, 4.7)
Me P Pell

foru,uy, ..., ur € U, where & denotes the set of all partitions of {1, ..., k}.

4.3 Regularity of the nonlocal mean curvature operator over the sphere
For every a, b € S, b # —a we consider the regular curve

ta+ (1 —1)b

lta + (1 —t)b|’ 4.8)

Va,b : [01 ]] - Sv Vab(t) =
which clearly satisfies y, 5»(0) = b and y, 5 (1) = a.
Lemma 4.2 Consider the compact subset

S«:={(a,b)eSxS :la-bl <1} CSxS.

Then, there exists a constant C > 0 depending only on N with the property that for
(a,b), (a1, by), (ap, by) € Sy andt € [0, 1] we have

17 (0)] = Cla = bl, (49)
Varn® = Varoa 01 = C(1a1 = @zl + by = bol) and  (4.10)
a1 ) = Tarra 0] = € (1@ =zl + 161 = b ). “.11)

Proof Fort € [0, 1], consider the function

Y:RxRY xRN >R, Y@, a,b)=|b+ta—Db) (4.12)
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Since [a — b| < 1on Sy and (1 —¢t) € [0, %] fort € [0, 1], we see that

3
% < Y(t,a,b)=v1—t(1—0)|a—b2 < 1 for(t,a,b)el0,1]xS,.
(4.13)

By direct computations, we also see that

a—b (1—=20]a—b*> b+t(a—0b)

Yap(t) = for (¢, a,b) € [0, 1] X S,.

Y(t,a,b) 2 Y(t,a,b)3
(4.14)

Hence (4.13) yields (4.9) with a suitable constant C > 0.

Next we consider the function

1 —2t)la — bJ?

V:RxRY xRY > RN, V(@,a,b):= %(b—i—t(a—b)).

Then we may write
ta+ (1 —1t)b . a—>b V(t,a,b)
Yab(t) = ————— and y, (1) =

Y(t,a,b)
for (t,a, b) € [0, 1] x S,.

Y(t,a,b) Y(t, a,b)?

By (4.13), we see that the right hand sides of these equalities define C'-functions in
an open neighborhood of the compact set [0, 1] x Sy in R2¥+! = R x RV x RV,
Therefore, a standard argument shows that these functions are Lipschitz continuous
on [0, 1] x S, with respect to the Euclidean distance of R2N+1 and from this (4.10)
and (4.11) follow. O

The following is an expression for 4, as defined in (2.8), where we remove the
dependence on ¢ in the domain of integration.

Proposition 4.3 Let ¢ € O. Then, we have

—¢(0) — (0 —0) - V(o)
|0 — o |N+e

0
h(g)(©) = — (1 + gow»/s #®)

x (149NN Ke(p,0,0)dV (o)

((0) — 9(0))? .
T e e L+ 9D Kalp.0.6)dV (@)
14+ ¢9)

2 s |9—0'|N+°‘

— 1+ 90NN Kulp.0.0)dV (o),
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where Ky : O X S x S is given by

1
Ko(p,0,0) :=

(100 1 (1 + 9@ (1 + 0(0))

l6—o|?
Moreover, all integrals above converge absolutely.

Proof Let ¢ € O. By Proposition 4.1, for every 6 € S, we have

(Fy(0) — Fy(0)) - vs,(Fy(0))

o= [Fy(0) — Fylo)| 7+

Jp(0)dV (o)

and thus

—h(wxe):/ (9(0) = (@) 0 - vs, (Fy(@)) Jy (0) o

S (((0) — (@) + (1 + p(@) (1 + p©O)|6 — o 2) N7
6 —0) - vs, (Fy(0)) Jy(o)

)(N+a)/2 :

+ (14 ¢©9) /
5 ((p®) — (@) + (L + @@L + 9O)|6 — o|?)

where we used that 2(1 — 6 - o) = |6 — o|%. It follows that

0(0) — (o)

@) = |

Ka(p,0,0)0 - vs,(Fy(0)) Jy(0)dV (o)

(N+a)/2

(4.15)

dv(o),

0—o
+ +¢(9))/Sm'vsw(ﬂp(0)) Jy(0) Ko(p,0,0)dV (o).

Letting ¢ = 1 + ¢, we get

Jo(o) = wN*%)\/wZ(a) + V¢ (0)? and
oy (o) — Vi (o)
V(o) + [V (o) 2

vs, (Fyp(o)) =

from Proposition 4.1. Consequently,

¥ (o)
V(o) + IV (0)?

o - vs, (Fy(0)) =

and thus

Jp(0)a - vs,(Fy(0)) = vV~ (o).

Furthermore

(4.16)

O —0) s, (Fp(0) Jy(0) = =0 — 0) - VY (@) ¥V 2 (0) + (0 — o) - oy (o).
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Using the latter two identities in (4.16), we find that

0 —
~h)®) = [ TP @) Kl 0,004V (@)

e )/ O =) V@) N2 ) ko0, 0, 0) dV (o)

|N+Ol

+w<0>/| "l)NjZ N-L(o) Kalp, 0, 0)dV (©).

Therefore

—h)®) Z/S WY (©) =¥ (0)y(o) =¥ ()0 —0)- V(o)

|9 _U|N+a

x YN2(0) Ko (@, 0,0)dV (o)

- ww)/ "|)N+‘Z ¥V (0) Kalp. 0.0)dV (@).
We add and subtract (y(0) — ¥ (o)) (0) to get

(W) — ¥ (0))?

)0 =~ | T N 0 K, 0.0) 4V )
V(@) —y(o)— (0 —o) V(o)
+ v [ i

x YN2(0) Ko (@, 0,0)dV (o)

+ w(e)/ "|)N+(; ¥V (0) Ka(p, 0,0)dV (@),

We then conclude that

B (W (0) — ¥(0))*
—h(p)(0) =— W
YN (0) Kolp.0.0)dV (o)

n W(Q)/ v —y¥(o) -0 —-0) - Vy(o)

|0 — o |Nte

x YN72(0) Kolp, 0,0)dV (o)
Q) 1

2 Jsle —0|N+a—21//N_1(0)’C“(¢’0* 0)dV(o). (4.17)

Let us now check that all integrals above converge absolutely. Indeed, it is clear
that
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1
fs WW\H(U) Ko(p,0,0)dV (o)

%wN_l(o)dV(a) <00

< (11— —N—a
< (- gllo) /Sw—a
and, since (Y (9) — ¥ (0))? < ||1//||C1(S)| o |?, we also get

W (©O) = ¥ (0))?

|6 — o |N+e l/fNiz(O') Ky(p,0,0)dV (o) < oco.

S
Next, if |0 — 0| < 1, we can write
1
V(@) —y(o)—(0—0) V(o) = /o (VY 0.0 (1) = V¥ (0,6 (0D} - V.6 (1)d1
with yp » defined in (4.8). By (4.9) we thus have

W (O) —Y(0) — (0 —0) - V(o) < ClYlcralo — ol P,

and this obviously also holds, by enlargening C > 0 if necessary, for 6, o € S with
|6 — o| > 1. From this and the fact that 8 € («, 1), we obtain

/ Y (©) —y(o) =0 —0) V(o) N 2(0) Ko, .0)dV (0) 4.18)

|0 — o |Nte
1
<CA = llells)™ N= alWHC]ﬁ(S)/de(o) < OQ. 4.19)
We then have that the integrals in the expression of & converge absolutely. O

For 0 < r < 2, we now put
B(r) = {xp eC(©8) :r<y <2in S}. (4.20)

We consider the map Ky, : B(r) x § x S — R defined by

1

(M + Y ()Y (0)

l6—o |

Ko, 0,0) :=

)(NM/Z. 4.21)
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We also define 7 : B@r) — L*(S) by le(l/f) := h(yr — 1). Then, by Proposition 4.3,
we have

(W) — ¥ (0))?

