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Abstract

We determine the automorphism group of the modular curve X∗0 (N), obtained as the
quotient of the modular curve X0(N) by the group of its Atkin-Lehner involutions, for all
square-free values of N .

1 Introduction

In [KM88], Kenku and Momose determined the automorphism group of all modular curves
X0(N) with genus > 1, except for N = 63, which was solved by Elkies in [Elk90]. Subsequently,
Harrison detected a mistake in these results concerning to the curve X0(108). In [Har14], it
is proved that this curve has an extra involution which does not arise from the normalizer of
Γ0(108) in SL2(R), as it happens for the curves X0(37) and X0(63).

For the modular curve X+
0 (N) = X0(N)/〈wN〉, where wN denotes the Fricke involution,

Baker and Hasegawa determined the automorphism group when N is a prime in [BH03] and,
later, in [Gon16] it was determined the automorphism group when N is the square of a prime.

In this paper we focus our attention to the modular curves X∗0 (N) = X0(N)/B(N), where
B(N) is the group of the Atkin-Lehner involutions of the modular curve X0(N), when N is
square-free. The interest in these modular curves is due to their moduli interpretation. For a
number field K, the non cuspidal K-rational points of X∗0 (N) parametrize a class of K-curves.
More precisely, these points parametrize elliptic curves E/K having the property that for every
Galois conjugation σ ∈ Gal(K/K) there is an isogeny between E and Eσ of degree a divisor of
N . When X∗0 (N) has genus < 3, these parametrizations are described in [GL98] and [BGX21].

We point out that for a square-free N 6= 37, B(N) is the automorphism group of X0(N)
when its genus is greater than one and, thus, a non trivial automorphism of X∗0 (N) does not
come from the action of an automorphism of X0(N). More generally, let us denote by A(N) the
subgroup of SL2(R) generated by Γ0(N) and B(N). In [Lan01], it is proved that A(N) is its
normalizer in SL2(R). Hence, a non trivial automorphism of X∗0 (N) is exceptional in the sense
that does not come from a linear fractional transformation on the complex upper-half plane.

In [BH03][Corollary 2.6], it is proved that for a square-free integer N such that the genus of
X∗0 (N) is greater than 1, the group AutX∗0 (N) is elementary 2-abelian and every automorphism
of X∗0 (N) is defined over Q. If the curve X∗0 (N) has a non trivial involution and the genus of
the quotient curve is zero, then it is hyperelliptic. When the genus of the quotient curve is one,
then the curve X∗0 (N) is bielliptic.

∗First author is supported by MTM2016-75980-P
†The second author is partially supported by DGI grant MTM2015-66180-R.
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In [HH96], it is proved that X∗0 (N) is hyperelliptic if, and only if, the curve has genus two
and, moreover, all these values of N are determined. In [BG19], all values of N for which X∗0 (N)
is bielliptic are determined and for each of these curves its automorphism group is determined.

All these results are summarized in the next theorem.

Theorem 1. Let N > 1 be a square-free integer. Assume that the genus of the modular curve
X∗0 (N) is at least 2. Then,

(i) The modular curve X∗0 (N) is hyperelliptic if, and only if, it has genus two. In this case,
the automorphism group has order 2 if, and only if, N is in the following list

67, 73, 85, 93, 103, 107, 115, 133, 134, 146, 154, 161, 165, 167, 170, 177,
186, 191, 205, 206, 209, 213, 221, 230, 266, 285, 286, 287, 299, 357.

(ii) The automorphism group of a modular curve X∗0 (N) of genus 3 is non trivial if, and only
if, the curve is bielliptic.

(iii) The modular curve X∗0 (N) is bielliptic if, and only if, N is in the following table

genus N
2 106, 122, 129, 158, 166, 215, 390
3 178, 183, 246, 249, 258, 290, 303, 318, 430, 455, 510
4 370

For these values of N , the automorphism group of X∗0 (N) has order 2 when the genus of
the curve is greater than two, otherwise it is the Klein group.

The goal of this article is to complete the values of N such that the group Aut(X∗0 (N)) is
non trivial and describe this group for all these values. Among the curves X∗0 (N) with genus
> 1, there are exactly 37 that are hyperelliptic and 12 that are bielliptic and non hyperelliptic.
In [BG19], it is proved that the curve X∗0 (366) of genus 4 has automorphism group of order 2
and the genus of the quotient curve by the non trivial involution is 2. Hence, it is reasonable
to expect that there are a few curves X∗0 (N) of genus > 3 that are not bielliptic and its
automorphism group is non trivial. The main result of this paper, that is presented in the
following theorem, gives a precise answer to this question.

Theorem 2. Let N be a square-free integer such that the curve X∗0 (N) has genus > 3 and
it is not bielliptic, i.e. N 6= 370. Then, the group Aut(X∗0 (N)) is not trivial, if and only if,
N = 366, 645. In both cases, the order of this group is 2 and the genus of the quotient curve by
the non trivial involution is 2.

