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Abstract: Strain localization analysis for orthotropic-associated plasticity in cohesive–frictional
materials is addressed in this work. Specifically, the localization condition is derived from Maxwell’s
kinematics, the plastic flow rule and the boundedness of stress rates. The analysis is applicable
to strong and regularized discontinuity settings. Expanding on previous works, the quadratic
orthotropic Hoffman and Tsai–Wu models are investigated and compared to pressure insensitive
and sensitive models such as von Mises, Hill and Drucker–Prager. Analytical localization angles
are obtained in uniaxial tension and compression under plane stress and plane strain conditions.
These are only dependent on the plastic potential adopted; ensuing, a geometrical interpretation
in the stress space is offered. The analytical results are then validated by independent numerical
simulations. The B-bar finite element is used to deal with the limiting incompressibility in the purely
isochoric plastic flow. For a strip under vertical stretching in plane stress and plane strain as well as
Prandtl’s problem of indentation by a flat rigid die in plane strain, numerical results are presented for
both isotropic and orthotropic plasticity models with or without tilting angle between the material
axes and the applied loading. The influence of frictional behavior is studied. In all the investigated
cases, the numerical results provide compelling support to the analytical prognosis.

Keywords: localized failure; strain localization; orthotropic plasticity; cohesive–frictional materi-
als; plasticity

1. Introduction

Orthotropic Materials such as wood and masonry have been traditionally used in
construction and are very much used today. Other frequently used materials, such as rolled
metals, are orthotropic because of their manufacturing process. This is also very much
the case of metallic and polymeric materials and components produced layer-by-layer
using modern additive manufacturing (AM) techniques, now increasingly used. In the
field of geological engineering, the analysis of orthotropic materials is of interest in ground
excavation, tunnel construction and landslides prevention.

Hill [1–3], a pioneer in the mathematical research of plasticity, proposed several con-
stitutive orthotropic plasticity models for sheet metals and investigated strain localization
and failure of orthotropic plastic materials. Based on Hill’s works, many isotropic and or-
thotropic plastic criteria have been later proposed, such as the Drucker–Prager model [4–7],
Hoffman model [8], Tsai–Wu model [9], and many more [10–12]. Purely cohesive mod-
els that are insensitive to pressure and yield an isochoric plastic flow, such as the von
Mises and the Hill models, are appropriate for metallic materials. Associated elasto-plastic
cohesive–frictional models such as the Drucker–Prager, Hoffman and Tsai–Wu models
are suitable for simulating polymeric materials such as PVC H100, H250 and carbon fiber
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composites [13–16] with isotropic and orthotropic behavior, as these materials show dis-
tinct strengths under tensile and compressive loading. Additive manufacturing techniques
based on filament deposition or powder bed fusion introduce different levels of orthotropy
in the mechanical stiffness and strength of the fabricated components. Geomaterials like
soils, concrete, masonry and rocks are also modeled with pressure-sensitive plasticity mod-
els; non-associated plasticity is also used for these materials in order to better approximate
the real dilatant behavior.

In plastic materials subjected to increasing loading beyond yielding, plastic strains
tend to concentrate in narrow zones called shear bands. This phenomenon, consisting of
irreversible deformation concentrating in a definite thin zone, is known as strain local-
ization [17]. Strain localization results in strain (weak) discontinuities across the surfaces
limiting the shear band. If the size of the band is very small compared to the dimensions of
the plastic medium, the band appears as (strong) discontinuity surface across which the
displacement field is discontinuous.

Structural assessment requires the accurate prediction of failure mechanisms and peak
carrying loads. Thus, failure mechanics has evolved in the last decades as a very active field,
and much analytical, experimental and computational research effort has been invested
in plasticity, damage, and fracture mechanics. Lately, computational failure mechanics
has often addressed the problem of the phenomenon of plastic strain localization and the
analytical and numerical challenges associated to it.

Early works of Prandtl [18], Hencky [19,20], and Mandel [21] determined the directions
of the slip lines, and the associated failure mechanisms and loads. Hill revisited and
interpreted the slip lines as the characteristic lines of the hyperbolic plastic governing
equations assuming rigid-plastic and incompressible behavior preceding shear-driven
plastic yielding.

Hill [22,23], Thomas [24] and Rice [25] investigated strain localization as a bifurcation
problem and extended the scope from rigid-plastic to elasto-plastic solids. Rice [26] ex-
tended the plane strain slip line theory to anisotropic rigid-plastic material. Rudnicki and
Rice [27] investigated the localization of deformation of pressure-sensitive dilatant materi-
als such as brittle rocks. Pietruszczak and Mróz [28] studied strain-softening in isotropic
Coulomb elasto-plastic materials. Nielsen and Schreyer [29] studied the loss of strong
ellipticity in associated and non-associated elasto-plasticity. Strain localization in frictional
solids was researched by Leroy and Ortiz [30]. Forest [31] used continuum models for
strain localization in metallic foams. Borja [32,33] extended the modeling in elasto-plastic
models and soft rocks. Willam and coworkers [34,35] studied the localization properties
of standard and generalized Drucker–Prager models. Vrech [36] addressed localization
analysis of gradient-dependent parabolic Drucker–Prager models. Zhang [37] studied
damage and strain localization in geomaterials, and Tasan [38] studied strain localization
and damage in dual phase steels.

The classical bifurcation analysis has been applied to both weak and strong discon-
tinuities. Simo [39] and Oliver [40,41] studied the orientation of strong discontinuities in
inelastic solids, and Oliver [42,43] suggested continuum plasticity models for the modeling
of such strong discontinuities. They soon found that conditions for discontinuous bifurca-
tion do not necessarily guarantee the occurrence of strong discontinuities, unless the strong
discontinuity is properly regularized and stress boundedness is invoked [40–43].

The authors [44,45] used Maxwell’s compatibility condition and stress boundedness
to predict analytically the orientation of shear discontinuities for isotropic von Mises and
orthotropic Hill elasto-plastic models. The analytical results were verified numerically.
This strain localization analysis was successfully applied to other and elastic-damage
models [46–48].

It turns out that the stress boundedness condition is a more constrictive necessary con-
dition than the classical discontinuous bifurcation condition, as strain localization generally
occurs after strain bifurcation has occurred. Contrary to the strain bifurcation conditions,
this strain localization condition depends entirely on the inelastic flow; remarkably, it does
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not depend on the elastic properties or on the yield surface. The localization angles can be
analytically predicted from the inelastic flow tensor alone.

This paper addresses the analytical determination of the orientation of slip lines in
orthotropic elasto-plastic cohesive–frictional materials by extending the strain localization
analysis developed in previous works. The objectives are fourfold: (i) to extend the strain
localization analysis to orthotropic elasto-plastic cohesive–frictional materials; (ii) to derive
analytically localization angles in plane stress and plane strain conditions for these models;
(iii) to verify these analytical results via independent numerical simulations; and (iv) to
investigate the influence of plastic material properties on strain localization in orthotropic
cohesive–frictional materials.