RW)©O) =h(y = 1)(6) = : mewmw, ,0)dV (o)
V(@) —y(o)— (0 —o0) V(o)
- w(Q)/ |@ —0|N+°‘

x YN "2(0) Ko (W, 0,60)dV (0)
e 1

2 )56 —oNte2 YN 0) Ka (¥, 0,6)dV (0). (4.22)

+

The proof of Theorem 2.1 will be completed once we prove that ho Br) —
CP=2(S) is smooth for every r > 0.
We define A : Cl”g(S) x § xS — Rby

Ai(,0.0) =y (0) =¥ (0) = (0 —0) - V(o)
1
= [0 (VY .00 = VI (19,6 (0)} - V.0 (1)1

and A, : CLA(S) x CLA(S) x S x § — Rby

Ao (Y1, Y2, 0,0) = (Y1(0) — ¥1(0) (Y2(0) — Y2(0)).
With this notation, we have

A (., 0.0)

() ©) =h(y —1)(0) = f i VO Ry, 0.0dV (@)

A 0 —
- we)f 4 |‘7N+) ¥V 2(0) Ko, 0,0)dV (0)

V() 1

2 s |9_G|N+a721//

N=1(o)Ko(¥, 0,0)dV (o). (4.23)

Remark 4.4 1t will be convenient to modify this representation further such that the
singularity of the integrand does not depend on 6. For this we fix e € S and a Lipschitz
continuous map of rotations S = SO(N), 6 — Ry with the property that

={0eS:0-¢e>0C{0eS: Rye=0). (4.24)

The following is a possible way to construct R. For fixed e € S, consider the map
6 +— Ry defined as follows. For 6 € § with 6 - ¢ > 0, we let Ry be the rotation of
the angle arccos 6 - ¢ which maps e to 6 and keeps all vectors perpendicular to 6 and
e fixed. We then extend the map 8 — Ry to all of S as an even map with respect to
reflection at the hyperplane {# € RY : 6 - e = 0.
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By construction, it is clear that
|Rgo — 0| = |0 —e| foralld € S,ando € S. (4.25)

Moreover, the Lipschitz property of the map 6 — Ry implies that there is a constant
C > 0 with

IR, — Re,|l < C|61 — 6] forall6y,6, €S, (4.26)

where, here and in the following, | - || denotes the usual operator norm with respect
to the Euclidean norm on RV .
Thanks to (4.25), a change of variable gives

~ A R, 0
R )@) = f zl(‘/f “’Gwﬁ)

A R 0 _
— ¥ ) f W, lfv‘ia)wN*%Reama(w,Rao—,e)de)

v ©) lﬂN '(R0)
* 5 |, te e sk Rao.0)dV(e) for6 € S.. (427)

YN "2 (Rgo) Ko (1, Rgo, ) dV (o)

In the following, for a function f : S — R, we use the notation

Lf;01,62]:= f(61) — f(62) for6;,0, €S,

and we note the obvious equality

[f8: 01,621 = [f:61,6218(01) + f(0)[g: 61, 62] for f,g:§ — R, 01,60, €8.
(4.28)

In the next results we collect helpful estimates for the functionals A1 and A».

Lemma 4.5 There exists a constant C > 0 depending only on N and B such that for
all 6,01,05,0,01,0, € Sand ¥ € C1P(S) we have

A1, 0,0)] < CllYllcrsslo — 0P (4.29)
and

ALY, 01,601) — AL, 02,02) < ClI¥ [l s sy 101 — 011161 — 021 + |0y — 02P)

+ Clivllcuss) 16, — 021?161 — 62|+ o1 — oa]).
(4.30)

Proof To derive the estimates in the lemma, we may assume that

maxflo — 01, [0 — o1, [0 — 02|} < 1 (4.31)
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(otherwise the estimates are easy to prove). Having (4.31) is essential for applying
Lemma 4.2 in the sequel. We have

A (Y,0,0) =¢(0)—Y(0) — (0 —0) V(o)
1
= /(; {Vllf()/e,a(l)) - VI/I(VG,J(O))} . )}H,J(t)dtv

where yp o is defined in (4.8). Therefore (4.29) follows from (4.9).
We now prove (4.30). We have

A (Y, 01,601) — A1 (¥, 02, 62)
= fo | (VY or.00 (1) = VY ()0, (0D} Yy 0, (D)l
— /0 1 VY W01 (1)) = VU V2.0, (O} + V1.0, ()l
= /O | (VY or.00 (1) = VY Vor0y (D) + VY (02) = Vi (01)} Yoy, (D)l
+ fo 1 VY W02 (D)) = VY (V02,00 0D} - Gy, (1) = Vo (1))
This implies that
|A1 (. 01.01) — A (Y, 02, 62)]
< W lcrss) fo 1 V01,01 (1) = Vor.r 1P 79, .0, (D)1l
+ ¥l crscslor — oal” /0 1 Vo100 (1)d1
+ ¥ leas) /0 inion(®) = vorms | 1iorn 1) = . 1l
< W llcrscs) /0 1 V1,01 (1) = Vor.r (1 79,0, (D)1l
+ ¥ lcreslor — oal’ /01 V01,01 (1)1t

1 B
/ tYo,,00 (rt)dr
0

1
+ ||1/f||cl.ﬂ(5)/0 [Vo,.01 (1) = V0.0, ()|d1.
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Thanks to (4.9), we get
[A1(Y, 01,01) — A1(Y, 02, 62)]

1
= Cli¥licrsslor — 61l (/ V01,00 (1) = Vor,on (D1Pdt + |0 —02|ﬂ)
0

B

1
/ t)}é)z,az(rt)dr |J)91,01 @) — )}Hz,az(t”dt'
0

1
+ ||1ﬂ||cl,ﬁ(3)/0

From Lemma 4.2, we have that, for every 601, o1, 62, o» € S and satisfying (4.31),

1Vo1.01 (1) = Voy.00 (D + V81,00 (1) — Vor.0, ()| < C(|61 — 2] + |01 — 02])
for every t € [0, 1]

and
V02,00 (r1)| < 162 — 02| forevery t,r € [0, 1].
Therefore

|AL(, 01, 01) — A1, 02,02)| < CllYllcrags) 161 — 011 (161 — 621 + o1 — 02 ”)
+ Cl¥llcrscs)l0r — 02lP (101 — 0] + o1 — 02)).

This ends the proof of (4.30). O

Corollary 4.6 There exists a constant C > 0, depending only on N and B, such that
foralle € S, 0 €S,all0,0,0, € Se and all € C'P(S) we have

|AL(Y, Rgo, O)] < Cl[¥llcrpgs)le — o' TP (4.32)
and

A1 (Y, Roy0,01) — A1 (Y, Re,0, 62)|
< Cl¥llcrscs) (le —ollor — 6217 + e — o |P161 — 62]). (4.33)

Proof It suffices to apply (4.29) and (4.30) with o, o1 and o5 replaced byRgo, Rg, 0
and Rg,o respectively, to use (4.25), and the fact that

|Rg,0 — Rg,0| < ||[Rg, — Ry, || < C|01 — 02].

Next, we derive estimates for A,.

