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OmpSs@FPGA framework for high performance
FPGA computing
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Abstract—This paper presents the new features of the OmpSs@FPGA framework. OmpSs is a data-flow programming model that
supports task nesting and dependencies to target asynchronous parallelism and heterogeneity. OmpSs@FPGA is the extension of the
programming model addressed specifically to FPGAs. OmpSs environment is built on top of Mercurium source to source compiler and
Nanos++ runtime system. To address FPGA specifics Mercurium compiler implements several FPGA related features as local variable
caching, wide memory accesses or accelerator replication. In addition, part of the Nanos++ runtime has been ported to hardware.
Driven by the compiler this new hardware runtime adds new features to FPGA codes, such as task creation and dependence
management, providing both performance increases and ease of programming. To demonstrate these new capabilities, different high
performance benchmarks have been evaluated over different FPGA platforms using the OmpSs programming model. The results
demonstrate that programs that use the OmpSs programming model achieve very competitive performance with low to moderate
porting effort compared to other FPGA implementations.

Index Terms—FPGA, reconfigurable hardware, parallel architectures, task-based programming models, High-Level Synthesis
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1 INTRODUCTION

F IELD Programmable Gate Arrays (FPGA) are becoming
popular in recent times, due to their high flexibility to

create custom hardware designs in a relatively short time. In
a matter of hours, one can test and run an RTL design with-
out having to implement it in silicon, which can potentially
take months. This property has been exploited to accelerate
many applications, ranging from digital signal processing to
high performance computing, including machine learning.
The main challenge comes from the fact that traditionally
FPGAs are programmed directly with Hardware Descrip-
tion Languages (HDL). These languages, like Verilog or
VHDL, offer the maximum flexibility and performance at
the cost of programmability. Developing an RTL application
directly in HDL usually takes significantly more effort and
time than with a high level language.

In this paper we present new features and improvements
to OmpSs@FPGA [1], our framework that allows to program
heterogeneous systems with FPGAs. With OmpSs@FPGA,
the programmer is able to accelerate applications in FPGAs
easily and, most importantly, in a short time. The framework
is an extension of OmpSs [2], a task-based programming
model. Written in C/C++ or Fortran, the user code can be
enhanced and parallelized with pragmas, in an OpenMP-
like syntax. These pragmas are used to declare parts of the
code, like functions, as tasks which are the basic unit of
work of the programming model. In the traditional model, a
task is executed on a CPU thread, and can run concurrently
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Barcelona, Catalonia 08034, Spain.
E-mail: {calvarez, djimenez, xavim}@ac.upc.edu

with other tasks. Dependencies can be declared for any task,
avoiding that two tasks that operate over the same memory
region execute in parallel, by establishing an implicit exe-
cution order through dynamic dependence graphs. In order
to generate the executable from the original code, OmpSs
uses its own compiler, Mercurium, and runtime system,
Nanos++. The compiler processes the pragmas, transforms
the code as needed and generates calls to the Nanos++
API [3]. The runtime manages everything needed to execute
tasks concurrently, by analyzing task dependencies dynam-
ically and scheduling them to the CPU threads.

OmpSs@FPGA extends OmpSs in the sense that it allows
to execute a C/C++ task in the FPGA. To do so, it uses
Mercurium to transform the code and build a hardware
accelerator through High-Level Synthesis (HLS) of the trans-
formed code. This way, several accelerators, which execute
a specific type of task, can be used to easily speedup a
previous CPU-only application. Of course, in order to get
the best performance, the original code has to target the
FPGA which needs a different optimization strategy. More-
over, the framework can coexist with the specific pragmas of
the underlying HLS tool, to take advantage of the features
provided and boost the accelerator even more. Currently,
OmpSs@FPGA supports Xilinx software and FPGAs, thus
the HLS software being Vivado HLS.

The main contributions of this article are the following:

• New compiler optimizations for FPGA accelerators
that improve memory accesses by the use of a wide
memory port.

• A new load/store mechanism that saves redundant
memory copies in the FPGA accelerators.

• A new way to pipeline computations and memory
accesses inside FPGA accelerators.

• A new complete hardware runtime that in conjunc-
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tion with in-FPGA task creation and synchronization
allows local in-FPGA task and dependence manage-
ment.

• The extension of the framework to target different
FPGA boards with diverse host connections in a
transparent way to the programmer.

• Evaluation of all the above improvements with dif-
ferent HPC applications, including, to the best of our
knowledge, the fastest N-Body implementation over
FPGA published up-to-date.

The structure of the article is as follows. Section 2 ex-
plains the base implementation used to do our tests. Details
on the proposed improvements are explained in Section 3.
A qualitative and quantitative evaluation of the system can
be found in Section 4. Section 5 lists the related work and
finally, section 6 addresses the conclusions and future work.

2 BASE OMPSS@FPGA FRAMEWORK

In this section we explain the original OmpSs@FPGA frame-
work that is the baseline of our work. This basic system
uses the classical master-slave model that is common to
other models like CUDA or OpenCL. In such approach, the
host, a Symmetric MultiProcessor (SMP), is responsible for
issuing tasks to the accelerators (kernels in the FPGA). The
kernels process the data and return a result to the host after
finishing their execution. Such process is iterated until all
the work is done and then the host finishes the process. In
this model, the host is responsible for synchronizing all the
work, orchestrating all the resources either in the FPGA or
in the SMP when necessary.

2.1 Compiler FPGA-oriented modifications
Figure 1 shows the compilation process in OmpSs@FPGA.
A C/C++ source file is read by the Mercurium compiler
where a frontend phase splits the code into two different
flows: SMP and FPGA. As outline tasks are not supported,
this distinction is done through C/C++ function annotation
with task declaration pragmas. In OmpSs@FPGA, tasks or
kernels can target both SMP or FPGA devices. The SMP
part of the code, i.e. main code and tasks that do not have
an FPGA target, is separated and its compiler directives are
replaced by Nanos++ API calls. The Nanos++ runtime has
a dedicated API for FPGA tasks, which uses internally the
xTasks library, containing the low-level code to communi-
cate with the FPGA. It is separated from the main runtime
because each hardware platform uses different communi-
cation protocols, depending on the board vendor and the
memory model (e.g. shared like SoCs or distributed like
PCIe attached FPGAs).

The FPGA code is also separated and integrated with
a wrapper code, which communicates with a hardware
runtime inside the FPGA, accesses main memory to load-
/store local memories and starts the actual hardware task
engine. This wrapper is in fact C++ code with Vivado HLS
pragmas. Since generally FPGAs count with on-chip RAM
(e.g. Xilinx BRAMs), the kernels can exploit this feature
by storing data in this local memory. Depending on the
memory model, main DRAM can be shared with the CPU
or featured separately in the FPGA board. In both cases
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Fig. 1. Mercurium compiler process

accessing local memory is faster, and OmpSs@FPGA allows
to declare arrays stored in local memory and use them inside
a task. The difference with other approaches like CUDA
or OpenCL is that the local copies are automated in the
wrapper and thus transparent to the user, who otherwise
has to code them explicitly in the kernel. Once the code is
transformed by Mercurium, it is passed to AIT (Accelerator
Integration Tool). This tool feeds all the high-level codes
to the vendor-provided tools and integrates them inserting
the proper connections with the hardware runtime and the
FPGA I/O pins in order to generate the final bitstream.