The paper is organized as follows. In section 2, we fix the notation and recall some general
facts. In Section 3, we show the main tools that we will use to determine the group Aut(X∗0 (N))
for a fixed value of N . Sections 4 and 5 are devoted to prove Theorem 2 for odd and even levels
respectively. The key point in these two last sections is the determination of a finite set
of positive integers containing all levels N such that X∗0 (N) has a non trivial automorphism
group. In section 4, for the odd levels, this result follows from Proposition 3. This proposition is
based on an idea already used in [KM88][Lemma 2.7], [BH03][Lemma 3.3] and [Gon16][Lemma
6], but always proved with different arguments because the involved modular curves in these
statements are different. In section 5, the determination of a finite set for the even levels is
obtained from Proposition 4. This proposition presents an unknown inequality involving the
genera of the curves X∗0 (N) and X∗0 (2N) for all odd square-free values of N .
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2 Notation and general facts

Let N > 1 be a square-free integer. We fix, once and for all, the following notation.

(i) We denote by B(N) the group of the Atkin-Lehner involutions of X0(N). If N ′|N , B(N ′)
can be also identified as the subgroup of B(N) formed by the Atkin-Lehner involutions
wd such that d|N ′.

(ii) The integer ω(N) is the number of primes dividing N . In particular, |B(N)| = 2ω(N).

(iii) The integers gN and g∗N are the genus of X0(N) and X∗0 (N) respectively.

(iv) We denote by NewN the set of normalized newforms in S2(Γ0(N)) and New∗N is the
subset of NewN formed by the newforms invariant under the action of the group of the
Atkin-Lehner involutions B(N).

(v) S2(N) = S2(Γ0(N)), S∗2(N) is the vector space S2(N)B(N), J0(N) = Jac(X0(N)) and
J∗0 (N) = Jac(X∗0 (N)).

(vi) Let h ∈ S2(Γ0(N)) be an eigenform of the form
∑

d|N/M cdf(qd) for some f ∈ NewM

with M |N and cd ∈ Z. Since for every divisor d|N/M there is a morphism Bd from
J0(M) to J0(N) defined over Q sending every cusp form g ∈ S2(M) to g(qd) ∈ S2(N), the
morphism

∑
d|N/M cdBd provides an abelian variety Ah defined over Q attached to h and

Q-isogenous to the abelian variety Af attached by Shimura to f . This abelian variety can
be defined as the optimal quotient of J0(N) such that the pullback of Ω1

Ah/Q is the vector

space generated by the Galois conjugates of h(q) dq/q with rational q-expansion. This
definition determines the Q-isomorphism class of Ah, although we are only interested in
its Q-isogeny class.

(vii) Given two abelian varieties A and B defined over the number field K, the notation A
K∼ B

expresses that A and B are isogenous over K.

(viii) For an integer m ≥ 1 and f ∈ NewN , am(f) is the m-th Fourier coefficient of f .

(ix) As usual, ψ denotes the Dedekind psi function. That is, ψ(N) = N
∏

p|N(1 + p−1), where
the product is extended to all primes p dividing N .

(x) GQ denotes the absolute Galois group Gal(Q/Q) once an algebraic closure Q of Q has
been fixed.

A summary on modular abelian varieties can be found in [BGGP05][Section 3]. We recall
some known facts that will be used. The Q-vector space Ω1

X0(N)/Q is the subspace of elements

in S2(N)dq/q with rational q-expansion, i.e. S2(N)dq/q ∩ Q[[q]]. For N square-free integer
and g∗N ≥ 1, it is known that

J∗0 (N)
Q∼
∏

1<M |N

∏
f∈New∗M /GQ

Af .

These abelian varieties Af in the decomposition are simple and pairwise non-isogenous over Q
and the endomorphism algebra End(Jac(X∗0 (N)) ⊗ Q is isomorphic to the product of totally
real numbers fields (cf. [BH03, §2]). Moreover, in [Rib75][Proposition 3.1] it is proved that all
endomorphisms of J0(N) are defined over Q. In particular, all endomorphisms of J∗0 (N) are
also defined over Q.
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By [BG20][Proposition 2.2], a basis of S∗2(N) is formed by the eigenforms⋃
1<M |N

{
∑

1≤d|N/M

d f(qd) : f ∈ New∗M} . (2.1)

Every fi ∈ New∗Mi
with Mi|N determines the normalized eigenform hi =

∑
1≤d|N/Mi

d fi(q
d)

in S∗2(N) such that Afi
Q∼ Ahi . On the one hand, the basis of the Galois conjugates of the

newforms fi allows us to compute |X∗0 (Fnp )| for all primes p - N and for all n ≥ 1, thanks to
the Eichler-Shimura congruence. Indeed, the characteristic polynomial of Frobp acting on the
Tate module of J∗0 (N) is

P (x) =
∏

1>M |N

∏
f∈New∗M

(x2 − af (f)x+ p) =

2 g∗N∏
i=1

(x− αi) ,

and, thus,

|X∗0 (Fpn)| = pn + 1−
2 g∗N∑
i=1

αni .