Lemma 4.7 There exists a constant C > 0, depending only on N and B, such that
foralle € S,0 € S,all6,6,0, € S, and all Yy, Y, € CHP(S) we have
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|A2 (W1, Y2, Roo, 0)] < Cllvrillcras) 12l crscs)le — o (4.34)

and

A2 (Y1, Y2, Ry, 0, 01) — Ao (Y1, Y2, Ro,0, 67)]
< CllYillcrses lv2llcresle — o *161 — 6217, (4.35)

Proof To prove the lemma, by (4.25) and (4.26) it is easy to see that we may assume
le — o| < 1. This implies that

|[Rgo — 0| = |Rgy0 — 01| = |Rg,0 —h| =0 —¢| < 1,

and therefore allows us to apply Lemma 4.2 in the following. By (4.9) we have

1
[V (0) — ¥ (Roo)| = ‘/0 VY (Yo,Reo (1) - Vo,Reo (1)d1

< Cll¥licrss)l0 — Rool = Cllyllcrss)le — ol fory e CHP(S)  (4.36)
and

A2 (Y1, Y2, Reo, )] = |(¥1(8) — Y1 (Reo DI (¥2(8) — Y2 (Rg0))|
< CllYillcrses lv2llcrecsle — o,

as claimed in (4.34).
Next, we note that, by (4.14) we have

0 — Rgo (1 —21)|0 — Ryo|*> Ryo +1(6 — Ryo)

. N
Y0,Rgo (1) Y(t,6, Ryo) 2 Y(t,0, Rgo)3
(e —o0) (1—2t)|e—0|20+t(e_0) )
— R R o
’ {T(he,d) 2 Y(t, e, 0)3 0 Ve, (1)

since |0 — Ryo| = |Ro(e — o) = |e — o| and, by (4.12),

Y(t,0, Roo) = |Ryo +1(0 — Rpo)|
=|Rg(oc +t(e—0))|=|oc+tle—0)| =7(te, o).

Consequently,

| (01) — ¥ (Rg,0) — (¥ (62) — ¥ (Rg,0))|

1
=| fo [V9 01 R (O) - PRy (O = VY i Ry () + T iy (0] |

1
= | [ {99008 0) - Raer = 99 Ot o 0 Rt 0] |
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1
= ‘,/o (VW(V&,R@]U(I)) - Vtﬂ(ygz’Rgzg(;))) - Ro, Ye.o (1)
+ VU Vo5, Ryyo (1)) - (R@1 Veo (1) — Ro, );w(,)>d,)

1
<IWlicracs) /0 (1991, Rey 0 () = Vo3, Reyo O 175 () +1(Rey = Ry T ()] ).

Hence Lemma 4.2 and the Lipschitz continuity of the map 6 +— Ry give rise to the
estimate

[ (01) — ¥ (Rg,0) — (¥ (62) — ¥ (Rp,0))|

1
< Cll¥llcracle - a|(/O Vo1, Royo (1) = Voo, Ry (DIP dt + 1Ry — Ryl )

1

< Cllicrssle = ol( [ (161 =6al-+ R0 = Rool)’ di + 16y = 1)

< Cll¥licrecs)le — o161 — 6a1F. (4.37)
Using (4.36) and (4.37), applied with v replaced by 11 and ¥, we then find that

[A2(Yr1, Y2, Ro,0,01) — Aa(Y1, Y2, Re,0, 62)]
= [(Y1(01) — Y1 (Ry,0)) (W2(01) — Y2(Rp,0))
— (U1(02) — ¥1(Rp,0)) (Y2(02) — ¥2(Rp,0))|

= |(116) = 41 (Roy0) = (102 = V1 (Rax)) ) (W2(60) — Y2(Rey )|
+ |1 O = ¥1(Re,0) (12000 = ¥2(Roi0) = (1206 = Y2 (Rex) )|
< Willcrss Iv2licas)le — o 2l6r = 6217,
as claimed in (4.35). O

The following result provides some estimates related to the kernel K, and its deriva-
tives.

Lemma 4.8 Letr > 0,k € NU{0}. Then there exists a constantc = ¢(N, «, B,r, k) >
1 such that foralle € S, o € S, all 6,01,6, € S, and ¥ € B(r), we have

1Dy Ko (. Roo, O)|| < ¢ (1+ ¥l crscs)) (4.38)
and

1D}, Ko (W, Roy0.01) — DE Ko (W, Ryo. 02)| < c (14 ¥ llcrscs))” 101 — 6217
(4.39)
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Proof Throughout this proof, the letter ¢ stands for different constants greater than
one and depending only on N, «, B, k and r. We assume k > 1 for notation coherence,
but the case k = 0 is simpler and can be proved similarly. We define

_ 2
0:CH(®) x5 x5 k. 00,0 = LOLIL Ly 0@
A ,V,0,0
— M_’.w(@)w(o)
6 —ol

and, fora > 0,
8u € C¥R1,R), golx) = x~NHO2,
so that
Ko(¥, Rgo, ) = ga (Q(¥, Ry, 0)) . (4.40)
Note that for 6 € S, we have

Az(’ﬁ’ wv RGGv 9)

O Ry, 0) = = =52 + Y (Rao) (0)
A , V1, Rgo, 0
Dy Q. Roo, 0)yr1 =2 mﬁe‘”_l 0 20 4O (Roo) + 1 OV (Reo)

A , Yo, Rygo, 0
2(‘”;6 fiﬂf“ L 4 o091 (Reo)

+ Y1) Y2(Reo)

D} 0(¥, Ryo, O)[¥1, 2] =2

for ¥, Y, Yo € CHA(S). For a subset P C {1,2} and ¥, Yo € CLP(S), we thus
have, by (4.28) and (4.35),

DY Q. Roo, s jeps 01, 02l < e+ 11205101 =021 T 101l s)-
jepP
4.41)

Moreover, by (4.34),

1D 0, Ry, W )jep] < e+ 101 Z1as) [ ] 1¥ilcrecs) on Se.
jeP
(4.42)
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By (4.7) and recalling that Q is quadratic in v, we have

VKo (U, Roo, O)[Yr1, ..., Y]
= Y "MW, Reo.0) [ D) Q. Roo. 011 ep

He@]? Pell

where 9,3 denotes the set of partitions IT of {1, ..., k} such that | P| < 2 for every
P € I1. By (4.28), we now have

[ DY Ka . Roo I, . ;01,62
= > [ @ Rio. 016 [T D0, Rao,0)1v1ser

e} PeIl,|P|<2

+ > &M, Reo,6)) | ] DO, Roo, yjljer: 61,62 |

e} PeIl,|P|<2
(4.43)
whereas
k=l N+a+2k
gV =D *[[(W+e+20) 7 forkeNandt > 0.
i=0

Consequently, by (4.41) and since ¥ € B(r), we have the estimates

\[ LW Ry )): 61,6 |

¥, Roo, ) 01, 6] / 2D (2 O, Roo, 01)+(1—1) (¥, Roor, 02))d
Sc(1+||w||cl,,g(s)) 101 — 018 (4.44)
and

182(0 (., Rgo, NI < e (L+ ¥l crscs)” (4.45)

for£ =0, ..., k. Combining (4.41), (4.42), (4.43), (4.44) and (4.45), we obtain

[PhRatw. Roo .. vnli 61,62 |
<c(1+ e 1o =6 3 TT [T Iwilleracs
ne@ZPel'I/eP
k

c
(14 1 lcras) 100 =2 T Ivillcrscs)

i=1

@ Springer



Near-sphere lattices with constant nonlocal mean curvature

This yields (4.39). Furthermore we easily deduce from (4.42) and (4.45) that

k
nyza(’ﬁ» Rgo, O)[ Y1, ..., Wk]’ =c (1 + ||1//||C1J3(s))c l_[ ||Wi||clﬁ(s)a

i=1
completing the proof. O

We now derive estimates for functions of a specific form which will appear in
formulas for the derivatives of the transformed NMC operator 4 in (4.27).