This integrated compilation process has some useful
features such as compilation of the whole system (bitstream
and executable file) from a single command and automatic
connection and integration of the hardware design, reducing
the complexity of an otherwise error-prone process.

2.2 FPGA hardware runtime
As commented in section 2.1, AIT inserts a small hardware
runtime, the Smart OmpSs Manager (SOM), in the final
hardware design. This runtime basically receives commands
from the software runtime and forwards them to the related
accelerator. In the case of having more than one accelerator
available for any given task, a simple round-robin scheduler
dispatches the task to one of the accelerators. After the
execution finishes, it informs the hardware runtime which
forwards the information to the software control.

2.3 OmpSs code
Listing 1 shows a function vecSum annotated with two
OmpSs pragmas in the first two lines. As it can be seen in the
listing, the first pragma specifies that the function is going
to target an FPGA device (target device(fpga)) while
the second pragma specifies that the function is going to be
a task that has two dependencies: a vector of 16 elements
a that is going to be input and output of the function,
and another vector b also with 16 elements that is going
to be an input of the function. From this second pragma
Mercurium extracts the necessary information for inserting
the code to perform the data copies of the dependencies
to/from the FPGA external RAM if necessary. Although this
copy is the default behavior, clauses copy_in, copy_out,
copy_inout, copy_deps and no_copy_deps allow to
specify the copies individually or force/disable the copies
of all the dependencies.
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#pragma omp target device(fpga)
#pragma omp task inout([16]a) in([16]b)
void vecSum(float a[16] , float b[16]) {

for (int i = 0; i < 16; ++i)
a[i] += b[i];

}

Listing 1: Minimal example of C code with OmpSs pragmas

By default, the compiler also uses local memory in
order to optimize memory accesses. A variable stored in
local FPGA memory is declared and data will be copied
to/from this variable by the wrapper prior to/after the
kernel execution. Accesses to the variable will reach the
local memory instead of the global one. Although the de-
fault copy behavior is intended to provide good perfor-
mance and programmability, it may be modified by the
programmer to better adapt to specific cases. The clause
localmem_copies enforces local copies of the task data
(the default behavior), the clause no_localmem_copies
disables copies (so the user code accesses to main FPGA
memory) while the clause localmem(...) specifies a list
of shaping expressions that define the data that must be
copied by the accelerator wrapper.

In order to execute multiple instances of the same task
call in parallel, resources, i.e. accelerators, can be replicated.
The clause num_instances(N) allows specifying the num-
ber of times that a task accelerator is instantiated in the
FPGA. All specific OmpSs@FPGA clauses and their usage
are available in [4].

3 NEW FEATURES AND IMPROVEMENTS

3.1 Wide and unified memory port

Each accelerator needs to access memory to get data,
whether it is stored in a local memory or directly accessed.
Vivado HLS tool uses an AXI4 interface [5] to handle mem-
ory reads and writes, which is a very common interface used
in the FPGA and ASIC world. The most straightforward
solution to convert pointer accesses in C to AXI transactions
is through the creation of an independent memory port per
each pointer argument. Vivado HLS syntax to read and
write from an AXI interface is the same as in C to access
a pointer or array.

However, there are two main problems with this imple-
mentation. First, using a different interface for each pointer
or array argument can easily outnumber memory access
ports. The number of real memory ports on an FPGA system
is quite low, for instance, discrete boards like the Xilinx
Alveo family have only one per DDR module, whereas SoCs
like the Xilinx Zynq UltraScale+ have up to six. Reducing
several ports to one is indeed possible with an AXI intercon-
nect, but it takes resources and hinders design routability.
Moreover, performance-wise it is better not to have more
than one memory port in a single Vivado HLS module. Our
efforts to make the tool use more than one port have been
unsuccessful, since Vivado HLS seems to always respect the
access order between all external interfaces.

The second and most important handicap of the men-
tioned implementation is the bandwidth. The default behav-
ior is to use a data bus with the same bit width as the data

type. However, the FPGA memory controller may allow a
wider data bus. Therefore, in order to exploit the memory
bandwidth of the system, the AXI data bus used has to be
as wide as supported by the memory controller. This way,
each cycle the accelerator can read multiple data elements.

To conclude, to remove redundant resources and im-
prove performance, we added the possibility to use a single
memory port with a configurable data width. Specified as
a Mercurium variable at compile time, the user can provide
the bit width of the data bus, which has to match the FPGA
memory data width to get the maximum performance. This
port is shared across all array arguments, thus limiting the
total required AXI interfaces to one per accelerator. Using
this feature is only possible for array arguments that are
stored in local memory. If the task directly accesses memory,
the shared memory port is not supported. It could be
possible to use it by replacing every access to the pointer
with a cast to the data type of the shared port, which could
even have different bit width. However, to benefit from
the bandwidth of the wide memory port would require
significant changes to the compiler. It should provide the
user the possibility to load/store vector data types, such as
the ones from Vivado HLS. At the time of writing we have
not found any use case that would benefit from this feature
without the use of local memory.

Listing 2 shows a portion of the wrapper HLS code
generated by Mercurium from listing 1. The resulted
wrapper contains a single memory interface, mcxx_data
with a 512-bit data bus and two local memories. The
compiler also generates the necessary code to copy the
data from main memory, mainly loops enhanced with
Vivado HLS pragmas to maximize bandwidth. Line 10
of listing 2 shows an HLS pipeline pragma used to
pipeline the memory load with the store to local memory.
The inner loop is fully unrolled automatically by the tool,
and the Initiation Interval (II) depends on the partition
of the local memory. In order to generate the unified
memory interface with a specified width, the argument
--variable=fpga_memory_port_width:<width>
has to be provided to the compiler in the invocation
command.

There are some restrictions to take into account when
using the unified port. The HLS generated code uses an
interface declared as a pointer to an unsigned integer type
with the specified width. Therefore, all accesses must be
aligned to that type. In the example shown in listing 2, the
memory port is used to copy from a 512 bit unsigned integer
pointer to a local array of 16 floats. Hence the address
stored in param[0] has to be aligned to 64 bytes or the lower
bits will be discarded in the division of line 12. Although
unaligned accesses are supported in Mercurium with a
compiler variable, they add significant resource overheads
due to large bit shifts of non-constant length and they are
disabled by default. The preferred approach is allocating
memory aligned to the required width in software. Line 13
of listing 2 imposes that the accessed type width has to be
multiple of the memory port width. Moreover, the union
used to do the casting between types, mainly to avoid float
to integer conversion, uses a 64-bit unsigned integer type.
As a result, the casted type can not have more than 64 bits,
and due to union restrictions it cannot have a non-trivial
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1 void vecSum_hls_automatic_mcxx_wrapper(
2 ...//Input/output streams from/to hwruntime
3 ap_uint<512> *mcxx_data) {
4 #pragma HLS interface m_axi port=mcxx_data
5 static float a[16];
6 static float b[16];
7 ...//Read task parameters, address of a in param[0]
8 int su = sizeof(ap_uint<512>), sf = sizeof(float);
9 for (j=0; j < (16*sf)/su; j++) {

10 #pragma HLS pipeline II=1
11 ap_uint<512> tmpBuffer =
12 *(mcxx_data + param[0]/su + j);
13 for (k=0; k < su/sf; k++) { //fully unrolled
14 union {
15 unsigned long long int raw;
16 float typed;
17 } cast_tmp;
18 cast_tmp.raw = tmpBuffer((k+1)*sf*8-1,k*sf*8);
19 a[j*(su/sf)+k] = cast_tmp.typed;
20 } }
21 ...//Read b, execute task code and copy back a
22 }

Listing 2: Part of the Vivado HLS wrapper code generated
by Mercurium, that copies 16 floats from an AXI memory
interface with a 512 bit data bus to a local memory

constructor.
Another important concept to have in mind is that in

order to get the maximum bandwidth (II=1 in the copy
loop), the local array has to be able to be written or read at
the same rate as the memory. I.e. it has to have enough ports
to read or write a memory word in one cycle. For instance,
in the example the a and b memories should have at least 16
ports. Translated into Vivado HLS terms, they should have
a cyclic partition of factor 8 if implemented as BRAMs, since
each one has two ports.