The paper is structured as follows. Section 2 briefly presents the analytical framework:
constitutive relations, kinematics for strong and weak discontinuities, and strain localiza-
tion conditions. Section 3 introduces orthotropic plasticity and develops the analytical
results for the localization angles in plane stress and plane strain conditions with some
examples. In Section 4, numerical verification of the analytical results using B-bar finite
elements is offered. Section 5 closes the paper with some conclusions.

2. Strain Localization in Elasto-Plastic Solids

In this section, the mechanics of strain localization in elasto-plastic media is addressed.
Using Maxwell’s kinematics and assuming boundedness of the stress rates, the necessary
condition for strain localization in elasto-plastic materials is obtained. The results hold
both for strong (displacement) discontinuities and for regularized strain localization bands
limited by weak (strain) discontinuities.

Let Ω ⊂ Rndim (ndim = 1, 2, 3) be an elasto-plastic solid domain, with the reference
position vector x ⊂ Rndim . The outer boundary is denoted by Γ ⊂ Rndim−1, with the outward
unit normal vector n∗. Deformations of the solid are characterized by the displacement field
u(x) and the infinitesimal strain field ε(x) = ∇symu(x), where ∇sym( · ) is the symmetric
gradient operator.

2.1. Elasto-Plasticity Model

In the following, tensorial notation is used. The inner products with single and double
contractions are denoted by ‘·’ and ‘:’, respectively, while the dyadic operator is signified
by ‘

⊗
’.

For the elasto-plastic model, the constitutive equation is expressed in total form as

ε = εe + εp, σ = E0 : εe = E0 : (ε− εp) (1)

where the second-order strain tensor ε is decomposed into its elastic and plastic parts,
εe and εp. The second-order stress tensor σ is proportional to the elastic strain tensor εe,
through the fourth-order elasticity tensor E0. All the tensors involved are symmetric. The
elastic properties may be orthotropic.

The admissible stress domain is determined by the yield criterion Φ(σ, ζ) = φ(σ)−
q(ζ) ≤ 0, defined in terms of the equivalent stress φ(σ) and a stress-like internal variable
q(ζ), which determine the shape and size of the domain, respectively. Yield criteria for
orthotropic elasto-plasticity are discussed in Section 3.

The plastic strain is defined in rate form, its direction is derived from a plastic potential.
In associated plasticity, the plastic potential is equal to the yield surface, so that

.
ε

p
=

.
λ

∂φ

∂σ
=

.
λ Λ (2)
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where
.
λ ≥ 0 denotes the plastic multiplier; . is the time derivative and the plastic flow

tensor Λ = ∂φ /∂σ is normal to the yield surface Φ = 0. Similarly, the evolution of the size
of the yield surface is determined by

.
ζ =

.
λ

∂φ

∂q
= −

.
λ (3)

The constitutive equation in rate form follows from Equation (1),

.
σ = E0 :

.
ε

e
= E0 :

( .
ε− .

ε
p
)
= Eep :

.
ε (4)

where the fourth-order elasto-plasticity tangent tensor Eep is obtained from the Kuhn–
Tucker and consistency conditions as

Eep =
dσ
dε

= E0 − E0 : Λ
⊗

E0 : Λ
H + Λ : E0 : Λ

(5)

where H = ∂q /∂ζ is the hardening or softening modulus. For perfect plasticity, q = q0,
and H = 0. Note that in associated plasticity, the elasto-plastic tangent tensor is symmetric.

2.2. Kinematics of Strong and Regularized Discontinuities

In the early stages of the loading and deformation process of an elasto-plastic solid,
standard kinematics applies and both the displacement rate and strain rate fields are
continuous. However, in softening and associated perfect plasticity, and even in hardening
non-associated plasticity, slip lines (in 2D) or slip surfaces (in 3D) may form. Across these,
the deformation can grow unbounded, displacement and/or strain discontinuities may
appear and Maxwell’s compatibility condition needs to be considered.

Figure 1a shows the elasto-plastic solid domain Ω split by a displacement disconti-
nuity S (the slip line or slip surface) into two parts Ω+ and Ω−. The orientation of the
discontinuity is denoted with the unit normal vector n with direction from Ω− to Ω+. Let
L be a characteristic size of the domain.
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Figure 1. (a) Strong and (b) regularized discontinuities in an elasto-plastic solid.

Figure 2a shows the corresponding kinematics: the velocity and strain rate fields are
not regular. There is a discontinuity of the displacement rate at S of value

.
w; correspond-

ingly, the strain rate at S is
.
εS =

( .
w
⊗

n
)sym

δS (6)
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where δS denotes the Dirac delta function. Note that this strain rate is unbounded and has a
very definite structure determined by the direction of the discontinuity surface, as it allows
for unbounded strain rate components at S due to the discontinuity of the displacement in
the normal direction n, but not in those directions tangential to S.
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For the analysis of strain localization in the continuum setting and also for its numeri-
cal verification using FEM, it is convenient to consider a regularized discontinuity, as shown
in Figure 1b. Here, subdomains Ω+ and Ω− are separated by a regularized discontinuity
band B of finite width b, as the distance between surfaces S+ and S−; these are weak (strain)
discontinuities. The bandwidth b is small compared to the characteristic size of the domain
L, so that b/L << 1.

Figure 2b shows the corresponding regularized kinematics. Note that the strain
localizes in the regularized band B. The deformation rate vector in the strain localization
band

.
e is defined as the (apparent) jump of displacement rate

.
w across the regularized

discontinuity band divided by the band width,
.
e =

.
w/b.

Let
.
u be a characteristic displacement in domain and the jump

.
w be of the same order.

Deformations outside the localization band are of the order
.
eext =

.
u/L, while inside the

band they are of order
.
eint =

.
w/L. As b/L << 1,

.
eext/

.
eint << 1 even for a finite, small

bandwidth.
Denoting by

.
εext and

.
εint the strain rates inside and outside of the localization band,

respectively, and being 〚
.
ε〛 the corresponding strain rate jump, Maxwell’s compatibility

condition [20] is now expressed as

〚
.
ε〛 =

.
εint −

.
εext =

( .
e
⊗

n
)sym

(7)

Equation (7) is the regularized counterpart of Equation (6). Note that for the band
width b→ 0, the strain rate in the regularized discontinuity band B tends to the strain rate
in the strong discontinuity S.