On the other hand, the basis of the regular differentials formed by all Galois conjugates of
hi(q) dq/q allows us to compute equations for X∗0 (N) when g∗N > 1.

Similarly, if X is a curve defined over Q of genus g > 0 for which there is a non constant
morphism X∗0 (N) → X defined over Q, then there is a subset S of ∪1<M |N New∗M stable by
Galois conjugation such that

Jac(X)
Q∼

∏
f∈S/GQ

Af .

Hence, for a prime p - N , the characteristic polynomial of Frobp acting on the Tate module of
Jac(X) is

P (x) =
∏
f∈S

(x2 − af (f)x+ p) =

2 g∏
i=1

(x− αi)

and |X(Fpn)| = pn+1−
∑2 g

i=1 α
n
i . The set of the normalized eigenforms attached to S in S∗2(N)

is a basis of π∗(Ω1
X)q/dq that allows us to compute equations for X when g > 1.

3 Preliminary results

In this section, we present some tools that will be applied to decide whether the group Aut(X∗0 (N))
is trivial or not, and to determine this group when it is non trivial.

For a curve X defined over Q of genus ≥ 2 and of good reduction at a prime p, one has that
AutQ(X) ↪→ AutFp(X ⊗ Fp) (cf. [Liu02][Proposition 3.10.38]). We can apply [Gon17][Theorem
2.1] to discard the existence of involutions defined over Q. More precisely, we will use the
following criterion (see [Gon17][Remark 2.2] taking N = 2).

Lemma 1. Let X be a curve defined over Fp of genus g > 2. Consider the sequence

Pp(n) := mod [(
∑
d|n

µ(n/d)|X(Fpd)|)/n, 2]

where mod [r, 2] denotes 0 or 1 depending on whether r is even or not, and µ is the Moebius
function. If there is an integer k > 0 such that

∑k
n≥0(2n+1)Pp(2n+1) > 2g+2, then AutFp(X)

contains no involution.
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By Petri’s Theorem, we know that, for a nonhyperelliptic curve X defined over C with
genus g > 2, the image of the canonical map X → Pg−1 is the common zero locus of a set of
homogeneous polynomials of degree 2 and 3, when g > 3, or of a homogenous polynomial of
degree 4, if g = 3.

More precisely, assume that X is defined over Q and choose a basis ω1, · · · , ωg of Ω1
X/Q.

For any integer i ≥ 2, let us denote by Li the Q-vector space of homogeneous polynomials
Q ∈ Q[x1, · · · , xg] of degree i that satisfy Q(ω1, · · · , ωg) = 0. Of course, dimLi ≤ dimLi+1

because one has xj ·Q ∈ Li+1 for all Q ∈ Li and for 1 ≤ j ≤ g.
If g = 3, then dimL2 = dimL3 = 0 and dimL4 = 1. Any generator of L4 provides an

equation for X. For g > 3, dimL2 = (g − 2)(g − 3)/2 > 0 and a basis of L2

⊕
L3 provides a

system of equations for X. When X is neither trigonal nor a smooth plane quintic (g = 6), it
suffices to take a basis of L2.

As said in the above section, J∗0 (N)
Q∼ Ah1 × · · · × Ahn for some normalized eigenforms

h1, · · · , hk ∈ S∗2(N). These abelian varieties are simple and pairwise nonisogenous over Q and,
any involution u of the curve leaves stable each Ahi acting on Ω1

Agi
as the product by −1 or the

identity.
Choose a basis {ω1, · · · , ωg∗N} of Ω1

X∗0 (N)/Q obtained as the ordered union of bases of all

Ω1
Ahi/Q

. An involution u of X∗0 (N) induces a linear map u∗ : Ω1
X∗0 (N)/Q → Ω1

X∗0 (N)/Q sending

(ω1, · · · , ωg∗N ) to (ε1ω1, · · · , εnωg∗N ) with εi = ±1 for all i ≤ g∗N and satisfying

Q(ε1x1, · · · , εg∗Nxg∗N ) ∈ Li for all Q ∈ Li and for all i ≥ 2 . (3.1)

The genus of the quotient curve is the cardinality of the set I = {i : εi = 1} and {ωj}j∈I is a
basis of the pullback of the regular differentials of the quotient curve. A linear map u∗ as above
satisfying condition (3.1), only one of the two maps ±u∗ comes from an involution of the curve,
because we are assuming that X is nonhyperelliptic.

We particularize this fact to our case, that will be the main tool to determine the group
Aut(X∗0 (N)) for a fixed level N .