3.2 Pipelined load-computation-store loops
A task with local memories requires to copy the input data
at the start of the execution, and to store the output after
finalization. This adds an overhead that is more signifi-
cant as the task granularity decreases. Nevertheless, some
iterative applications allow loading next iteration data in
parallel with computation, or previous iteration data store.
In these cases, it is possible to remove the load or store at the
beginning or end of the execution, and hide this time within
the computation phase. The idea is illustrated in figure 2.

Pipelining this process reduces the necessary local mem-
ory since the loop body only needs to access a subset of the
whole original array. To implement this feature however, it
is needed to use double buffering. While one of the buffers is
used by the loop body, the other is read or written from/to
memory, which doubles the number of local memory ports.
This optimization does something similar to the dataflow
pragma of Vivado HLS, but it is more flexible since the
dataflow is applied to the whole code region and affects all
variables. Also using the HLS pragma and making it work
would require similar transformations to the user code that
the compiler is already doing automatically in our proposal.

Depending on the memory and compute latencies, this
technique is able to transform a computation kernel to a
fully compute-bound or memory-bound problem. The loop
logic waits for the load/store and computation parts before
starting the next iteration, independently of the latencies of

a) LOAD COMP

LD

COMP COMP STORE

LD LD

COMP COMP COMP

ST ST ST

b)

Fig. 2. Timing diagram of (a) load-computation-store loop and (b) its
pipelined version

each part. Thus, the resulting latency is the maximum of
both parts. The following formula describes the expected
execution time of an FPGA task with a single loop and local
memories.

nit × Lld + nit × Lc + nit × Lst

Where nit is the number of iterations of the loop, Lld the
latency to load all the data required on a single iteration,
Lst the store latency for the data generated in one iteration,
and Lc the computation latency of each iteration. Once the
pipelining is applied to the loop, the expected execution
time of the task becomes:

Lld +max(Lld, Lc) + (nit − 2)×max(Lld + Lst, Lc)

+max(Lst, Lc + Lst)

In this case, execution time depends on the ratio between
memory and computation latencies. If Lc > Lld + Lst, with
a big enough nit the potential speedup becomes:

speedup ≈ 1 +
Lld + Lst

Lc

On the opposite case, if Lc < Lld+Lst and nit is big enough,
the fraction is flipped. This means that the potential speedup
of the whole task execution ranges from 1 to 2.

3.2.1 Compiler transformations
Though we have successfully accelerated the matrix mul-
tiply with this feature (see section 4), it has not been yet
fully integrated into the programming model at the time of
writing. In this paper we propose the necessary syntax to
express a pipelined loop in a simple way. We also propose
compiler transformations to generate Vivado HLS code that
automatically pipelines the loop. An example of the pro-
posal is in listing 3. This code performs a pipelined vector
addition with blocks of 8 elements. The pipeline_in, and
pipeline_out clauses are new additions to the OmpSs
syntax, whereas the linear clause is taken from the
OpenMP standard [6].

The first type of clause is used to declare which arrays
have to be loaded or stored in pipeline mode, and to declare
the size of the local buffer. The second type is used to declare
how the addresses of each array are incremented or decre-
mented. By encapsulating the loop body and loads/stores
in different functions, the HLS compiler is able to schedule
calls without dependencies in the same cycle. In the example
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void vectorAdd(const float* a,
const float* b,

float* c, int n) {
#pragma omp for pipeline_in([8]a, [8]b) \
pipeline_out([8]c) linear(a:8, b:8, c:8)
for (int k = 0; k < n; ++k)
for (int i = 0; i < 8; ++i)

c[i] = a[i]+b[i];
}
void vectorAddTransformed(int n, float* c,

const float* b, const float* a) {
float a1[8], a2[8];
float b1[8], b2[8];
float c1[8], c2[8];
load(a1,b1,a,b); //n is multiple of 2 and n >= 2
for (int k = 0; k < n-2; ++k) {

loadStore(a2,b2,c2,a+k*8,b+k*8,c+(k-1)*8,k);
loopBody(a1,b1,c1);
++k;
loadStore(a1,b1,c1,a+k*8,b+k*8,c+(k-1)*8,k);
loopBody(a2,b2,c2);

}
int k = n-1;
loadStore(a2,b2,c2,a+k*8,b+k*8,c+(k-1)*8,k);
loopBody(a1,b1,c1);
store(c1,c+k*8);
loopBody(a2,b2,c2);
store(c1,c+k*8);

}

Listing 3: Proposal of OmpSs pragma syntax (vectorAdd)
and generated Vivado HLS code (vectorAddTransformed) to
pipeline loads/stores with computation

of listing 3, the first loadStore function call of vectorAddTrans-
formed is scheduled alongside the first loopBody call. The
other two calls are also scheduled together after the first
two. Variable k is passed as an argument to loadStore to avoid
doing the store in the first iteration. The compiler unrolls
the loop by a factor of 2 to code the double buffer explicitly.
Therefore, the first and last iterations have to be expressed
differently to generate correct code. Before the first iteration
of the loop body, the data has to be loaded in the first buffer,
thus a separate load function has to be called before the start
of the loop. To avoid loading out of bounds data in the last
iteration, this one is placed outside the loop. For readability
purposes, the example assumes that n is multiple of two and
hence after the loop there are two calls to loopBody, but only
one to loadStore.

3.3 Dynamic copy optimization

Another way to mitigate the load/store overhead of an
FPGA task is to use runtime information to suppress the
local copies when possible. This can be achieved when two
consecutive tasks operate over the same region of memory
on the same accelerator. To detect these situations, the
hardware runtime analyzes the ready queue, which is a
buffer composed of multiple circular sub-queues, one per
accelerator. Tasks that are scheduled for execution, sent by
the host or by the hardware runtime itself, wait in this queue
while the accelerator is busy executing another task.

In the load case, the first task fills the local memory, but
the second one does not need to access to memory again.
For writes, the first task does not need to store if the next
task in the queue will perform the same copy, since the
results would be overwritten. Applying these optimizations

Algorithm 1: Dynamic copy optimization
Input: ready_task_queue: circular queue with

tasks made of the same number of arguments
and copy flags, current_slot: index of the
current slot in the queue

task current = ready task queue[current slot];
task next = ready task queue[current slot+1];
for i = 0; i < #args; i = i+1 do

flags current = task current.flags[i];
flags next = task next.flags[i];
if task current.args[i] == task next.args[i] then

if outCopyEnabled(flags next) then
suppressOutCopy(flags current);

if inCopyEnabled(flags current) or
chainBitEnabled(flags current) then

if inCopyEnabled(flags next) then
enableChainBit(flags next);

suppressInCopy(flags next);

in both directions maintains correctness for inout copies.
Each array argument has some flags associated with it,
which are interpreted by the accelerator wrapper to know
whether data has to be transferred to/from memory at the
address specified in the argument value. These flags depend
on the copy_in/out and in/out clauses in the target and
task pragmas respectively. Before reaching the accelerator
they are manipulated by the hardware runtime following
algorithm 1. The chain bit is used to detect and thus disable
chains of in copies over the same address, since in this case
all except the first one can be suppressed. Chains of out
copies are also disabled except for the last task.