2.3. Strain Localization and Stress Boundedness

Upon strain localization inside the band, and ongoing deformation, the deformation
vector rate in the band,

.
e =

.
w/b, the strain rate jump,

( .
e
⊗

n
)sym, and the plastic strain
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rate in the band,
.
ε

p
int, will grow much larger than the total strain rate outside the band,

.
εext,

and the corresponding plastic strain rate,
.
ε

p
ext, will either vanish (on elastic unloading) or

remain small (on plastic loading); this ensures boundedness of the stress rate outside the
band,

.
σext. The terms that will grow upon strain localization, inversely proportional to b,

are underlined in the following.
From the constitutive relation of the elasto-plastic solids, the stress rates inside and

outside of the localization band are given by

.
σint = E0 :

( .
εint −

.
ε

p
int

)
,

.
σext = E0 :

( .
εext −

.
ε

p
ext

)
(8)

Note that plastic behavior is considered inside and outside the localization band. The
jump of stress rate 〚

.
σ〛 is expressed as

〚
.
σ〛 =

.
σint −

.
σext = E0 :

(
〚

.
ε〛− 〚

.
ε

p〛
)
= E0 :

[( .
e
⊗

n
)sym

− 〚
.
ε

p〛
]

(9)

where the compatibility Condition (7) has been used and the jump of plastic strain rate is

〚
.
ε

p〛 =
.
ε

p
int −

.
ε

p
ext =

.
λ int Λ−

.
λ ext Λ = 〚

.
λ〛 Λ (10)

Equations (8)–(10) are derived from the constitutive behavior and the compatibility
conditions across the weak discontinuities S+ and S−; as strain localization has not been
invoked, all the terms involved are bounded.

Inside the localization band, elasto-plastic behavior and satisfaction of the yield
criterion ensure that the stress rate needs to remain bounded even if the strain rate is not.
Consequently, the jump of the stress rate in Equation (9) may not be null, but it is bounded;
therefore, stress rate boundedness requires that

〚
.
ε〛 =

( .
e
⊗

n
)sym

=
.
ε

p
int =

.
λ int Λ (11)

The entire jump of the strain rate is due to the plastic strain rate inside the band. This
a necessary condition for strain localization to occur. Some Remarks are in order.

Remark 1. This condition holds for small finite bandwidths b, as in regularized discontinuities and
standard FEM simulations. The condition for strong discontinuities follows for the limit case of
vanishing bandwidth b→ 0.

Remark 2. This condition does not necessarily occur upon plastic yielding or strain bifurcation.
Therefore, a transition stage may be necessary in most situations during which plastic behavior
happens without strain localization. Only when the localization condition is fulfilled, might true
strain localization happen.

Remark 3. Only kinematic conditions depending on the plastic flow rule are implied; therefore, the
condition may be extended to non-associated plasticity.

Remark 4. For the same reason, the condition is independent of the elastic properties. Application
to rigid-plastic materials can be implied from this independence. This is not the case for classical
conditions related to strain bifurcation.

Remark 5. Stress rate continuity upon strain localization follows from Equation (9) if unloading
occurs outside the band, that is,

.
λext = 0. In this case, 〚

.
ε〛 = 〚

.
ε

p〛 and 〚
.
σ〛 = 0. This is usually

the case when softening plasticity is considered.
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2.4. Strain Localization Plastic Flow Vector and Tensor

In the following, the subscript ()int will be omitted for the sake of simplicity, as all
quantities refer to points inside the localization band. From Equation (10), a plastic flow
localization vector, γ, can be defined so that the deformation rate vector

.
e and the plastic

flow tensor Λ are written as

.
e =

.
λ γ, Λ =

(
γ
⊗

n
)sym

(12)

where n is the unit vector normal to the discontinuity S. Note that Λ is a second order
tensor, while

.
e, γ and n are vectors.

Let m and p be unit vectors on the plane of the discontinuity S such that (n, m, p)
is a basis of orthonormal vectors. Then, the plastic flow localization vector, γ, can be
equivalently defined so that

γ = 2n·Λ−Λnnn = γnn + γmm + γp (13)

The components of the plastic flow localization vector γ = (γn,γm,γp) are determined
so that

γn = γ·n = Λnn, γm = γ·m = 2Λnm, γp = γ· p = 2Λnp (14)

γ = Λnnn + 2Λnmm + 2Λnpp (15)

Accordingly, the other components of the strain localization plastic flow tensor are zero:

Λmm = 0, Λpp = 0, Λmp = 0 (16)

From these equations the orientation of the slip surface may be derived.

3. Application to Orthotropic Cohesive–Frictional Plastic Materials

In this section, the above results for strain localization in elasto-plastic materials are
purposedly applied to orthotropic cohesive–frictional plastic materials. A general form of
the considered yield criteria is given that allows closed-form solutions for the orientation
of the slip lines in 2D plane strain and plane stress conditions.

3.1. Orthotropic Cohesive–Frictional Plasticity

Orthotropic cohesive–frictional yield criteria of the form Φ(σ, ζ) = φ(σ)− q(ζ) ≤ 0
are now considered. Let (1,2,3) be the material orthotropy axes and

σT = [σ11,σ22,σ33,σ12,σ13,σ23] (17)

Voigt’s representation of the symmetric second-order stress tensor is used in those
axes. Voigt’s notation will be used in the following for symmetric second-order tensors.
The equivalent stress φ(σ) is expressed as

φ(σ) =

√
3
2

(
σT·P·σ+ QT·σ

)
(18)

The generalized orthotropic matrix P and Q vectors read

P =
1

F + G + H



F + G −F̃ −G̃ 0 0 0
−F̃ F + H −H̃ 0 0 0
−G̃ −H̃ G + H 0 0 0

0 0 0 2L 0 0
0 0 0 0 2M 0
0 0 0 0 0 2N


, Q =

1
F + G + H



I
J
K
0
0
0

 (19)
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where the material parameters F, G, H, F̃, G̃, H̃, L, M, N, I, J and K are given in terms of
the material strengths (superscripts c and t denote compression and tension, respectively):

F = 1
2

[
1

f c
1 f t

1
+ 1

f c
2 f t

2
− 1

f c
3 f t

3

]
, G = 1

2

[
1

f c
1 f t

1
− 1

f c
2 f t

2
+ 1

f c
3 f t

3

]
,

H = 1
2

[
− 1

f c
1 f t

1
+ 1

f c
2 f t

2
+ 1

f c
3 f t

3

] (20)

L =
1
2

(
1
f12

)2
, M =

1
2

(
1
f13

)2
, N =

1
2

(
1
f23

)2
(21)

I =
1
f t
1
− 1

f c
1

, J =
1
f t
2
− 1

f c
2

, K =
1
f t
3
− 1

f c
3

(22)

Unless otherwise stated:

F̃ = F, G̃ = G, H̃ = H (23)

The initial stress threshold is defined as

q2
0 =

3
2
[F + G + H]−1 (24)

Different well-known quadratic isotropic and orthotropic yield criteria are obtained
by appropriately selecting the material parameters:

Von Mises criterion:

f = f c
1 = f c

2 = f c
3 = f t

1 = f t
2 = f t

3,
f√
3
= f12 = f13 = f23 (25)