Lemmad4.9 Let v € B(r), withr > 0. Letk € N, e € S, W € CYP(S) and
w, w1, Y1, ..., Y € CcLB(S). Define the functions F1, F, F3 : Se — R by

A , Ryo, 0 —
F10) = M‘I‘(RQU)Dk/Ca(W,Reff,@)[l//i]i:l ,,,,, rdV (o),
s |e—a|N+°‘ ¥

A , w1, Rgo, 0 —
Fro) = [ 2222t R0 0) gy DE K (v, Reo, O)[Wilicr... x dV (@)
s le — G|N+a 2

and

YRT) Dk, Roor, OYilimr, x V(o). (446)

F0)=| —————
3(0) (e — o vz Dyka V. Roo, O)LYili-t....

Then, there exists a constant c = ¢(N, «, B, k,r) > 1 such that

k
1Fillcpas,y < c(L+1¥lcrss) lolcresIWlcres [ [1¥illciss. @47

i=1
k
c
||f2||cﬁ(se =c (1 + ||1/f||c1-t3(s)) ||w||c1-ﬂ(s) ||CU1||c1vﬂ(s)||‘1’||c1«ﬂ(s) l_[ Vi ||clyﬁ(s)

i=1

(4.48)

and

k
||f3||cﬂ(sg =c (1 + ||1/f||c1-ﬁ(s))c ||‘p||c1,ﬁ(5) 1_[ ||1ﬂi||c1,ﬂ(s)~ (4.49)
i=l1

Proof Let 01, 6, € S,. We first note that, for o € §,

|[W(Rg,0) — W(Rg,0)| < Cl[Wllcrscs)|Ro0 — Rg,o| < CllW|crp(s)l01 — 02l
(4.50)

To prove estimate (4.47) for Fj, we recall that by (4.33) we have

[A1(@, Ry 0,601) — Ai(w, Rg,0, )| < Cllollcrss)i(o, 01, 02),
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where
(0,61, 62) :=le — |16 — 621F + e — o |P |6 — 6.
Combining this with the fact that

|A1(@, Ryo, 0)] < Cllollcrscs) |Roo — 0P

= Clollcrs le — o' foro € S,0 €S8,
by (4.32), we find that

|A1 (@, Ro,0.01) — A1(@, Rg,0.,02)| < Cllol|c1.p(s) min(le — o1 u(o. 61, 62)).
(4.51)

Using inductively (4.28) together with Lemma 4.8, (4.50) and (4.51), we get the
estimate

k
1F1; 61,0211 < ¢ (1+ ¥ llcres) Nolcrss 1Wllcrses [ [ 1¥illerses

i=1

in(le — o |'+F 01,6
x (161 —92|ﬂ |€—G|1+'37N7ad‘/(0)+ min(je — 0| , (o, 01, 2))dV(C7)
s s le — o |N+e
(4.52)
forall 61, 6, € S. Since
in(je — o|*P 61,6
/mln(le o', u(o, 01, 2))dV(0)
s le — o | N+
.01, 6
5/ |e—a|1+ﬂ’N’°‘dV(0)+/ Mw—le)dV(a)
le—0| <161 —63] 61-62]<le—o]| |€ — O[T

< / e — o N gy (o)
le—o|<]01—02|
+/ {161 = 621Ple — o' N7 1 16) — sl — o 1PN *}aV (o)
|01 —62|<|e—0|
< Cloy — 6P,

we thus deduce from (4.52) that
k

I1F1; 61, 021 <clor =021~ (14 11¥ llcras) Nlollcrs s 1W I erses) [ T I1villcrss)-

i=1
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Since, by a similar but easier argument, we have

k

|Fil <c(l+ ||W||c1,/3(5))c lollcre sy IVl cre s 1_[ I¥illcresy on Se,
i=1

(4.47) follows.
Next we consider JF>. For this we recall that

|A2(w, w1, Ryo, 0)| < Cllollcrssllorlcrs s le — ol
by (4.34), and that

[A2(w, w1, Ry, 0, 01) — Azx(w, w1, Ry, 0, 02)]
< Clanllcres lwlerss)le — o*161 — 621F

by (4.35). Consequently, we find that

[[F2; 01, 602]] <c (1 + ||W||c1,ﬂ(5))c ||w||clvﬁ(s)||wl ||Cl,»‘3(s)

k
< [ Wlcrees [ I1villcrses
i=1

x |01 — 92|ﬁ/ le— o> NV (o) < ¢ (1+ ||1ﬁ||c1,ﬂ(5))c llw
N
k
||c1,ﬁ(s)||601 ||C11ﬁ(S)||\IJ||C1-/3(S)|91 - 92|ﬂ 1_[ i ”Clvﬂ(S)- (4.53)
i=1

Moreover, by a similar but easier argument,

k
|Fa2l<c (1+||1/f||cl.ﬂ(s))c ||0)||Clvﬁ(s)||0)1||CIYB(S)||‘*I"||C1~/3(5) l_[ ||1/fi||cl,ﬂ(g) on S,.
i=1

(4.54)

Combining (4.53) and (4.54), we get (4.48), as claimed. We skip the proof of (4.49),
which is similar but easier. O

The following result contains all what is needed to prove the regularity of i and
hence of 4.

Proposition 4.10 Letk € NU{0},r > 0, 1, ..., Yx € CLB(S)andlet M; : S — R
withi =1, 2, 3, be defined by

M;(6) :/SD@M,W, 0. Y1, ... yildV (o),
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where M1, My, M3 : B(r) x S x S — R are given by

M1 .6) = TR . 0) Y0,
MY, 0,0) = %K W, 0,0) ¥V (),
M3y, 0,6) = mﬁm, a,0) ¥~ (o).
Then, for i = 1,2,3, M; € CP~%(S), and there exists a constant ¢ =

¢(N,a, B,k,r) > 1 such that

k
||Mi||cﬂfa(s) <c(l+ ||¢||C1-/3(5))C 1_[ Vi ||cl,ﬂ(s), (4.55)

i=1
understanding that the last product equals 1 if k = 0.

Proof To prove (4.55), it suffices to fix e € S and show that

k
IMi@)] < e+ 1Y llcres)” [ [I¥ilcrecs) (4.56)

i=1
and
k
M (01) — Mi(02)] < clor — 621~ (1 + ¥ llcres)” 1_[ Ivillcrses) (4.57)
i=1
for 0, 01,6, € S,, where S, is defined in (4.24) and ¢ > 1 does not depend on e. For
this, we define a Lipschitz continuous map 6 +— Ry of rotations as in Remark 4.4

corresponding to e, so that the inclusion in (4.24) holds. By a change of variable, we
then have

M,»(@):/D{;/M,-(w, Ryo, )1, ..., YxldV (o) forf € S,.
N

We first consider the case i = 1, and we note that

(Y, 0,0)

P vN"2(Ryo) forb € S,,

My, Rygo,0) =

where

T, :B(r) x S x Se - R definedby T|(,0,0) = A1(¥, Rgo, G)Ka(w, Ryo, 0).
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By (4.4), we thus have

DY My, Ry, )11, ., Y]