This optimization is activated by default in the hardware
runtime and operates transparently to the programmer so it
has not been evaluated separately.

3.4 Internal task creation and management

Managing task creation, dependence resolution and task
scheduling in software can become the bottleneck of an
application, due to the CPU-FPGA communication latency
and the overhead of the runtime, which is also influenced
by the CPU speed. As it can be seen in section 4, moving
these functions to hardware can improve significantly the
performance.

In [7] it is introduced the capability to create tasks in
an FPGA accelerator, i.e. hardware task nesting. However,
it is limited to tasks without dependencies. Tasks with
dependencies are forwarded to the CPU which significantly
degrades performance. In this paper we overcome this
limitation by adding a full dependence manager to the
OmpSs@FPGA framework.

OmpSs@FPGA presents to the user the possibility to
choose between two hardware runtimes: Smart OmpSs
Manager (SOM, previously Task Manager) and Picos OmpSs
Manager (POM). Both can execute the same code and are
transparent to the programmer, but they present relevant
performance differences.
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TABLE 1
Absolute and relative primitive usage taken from Vivado synthesis on a

Xilinx ZynqU+ for each OmpSs@FPGA hardware runtime and Picos

#primitives (% usage) LUT FF BRAM18K
SOM (simple) 1743 (0.64%) 3288 (0.6%) 0 (0%)
SOM (extended) 4430 (1.62%) 5418 (0.99%) 7 (0.38%)
Picos Daviu 1738 (0.63%) 1714 (0.32%) 45 (2.47%)
POM (with Picos) 6952 (2.54%) 7819 (1.43%) 56 (3.07%)

Both SOM and POM manage task creation and schedul-
ing of hardware/software tasks and optimize copies on the
same accelerator (section 3.3). Nevertheless, SOM does not
have a dependence management module, hence it relies on
the software runtime. POM however includes Picos Daviu,
an improved hardware dependence manager based on the
Picos++ architecture [8]. It determines which tasks are ready
for execution and forwards them to the hardware scheduler,
which decides where to execute them. The main advantage
of POM over SOM is the minimization of host-FPGA com-
munication. Moreover, Picos manages dependencies much
faster than the software runtime since it is a specialized
hardware module, optimized to quickly build and analyze
dynamic dependence graphs. Using POM, the programmer
can offload big parts of the application to the FPGA, remov-
ing the need for host interaction between different kernel
executions.

For simple or highly parallel applications it is still useful
to use SOM for its reduced resource requirements. Picos
Daviu utilizes memories (implemented as BRAMs and LU-
TRAMs) and extra logic which may limit the place&route
of the design in some extreme cases. In addition, if the
user does not need FPGA task nesting, SOM automatically
removes unnecessary modules and leaves only the rele-
vant logic. These operating modes are called simple and
extended, the resources of which are quantified in table 1
alongside POM and Picos Daviu resources. The table shows
Vivado synthesis results targeting a Xilinx Zynq Ultrascale+
board in terms of absolute primitive count and relative
FPGA usage. LUT and FF refer to LookUp Tables and Flip-
Flops, the basic FPGA primitives to build logic. BlockRAMs
(BRAMs) are low latency memories embedded in the FPGA
fabric. SOM (simple) is the runtime using fewer resources
since it lacks Picos Daviu, the logic to handle task creation
and the scheduler. In this mode SOM is controlled com-
pletely by the host, which has to do all the task management.
Enabling extended mode of SOM gives more flexibility to
the FPGA at the cost of more resources. In this mode,
tasks can be created by accelerators and dependencies are
forwarded to the host, but the scheduling is moved to the
hardware. Finally, the POM hardware runtime incorporates
dependence management, thus providing the best perfor-
mance and consequently taking the most resources. Picos
Daviu alone takes as many LUTs, half of FFs and six times
more memories than SOM in simple mode. This is due to
the necessity to store task runtime information, e.g. task
dependencies.

3.4.1 POM internal design

Both SOM and POM share most of the internal code, written
in Verilog and SystemVerilog. The interface with the host
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Fig. 3. High-level diagram of POM’s internal design

is implemented with BRAM queues, which are easier to
interface with RTL code than main memory. Internally, most
communication is done through AXI-stream interfaces. Fig-
ure 3 shows how internal modules are interconnected. The
host sends commands through the command in queue also
called ready queue, which can be tasks ready for execution
or hardware instrumentation commands. Tasks created by
accelerators pass through the scheduler first (when ready),
which decides where to execute the task. SMP tasks are
put in the spawn out queue, which is read by the host.
FPGA tasks are put in an internal queue, and the command
in module acts as a multiplexer between the host queue
and the aforementioned one. SMP finished tasks are put
in the spawn in queue. The TaskWait (TW) module controls
the number of created and finished tasks per context. In
applications with nesting, there can be several contexts cre-
ating tasks at the same time, therefore it contains a memory
to store the necessary information for each task creator.
This information is needed when a hardware accelerator
synchronizes with its child tasks. The Cutoff Manager decides
if a new task, created on the accelerator, has to go to Picos or
the Scheduler. This is needed because Picos does not accept
tasks without dependencies, thus these have to be redirected
to the scheduler. Moreover, it handles the allocation of the
memory used to handle taskwait requests.

3.4.2 Picos Daviu architecture

Picos Daviu bases its architecture on Picos++ [8], but im-
proving the actual algorithm to detect dependencies. It is
made of five components: GateWay (GW), Task Reservation
Station (TRS), Dependence Chain Tracker (DCT) and Ready
Task Dispatcher (RTD). The GW preprocesses dependencies
to detect repetitions in the same task and distributes task
data between the TRS and the DCT. The TRS keeps track
of how many dependencies are free for each task, thus it
notifies the RTD when a task can be executed, and also
receives notifications of finished tasks. Then, it notifies the
DCT to wake up potential dependencies of other tasks.
The RTD is responsible for communicating with the POM
scheduler, providing a ready task in the expected format.
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The DCT is the critical component of Picos Daviu be-
cause it performs the actual dependence detection, and
notifies the TRS when a task dependence becomes free. To
do that, it uses a hash table of binary search trees not auto-
balanced. The hash function used is an XOR of randomized
values in a ROM, indexed with the dependence address. The
memory that stores the binary trees is called Dependence
Memory (DM), and it only stores dependence addresses
once. It is used to know if a new dependence address
matches with another from a previous task. To analyze if
there is a real dependence, the DCT uses another memory
called Version Memory (VM). This one uses linked lists,
using one entry for each task that depends on the same
address. Figure 4 shows how the hash table, DM and VM
are used to keep the dependence graph and determine if
a new incoming dependence address is ready or not. As it
can be seen, there are two types of VM nodes, depending
on the direction of the dependence. Each DM node points to
the last out dependence, or in in case there are no outs.
On the other hand, the in dependencies are pointed by
the last out dependence at the time they arrived at the
DCT. These chains of in dependencies have to wait for
the task with out direction to finish before being ready. In
the example of figure 4, the task identifiers represent the
order in which they arrived at the DCT. The dotted lines
show how the pointers change when the last dependence
from task 0x04 arrives at the system. First, the only task
that can be executed is 0x00, assuming that all tasks have
only one dependence. When it finishes, the TRS notifies the
DCT and the next task in the VM list (0x01) is marked as
ready. When this one finishes, the two in tasks (0x02 and
0x03) are marked as ready concurrently since there is no
real dependence between both. Finally, when both finish,
the last task (0x04) is ready to execute.