Parabolic Drucker–Prager (DP) criterion:

f c = f c
1 = f c

2 = f c
3 , f t = f t

1 = f t
2 = f t

3,

√
f c f t
√

3
= f12 = f13 = f23 (26)

Hill criterion:

f1 = f c
1 = f t

1, f2 = f c
2 = f t

2, f3 = f c
3 = f t

3 and I = J = K = 0 (27)

Hoffman criterion:
F̃ = F, G̃ = G, H̃ = H (28)

Tsai–Wu criterion:

F̃ =
1
2

1√
f c
1 f t

1 f c
2 f t

2

, G̃ =
1
2

1√
f c
1 f t

1 f c
3 f t

3

, H̃ =
1
2

1√
f c
2 f t

2 f c
3 f t

3

(29)

Remark 6. The effective stress in Equation (18) defines a quadratic yield surface, with a quadratic
dependence of the friction-angle on pressure. Alternatively, an effective stress defined as

φ(σ) =

√
3
2
σT·P·σ+ Q̂T·σ (30)

with Q̂i =
√

Qi allowing for a yield surface with straight meridians; the isotropic criterion
would the more conventional DP cone.

Orthotropic criteria cannot be represented graphically in the Haigh–Westergaard (HW)
stress space because they depend on the six stress components. A partial graphical represen-
tation can be obtained by considering them projected into the HW space when the principal
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stresses act on the material axis, that is, no shear stress appears on the material system.
Such representation, generally as an elliptic paraboloid, is offered in Figure 3. All strengths
are scaled to 1. Figure 3a shows an orthotropic Hill cylinder, with f1/ f2 = f1/ f3 = 1.5,
tensile and compresive strenth are equal. Figure 3b show the isotropic parabolic Drucker–
Prager for compressive to tensile strength ratio κ = f c/ f t = 1.5. Figure 3d,c show the
orthotropic Hoffman and Tsai–Wu criteria, respectively, for ratios κ = f c

1 / f t
1 = 1.5 and

f c
2 / f t

2 = f c
3 / f t

3 = 1; all tensile strengths are taken equal to 1.
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3.2. Orthotropic Plastic Flow

From the effective stress in Equation (18), the components of the plastic flow tensor
plastic flow are obtained:

Λ =
∂φ

∂σ
=

3
4

1
φ(σ)

(
2 P ·σ+ QT

)
(31)

So that

Λ11 =
∂φ

∂σ11
=

q2
0

2φ

[
2(G + F)σ11 − 2F̃σ22 − 2G̃σ33 + I

]
(32)

Λ22 =
∂φ

∂σ22
=

q2
0

2φ

[
2(F + H)σ22 − 2F̃σ11 − 2H̃σ33 + J

]
(33)

Λ33 =
∂φ

∂σ33
=

q2
0

2φ

[
2(G + H)σ33 − 2G̃σ11 − 2H̃σ22 + K

]
(34)

Λ12 = Λ21 =
1
2

∂φ

∂σ12
=

q2
0

2φ
Lσ12 (35)

Λ13 = Λ31 =
1
2

∂φ

∂σ13
=

q2
0

2φ
Mσ13 (36)

Λ23 = Λ32 =
1
2

∂φ

∂σ23
=

q2
0

2φ
Nσ23 (37)

The identity trΛ = Λ11 + Λ22 + Λ33 =
q2

0
2φ (I + J + K) holds.

3.3. Strain Localization Angle

In this section, the orientation of the slip lines is analytically obtained for orthotropic
and pressure-dependent plastic solids subjected to plane strain and plane stress conditions.
The strain localization angle is measured counter-clockwise θcr ∈ [−π

2 , π
2 ] as the angle

between the vector n normal to the discontinuity and the material axis 1; see Figure 4.
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Figure 4. Definition of the localization angle θcr.

Let (n, m, p) be the basis formed by the orthonormal vectors normal and tangential to
the discontinuity S, such that vectors n and m are respectively normal and tangential to the
trace of S in the reference plane xy and vector p points in the out-of-plane z direction, as
shown in Figure 4.

The strain localization Equation (16) requires the flow tensor in Equation (31) to be
written in this system. Let θcr be the angle between the material system (1, 2, 3) and the
(n, m, p) system. Then

Λmm = Λ11 sin2 θcr + Λ22 cos2 θcr + 2Λ12 sin θcr cos θcr

Λpp = Λ33
Λmp = 0

(38)

The strain localization angle θcr is obtained from the kinematic constraints in Equation (16),
that is, equating these components to zero. Solving Λmm(θcr) = 0 for tan θcr :

tan θcr = −Λ12

Λ11
±

√(
Λ12

Λ11

)2
− Λ22

Λ11
(39)

As can be seen, the strain localization angle θcr depends on the stress state upon strain
localization. The condition Λpp(θcr) = Λ33 = 0 (38) needs to be imposed in plane stress
and strain conditions.

Remark 7. For the case of Λ12 = 0, where the no shear stress acts on the material axes, Equation (39)
simplifies to

tan θcr = ±

√
−Λ22

Λ11
(40)

Remark 8. The kinematic constraints produce two alternative strain localization angles, see also
Figure 3. The in-between angles that follow from Equation (40) are

tan(θcr
1 − θcr

2 ) =
tan θcr

1 − tan θcr
2

1 + tan θcr
1 tan θcr

2
= ±

2
√
−Λ22

Λ11

1 + Λ22
Λ11

 (41)

Remark 9. In purely isochoric models (von Mises, Hill), Λ11 = −Λ22, and tan
(
θcr

1 − θcr
2
)
= ±∞,

so θcr
1 − θcr

2 = ±90◦.
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Remark 10. The angle of the slip lines (counter-clockwise from 1-axis) is θslip = π
2 − θcr:

tan θslip = (tan θcr)−1. (42)

Remark 11. The above expressions are obtained for the stress expressed in the material system.
These are obtained from the stresses in the global (x,y,z) system by standard transformation. For
instance, in plane strain conditions

σ11
σ22
σ33
σ12

 =


cos2 α sin2 α 0 −2 cosα sinα

sin2 α cos2 α 0 2 cosα sinα

0 0 1 0
cosα sinα − cosα sinα 0 cos2 α− sin2 α




σxx
σyy
σzz
σxy

 (43)

where α is the tilt angle between the global axis x and the material local axis 1 measured
counter-clockwise.

3.3.1. Plane Stress

In plane stress, σ33 = σpp = 0.
In this case, the non-zero plastic flow components Λij in Equation (40) are

Λ11 =
q2

0
2φ

[
2(G + F)σ11 − 2F̃σ22 + I

]
Λ22 =

q2
0

2φ

[
2(F + H)σ22 − 2F̃σ11 + J

]
Λ12 = Λ21 =

q2
0

2φ Lσ12

(44)

These components can be substituted in Equation (39).

3.3.2. Plane Strain

In this case, the non-zero plastic flow components Λij in Equation (40) are considered
with Equation (38).