Lemma 2. Assume X∗0 (N) is nonhyperelliptic, i.e. g∗N > 2. Let ω1, · · · , ωg∗N be a basis of
Ω1
X∗0 (N)/Q as above. Then,

(i) Let u be a non trivial involution of X∗0 (N). Consider the curve Xu = X∗0 (N)/〈u〉. Denote
by gu the genus of Xu. Then there exists an integer k < n and factors Ah1 , · · · , Ahk such

that Jac(Xu)
Q∼ Ah1 × · · · × Ahk and, thus, satisfying

Q(−x1,−x2, · · · ,−xgu , xgu+1, · · · , xg∗N−1, xg∗N ) ∈ Li for all Q ∈ Li and for all i ≥ 2 .
(3.2)

(ii) If gu := dimAh1 × · · · × Ahk < g∗N and the condition (3.2) is satisfied, then there exists
an involution v of X∗0 (N) such that

Jac(X/〈v〉) Q∼ Ah1 × · · · × Ahk or Jac(X/〈v〉) Q∼ Ahk+1
× · · · × Ahn

In order to make easy the computation of the condition (3.2) for L2, we introduce the vector
subspace Lns2 of polynomials in L2 that do not contain square monomials, i.e. polynomials of
the form

∑
1≤i<j≤g aijxixj. For any Q ∈ L2 and any r ≤ g, we have that

Q(−x1, · · · ,−xr, xr+1, · · · , xg) ∈ L2 ⇔ Q−Q(−x1, · · · ,−xr, xr+1, · · · , xg) ∈ Lns2 . (3.3)

In general, it is expected that dimLns2 = Max(dimL2− g, 0) = Max((g− 1)(g− 6)/2, 0). When
dimLns2 = 0, condition (3.3) amounts to saying that Q is simultaneously even in the variables
x1, · · · , xr.
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Remark 1. Assume that for a high genus g∗N we cannot prove that the automorphism group of
X∗0 (N) is trivial by means of Lemma 1. In this case, the application of Lemma 2 is computatio-
nally laborious. If we want to discard that a basis {ω1, · · · , ωg} of the vector space Ω1∏k

i=1 Ahi/Q
with k < n is a basis of the pullback of the regular differentials of a possible quotient curve
Xu = X∗0 (N)/〈u〉 without applying Lemma 2 to the curve X∗0 (N), we can proceed in two different
ways. If for a prime ` - N we have the inequality |X∗0 (N)(F`m)| > 2|Xu(F`m)| for some integer
m ≥ 1, then we can discard this possibility. Another way is the following. If g > 2 and we
know that Xu is not hyperelliptic, we check if the regular differentials ω1, · · · , ωg satisfy Petri’s
Theorem. That is, if g > 3 and the dimension of the corresponding vector space L2 is not
(g − 3)(g − 2)/2 or g = 3 and dimL4 6= 1, then we can discard this possibility.

The result in the next proposition allows us to use the knowledge of the group of auto-
morphisms of lower levels, that can be a source for getting bounds for the even levels N such
that the curves X∗0 (N) may have non trivial automorphisms. Previously, we will present the
following lemma.

Lemma 3. Let X be a curve defined over Q of genus greater than 1 and let p be a prime of
good reduction of X. Assume that there is a non trivial automorphism w̃ ∈ AutFp X/Fp that is
not a hyperelliptic involution. If there exists an automorphism v ∈ EndQ(JacX) such that its
reduction modulo p coincides with the induced automorphism w̃∗ ∈ EndFp Jac(X/Fp), then there
exists an automorphism w ∈ AutQX such that the induced automorphism w∗ ∈ EndQ(JacX)
satisfies w∗ = ±v.

Proof. If w̃ is not a hyperelliptic involution, then v 6= − Id. The automorphism w̃ respects
the canonical polarization of the curve X/Fp. Since the reduction of the endomorphism ring is
injective, v also respects the canonical polarization of the curve X/Q. Therefore, by Torelli’s
Theorem, there exists an automorphism w ∈ AutQX such that the induced morphism w∗ ∈
EndQ(JacX) is v or −v. �

Proposition 1. Let N > 1 be a square-free integer and let p be a prime dividing N such that
g∗N/p > 1. If there exists a non trivial involution u of X∗0 (N) such that the action of u on

J∗0 (N/p) is non trivial, then the group Aut(X∗0 (N/p)) is non trivial or the curve X∗0 (N/p)/Fp
is hyperelliptic.