Although the OmpSs programming model distinguishes
between three types of directions, in, out and inout, Picos
Daviu only supports two types since inout can be treated
as out without losing correctness nor performance.

4 PERFORMANCE EVALUATION

We have selected a set of benchmarks to evaluate the peak
performance we can get with OmpSs@FPGA: matrix multi-
ply, N-body, Cholesky and Spectra.

4.1 Experimental setup

Except for the matrix multiplication, the benchmarks are
coded only in C using OmpSs@FPGA and Vivado HLS prag-
mas. The only difference of the mentioned benchmark is that
the main kernel HLS code is not generated by Mercurium.
The pipeline optimization introduced in section 3.2 is not
supported by the compiler, so it is implemented manually.
The Vivado and Vivado HLS version used is 2020.1.

In our experiments we target two different boards:
the Xilinx Zynq Ultrascale+ MPSoC ZCU102 (XCZU9EG-
FFVC900) and the Xilinx Alveo U200 (XCU200-FSGD2104).
The first one uses shared memory between four ARM
Cortex-A53 cores @ 1.1GHz and the FPGA. On the other
hand, the Alveo is a stand-alone discrete board and needs
to be connected to an external host through PCIe. The server
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Fig. 4. Insertion of a new dependence in the Picos Daviu DCT structures.
Dotted lines represent the DCT state change after the last insertion.

attached to the FPGA includes an Intel Xeon CPU X5680 @
3.33GHz, with two NUMA nodes, six cores per socket and
two threads per core. In these types of systems the com-
munication is slower, but nevertheless the board features
its own memory (plus the host memory) which is usually
bigger than in SoCs. In addition, the FPGA itself includes
more resources and the CPU is faster. Table 2 compares
the resource count of each FPGA. The Alveo has roughly
four times more LUTs and FFs, double DSPs and BRAM18K.
Another advantage of the Alveo is that it features a new type
of memory, the UltraRAM (URAM). These memories are
significantly bigger than BRAMs (288kb against 18kb) and
have a very similar interface and low read/write latency.

4.2 Benchmarks
4.2.1 Matrix multiplication
The matrix multiplication benchmark is a well-known em-
barrassingly parallel application with a regular dependence
pattern. The application operates with three square matrices
of size N ×N , A, B and C , and computes C = C +A×B.
In our implementation, we use float as the data type of the
matrices. To program this with a task-based programming
model, all matrices are decomposed in square blocks of
BS × BS elements. A task just performs the multiplication
of matrices with a fixed square size BS. Therefore, the
amount of tasks created depends on the matrix size and the
block size. Only the tasks that operate over the same block of
C have a real dependency, thus the number of parallel tasks
grows quadratically to N/BS. Though the typical imple-
mentation uses the ijk loop order (C[i][j]+=A[i][k]×B[k][j]),
we change it to kij, pipelining the i loop and fully unrolling
the j loop. This way, in each cycle an entire row of a B

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3086106

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON COMPUTERS 8

TABLE 2
Xilinx Zynq UltraScale+ and Alveo U200 resources

LUT FF DSP BRAM18K URAM
Alveo U200 1182240 2364480 6840 4320 960
ZCU102 274080 548160 2520 1840 0

block is multiplied with an element of an A block and
accumulated in a row of a C block.

This design has limited scalability due to the high
amount of ports required by the C and B blocks, linearly
dependent on the II of the pipelined loop. To ease this
effect we can increase the II which consequently reduces the
number of concurrent multiplications proportionally. For in-
stance. although the latency of the computation is doubled,
if we double both the block size and the II, the throughput
is maintained whereas the computation-to-memory ratio
is increased. I.e. with the same matrix size, the amount
of tasks is reduced and thus the number of loads/stores
between main and local memories. In addition, the amount
of computation of a single accelerator grows by a factor of
BS3 whereas the required memory only by a factor of BS2.

Using the aforementioned optimizations, we are able
to fit up to 3 accelerators with BS = 256 and II = 2
on the ZCU102 board, and 5 accelerators with BS = 384
and II = 3 in the Alveo board, both working at 300MHz.
Furthermore, it is possible to use the load-computation-store
pipelining in this benchmark. While the main loop is using a
row of B and a column of A, it is possible to load in advance
the next row and column of both matrices. However, one
restriction to make it work efficiently is that A has to be
transposed to allow issuing read bursts of consecutive ad-
dresses to memory (blocks are stored by consecutive rows).

Results of different versions of the benchmark can be
observed in figure 5, which shows the performance in
GFlops for the ZCU102 and Alveo boards. The block size,
II and frequency are the same for each version. In the figure
we show the performance impact of the mentioned opti-
mizations, applied incrementally. I.e. each bar uses all the
optimizations of the versions at its left. The first uses simple
SOM and 32-bit memory port width on each accelerator.
The wide port version increases the memory port width
to 128 on the ZCU102 and 512 on the Alveo. This one
is the optimization with highest impact, doubling perfor-
mance in both cases because a significant time of a task
execution is spent copying data. The load-computation-store
pipelining helps to mitigate this effect, especially in the
ZCU102. The Alveo FPGA does not benefit as much from
this optimization because it has more accelerators and fewer
AXI slaves on the memory controller than the ZCU102.
When more than one accelerator access memory, they start
fighting in the last level interconnect, affecting each other’s
latency. Since the pipelining optimization adds loads in the
computation loop, all accelerators are slowed down due to
the high memory latency. The final version shown (SOM(e)),
uses hardware task creation and SOM in extended mode.
This last optimization exploits the round-robin scheduler
of the hardware to send tasks with an inout dependency
on the same C block to the same accelerator. This way, the
runtime triggers the copy optimizations on C (section 3.3),
while A and B copies are parallelized with the computation.
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Fig. 5. Matrix multiply performance

With this optimization, the number of copies is reduced and
the concurrent access effect is mitigated. Dependencies are
not used in this benchmark because the scheduler would
receive ready tasks in an unpredictable order, depending on
the order the tasks finish. If the tasks are created without
dependencies, then this order is enforced because they are
scheduled right away. In this case, POM is not needed.

Pipelined accesses have a margin to tolerate concurrent
accesses, the loop body time, before affecting performance.
However, it is important to note that these last two op-
timizations in the Alveo need to work together in order
to have some effect. That is, if the SOM(e) optimization is
applied to the wide port there is no performance improve-
ment. Contrary to the other cases the memory characteristics
make it necessary to apply both optimizations to obtain
some gains and break the memory bottleneck. The final peak
performance achieved is 199 GFlops on the ZCU102 with a
matrix size of 4096x4096 and 353 GFlops on the Alveo with
a matrix size of 9600x9600.