Λ11 =
q2

0
2φ

[
2(G + F)σ11 − 2F̃σ22 − 2G̃σ33 + I

]
Λ22 =

q2
0

2φ

[
2(F + H)σ22 − 2F̃σ11 − 2H̃σ33 + J

]
Λ33 =

q2
0

2φ

[
2(G + H)σ33 − 2G̃σ11 − 2H̃σ22 + K

]
Λ12 = Λ21 =

q2
0

2φ Lσ12

(45)

From the kinematical condition Λpp(θ
cr) = Λ33 = 0, σ33 is obtained as

σ33 =
2
(

G̃σ11 + H̃σ22

)
− K

2(G + H)
(46)

and inserted into Equation (44), and these components can be then substituted in Equation (39).

3.4. Geometrical Interpretation of the Strain Localization Angle in the Stress Space

In the following, a geometrical interpretation of the strain localization angles obtained
analytically is offered. As explained, Figure 3 gives a partial graphical representation of
the orthotropic yield criteria projected into the HW space when the principal stresses act
on the material axis, that is, no shear stress appears on the material system.

In Figure 5, a cross section of those paraboloids by a horizontal plane is given. For plane
stress, the plane σ33 = 0 is used; for plane strain, the plane σ33 = [2(G̃σ11 + H̃σ22)− K]/
2(G + H), from Equation (46), is used. The isotropic Drucker–Prager and the orthotropic
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Hoffmann and Tsai–Wu criteria are depicted for ratios κ = f c/ f t = 1.5 and 3.0 and
f c
2 / f t

2 = f c
3 / f t

3 = 1; all tensile strengths are taken equal to 1. For plane stress, the
intersected quadratic curves are ellipses; for plane strain, they are parabolas. They are
more stretched for higher ratios κ.
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In Figure 5, the projection of the plastic flow vector, normal to the yield surface, for
uniaxial tension and compression in the 2-direction, is also plotted. See the next section for
the analytical values.

Remark 12. The angle θ̃ between this projected flow vector and the 2-axis is related to the
strain localization angle θcr, because

tan θ̃ = −Λ22

Λ11
= tan2 θcr (47)
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3.5. Uniaxial Tension and Compression: Analytical Strain Localization Angles

In the following, the analytical values of the strain localization angle are obtained for
the uniaxial tension and compression cases illustrated in Figure 5. Material strengths are
those indicated in the previous section; with those, the coefficients for matrix P and vector
Q are computed for the three different criteria (Drucker–Prager, Hoffmann and Tsai–Wu)
and listed in Table 1.

Table 1. Coefficients for matrix P and vector Q (κ = 1.5).

κ = 1.5 F G H
~
F

~
G

~
H I J K

DP 1/3 1/3 1/3 F G H 1/3 1/3 1/3
Hoffman 1/3 1/3 2/3 F G H 1/3 0 0
Tsai–Wu 1/3 1/3 2/3

√
1/6

√
1/6 0.5 1/3 0 0

3.5.1. Plane Stress

For uniaxial tension in plane stress, the stress state is

σ11 = 0, σ22 = σ > 0, σ12 = 0, σ33 = 0 (48)

Therefore, the kinematical condition Λ33 = 0 (38) needs not be considered, and no
extra constraint imposes on the stress state upon strain localization. Therefore, once the
initial yield surface, Φ(σ, ζ) = 0, is reached, strain localization occurs at the same instant,
with the orientation determined from the corresponding flow tensor.

A stress σ22 = σ = 1 is taken so that the point [0, σ, 0] is on the yield surface, see
Figure 5a.

As Λ12 = 0,

tan θslip = (tan θcr)−1 = ±

√
−Λ11

Λ22
= ±

√
2F̃σ22 − I

2(F + H)σ22 + J
(49)

The obtained values for θslip are given in Table 2. Results corresponding to uniaxial
compression are also given in the Table. Note that the localization angles under tension
and compression are very different for the various yield criteria, as depicted graphically in
Figure 5.

Table 2. Plane Stress: stress state and slip-line angles for uniaxial tension and compression.

κ = 1.5
Tension Compression

σ22 σ33 θslip σ22 σ33 θslip

DP 1.0000 0.0000 ±24.0948◦ −1.0000 0.0000 ±41.8103◦

Hoffman 1.0000 0.0000 ±22.2077◦ 1.0000 0.0000 ±35.2644◦

Tsai–Wu 1.0000 0.0000 ±26.1746◦ −1.0000 0.0000 ±37.1705◦

Remark 13. Note that for I = 2F̃ the localization angle θcr = 0 f or tension, as σ22 = σ = 1.
This happens if the compressive strength is sufficiently larger than the tensile strength; for instance,
it happens for the ratio κ = 2 for the Drucker–Prager criterion. For larger ratios, there is no real
value for the localization angles. In compression, for σ22 = σ = −1, this happens reciprocally, that
is, if the compressive strength is sufficiently smaller than the tensile strength.
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3.5.2. Plane Strain

In the plane strain case, the kinematical condition Λ33 = 0 (38) needs to be enforced.
From this,

σ33 =
2
(

G̃σ11 + H̃σ22

)
− K

2(G + H)
(50)

A stress σ22 = σ is found so that the point [0, σ, σ33] is on the corresponding yield
surface, see Figure 5a.

Then,

tan θslip = (tan θcr)−1 = ±

√
−Λ11

Λ22
= ±

√
2F̃σ22 + 2G̃ σ33 − I

2(F + H)σ22 − 2H̃σ33 + J
. (51)

The obtained values for θslip are given in Table 3. Results corresponding to uniaxial
compression are also given. Note that the angles under tension and compression are
distinct, and they are also different for the various yield criteria, as shown in Figure 5.

Table 3. Plane Strain: stress state and slip-line angles for uniaxial tension and compression.

κ = 1.5
Tension Compression

σ22 σ33 θslip σ22 σ33 θslip

DP 1.0275 0.2638 ±30.4411◦ −2.0275 −1.2638 ±52.1384◦

Hoffman 1.3416 0.8944 ±41.3843◦ −1.3416 −0.8944 ±47.8857◦

Tsai–Wu 1.1547 0.5774 ±38.3075◦ −1.1547 −0.5774 ±45.1276◦

4. Numerical Verification

In this section, FEM analyses are performed to numerically verify the analytical results
obtained in Section 3 and derived from the strain localization analysis in Section 2.

It is emphasized that the numerical verification is totally independent of the analytical
results. That is, the numerical analyses follow the standard procedure for solving the
nonlinear mechanical problem and plastic behavior appears and evolves into the formation
of slip lines; and the analytical results are not by any means used.

In previous works [45], it has been demonstrated that the strain localization angle
is independent of the elastic properties. Therefore, the argument is not pursued here.
Similarly, the localization angle does not depend on the softening behavior [47], so perfect
plasticity is assumed in the following.