1
T le—o|Nte > ‘I’N(RGU)DIZ\/ITIW, o, OYilien,

Ne

where UV = V=2 when k = ||, and

k—|N|-1
N 1_[ (N —2 — ¢) yN-2-G=IND 1_[ ¥; whenk > |V
=0 jeNe

(noting that |N¢| = k — |A]). By (4.5) we have, if [N| > 1,

D,l/fle(llf, o, N Wilien =AY, Ryo, 9)Dl/fvlfa(lﬁ, Roo, D) Vilien
+ Z A1 (¥j, Roo, 9)D,|;\”_1Ea(lﬁ, Roo, ) [Vilien\ij}-

JEN
Consequently,
DEMI (Y, Roo . O)1. ... vl = Y MY (0.0), (4.58)
Nefk
where
MM (0,0 _ ¥R AW, Rgo, ) DN, (0, Reor, 0) [0
1 (0’ )_m( 1(1//1 60, ) W Ot(ws 60, )[1/[1]!'6./\/’
+ Z A (¥j, Rgo, 9)D1|Z\[I_1Ea(1/', Ryo, 9)[1/fi]ie/\/\{j}),
jeN

where the second summand does not appear if |A/| = 0. Clearly we also have that

II\I’Nllcl,ﬁ(s) <c(+ ¥ licrss)” 1_[ Villces)- (4.59)
ieN¢

Denoting
MY s, > R, MW(@):/SMN(U, 0)dV (o),
by Lemma 4.9 it follows that M{ € CP~2(S,) and that

IMV Nl ctmags,y < e+ 1 les ) NN llesesy [T 1¥ilcracs)
ieN
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withaconstantc > 1dependingonlyon N, «, 8, , and | /| (in particular, independent
of e € §). Since

M@ =Y MY@) forges,
N’eé’”k

by (4.58), we thus obtain the estimates (4.56) and (4.57) fori = 1, as desired.

The estimate for M follows the same arguments as above but using (4.6) in the
place of (4.5) while the one for M3 is similar but easier. In theses two cases, we get
a CP(S) estimate for M» and M3, and in particular a C#~%(S) estimate. O

We are now in position to prove the regularity of the NMC operator of perturbed
spheres, thereby completing the proof of Theorem 2.1.

Theorem 4.11 With O defined by (2.3), the map h : © — CP~%(S) defined by (2.7)
is smooth.

Proof We fixr > 0. By (4.17), we have

~ ~ 1 ~
h(g) = -1+ @) hi(1+¢) +ha(l+¢)+ Jrg0/13(1+§0) (4.60)

for ¢ € O with ¢ > r — 1 on S, where the maps Ej : B(r) — CP~%(S) are given by

ﬁJ»(w)(e):fsM,-(w, 0,0)dV ()

for j =1, 2, 3 and the function M; is defined in Proposition 4.10—which guarantees
that h takes values in CA~%(S). Thus it suffices to establish that /1 ; j.forj=1,2,3,
are smooth on B(r) for every r > 0.

For this, we only need to prove that, for k € N,

D’fﬁj(l//)sz{;Mj(t//, 0,-)dV (o) in Fréchet sense (4.61)
S

for j = 1,2, 3. Then the continuity of D¥h ;j is a well known consequence of the
existence of Dk+1h in Fréchet sense. To prove (4.61), we proceed by induction. For
k =0, the statement is true by definition. Let us now assume that the statement holds
true for some k > 0. Then thj(l//) is given by

DY, -, Yr)(0) = /SD’,;,M,-W, o, O, YildV (o). (4.62)
We fix ¥rq, ..., Yy € CL-B(S). Moreover, for Y eB@r)andv € CLB(S), we put

Ty, v,@):/SDf;/HMj(lp,U,O)[lpl,...,lpk,v]dV(a).
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Let ¥ € B(r) and v € C1F(S) with [|v] 165, < r/2. We have

DRy + 0¥, - .., Yi1©) — DX () [, - ., Yil(0) — T(, v, 0)

1
:/S/O {D$+1M./(W+pv,o,9)—D@'HMj(l//, a,e)}[wl,...,wk,u]dpdV(a)

1 1
= / ,o/ HPT(0)dTdp,
0 0

where
HPT(O) = /SD{;,“M,(w + 1pv, 0, DY1, ..., Yr, v, v]dV (o).

Note that ¥ + tpv € B(r/2) for every t, p € [0, 1]. By Proposition 4.10, we have

k
IH” N cpagsy < c(L+ 1Y + TPU”Cl,ﬁ(S))C||U||2C|,ﬁ(R) 1_[ luillcre s
i=1
k
< c(l+1¥lcrses) + Ivlleres) Iolgiss [ TIvillerses)
i=1

with a constant ¢ > 1 independent of p, 7, ¥, ¥, ..., ¥ and v. Consequently,

IDXR; (0 + )W - ] = DRI DL - ] = T v, )l esmags)

k

< e+ W llcracsy + Wlerss) 1012 [T 1¥illcras):
i=1

This shows that D¥1 j () exists in Fréchet sense, and that

DU . kvl = T(Wv.) € CPs).
We conclude that (4.61) holds for k 4 1 in place of k, and thus the proof is finished. O

We close this section with an outline of the proof of Proposition 2.2, which is
concerned with the maps G and G,. Since the definition of these functions in (2.9)
and (2.10) does not involve singular integrals, the proof is much easier than the proof of
Theorem 2.1 but still somewhat lengthy if all details are carried out. In the following,
we point out the main steps.

Sketch of the proof of Proposition 2.2 We fix c¢1 € (0, cp) arbitrarily, and we note that

it clearly suffices to prove the statement with ¢ replaced by c¢;. For p € %, we then
use polar coordinates to write G, as follows:
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1 1
——G (T, 0) = d
o G 9® /B TG — Fp(@) + pNre ™

1+¢(0) FN-1
:// N drdV (o)
sJo |T(ro — Fy(0)) + p|V+

: (14 @)V pN-!
- dodV
/S/o It {p(1+p())o — (1 + @0))8} + p|N+e pdV(o)
L (14 o)V pN-!
- dpdV (o), 4.63
/s/o D, (t. ¢)(p. 0. O) VT @) (4.63)

with

Dp(z,9)(p,0,0) =1 {p(l+¢(0))o — (14 ¢(0))0} + p.

[

We point out that, for ¢ € O, t € -3, T])’ p €%, pel01]lando,f € S we
have

D,y (. 9)(p. 0. 0)] = |pl — 7] |p(1 + @(0))o — (1 + p(6))0
> |pl - % Q@ +2lllLes)

>|pl—c1=2co—c1 >0 (4.64)

by the definition of cq in (2.1).
We now claim that G, is of class C k for all k € N U {0}, and that every partial
derivative 0¥ G, of order |y| = k with respect to 7 and ¢ can be written as

0 Gyt @)W1, ... Vel(®)

I PYN(z,p,0,0,00). 9®), p)
— (6 ; dpdV
i /\/%:YQ/ ILwe ,g[fcw’(") D, (5. 9)p. o o)V rerze V)

for Y, ..., ¥ € Cl*ﬂ(S), 6 € S. Here, £ < k is the number of derivatives with
respect to ¢, .%% is is the set of subsets of {1, ..., £} and N¢ = {1, ..., ¢\ N for
N € .%;. Moreover, the functions PYN are polynomials in all variables which are
of degree at most 2k in the variable p = (p1, ..., py). This representation follows
easily from (4.63). We use it, together with a similar induction argument as in the
proof of Theorem 4.11, to show that G, is a smooth map. In this step we also use the
embeddings CLP(S) — C1(S) — CP~(S) and the estimate

. Pz, p,0,,90(0), (), p)
HN; I_A[/ Vi) j];[/ s e TP e ch<s>

14

<cy (L4 leleis) " 1IN [ TIvelcrs), (4.65)
i=1
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which can be deduced from (4.64) since |p| —c1 = |p|—(c1/co)co = |p|(1—c1/co) >
0. Here ¢, > 1is a constant which depends on y but not on 7, p, o and p.