Proof. Let φ and φp be the morphisms from X0(N) to X0(N/p) induced by the automorphisms
of the complex upper half-plane given by z 7→ z and z 7→ pz respectively. Consider the
morphism ν = φ∗ + p φ∗p : J0(N/p) → J0(N), that is defined over Q. For every cusp form
h ∈ S∗2(N/p) one has that ν(h) ∈ S∗2(N) and, moreover, ν is an injective linear map from
S∗2(N/p) into S∗2(N) because ν sends a basis of S∗2(N/p) to a set of linearly independents cusp
forms (cf. (2.1)). Let π and π′ be the following natural projections π : X0(N/p) → X∗0 (N/p),
π′ : X0(N)→ X∗0 (N). The kernel of the morphism

ν ′ := π′∗ ◦ ν ◦ π∗ : J∗0 (N/p) −→ J∗0 (N)

is finite since J∗0 (N/p) and the abelian variety A := ν ′(J∗0 (N/p)) have the same dimension.
Moreover, for any Hecke operator TM with gcd(M,N) = 1, one has ν · TM = TM · ν (cf. [Li75])
and ν ′ has the same property as ν. Since (End J∗0 (N)) ⊗ Q is isomorphic to the product of
totally real number fields, by applying the arguments used in [Rib75][Proposition3.2], we obtain
that for any abelian subvariety B of J∗0 (N) the algebra (EndB)⊗Q is generated by the Hecke
operators TM with gcd(M,N) = 1.
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Let u be a non trivial involution of X∗0 (N). This involution induces an involution u∗ of
J∗0 (N) which leaves stable A because A and J∗0 (N)/A are defined over Q and have no isogenous
quotients. Hence, u∗ induces an involution of A, that we still denominate by u∗. The dual
isogeny ν̂ ′ : A→ J∗0 (N/p) also satisfies the condition ν̂ ′ ◦ TM = TM ◦ ν̂ ′ for all Hecke operators
TM with gcd(M,N) = 1. Since u∗ ∈ End(A) lies in the algebra generated by the Hecke
operators TM with gcd(M,N) = 1, the involution u∗ leaves stable ker ν̂ ′ and, thus, provides an
involution v of the quotient A/ ker ν̂ ′ = J∗0 (N/p).

Now, assume that u∗ ∈ EndA is non trivial. By using Hecke operators, we get that v is
non trivial and satisfies u∗ · ν ′ = ν ′ ◦ v. On the one hand, the normalization of X∗0 (N)/Fp is the
curve X∗0 (N/p)/Fp (cf. [Has97][Section 5]) and u induces an involution ũ of X∗0 (N/p)/Fp. On the
other hand, the reduction of v modulo p coincides with the endomorphism of Jac(X∗0 (N/p)/Fp)
induced by the involution ũ. Now, the statement follows from Lemma 3. �

Corollary 1. Assume that there exist a non trivial involution u of X∗0 (N) and a prime p|N
with g∗N/p > 2. If the group Aut(X∗0 (N/p)) is trivial and X∗0 (N/p)/Fp is not hyperelliptic,

then gu ≥ g∗N/p and ν(S∗2(N/p))dq/q is contained in the pullback of Ω1
Jac(Xu)

. In particular,

g∗N/p ≤ (g∗N + 1)/2 since by Hurwitz theorem one has gu ≤ (g∗N + 1)/2.

Note that a necessary condition for X∗0 (N/p)/Fp being hyperelliptic is that the following
inequalities are satisfied

|X∗0 (N/p)(Fpn)| ≤ 2pn + 2 for all integers n > 0.

The hyperelliptic curves have a different behaviour depending on whether they are defined over
fields of characterisitic 2 or not. Since [BGGP05][Lemma 2.5] can be applied to hyperelliptic
curves defined over fields of characteristic different from 2 and X0(N) admits a regular model
defined over Z[1/N ], we have a similar result to [BGGP05][Lemma 6] for modular curves over
Fp with p 6= 2. More precisely, in our case:

Lemma 4. Assume p is an odd prime not dividing M . Let X/Q be a curve of genus g >
2 for which there is a no constant morphism π : X∗0 (M) → X and let S be the Z-module
S∗2(M) ∩ Z[1/N ][[q]]. The curve X/Fp is hyperelliptic if, and only if, there is a basis f1, · · · , fg
of S whose reductions mod p satisfy

fi(q)/q (mod p) =

{
qi +O(qi) if the cusp ∞ is not a Weierstrass point of X/Fp,

q2i−1 +O(q2i−1) otherwise,
(3.4)

and for any such a basis, the functions on X/Fp defined by

x =
fg−1
fg

(mod p) , y =
qdx/dq

fg
(mod p) ,

satisfy y2 = P (x) for an unique square-free polynomial P (X) ∈ Fp[X] which has degree 2g + 1
or 2g + 2 depending on whether the cusp ∞ is a Weierstrass point or not of X/Fp.

For the case p = 2, we use the following result.

Lemma 5. Let N > 1 be an odd square-free integer such that g∗N > 2. If X∗0 (N)/F2 is
hyperelliptic, then N is in the set {183, 185, 187, 203, 335, 345, 385}.