Although pressure-dependent plasticity models are to be investigated, they are com-
pared to the isochoric von Mises model. To avoid volumetric locking in nearly incompress-
ible situations, B-bar finite elements [49] are used in 2D and 3D.

4.1. B-Bar Finite Element

The B-bar element is a particular implementation of the mixed displacement/pressure
Q1P0 element in which the constant pressure has been eliminated at element level at the
expense of renouncing the incompressible limit. This is accomplished by evaluating the
constant mean stress in terms of the mean volumetric strain, the latter computed from the
nodal displacements.

The standard discrete strain-displacement B matrix, computed at each integration
point from the Cartesian derivatives of the nodal shape functions, is split into its volumetric
and deviatoric parts

B = Bvol + Bdev (52)
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A mean volumetric sub-matrix Bvol is computed as

Bvol
=

1
ng

ng

∑
k=1

Bvol
k (53)

where ng is the number of integration points in the element.
The B-bar discrete strain-displacement matrix is obtained as

B = Bvol
+ Bdev (54)

The B-bar element has some zero-energy modes that may show as spurious hour-
glassing in some instances. This may be avoided by using

Bstab
= B + (1− τ)

[
Bvol − Bvol

]
(55)

For τ = 1, then Bstab
= Bvol

+ Bdev = B is identical to the B-bar formulation. For
τ = 0, then Bstab

= Bvol + Bdev is identical to the standard formulation.

4.2. Uniaxial Tension and Compression: Numerical Verification

In this section, the above B-bar finite element is used to perform benchmark verifica-
tions in strain localization analysis. The benchmark example is a strip loaded in uniaxial
tension and compression via imposed vertical displacements at the top and bottom ends;
the horizontal movement is not restrained. As shown in Figure 6, the strip has dimensions
10 m× 20 m (width × height). A sharp horizontal slit (2 m) is inserted in the center of strip
to introduce the perturbation necessary to trigger strain localization.
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In this problem the stress field is known a priori. Plane strain and plane stress
conditions are investigated. In both cases, the far field stress state corresponds exactly to
those assumed for the analytical results in Section 3:

σ11 = 0, σ22 = σ > 0, σ12 = 0 (56)
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The sharp horizontal slit causes a stress concentration that triggers the onset of plastic
behavior and strain localization; subsequently, straight slip lines stem from these and
cross the strip at well-defined slopes that must follow the angles analytically predicted in
Sections 2 and 3. The numerical results obtained in the FE analysis are used to validate the
strain localization analysis in Section 2 and the analytical results in Section 3 that follow
from it.

The following material properties are used: Young’s modulus E = 1.0× 107 MPa,
Poisson’s ratio ν = 0.2. Several orthotropic elasto-plastic criteria are compared; the different
plastic yield strengths along the material axes are detailed for each case. Perfect plasticity
is assumed.

Structured meshes of regular quadrilateral are employed. Square elements
(0.05 m × 0.05 m) are arranged 200 horizontally and 400 vertically, with a total of 80,000 el-
ements used for plane strain 2D simulations. Plane stress cases are simulated in 3D, with
as many hexahedral elements arranged in a mesh 1 element thick. In all cases, 500 time
steps are performed to complete the analyses. The constitutive laws and finite elements
used have been implemented in the COMET finite element program, developed by the
authors at the International Center for Numerical Methods in Engineering (CIMNE). Pre-
and post-processing are done with GiD, also developed at CIMNE.

4.2.1. Isotropic Incompressible and Cohesive–Frictional Models

In this subsection, strain localization is first investigated for isotropic incompressible
and pressure sensitive models.

Isotropic von Mises J2 plasticity with yield strength f = 1.0× 104 MPa is used as
reference case. Insensitive to pressure, under plane strain, tensile and compression tests
show the same localization angles (±45◦), while under plane stress, the localization angles
are ±35.26◦ from the horizontal axis, measured in a counter-clockwise manner.

Isotropic Parabolic Drucker–Prager models are also considered. A tensile strength
f t = 1.0× 104 MPa and different compressive strengths according to the ratio κ = f c/ f t are
used, κ = 1.25, 1.50 for tension, κ = 2.0, 3.0 for compression; the isotropic shear strength
is
√

f c f t / 3.
Some of the corresponding analytical results are given in Section 3.5. Here, the ana-

lytical and numerical results are presented for comparison in Figures 7–10 and Tables 4–7.
Plane stress and plane strain results are shown both for tension and compression.
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Table 4. Analytical and numerical Lode and strain localization angles for isotropic models under
plane stress tension.

κ ϑana ϑnum θ
slip
ana θ

slip
num

VM 1.0 0.0000◦ 0.6459◦ 35.2644◦ 35.4699◦

DP 1.25 0.0000◦ 0.3803◦ 30.0000◦ 30.4342◦

DP 1.5 0.0000◦ 0.7800◦ 24.0948◦ 24.2277◦

Table 5. Analytical and numerical Lode and strain localization angles for isotropic models under
plane stress compression.

κ ϑana ϑnum θ
slip
ana θ

slip
num

VM 1.0 60.0000◦ 59.3541◦ 35.2644◦ 35.4699◦

DP 2.0 60.0000◦ 59.6989◦ 45.0000◦ 45.0000◦

DP 3.0 60.0000◦ 59.6006◦ 48.1897◦ 48.8141◦

Table 6. Analytical and numerical Lode and strain localization angles for isotropic models under
plane strain tension.

κ ϑana ϑnum θ
slip
ana θ

slip
num

VM 1.0 30.0000◦ 30.1669◦ 45.0000◦ 45.0000◦

DP 1.25 22.3378◦ 23.6244◦ 38.2626◦ 39.0939◦

DP 1.5 14.3077◦ 15.9519◦ 30.4411◦ 31.4875◦

Table 7. Analytical and numerical Lode and strain localization angles for isotropic models under
plane strain compression.

κ ϑana ϑnum θ
slip
ana θ

slip
num

VM 1.0 30.0000◦ 30.1669◦ 45.0000◦ 45.0000◦

DP 2.0 19.1066◦ 19.6359◦ 54.7356◦ 54.2934◦

DP 3.0 17.1330◦ 17.6788◦ 56.6531◦ 57.5289◦

In the figures in this and the following sections, contour fills of the equivalent plastic
strain are depicted to show the orientation of the slip lines and the corresponding failure
mechanisms. The resolution of the mesh and the color pattern are selected so that these can
be easily perceived. The red to blue color range indicates the largest to smallest magnitude
of the equivalent plastic strain. For the numerical results, the numerical Lode angle is
measured at the point in the slip line located 1 m to the right from the right end of the slit.
The angle of the slide slip line is measured counter-clockwise from the x-axis.