It thus follows that G, : (=%, §) x O — CP=(8) is of class C*°, and that

14

d _N—
<dy(1+llglcrs)” 1o N [ TIvillcrscs)

”ayGl’(f’ ... W]Hcﬁ—am -

i=1

(4.66)

for every partial derivative 97 G, of the form above, and with a constant 4, > 0

independent of t and p. Consequently, the series pe s 397G (7, @) is convergent

in the space CP~($), and the convergence is uniform in t € (—%, %) and ¢ € O.

From this we deduce that the map

=Y G,: (—64—1, C4—1) x O = CP(s)
pe
is of class C®°, as claimed. O

5 The linearized NMC operator

In this section, we compute a simple expression for the linearization at zero of the
nonlocal mean curvature operator & defined in (2.8), and we study its invertibility
properties between suitably chosen function spaces. As we mentioned in the intro-
duction, once the Fréchet differentiability of 4 is proved—as we have done—, the
expression can also be derived from the results of [9, Appendix, Proposition B.2] and
[12, Section 6] applied to the special case of the sphere S. For completeness, we give
a direct proof in our setting based on formula (4.60).

Lemma 5.1 Let o € (0,1), B € (a, 1), and leth : © c CVB(S) — CP~(S) be
defined by (2.8). Then, we have

1
ZDh(0)p = Lag — i in CP74(S) forg € CVP(S), (5.1)
o

with

¢0) —¢(0)

Lyp®) =PV | ——7Fp—

dV(o) foreS 5.2)

and )y given in (1.9) for k = 1. In addition, Ly defines a continuous linear operator
CLA(S) — CP(S).

Before proving the lemma, we first discuss the spectral representation of the operator
L, and the special role of . For k € N, we let & be the space of spherical harmonics
of degree k, and we denote by ny its dimension. We recall that np = 1 and that &
consists of constant functions, whereas n; = N and & is spanned by the coordinate
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functions 6 +— 6; fori = 1,..., N. As already mentioned in the introduction, we
have

Loy = Ay forevery k € Nand ¢ € &, 5.3)
where

Ak

_ aVD2p(1—w)/2) [ T (EEEE) (M) 4
T U+ X (N +ay2) \T (B e2) sy ) OF

see e.g. [17, Lemma 6.26]. Here I" denotes the usual Gamma function, see e.g. [14,
Section 8.3] for its generalization to negative non-integer real numbers. For the proof
of Lemma 5.1, it will be useful to represent the eigenvalue A in a different form. For
this we note that, if & € S is fixed, then the function ¢ +— Yy (o) := o -6 is a spherical
harmonic of degree one, so that

o-0 (c—0)-0

1 —
M =MYp0) =LyYs(0) = | ———=dV = | ———dV(o).
1=21Yp(0) = LaYp(0) /S|9—0|N+°‘ (@) 10 —oVTa (@)

(5.5)

Comparing this with (1.1), we see that %d N.oA1 equals the NMC of the sphere S, as
stated in (1.10). Moreover, since |0 — <7|2 = 2(1 — o - 6), we may rewrite the first
integral in (5.5) to obtain the equality

1 1
AM==| ————dV(o), 5.6
1 2/5|9—o|N+a*2 ©) (5.6)

which will be used in the proof of Lemma 5.1.
Proof of Lemma 5.1 By (4.60), we have

1 ~
”;‘ph3(1 1) (5.7)

h(@) = —(1+ @) k(1 + @) + ha(l + @) +
with
ﬁjw)(e):/SM,-(w, 6,6)dV (o),

for j = 1, 2,3, where the function~s M are defined in Proposition 4.10. Let ¢ €
C#(8). By (4.61), the functions D1 ;(1)p € COP~%(S) are given by

(Dh; (1)) (6) = /;Bll,Mj(l,a, 0)pdV (o). (5.8)
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Foro,0 € S, 0 # 0 we have

1

M1(17039)=M2(1’079)=0’ MS(I’O"G):W

and

Ailg,0,0) _¢0) —¢(0) — (0 —0) V(o)
|0 — o |N+te |0 — o |N+e ’

dyMi(1,0,0)p =

dy Mr(1,0,0)p =0,

Ay Kao(1,0,0)0 + (N — De(0)
|9 _ O-|N+a—2

=22 00) + 9(0) + (N — De(o)
B 16 — o [N+a—2

B (N+a)p@)+ 2+a—N)p(o)
2|9 _ G|N+a72 ’

oy M3(1,0,0)p =

since A1(1,-,-) =0and Ax(1,-,-) = dy Aa2(1,-, )¢ = 0on S x S. Combining this
with (5.7) and (5.8), and also using (5.5) or (5.6), we find that

(Dh(0)p) (6) =/S{—3w/xM1(1,0, 0)p + 0y Mx(1,0,0)¢

L $OMs(1,0,6) ;- 3y Ms(1, 0, 0)p }dv(a)
- /S 9(0) —w(;)_—;?N::) LGOI
- [ N toa— 2:7;(‘9_);1&;‘; — NP 4y ()
_ /S @) — ¢(<|79):(§TN:5) V(o) AV (o) — aip(®)

N—a—-2 (1—-0-0)(e®) — )
-2 Rt Av(e).  (59)

Next, for6 € S, welet B.(0) beaball on S centeredatd € S withradius e € (0, 1).
We have

/ @) —¢0) = (0 —0) - Ve(o) dV (o)
s

|9 _J|N+a

@) —p(0) + (0 —0) - Vo(o)

= lim
|9 _J|N+a

e=>0J5\B,(6)

dV(o), (5.10)
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and, for ¢ > 0 small, integrating by parts,

(c —6)-Vo(o) / (0 —6)-5(0) @) —p©0) ~
/S\Bg(e) 0 — o |Nte @ 38,(6) 6 — o |Nte (@)

Ps(o —0)

6o Ve dVv (o). (5.11)

+f (9(©) — ¢(0))divy
S\B:(6)

Here and in the following, d B.(6) denotes the relative boundary of B.(0) in S, d 1%
denotes the (N — 2)-dimensional Hausdorff measure on d B (0) and v the unit outer
normal vector field of dB.(6) on S. Moreover, the differential operators V = V,,
divy, and A, on the sphere S are all defined with respect to the standard metric on S,
and

P,(c—0)=0—-60—((c—0)-0)c=0—-60—-—(1—-0-0)0=(0-0)0 —0

(5.12)
is the orthogonal projection of o — 6 onto the tangent space T, S. Since
9(0) = ¢(6) = Vg(©) - (6 —6) + O(lo —0]"*F) as|o —6] — 0,
and, by antisymmetry with respect to reflection at the axis R6,
/ (0 =6)-1(0)(Ve(®) - (0 —0)) AV (o) = 0,
9B, (0) 0 — o | N+
we find that

Now we note that, by (5.12), we have
—Vs(0-0)=—{0—(0 -0)0} = Py(c —0) onS,
and therefore

divy Py(0 —0) = —Ay (0 -0) = (N — 1)(0 - 0).
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Consequently,
. Ps(0—0) o-0 N—
legm:(N—l)m-f—Pg(O'—@)V|9—O‘| o
o-0 o—0
=(N — 1)m - (N+a)(0-0)0 —0)- 16 = o [Ntatz
o-0 N+oa 1+0-6
=(N -1 -
( )|9—U|N+°‘ 2 |9—0|N+°‘
2+a—N)o -0+ (N +a)
= — . 5.14
216 — 0|N+“ ( )
Combining (5.10), (5.11), (5.13) and (5.14), we conclude that
) —¢(0) — (0 —0) - Ve(o)
av 5.15
/S T ©) (5.15)
1 2—N— N—-2— . -
_1 lim/ {( o) + ( a)o -0} (p(0) — ¢(0)) AV (o)
2e=0J5\8,0) |6 — o |N+e
(5.16)
and thus, by (5.9),
(Dh(0)¢) (@) = 1 lim {a+N-=2)+ 2 +a—N)o -0} (p®) — (o)) AV (o)