Proof. Put n = ω(N). By Ogg ( [Ogg74][Theorem 3]), if X∗0 (N)/F2 is hyperelliptic, then

ψ(N)

12
+ 2n ≤ 2n+1|P1(F4)| = 5 · 2n+1 .
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Hence, ψ(N) ≤ 2n108 and, after discarding the values N such that g∗N ≤ 2, we obtain the
following 59 values of N :

97, 109, 113, 127, 137, 139, 149, 151, 157, 163, 173, 179, 181, 183, 185, 187, 193, 197, 199, 201, 203,
211, 217, 219, 235, 237, 247, 249, 253, 259, 265, 267, 273, 291, 295, 301, 303, 305, 309, 319, 321, 323,

329, 335, 341, 345, 355, 371, 377, 385, 391, 399, 429, 435, 455, 465, 483, 561, 595 .

We can discard the levels N such that AN,m := |X∗0 (N)(F2m)| − 2(2m + 1) > 0. Since

(N,m) AN,m
(97, 1) 1
(109, 2) 1
(113, 2) 1
(137, 2) 2
(139, 2) 1
(149, 2) 2
(151, 2) 1
(157, 1) 2
(163, 1) 2
(173, 2 4
(179, 2) 2
(181, 2) 4

(N,m) AN,m
(193, 1) 2
(197, 2) 5
(199, 2) 2
(201, 1) 1
(211, 2) 5
(219, 1) 1
(235, 1) 1
(237, 1) 1
(249, 2) 4
(253, 1) 1
(259, 2) 2
(265, 1) 2

(N,m) AN,m
(267, 2) 4
(273, 1) 1
(291, 1) 3
(295, 2) 2
(301, 2) 3
(303, 2) 3
(305, 2) 4
(309, 1) 2
(319, 2) 1
(321, 2) 5
(323, 2) 2
(329, 2) 2

(N,m) AN,m
(341, 2) 5
(355, 2) 3
(371, 2) 5
(377, 2) 4
(391, 1) 1
(399, 1) 1
(429, 2) 1
(435, 1) 1
(465, 2) 2
(483, 2) 5
(561, 1) 1
(592, 2) 3

By Lemma 1, we also can discard the values N for which we know that X∗0 (N)/F2 does not
have any involution: 127, 217, 247. �

Note that for a prime p we know that the automorphism group is trivial when g∗p > 2
(cf. [BH03][Theorem 1.1]). For g∗N = 3, the group Aut(X∗0 (N)) is non trivial if, and only if,
X∗0 (N) is bielliptic (cf. [BG19]Lemma 13]). For this reason in the next sections, we exclude the
cases g∗N ≤ 3 that can be found in Table 4 in [BG20][ Appendix].

4 Odd levels

We know that when g∗N > 1, if there is a non trivial involution u of X∗0 (N), then the cusp ∞
is not a fixed point of u (cf. [BH03][Lemma 3.2]). The following result, similar to Lemma 6
in [Gon16], is the key result that allow us to determine a finite set of odd square-free integers
containing all odd square-free integers N such that the group Aut(X∗0 (N)) is non trivial.

Proposition 2. Assume that the square-free integer N is odd, g∗N > 1 and there is a non
trivial involution u of X∗0 (N). Then, the Q-gonality of X∗0 (N) is ≤ 6 and u has at most 12
fixed points.

Proof. Take Q = u(∞) and let P ∈ X0(N) be such that π(P ) = u(∞), where π is the natural
projection of X0(N) onto X∗0 (N). Since Q is not a cusp, there is an elliptic curve E defined
over Q and a N -cyclic subgroup CN of E(Q) such that P = (E,CN). The other pre-images of
Q under π are the points

wd(P ) = (E/Cd, (E[d] + CN/d)/Cd) ∀d|N ,

where Cd denotes the d-cyclic subgroup of C, that is Cd = CN ∩ E[d].
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For any noncuspidal S ∈ X∗0 (N), we consider the divisor

DS := (uT2 − T2u) (∞− S) ,

where T2 denotes the Hecke operator viewed as a correspondence of the curve X∗0 (N). We claim
that DS is nonzero but linearly equivalent to zero.

The endomorphism algebra End(J∗0 (N))⊗Q is commutative. Hence, uT2 = T2 u and DS is
a principal divisor.

Next, we will prove that DS is nonzero. If DS is a zero divisor, then uT2(∞) must be equal
to T2u(∞) because T2(∞) = 3∞ and ∞ is not in the support of T2(S). To prove that DS is
a nonzero divisor, we only need to prove that the condition 3(Q) = T2(Q) cannot occur for a
noncuspidal point Q ∈ X∗0 (N).