4.2.2 Cholesky
The Cholesky benchmark performs a Cholesky decompo-
sition of a Hermian, positive definite matrix into a lower
triangular matrix, which multiplied by its transpose results
in the original matrix. I.e. the application generates an
output matrix L from an input C , assuring that C = L×LT

providing that C fulfills the restrictions.
The strategy to taskify this benchmark is the same as the

matrix multiply. C is distributed in consecutive blocks of
BS×BS elements, and each task operates over one or more
blocks. The code uses four kernels: gemm, trsm, syrk and
potrf. The gemm implementation uses the same strategy
explained in section 4.2.1. However, the load-computation-
store pipelining can not be applied directly because all
blocks belong to the same matrix, but only one of them
needs to be transposed. The trsm and syrk have similar
access patterns to the blocks as gemm and can also benefit
from loop unrolling and pipelining. On the other hand,
the peculiarity of this benchmark compared to the others
is that the potrf kernel is hard to accelerate in FPGAs
due to the memory access patterns. Previous evaluations
[1] demonstrate that it is faster to execute it in the host
rather than in the ZCU102 FPGA. A similar study on the
Alveo led to the same conclusions. We use the OpenBLAS
[9] implementation of the kernel, which is in fact a Choleksy
decomposition of a single block. When using the hardware
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Fig. 6. Cholesky performance

runtime (SOM/POM) and creating tasks on accelerators, the
FPGA sends the potrf ready tasks to the host through the
spawn in queue. Then, the software runtime is responsible
for performing the necessary copies between FPGA and host
memories.

The challenge of Cholesky is to use the right amount of
accelerators per kernel. The number of gemm tasks grows as
a cubic power of the problem size, whereas syrk and trsm
only grow with a quadratic exponent. Therefore, there must
exist more accelerators for gemm than for any other kernel.
We found that only one instance of the non-critical kernels is
enough, because the gemm accelerators are the bottleneck of
the application. This property can be exploited to gain more
performance, by intentionally slowing the syrk and trsm
kernels to give more space for gemm. This is achieved using
a higher II for the two first loops and a lower one for the
latter loop.

Our final implementation in the ZCU102 uses five gemm,
one trsm and one syrk, all with BS = 64 and II = 1 at
350MHz. On the Alveo, we managed to put four gemm with
II = 2, one syrk and trsm with II = 4, and BS = 256
at 300MHz. In figure 6 we can see the performance in
GFlops of the simple SOM, wide port and POM versions
for the ZCU102 and Alveo. Like in the matrix multiply, the
simple SOM version uses a single 32-bit port per accelerator.
Nonetheless, for this one and the rest of benchmarks, the
last improvement uses internal task creation with POM
because tasks have dependencies. We can observe that the
ZCU102 FPGA, contrary to the Alveo, benefits greatly from
the use of the hardware runtime. The main reason is the task
granularity, being too fine-grained for the software runtime
which is run on a cortex-A53. POM is able to manage
very short tasks instead, without suffering from significant
runtime overheads. The Alveo, on the other hand, does not
get a big improvement due to the high parallelism of the
gemm kernel. In this case, although the CPU task creation
and sending are slower, this time is hidden in part by the
ready queue of the hardware runtime.

To conclude, the ZCU102 reaches 81 GFlops with a
matrix of 8192x8192 floats, and the Alveo 286 GFlops with
a matrix of size 10240x10240. Yang et. al. [10] also provide a
Cholesky decomposition for FPGAs, as part of a compressed
sensing algorithm, programmed in VHDL. However, they
report performance for small matrices only (2048x2048) with
21 GFlops in a Virtex-5 XC5VLX110T FPGA.

4.2.3 N-body

The N-body simulation calculates the interaction of a set of
particles with different masses over a period of time. The
interaction force is calculated with Newton’s law of gravity,
where the force between two particles is calculated with the
formula

Fij =
G×mi ×mj × (pj − pi)

||pj − pi||3

Where Fij is a 3-dimensional vector with the force between
particles i and j applied to particle i. The magnitude of the
vector is the same for the force applied to particle j but in
opposite direction. The particles are represented with a 3-
dimensional vector as a position in the space pi and a mass
mi. The gravitational constant is represented as G in the
formula.

The input of the algorithm is a set of particles with
initial positions, velocities and masses, the number of steps
to simulate and the time interval between each step. The
output is the set of final positions after simulating all the
steps, or alternatively all the intermediate positions for each
iteration. In each step there are two phases. The first one
consists of calculating the accumulated force of each particle
against each other. This part is computationally intensive
as the number of force interactions is n2 where n is the
number of particles. In the second phase the positions and
velocities are updated according to the force vector and the
time interval, using the Euler method.

To implement this application efficiently with FPGAs,
the particle data is distributed in tiles of consecutive vectors
of the same attribute. I.e. each dimension of the positions,
velocities and masses is separated in consecutive vectors
of TS elements, forming a single tile. If the original data
is not shaped with this format, it can be easily converted
during the data transfer to FPGA memory space with low
cost since it has to be done once, and only implies changing
the indexes of the elements in the original data structure.
Forces are also stored in the same layout. This way, for
the force calculation phase, each task calculates the forces
between two tiles of particles and updates one of them. On
the other hand, the update phase task updates a single tile
of particles. The update particles part is significantly shorter
than the force calculation due to the linear against quadratic
computation time. Therefore, our efforts are focused only on
the critical task. In our C implementation, the programmer
can decide how many force calculations can be performed in
parallel by unrolling the innermost computation loop with
a pragma. Moreover, it can be pipelined so several forces are
calculated every cycle, depending on the unroll factor.

For the Zynq board we found the best configuration is
6 accelerators to calculate forces with 8 parallel forces each,
and one accelerator to update particles. For the Alveo, it is
8 accelerators to calculate forces with 16 parallel forces, and
one accelerator to update particles. Both applications run
at 300MHz. Without using any of the mentioned improve-
ments in section 3, the base performance is around 11 Gpps
(GPairs/s i.e. number of force vectors calculated per second)
for the Zynq and 28 for the Alveo. Figure 7 shows the
performance in Gpps when applying different optimizations
for the ZCU102 and Alveo. The first optimization uses the
wide memory port, which allows the accelerators to read
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Fig. 7. N-body performance for 32768 particles and 16 steps with tiles
of 2048 elements

faster each particle and force tile. Due to the relatively big
tile size (2048), it does not have a big impact on performance.
The Alveo gets a slightly better boost, since its memory port
is 512-bit and the Zynq’s port is only 128-bit wide. The use of
the hardware runtime achieves the best performance, with a
peak of 14 Gpps in the Zynq and 37 Gpps in the Alveo. Most
of the speedup of the last optimization is caused by the fact
that host-FPGA communication is minimized, in contrast
to the Cholesky case where it was not as critical. By using
POM, the time it takes for a task to go through the SoC or
the PCIe is removed.

These results outperform other attempts to accelerate
the N-body benchmark on FPGAs. In [11], Sozzo et. al.
manage to get 13.4 Gpps with 36000 particles and a custom
design coded in C++ and generated with SDAccel 2017.1
on a Xilinx Virtex UltraScale+ VU9P, similar in size to our
Alveo FPGA. However, they only propose a design for the
force calculation, and do not take into account more than
one simulation step, which requires to update the positions
and velocities. In [12] Sano et. al. introduce a design with
the particle update phase. They use their own compiler for
stream computation, SPGen, and Verilog modules used as
a library for the compiler. They get 10.9 Gpps with 262144
particles in an Intel Arria10 FPGA, which is also similar
in size to our Alveo. To the best of our knowledge the
presented implementation is the fastest one done in FPGA
for the N-body problem.