2 e—0 S\ B¢ (6) |9 —O’|N+a

N—-a-2_ / (I-0-0)(¢®)—¢(0))
S\B:(6)

— ——— lim
2 e—0 |0 — o |Nte

dV (o) —arip0)

0) —
—a lim L‘]’;(f)dwa) — ahe(6),
e=>0Js\B,(0) 10 — o[V F¢
as claimed.
The last statement—that L, is continuous between C1#(S) — CA~%(S)—is a
direct consequence of our nonlinear result of Theorem 2.2. O

Next, we wish to study invertibility properties of the linearized operator Dh(0)
between suitably chosen function spaces. The following theorem is the main result of
this section.

Theorem 5.2 Let o € (0, 1), B € («, 1), and let the subspaces X C C1B(S), Y C
CP=(8) be defined by (1.16) and (1.17). Then, the restriction to X of the linearized
NMC operator Dh(0) : X — Y is an isomorphism onto Y.

The remainder of this section is devoted to the proof of this theorem.

In the following, for k € N U {0}, we let Py : L?(S) — L?(S) denote the (-, -);2-
orthogonal projections on &—the space of spherical harmonics of degree k. For p > 0,
we then define the Sobolev space

HP(S) := iu e L%(S) : 2(1 +k2)"’||Pku||2L2(S) < oo}, (5.17)
k=0
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which is a Hilbert space with the scalar product
o
(u,v) Z(l + k)P (Peu, Prv)p2 foru, v e HP(S). (5.18)
k=0

We need the following result on the mapping properties of the operator L, with
regard to the scale of Sobolev spaces H”(S).

Lemma 5.3 Leta € (0,1) and B € («, 1).

(i) For given p > 0, the map
o o
V> Lav:=ZAkka=ZLaka (5.19)
k=0 k=0

defines a co~ntinu0us linear operator Za C HPHte sy — HP(S).
Moreover, Lo +id : HPH14Y(S) — HP(S) is an isomorphism.
(ii) We have C1-P(S) c H'T¥(S) and

Loy = Loy in L2(S) fory € CHA(S) (5.20)

with Ly : H'(S) — L2(S) given in (5.19).
(iii) The operator Ly, + id restricts to a bijective map C*°(S) — C*°(S).

Proof (1) Since

r
TC*0) | foralloer
r—>+oo I'(7)7¢

(see e.g. [16, Page 15, Problem 7]), we deduce from (5.4) that

i Ak B n(N—l)/2F((l—Ol)/2) © ) (5.21)
ke KHO T (T + )2 T(N +a)2) '

Using this and the fact that A; > 0 for all k € N U {0}, we infer that ZO,, as defined in
(5.19), is a well defined continuous linear operator H”+t1+%(§) — H*(S), and that
Lo +idisan isomorphism.

(i1) In the following, we let C1, C3, ... denote positive constants depending only
on N, « and B. For v € C1-A(S), by Lemma 5.1, we have

||Lon||L2(S) <( ||LaW||cﬂfor(s) = C2||W||cleﬁ(s)

and thus
ILaVliz2esy + 1V ll2s) < Call¥licrss)- (5.22)
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Next we remark that, as a consequence of the spectral representation of the Laplace—
Beltrami operator on S, we have

C®(S) = ﬂ HP(S) = ﬂ HP(S). (5.23)

peN p=0

Moreover, for Y € C°°(S) the series Z/?io Mk Py converges in L?(S) and the series
Z/ch;o Pryr converges in C™(S) for every m € N. From this and (5.22) we deduce
that

4 4
— i — T _T 00
Lo = lim Ly ) Py = lim 3 LoPeyy = Loy for yr € C¥(S).
k=0 k=0
Combining this with (i) and (5.22), we find that

11105y = Ca(IlLaW lli2s) + 1¥ll1265)) < Csllllerngs) for v € C(S),
(5.24)

Next, let v € C1#(S), and let ¥, € C°(S), n € Nsatisfy v, — ¥ in C1#(S). Then
(5.24) implies that (¥,,),en is a Cauchy sequence in H I+ (§), and by completeness
this forces ¥ € H'!T*(S). Moreover, by passing to the limit, we deduce that v/, — ¥
in H'*%(S), which implies that

Loy = lim Loy, = lim Loy, in L(S).
n—0o0 n— o0
Since moreover Ly = lim,,— 0 Lo, in C'B"’(S) by Lemma 5.1, we obtain (5.20).
(iii) This follows immediately from (i), (ii) and (5.23). O

The following lemma provides an analogue for L, + id of the classical interior
Holder regularity estimate for the classical fractional Laplacian. In the proof, we will
apply a series of changes of variables to reduce our problem to one where regularity
for the classical fractional Laplacian can be applied.

Lemmas4 Let « € (0,1), B € (a,1). Then there exists a constant C =
C(N, a, B) > 0 such that

I¥llcresy < ClLa¥ + Ylicp—a(sy forall € CF(S). (5.25)

To establish this lemma we need a standard interpolation estimate. We include a
simple proof for the convenience of the reader.

Lemma 5.5 Let B € (0, 1). Then for every ¢ > 0 there exists K = K(¢, N, ) > 0
such that

W llcscs) < ellvlicis) + KVl foreveryyr € C(S). (5.26)
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Proof In the following, we let Cy, C», ..., denote positive constants which only
depend on N. As a consequence of (4.9), we have

Y (©) — ¥ (o) < Cill¥lcis)l0 —o| for6,o €S, (5.27)
and thus
|1ﬂ('9) - W(U)| 1-B 1-8
WSCIW—M Vlcis) = Cio  Plvllicrs
forf,0 € S with |0 —o| < 6.
Moreover,
[y (©®) — o) 2 .
W < S—ﬁ”w”LOO(S) fOI'Q, o € S with |9 — Ul > 8.

Combining these inequalities, we find that

[V (©0) — ¥ (o)

_ 2
9 —olP < (8! ﬂ||1ﬂ||c1(5) + 8—/3||1p||Lo<>(5) for6,0 € S. (5.28)

Next, forO < r < 1and 6 € S, we let d, denote the (N — 1)-dimensional volume
of the ball B, (0) on S, which clearly does not depend on 6. By (5.27) we then have

1 1
vor- 4 [ veave|=o [ we-verave
dr JB, () dr JB, )

C
< d—IIWHCI(S)/ 0 —oldV(e) <rCalYllcis) forallf €S,
r Br(0)

and thus
1
IWliees) = rCall¥lers +max|— [ $(@dV(o)
fes dr B, (0)
I llp1cs 172
<rClYlicis + ——=—2 < rCll¥llcigs) + 11l 2 s)-
d, dy
(5.29)

Combining (5.28) and (5.29), we find that

[ (0) — ¥ (o)l
0,0eS |60 — U|ﬁ
0#o0

1-8 2
18" lers + (55 + 1)1V e

+ 1Y llLecs)

IV licss)

IA

|S|1/2( )

2
1—
= [ +roa (G5 + ) W leis + (55 + )Wl
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Near-sphere lattices with constant nonlocal mean curvature

For a given ¢ > 0, we may now choose § > 0 such that C1<Sl_'3 < % and then

r > 0 such thatrCz(g% + 1) < £.Then (5.26) follows with K = '5],—”2(5% n 1). 0

We can now give the

Proof of Lemma 5.4 In the following, the letter C stands for positive constants which
may change from line to line but only depend on N, @ and 8. Let ¥ € C*°(S) and
g = Loy +y € C®(S). Wedefineu € C*RNM\0O)NL®RN) by u(x) = ¥ (x/|x])
for x # 0. For x € RV\{0}, a change of variable in polar coordinates gives, with

r=|x|and9=|§—|,

(=AY +0/2, () = C/ u(x) — u(y) dy

RV |x — y[NHI+e

o[ V) ~¥©) -
=< G e aveo,

We make the change of variable 7 = -

(rr| to get
(—A)(1+“)/2u(x)
YO — (o) [ (tl0 —o| +r)N!
s 10 —alNte Jo (2 +r|0 — o] +r)NHiTe/2

=C dtdV (o).