For all cases, the numerical results are coincident with the analytical results. Correct
angles of the slip lines are depicted in Figures 7–10. Also, the coincidence between analytical
and numerical results is shown in Tables 4–7. The strain localization angle decreases
with increasing ratios κ in the tensile tests (Figures 7 and 9), while the strain localization
angle increases with κ in the compressive tests (Figures 8 and 10). The coincidence of the
analytical and numerical Lode angles in the plane strain cases indicates that the kinematical
constraint imposed by the Λ33 = Λzz = 0 condition is verified.

4.2.2. Isotropic and Orthotropic Cohesive–Frictional Models

In this subsection, the formation of slip lines is now investigated for orthotropic
Hoffman and Tsai–Wu pressure-sensitive models and compared to the isotropic counterpart.
The orthotropy material axes (1,2,3) are coincident with the global axes (x,y,z); relative
tilting is investigated in Appendix B.

For the comparison, a ratio of compressive to tensile strengths κ = 1.5 is taken for the
tension tests and κ = 3.0 for the compression tests. For the orthotropic models, all the yield
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strengths are taken as f = 1.0× 104 MPa, except the compressive f c
x , which is taken to the

κ ratio; shear strength fxy =
√

f c
x f c

y / 3.

Some of the corresponding analytical results are given in Section 3.5. In the following,
the analytical and numerical results are presented for comparison in Figures 11–14 and
Tables 8–11.
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(a) Parabolic Drucker–Prager; (b) Hoffman; (c) Tsai–Wu.

Table 8. Analytical and numerical Lode and strain localization angles for frictional–cohesive models
under plane stress tension, κ = 1.5.

κ = 1.5 ϑana ϑnum θ
slip
ana θ

slip
num

Drucker–Prager 0.0000◦ 0.7800◦ 24.0948◦ 24.2277◦

Hoffman 0.0000◦ 0.5258◦ 22.2077◦ 22.1355◦

Tsai–Wu 0.0000◦ 0.3457◦ 26.1746◦ 26.5651◦

Table 9. Analytical and numerical Lode and strain localization angles for frictional–cohesive models
under plane stress compression, κ = 3.0.
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slip
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Drucker–Prager 60.0000◦ 59.6006◦ 48.1897◦ 48.8141◦

Hoffman 60.0000◦ 58.6061◦ 35.2644◦ 35.4699◦

Tsai–Wu 60.0000◦ 59.8503◦ 38.2620◦ 37.7757◦
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Table 10. Analytical and numerical Lode and strain localization angles for frictional–cohesive models
under plane strain tension, κ = 1.5.

κ ϑana ϑnum θ
slip
ana θ

slip
num

Drucker–Prager 14.3077◦ 15.9519◦ 30.4411◦ 31.4875◦

Hoffman 40.8934◦ 42.5043 41.3843◦ 41.5891◦

Tsai–Wu 30.0000 ◦ 30.7240◦ 38.3075◦ 38.2204◦

Table 11. Analytical and numerical Lode and strain localization angles for frictional–cohesive models
under plane strain compression, κ = 3.0.

κ ϑana ϑnum θ
slip
ana θ

slip
num

Drucker–Prager 17.1330◦ 17.6788◦ 56.6531◦ 57.5288◦

Hoffman 8.9483◦ 7.8626◦ 51.6975◦ 50.7106◦

Tsai–Wu 30.0000◦ 29.4419◦ 44.4488◦ 44.6397◦

As previously, for all cases, the numerical and analytical results are coincident. Note
that Hoffman and Tsai–Wu models produce different outcomes for the same material
properties, as they use different F̃, G̃ and H̃ parameters. Lode angles in plane stress are 0◦

under tensile loading and 60◦ under compressive loading; they vary in plane strain.

4.3. Prandtl’s Punch Test

The second example is Prandtl’s punch test, a 2D plane problem in which a flat rigid
die punches into an elasto-plastic semi-infinite medium. Classical solutions to this problem
for rigid-plastic materials are well-known.

As shown in Figure 15, the computational domain of the elasto-plastic medium is
10 m× 3 m (width × height). Boundary conditions consist of a fixed bottom edge, left and
right edges horizontally restrained. Punching is applied by imposing an increasing vertical
displacement at the base of the rigid die; the horizontal movement is restrained at this base.
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Figure 15. Geometry Prandtl’s punch test. The bottom edge is fixed in both directions, while the left
and right edges are constrained along the horizontal direction.

Material properties are the same as for the strip under vertical loading. A regular
mesh of 192,000 (800 × 240) square B-bar elements (0.0125 m × 0.0125 m) is used. In all
cases, 1000 time steps are performed to complete the analyses.

The mechanics of the failure are as follows. Plastic yielding starts at the singular
points at the extreme ends of the rigid die. From here, two slip lines dig into the supporting
elasto-plastic medium at diverging angles. Further loading causes the formation of a
collapse mechanism in which the triangular wedge of material immediately under the
punch moves vertically, causing the outward lateral displacement of adjoining material
and the upwards displacement of the material located in the triangular wedges close to the
surface and next to the flat punch.
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Figure 16 shows the numerically obtained failure mechanisms for the four differ-
ent cases studied, depending on the plastic criterion used in each one: (a) isotropic
pressure-independent von Mises; (b) isotropic pressure-dependent Parabolic Drucker–
Prager, κ = 3.0; (c) orthotropic Hoffman, κ = 3.0 in the horizontal direction; and (d) or-
thotropic Tsai–Wu, κ = 3.0, in the horizontal direction. Associated perfect plasticity is
used, so that the plastic potential coincides with the described yield criteria. The plots are
zoomed in the region of interest, with identical magnification.
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Figure 16. Prandtl’s punch test: (a) von Mises; (b) Parabolic Drucker–Prager, κ = 3.0; (c) Hoffman, κ = 3.0; (d) Tsai–
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As can be observed, similar but notably different failure mechanisms form, depend-
ing on the plastic potential that applies. Although the process of the formation of the slip 
lines and the failure mechanism is analogous in all cases, the observed discrepancies in 

Figure 16. Prandtl’s punch test: (a) von Mises; (b) Parabolic Drucker–Prager, κ = 3.0; (c) Hoffman, κ = 3.0; (d) Tsai–
Wu, κ = 3.0.

As can be observed, similar but notably different failure mechanisms form, depending
on the plastic potential that applies. Although the process of the formation of the slip
lines and the failure mechanism is analogous in all cases, the observed discrepancies in the
slopes of the slip lines, and the corresponding amounts of mobilized material, depend on
the plastic material properties.

Contrariwise to the case studied in the previous section, here the stress field is known
a priori. Furthermore, substantial stress redistribution happens in the transition between
the initial elastic stage and the final elasto-plastic state in which the failure mechanism is
completely formed and yielding. This can be observed in Figure 17, where the distribution
of the principal stresses in the elastic (initial) and plastic (stationary) states in the region
below the punch are compared for the Drucker–Prager case (b). It can be seen that the
stress state in the elastic range consists mainly of vertical stress σyy and the corresponding
out of plane σzz (not shown in the figure), due to Poisson’s ratio ν = 0.2. In contrast, in the
stationary plastic stress state, in-plane horizontal σxx have noticeably developed.
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Figure 17. Directions of principal stresses below the rigid footing of Prandtl’s punch test (Parabolic Drucker–Prager, κ = 3.0):
(a) Elastic stage; (b) Final plastic stage.