4.2.4 Spectra
The Spectra application [13] is similar to the N-body in the
sense that the main kernel computes all particle-particle
distances. Instead of using the distance to calculate and
accumulate gravitational forces, it is used as an index to
accumulate a histogram with the electronic weight between
the particles, i.e. the multiplication of both electric charges.
In order to parallelize the application, the histogram is
replicated to allow different tasks to operate at the same
time over different regions of memory. Also, the particle
set is distributed in memory with tiles of TS consecutive
particles. Each property of a particle, i.e. the 3-dimensional
position vector and electric charge, is stored in a separate
array. The reduction of the histograms into a single one is
done by another task. Like with the N-body, the distance
calculation loop is unrolled and pipelined, thus the acceler-
ators compute more than one distance-vector per cycle.
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Fig. 8. Spectra performance for 2M particles with tiles of 2168 elements

We managed to put 3 accelerators to calculate distances
with an unroll factor of 22 (number of distances per cycle)
at 350MHz on the ZCU102 board, and 10 accelerators to
calculate distances with 18 unroll factor at 300MHz on the
Alveo. In both boards there is only one accelerator to reduce
the histograms since, like in the N-body, its execution time
is orders of magnitude shorter. The results, in figure 8, show
the Gpps of some proposed optimizations for the ZCU102
and Alveo boards. The optimizations do not have as much
impact as with other benchmarks. The wide port also has the
same effect as the N-body: since the tile size is relatively big
(2168), most of the time spent on a task is computation only.
Furthermore, on the Alveo we increase only to a 128-bit port,
as because of the high amount of accelerators Vivado does
not route properly the design when using 512 bits. Using
hardware task creation with dependencies slightly increases
performance. Due to the tile size and the high amount of
parallelism of the main kernel, the CPU exploits the POM
ready queue like in the Cholesky benchmark. But even in
this case, POM is able to speedup the execution by 6.25%
on the Alveo, reaching 51 Gpps, and 1.7% on the ZCU102,
reaching 22 Gpps.

4.3 Discussion

Table 3 puts together the best performance of each bench-
mark for each board. In addition, in order to have a refer-
ence, the table reports the performance of the pure CPU
and GPU versions and power measures for FPGA and
GPU. The FPGA power is an estimation reported by Vivado
after bitstream generation, taking into account all the logic
implemented in the design. The GPU power is measured
dynamically with the Nvidia Management Library (NVML).
All CPU-only benchmarks run with OmpSs software tasks,
and the GPU ones use Nvidia CUDA. Both versions have
been executed with the same problem size as their FPGA
counterparts. The block/tile size is also maintained in the
CPU benchmarks, but due to restrictions on the number
of CUDA threads per block, it is reduced in N-body and
Spectra to 256 and 512 respectively. SMP Matrix multiply
and Cholesky use the OpenBLAS implementation at the
block level, N-body and Spectra use a slightly modified code
at the tile level, optimized for CPUs rather than FPGAs.
The GPU versions use the pure cuBLAS implementation
for matrix multiply and Cholesky, and a custom kernel
optimized for GPUs in the other two benchmarks. In table 3,
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TABLE 3
Peak performance of FPGA, SMP and GPU, Vivado power estimation and NVML GPU power measurements for all evaluated benchmarks

Benchmark
(perf. metric)

Perf.
Alveo

Perf.
SMP Alveo

Perf.
ZCU102

Perf.
SMP ZCU102

Perf.
GTX 1060

Power
Alveo (W)

Power
ZCU102 (W)

Power
GTX 1060 (W)

matmul (GFlops) 353.87 236.18 199.98 13.69 3306.7 46.540 6.339 75.262
Cholesky (GFlops) 279.78 223.5 81.32 9.46 2375.6 37.636 21.425 64.217
N-body (Gpps) 37.62 0.83 14.13 0.057 35.34 64.606 24.504 67.924
Spectra (Gpps) 51.87 2.02 22.08 0.06 50.83 40.755 14.706 65.523
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Fig. 9. Average speedup in % of each optimization across all bench-
marks

SMP ZCU102 refers to the four ARM cortex cores, whereas
SMP Alveo refers to the server attached to the FPGA used
to do the evaluation (introduced in section 4.1). GTX 1060
refers to an Nvidia GPU GTX 1060 Mobile. All FPGA
versions outperform their SMP counterparts, ranging from
25% speedup in the case of Alveo Cholesky, to 36700% in the
ZCU102 Spectra case. Also it is observable that Spectra and
N-body have the highest speedups. This is mostly due to the
high amount of memory needed on matmul and Cholesky,
which limits the block size and II since it makes the design
quickly run out of BRAMs/URAMs. A similar effect can be
observed when comparing with the GPU. Although in this
case the GTX 1060 outperforms both FPGAs by a ≈ 10x
factor in the matrix benchmarks. This is expected because
GPU architectures are designed to execute efficiently embar-
rassingly parallel programs. On the other hand, N-body and
Spectra present more challenges, as they have a very similar
performance with the Alveo. Both need to calculate square
roots for each pair of particles, which are more expensive
compared to divisions/multiplications. In addition, Spectra
introduces an atomic addition at the CUDA thread block
level, since each thread accesses a shared array with an
index that is calculated at runtime and thus can collide
with other threads. Looking at the performance per Watt,
both FPGAs are more efficient than the GPU in these two
benchmarks, with a 13% improvement in N-body (Alveo)
and 94% in Spectra (ZCU102).

Table 4 summarizes the resource usage of all the designs
with the best performance. The ZCU102 has a high amount
of DSP usage, which directly affects the GFlops and Gpps

of the design because DSPs perform the floating point
operations. On the contrary, the Alveo does not use as much
in the matmul and Cholesky (around 47%), as increasing
the II, which increases DSP usage, requires proportionally
more BRAMs and URAMs. Another solution would be to
put more accelerators, but it eventually leads to the same
problem. Moreover, as the design gets bigger, the acceler-
ator distance to the hardware runtime and main memory
increases, affecting the critical path. A possible solution
to solve this problem is to add registers to pipeline the
interconnection paths to/from accelerators.

To conclude the study, figure 9 reports the speedup
in percentage that each evaluated optimization gets over
its previous version. For instance, wide port reports the
speedup over the simple SOM version, ld-st pipeline (only
matrix multiply) over the wide port version and so on. A
special column is the ld-st pipeline + SOM(e), which includes
the speedup of the combination of the two versions over
the wide port version for the matrix multiply benchmark
on the Alveo. In this board the pipelining optimization
is not able to extract much performance on its own, due
to the concurrent memory access problem introduced in
section 4.2.1. This effect is mitigated by the use of internal
task creation, which optimizes copies, getting a performance
boost of 3.5%, whereas the pipelining alone achieves 13.18%
on the ZCU102, demonstrating that the optimization has
more potential, especially in boards that feature higher
memory bandwidth.