Let Gi, 1 ≤ i ≤ 3, be the three 2-cyclic subgroups of E[2]. Since

T2(Q) =
3∑
i=1

π((E/Gi, (CN +Gi)/Gi)) ,

the condition 3(Q) = T2(Q) implies that each elliptic curve E/Gi is isomorphic to E/Cd for
some d|N . Therefore, E has an endomorphism whose kernel is a 2d-cyclic subgroup and, thus,
E has CM by a quadratic order O of discriminant D. The conductor of the discriminant D
cannot be even because 2d is a norm of O and 2d 6≡ 0 (mod 4). Since π(P ) = π(wd(P )), this
property holds for all elliptic curves E/Cd and, thus, also for all elliptic curves E/Gi.

Now, we claim that for every elliptic curve E with CM by the order of discriminant D with
odd conductor, there is at least a 2-subgroup G of E[2] such that the discriminant of the order
End(E/G) has even conductor. This fact implies that T2(Q) 6= 3Q and, thus, DS is nonzero.
Indeed, let [a, b, c] := ax2 + bxy + cy2 ∈ Z[x, y] be a primitive quadratic form of discriminant
D (with odd conductor). The primitive quadratic forms attached to the three elliptic curves
E/Gi are

Q1 = [4a, 2b, c]/ gcd(c, 2), Q2 = [a, 2b, 4c]/ gcd(a, 2), Q3 = [4a, 2b−4a, a−b+c]/ gcd(2, a−b+c) .

If the discriminants of Q1 and Q2 are equal to D, then a and c must be even. Since [a, b, c] is
primitive, b must be odd and this fact leads to the contradiction that the discriminant of Q3 is
4D, with even conductor.

By taking S = u(∞), DS is defined over Q and, thus, the Q-gonality is at most 6. Finally,
since u∗(DS) 6= DS for some noncuspidal point S ∈ X∗0 (N)(C), any non trivial automorphism
of X∗0 (N) has at most 12 fixed points (cf. Lemma 3.5 of [BH03]). �

Corollary 2. When N is odd, if gu is the genus of the curve X∗0 (N)/〈u〉 for a non trivial
involution u of X∗0 (N), then

g∗N − 5

2
≤ gu ≤

g∗N + 1

2
.

Moreover, if J∗0 (N) has a simple factor of dimension larger than (g∗N + 5)/2, then Aut(X∗0 (N))
is trivial.

Proof. The inequalities follows from the Riemann-Hurwitz formula applied to the projection
X∗0 (N)→ X∗0 (N)/〈u〉. For the last assertion see [BH03][Corollary 3.9] �

Lemma 6. Assume that the Q-gonality of X∗0 (N) is at most 6. If N is odd, then

ψ(N) ≤ 2ω(N)348 . (4.1)
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Proof. redAgain by Ogg, we know that 2ω(N) +
ψ(N)

12
≤ |X0(N)(F4)|. The statement follows

from the fact that |X0(N)(F4)| ≤ 2ω(N) · 6 · |P1(F4)|. �
There are 471 values of N (square-free and odd, N ≥ 3) satisfying the condition (4.1),

whose maximum value is 3003. Excluding all values that are prime or g∗N ≤ 3, we obtain 293
values. By applying Lemma 1 to X∗0 (N)/Fp, we can discard 248 values of N . More precisely,
with p = 2 the values

247, 253, 259, 267, 291, 301, 305, 319, 323, 327, 339, 355, 365, 377, 381, 391, 393, 395, 403, 407, 411,
413, 417, 427, 451, 453, 469, 471, 473, 481, 485, 489, 493, 501, 505, 511, 519, 527, 533, 535, 537, 543,
545, 553, 559, 565, 573, 579, 581, 589, 591, 595, 597, 611, 627, 629, 633, 635, 651, 655, 667, 669, 671,
679, 681, 685, 687, 695, 697, 699, 703, 707, 713, 717, 721, 723, 731, 737, 741, 745, 749, 755, 759, 763,
771, 777, 779, 781, 785, 789, 791, 793, 795, 799, 803, 805, 807, 813, 815, 817, 831, 835, 843, 849, 851,
865, 869, 871, 879, 885, 889, 893, 895, 897, 899, 901, 903, 905, 913, 915, 917, 921, 923, 933, 935, 939,
943, 949, 951, 955, 959, 965, 969, 973, 979, 985, 993, 995, 1001, 1003, 1005, 1007, 1011, 1015, 1023,
1027, 1037, 1041, 1043, 1045, 1057, 1065, 1067, 1073, 1081, 1085, 1095, 1099, 1105, 1111, 1113, 1115,
1121, 1131, 1133, 1135, 1139, 1141, 1145, 1147, 1157, 1159, 1169, 1173, 1177, 1185, 1189, 1199, 1207,
1209, 1211, 1219, 1221, 1235, 1239, 1241, 1243, 1245, 1247, 1261, 1265, 1271, 1273, 1281, 1295, 1311,
1353, 1407, 1419, 1435, 1443, 1455, 1463, 1479, 1491, 1505, 1515, 1533, 1545, 1547, 1581, 1595, 1599,
1605, 1635, 1645, 1653, 1659, 1677, 1695, 1705, 1729, 1743, 1749, 1767, 1771, 1785, 1833, 1855, 1885,
1887, 1955, 1995, 2015, 2035, 2093, 2145, 2415, 2805, 3003 ,

with p = 3 the values 445, 1495, 1615, with p = 5 the values 623, with p = 7 the values
583, 753, 1551 and for p = 11 the value 1335. Corollary 2 allows us to exclude the values

235, 237, 273, 341, 385, 415, 435, 497, 515, 517, 649, 767, 715, 989, 1079, 1309 .