The extension and nature of this stress redistribution is further investigated in Figure 18,
where the evolution of the normal stress components σxx, σyy, σzz against the vertical
displacement of the die is plotted for the four cases. The stresses are sampled at the
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corresponding crossing point of the slip lines, in the symmetry axis below the center of the
punch. Figure 19 further summarizes the comparison of stress evolution by plotting the
evolution of the stress Invariant I1 and the Lode angle ϑ.
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Several remarks are in order: (a) the extension of the transition phase largely differs
from one case to the other; it is shorter for von Mises and longer for Drucker–Prager;
(b) due to increasing vertical loading, the out of plane σzz develops due to the plane strain
constraint; (c) concurrently, the in-plane horizontal σxx also develops, very much depending
on the yield criterion; this later development shows the frictional and/or orthotropic nature
of the plastic behavior.
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It can be verified that this stress redistribution during the formation of the slip lines
occurs precisely as dictated by the strain localization condition. This is done in Table 12 by
comparing the value θ

slip
num, measured directly from Figure 16, with the value θ

slip
ana , obtained

by applying the analytical condition (Sections 3.3.2 and 3.5.2) to the numerically obtained
values for the stresses. The correspondence between both value is remarkable.

Table 12. Stresses and localization angle in Prandtl’s punch test.

κ = 3.0 σxx σyy σzz ϑnum θ
slip
num θ

slip
ana

VM −18286 −29832 −24061 29.9902◦ 45.0000◦ 45.0000◦

Drucker–Prager −104260 −220560 −171920 24.6035◦ 50.1944◦ 49.9512◦

Hoffman −57783 −97541 −92394 6.8372◦ 48.9909◦ 48.4646◦

Tsai–Wu −72007 −69365 −56219 8.9246◦ 41.1859◦ 40.6354◦

5. Conclusions

In this work, the strain localization analysis of cohesive–frictional elasto-plastic ma-
terials is addressed, which applies to both strong and regularized slip lines and surfaces.
Maxwell kinematics, stress boundedness and plastic consistency are invoked to derive the
necessary strain localization conditions. Contrariwise to the usually studied conditions for
strain bifurcation, these proffer requirements that do not depend on the elastic properties
of the medium, but only on the plastic flow provided by the adopted plastic potential.

Expanding on previous works, application of the above localization conditions to
isotropic and orthotropic cohesive–frictional plastic models derives analytical solutions for
the strain localization angle and the slopes of the ensuing slip lines. The distinct effects of
compressive and tensile loading are also evaluated.

The analytical results are validated independently by 2D plane stress and plane
strain FE simulations using the B-bar element; namely, a strip under vertical tension and
compression tests and Prandtl’s punch problem are investigated. In the first problem,
the far field stress state is known, and the analytical results can be verified directly from
the numerical simulations. In the second problem, once the failure mechanism and the
corresponding stress field are computationally evaluated, these are shown to conform
precisely with those anticipated by the strain localization condition.
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Appendix A. Stress Invariants and Lode Angle

The first, second, and third invariants of the stress tensors are

I1 = σ11 + σ22 + σ33, (A1)

I2 = σ11σ22 + σ22σ33 + σ11σ33 − σ2
12 − σ2

23 − σ2
31, (A2)

I3 = σ11σ22σ33 + 2σ12σ23σ31 − σ2
12σ33 − σ2

23σ11 − σ2
31σ22. (A3)

The second and third invariants of the deviatoric stress tensors are

J2 =
1
3

I2
1 − I2, (A4)

J3 =
2
27

I3
1 −

1
3

I1 I2 + I3. (A5)

Lode Angle (positive cosine)
[
0 ≤ ϑ ≤ π

3
]

is defined from these deviatoric stress
invariants as

ϑ =
1
3

arccos

(
J3

2

(
3
J2

)3/2
)

. (A6)

Appendix B. Tilting of the Material Axes with Respect the Global Axes

In this Appendix B, the effect of the tilting of the orthotropy material axes with respect
the global axes and the orientation of the loading is demonstrated. The tilt angle α is
measured counter-clockwise between the global x and the material 1 axes. The rotation
transformation matrix was introduced in Remark 3.6.

Figure A1 and Table A1 show the results for the strip under vertical plane strain
tension (Parabolic Drucker–Prager, κ = 1.5) and different tilting; as the model is isotropic,
the results are insensitive to the rotation of the material axes.
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Figure A1. Strip under vertical plane strain tension (Parabolic Drucker–Prager, κ = 1.5): (a) α = 0◦;
(b) α = 30◦; (c) α = 45◦; (d) α = 60◦.

Table A1. Analytical and numerical Lode and strain localization angles for Parabolic Drucker–Prager
under plane strain tension, κ = 1.5.

α ϑana ϑnum θ
slip
ana θ

slip
num

0◦ 14.3077◦ 15.9519◦ 30.4411◦ 31.4875◦

30◦ 14.3077◦ 15.9519◦ 30.4411◦ 31.4875◦

45◦ 14.3077◦ 15.9519◦ 30.4411◦ 31.4875◦

60◦ 14.3077◦ 15.9519◦ 30.4411◦ 31.4875◦
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Figure A2 and Table A2 show corresponding results for the orthotropic Hoffman
model, κ = 1.5. Here, the effect of the tilting of the material axes is evident. Analytical and
numerical results coincide for all slip lines.
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Figure A3. Prandtl’s punch test (Plane Strain, Hoffman, κ = 3.0): (a) α = 0°; (b) α = 30°; (c) α = 45°; (d) α = 60°. 
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Figure A2. Strip under vertical plane strain tension (Hoffman, κ = 1.5): (a) α = 0◦; (b) α = 30◦;
(c) α = 45◦; (d) α = 60◦.

Table A2. Analytical and numerical Lode and strain localization angles for Hoffman under plane
strain tension, κ = 1.5.

α ϑana ϑnum θ
slip
ana θ

slip
num

0◦ 40.8934◦ 42.5043◦ 41.3843◦,
41.3843◦

41.5891◦,
41.5891◦

30◦ 35.4964◦ 35.5087◦ 39.4100◦,
43.0613◦

39.5226◦,
43.1524◦

45◦ 30.0000◦ 30.0031◦ 37.4491◦,
45.0000◦

37.7757◦,
45.0000◦

60◦ 24.5036◦ 24.8814◦ 36.9016◦,
45.7565◦

36.8699◦,
45.7073◦

Finally, Figure A3 shows the effect of the tilting of the material axes in Prandtl’s punch
test (Plane Strain, Hoffman model, κ = 3.0).
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