The wide port reports good results for both boards, get-
ting 25.6% and 63% on the ZCU102 and Alveo respectively.
The latter benefits more from this optimization due to the
wider memory port (512 vs 128 bits). However, the use
of a wide memory port makes the routing of the design
more difficult. One open question is if narrower ports could
lead to the capability to fit more accelerators and get more
performance in applications where the memory is not the
bottleneck. This possibility seems adequate to work with
the pipeline optimization where there are more frequent but
smaller accesses hidden by the computation. In fact it was
the option chosen for the Spectra benchmark on the Alveo
that was able to accommodate only a 128-wide port but with
10 parallel accelerators.

Using internal task creation (column POM/SOM(e) in
figure 9), achieves the best results for the ZCU102. This is
mainly because of the Cholesky benchmark, in which the
hardware runtime boosts the execution by around 700%.
However, other benchmarks still get an average speedup
of 12.5% out of the SOM/POM optimization in the ZCU102.
The Alveo does not see as much improvement because we
have not tested any benchmark that involves fine-grained
tasks. Still, the N-Body benchmark, which involves a lot
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TABLE 4
Absolute and % FPGA resource usage of the evaluated benchmark’s designs

Benchmark LUT Alveo FF Alveo BRAM18K
Alveo

URAM
Alveo DSP Alveo LUT ZCU102 FF ZCU102 BRAM18K

ZCU102 DSP ZCU102

Matmul 502499(38) 890439(38) 863(20) 647(67) 3240(47) 199034(72) 352418(62) 841(46) 1931(77)
Cholesky 435052(37) 748110(32) 2324(54) 328(34) 3221(47) 165555(60) 305840(56) 1576(86) 2242(89)
N-body 650237(55) 938399(40) 2855(66) 0(0) 5146(75) 206787(75) 339429(62) 814(45) 1927(76)
Spectra 605378(51) 766797(32) 2025(47) 547(57) 4892(72) 168569(62) 276693(50) 1575(86) 1776(70)

of synchronization between the FPGA and the host, is able
to get nearly a 21% performance improvement out of this
optimization alone. This effect is expected to grow as FPGAs
grow bigger and can accommodate more accelerators or
more FPGAs are attached to a single host CPU. If the com-
munication time increases (like FPGA cloud environments)
the performance boost of this optimization is also expected
to become critical to obtain good performance.

5 RELATED WORK

Other efforts try to improve the efficiency and programma-
bility of FPGAs from High-Level Languages (HLL). The
Vineyard project [14] aims at facilitating heterogeneous
programming from OpenSPL [15], OpenCL [16] and SD-
SoC [17]. The Ecoscale project [18] proposes a hybrid
MPI+OpenCL programming environment and a minimum
runtime system to orchestrate a large group of workers us-
ing reconfigurable accelerators. In both cases the approach is
similar to the OmpSs@FPGA [1] baseline used in this work
aiming at an easy usage of FPGA-based execution units.
Over these works our approach improves the system per-
formance with high-level data access optimizations, task-
based parallel execution and the inclusion of a complete
hardware runtime in the FPGA fabric that also improves
programmability. The Unilogic system [19] also proposes
a small runtime to coordinate several FPGA accelerators
at the same time, but it is based on low-level code, not
implemented from HLL. Mbongue et. al. [20] introduce
automatic kernel extraction directly from LLVM IR code and
uses RapidWright [21], a tool that improves the placement
and routing of the FPGA design by pre-compiling and
replicating the kernels. As future work, the same idea could
be applied to the OmpSs@FPGA accelerators potentially
increasing the operating frequency of the whole design.

Several frameworks target High-Level Synthesis from
C/C++. Vivado HLS [22] is the Xilinx tool that is used by
OmpSs@FPGA to generate FPGA IP blocks. Xilinx Vitis [23]
works on top of Vivado HLS to better integrate the execution
environment with Xilinx boards. It is an evolution of Xilinx
SDSoC [17] and SDAccel [24] environments that includes a
minimum runtime to manage communication between the
FPGAs and the SMP host and facilitates the use of several
already programmed FPGA library functions. In the same
direction, Intel oneAPI [25] and Quartus [26] allow the use
of HLL for Intel FPGAs. LegUp [27], [28] is another HLS tool
that synthetizes C code with Pthreads and limited OpenMP
annotations. Each thread (code) is synthesized as an accel-
erator at compile time. The remaining (sequential) portions
are executed in the processor, invoke accelerators and use
synchronization functions to retrieve their return values.
Now, it only targets Microchip FPGAs [29]. ROCC [30],

[31] was another interesting HLL compiler tool that was
agnostic of the FPGA target. Our system is designed to be
able to work over any HLS tool focusing on improving data
movements and parallel execution of several accelerators,
not the accelerators themselves. It also features a unique
hardware runtime that allows more complex algorithms to
be executed in the FPGA while improving performance.

There have been some works related to hardware task
management and using tasks to program FPGAs also. Tan
et al. [8] present a HW manager that supports task de-
pendencies resolution and heterogeneous task scheduling
for parallel task-based programming models. The proposal,
however only allows task offloading to the accelerators
and was not integrated woith any compiler framework.
Cabrera et al. [32] and Sommer et al. [33] propose extensions
in OpenMP to support the definition of tasks that target
an FPGA device. Bosch et al. [7] also proposed to create
tasks from inside the FPGA. However, these works were
not integrated with a hardware dependence management
system to allow fast task management inside the FPGAs.
To the best of our knowledge, this work is the only one
that allows task and dependence management inside the
FPGA from a pragma annotated high-level source code that
is automatically compiled into the final executable.

6 CONCLUSIONS

This paper presented the latest improvements and updates
of the OmpSs@FPGA framework for easy FPGA program-
ming. Local memory caching allows hardware accelerators
to load/store data much faster. With a wide memory data
bus, matching the memory controller width, the copies
to/from main memory are improved. In some cases, the
load/store phase can be overlapped with the main kernel
in a pipeline manner. The OmpSs@FPGA compiler, Mer-
curium, is able to automatically apply these optimizations,
except for the pipelining which is still a proof-of-concept. Its
complete implementation is the main future work derived
from this paper. In addition to the above, the compiler
integrates an advanced hardware runtime to handle tasks
created both from hardware accelerators and CPU. This
runtime is able to optimize copies of the same memory
region scheduled to the same accelerator. It is also able to
manage dependencies inside the FPGA which minimizes
host-FPGA communication and accelerates task creation.

The mentioned optimizations and features are used in
several benchmarks, with different dependence patterns, on
two boards: a Xilinx ZCU102 (SoC) and a Xilinx Alveo U200
(PCIe attached). Results show that the wide port optimiza-
tion affects more the benchmarks with smaller granularity
due to the bigger ratio between copies and compute time.
Moreover, hardware task creation in FPGAs is most useful in
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cases with many host-FPGA communications like N-body,
or when granularity is small for the software runtime, like
the Cholesky case on the ZCU102. For the latter benchmark
and the matrix multiplication in the Alveo, we believe we
can still get better results by solving the concurrent memory
access problem that makes accelerators slower when access-
ing memory at the same time.

Only by changing C/C++ pragmas and compilation
variables, the user is able to explore and extract a com-
petitive performance with relatively low effort, compared
to CPUs, other FPGA implementations and even GPUs in
some cases. OmpSs@FPGA automatically performs the nec-
essary steps to generate a final bitstream from the original
code, so the programmer does not have to struggle with the
intermediate hardware designs. The OmpSs@FPGA frame-
work tools, like compiler sources and benchmarks (except
Spectra) code are available in GitHub repositories [34].
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