(5.30)

To further simplify this expression, we define the function

(ta + b)N—! J
@+ b(ta + bz

Q :[0,00) x (0,00) - R, Qf(a,b) :=C‘/<>Q
0

Using the change of variable s = l%, we see that

(sa+ DHN-! J
(2 + sa + HNF1+a2

0(a,b) = b—l—‘)‘cfoo
0

From this we see that Q € C*°([0, c0) x (0, 00)). Moreover, from (5.30) we get that

V() —y(o)
s 10 —o|Nte
=0(0,r) Loy (0)
+/ V() —y(o)

S

|9 —0|N+°‘

(=) IF 2y (x) = 0(16 — o)), r)dV (o)

(210 =1 = 00.n)aVe)

=0(0,7) (g(0) — ¥ (©))
+/ v(O) =y (!
S

R v ) 0 —ol|,r)dtdV (o).
G oot |, 200 —0l.ndrdV (@)
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Next, we define

Qg.y(x) = 00, |x(gx/Ix]) — ¥ (x/x])

and
Y (0) —yo) (!
G;/,()C): Sm A BaQ(r|9—6|,r)drdV(a)
for x € RV\{0}, r = |x|, 6 = ﬁ
X
so that

(—A)IT2y(x) = Qg 4 (x) + Gy (x) forx € RV\{0}.

(5.31)
We also put A := {x € RV : % < |x] <2}. We have Qg y € CP=2(A) and
1Qg.yllcs-acay < C (gl cracs) + 1¥llcoeacs)) - (5.32)
Next we show that
Gy € CP9(A) with [Gyllcsac < Clvlcns). (5.33)
To this end, we write
Gy(x) = ) % 01 3, 0(t|0 — |, r)dtdV (o)
= 0,000, ") La—1¥(60) + Gy (x)
with
Lo-t®) = [ FOE v o)
and
Gy(x) = : %/01 /0] 192Q(\ 110 — 0|, r) drdrdV (o)
for Y € S. We will show that
ILa—1¥llcp—asy = ClV e s) (5.34)

and that
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I1Gy lct—aay = CliVlics)- (5.35)

From this (5.33) follows, since d, Q(0, r) is equal to a constant times ol
To show (5.34) and (5.35), it suffices to fix e € S arbitrarily, and prove that

ILac1¥llcieis,y < Cllicas) with Se:={8€S:6-¢=0} (536)
and that

||5|/f||c/3—a(Ae) <Cl¥lcpisy withAg,:={xe€ A : x-e>0} (5.37)
To show these estimates, we consider again a Lipschitz continuous map of rotations

S+ SO(N), 0 — Ry with the property that (4.24) (4.25) holds, so that by a change
of variable we have

La_lw(9)=/5%dww for 6 € S,. (5.38)

Since

(WO = ¥ (R ) — {11(62) — ¥ (Reyo) |
< Cl¥lics sy min{|1 — 60217, 161 — Ro 0P + 162 — Rg,0|F)
< ClYlics sy min{|f1 — 621°, le — o|F} for 6,6, € S, and o € S,

we may deduce by a similar integration as in the proof of Lemma 4.9 that (5.36) holds.
To prove (5.37), we write, again by a change of variable,

¥ (0) — ¥ (Rgo)

Gy = | oo

q(r,o0)dV(oc) forx =r0 € A, (5.39)
S

with
1,1
g €C®([1/2,21xS), q(r,0) :=/ / t92Q(rtle —a|, r)dtdh.
0 Jo
Since the function o — m is integrable over S, it is then easy to deduce that

1Gyllcs-aca,y < CliGyllcsa,) < ClVllcses)-
Hence (5.37) holds as well.

In view of (5.31), (5.32) and (5.35), we can thus apply local Holder regularity
estimates for the fractional Laplacian. A version suited for our situation is that of
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Theorem 1.3 of [10], which we apply rescaled and with k = 0 and y = 8 — o. We
conclude that u € Cllo’f (A), and that

||W||c1,ﬂ(s) <C (||g||cﬂfa(s) + ||W||c/3(s) + ||M||LOC(RN))
< C (llgllcpacsy + 1V lces)) -

We finally combine this with Lemma 5.5, applied with ¢ = % We also apply
the isomorphism statement in Lemma 5.3(i) to get that | [l 25y < ¥ || gr+ecsy <
CligllL2¢s)- We conclude the estimate

W licraes) < € (lgllcs-acs) +1¥112s)
<C (||g||cﬁfa(s) + ||g||L2(S)) < Cligllgpe(s)-
Thus (5.25) holds. O

By a density argument, we may now deduce the following proposition from
Lemma 5.3(iii) and Lemma 5.4.

Proposition 5.6 Leto € (0, 1), B € («, 1), and let the operator Ly be given by (5.2).
Then the operator

Lo +id: CHP(8) - CcP~($)

is an isomorphism.

Proof We first show that Ker (Lo + id) = {0}. Let v € C#(S) with Loy +v¢ =0
in C#~*(S). By Lemma 5.3(ii) we then have Lo ¥ + ¥ = Loy + ¢ = 01in L2(S),
and thus ¥ = 0 by Lemma 5.3(i).

Next we show that L, + id is onto. For this, we let g € C#~(S) and let g, €
C>(S) be a sequence such that g, — g in C#~%(S). By Lemma 5.3(iii), there exists
Yy € C*(S), n € N, with Ly, + ¥, = g,. Moreover, by Lemma 5.4 we have

1Y — 1ﬂm”chﬂ(s) =Clign — gm”Cﬂ—Dl(S) forn,m € N.

Consequently, the sequence (), is a Cauchy sequence in C LA(S), so that Yp —> ¥
in C1#(S). Moreover, by continuity we have

Lo+ = lim (Lo + Yn) = lim gy =g in C/74(S).

It follows that the continuous linear map L, + id : C18(S) — CP~%(S) is bijective,
and thus it is an isomorphism by the open mapping theorem. O

Proof of Theorem 5.2 (completed) By Proposition 5.6, we have that

Ly +id: X — Y isanisomorphism. (5.40)
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Near-sphere lattices with constant nonlocal mean curvature

Since the inclusion id : X — Y is a compact operator, it follows that

L:=Ly—Aid: X — Y isaFredholm operator of index zero.

Moreover, by Lemma 5.3(ii) and (5.3), we have that Ker L = X N & = {0} since
X is made of even functions and & contains only odd ones. Consequently, £ is an
isomorphism, and thus DA(0) = oL : X — Y is an isomorphism as well. O
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