So, we only have to consider 29 values for N , which we present together with the splitting
of the corresponding jacobians collected by the genus g∗N . From now on, the splitting

J∗0 (N)
Q∼

r∏
i=1

Afi , with fi ∈ New∗Mi
and dimAfi = ni

will be presented as n1M1
+ · · ·+ nrMr

. Obviusly, g∗N =
∑r

i=1 ni and, for a divisor M of N , one
has g∗M =

∑
Mi|N ni.
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N J∗0 (N)

201 267 + 1201 + 1201

219 273 + 1219 + 1219

321 2107 + 2321

335 267 + 2335

345 2115 + 2345

399 157 + 2133 + 1399

483 2161 + 2483

371 153 + 1371 + 3371

465 293 + 1155 + 2465

551 2551 + 3551

555 137 + 1185 + 1185 + 2555

645 143 + 1129 + 1215 + 2645

663 2221 + 3663

N J∗0 (N)

265 153 + 1265 + 2265 + 2265

447 3149 + 3447

561 3187 + 3561

609 3203 + 3609

615 1123 + 2205 + 1615 + 2615

309 2103 + 5309

437 2437 + 5437

861 1123 + 2287 + 4861

665 2133 + 6665

1155 177 + 2165 + 3385 + 11155 + 11155

689 153 + 1689 + 2689 + 2689 + 3689

705 1141 + 5235 + 1705 + 2705

987 1141 + 3329 + 2987 + 3987

1365 165 + 191 + 3273 + 1455 + 31365

957 4319 + 7957

1055 3211 + 3211 + 31055 + 61055

Proposition 3. Let N > 1 be an odd square-free integer such that g∗N > 3. The group
Aut(X∗0 (N)) is non trivial if, and only if, N = 645. In this case, the order of this group
is 2 and an equation for the quotient curve by the non trivial involution is given by

Y 2 = X6 + 8X4 + 20X2 + 12X + 4 .

Proof. In order to apply Petri’s theorem to the curve X∗0 (N), we will take a basis of Ω1
X∗0 (N)/Q

as in Lemma 2, following the order showed in the splitting tables.
For g∗N = 4, dimL2 = 1. In all cases in the above table, dimLns2 = 0. The genus of

a quotient curve by an involution must be 2. We have to check the condition (3.2) for all
pairs xi, and xj such that ωi and ωj are a basis of the regular differentials corresponding to
an abelian quotient of J∗0 (N) of dimension 2. A nonzero polynomial Q ∈ L2 neither satisfies
Q(−x1,−x2, x3, x4) = Q for N 6= 399 nor Q(x1,−x2,−x3, x4) = Q for N = 399. Therefore, for
all these cases the curves X∗0 (N) have trivial automorphism group.

For g∗N = 5, dimL2 = 3. The genus of a quotient curve by an involution must be 2 or 3.
It is suffices to check the condition (3.2) for all pairs xi, and xj such that ωi and ωj is a basis
of the regular differentials corresponding to an abelian quotient of J∗0 (N) of dimension 2. For
the values in the above table N 6= 645, one has dimLns2 = 0 and the polynomials of L2 are not
simultaneously even in the variables xi, xj. Hence, for all these cases the curves X∗0 (N) have
trivial automorphism group. For N = 645, we know that X∗0 (645) is not trigonal (cf. [HS00])
and, thus, L2 defines the curve. The set ∪M |645 New∗M is

New∗43 = {f1}, New∗129 = {f2}, New∗215 = {f3},

New∗645 = {f4 = q +
√

2q2 + · · · , f5 = q −
√

2q2 + · · · } .

Taking the following basis of Ω1
X∗0 (645)/Q

:

ω1 = (
∑
d|15

d f1(q
d))dq/q , ω2 = (

∑
d|5

d f2(q
d))dq/q , ω3 = (

∑
d|3

d f3(q
d))dq/q ,
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ω4 =
f4 + f5

2
dq/q and ω5 =

f5 − f4
2
√

2
dq/q ,

we get that L2 = {Q = aQ1 + bQ2 + cQ3 : a, b, c ∈ Q}, where

Q1 = 6x21 + 5x1x2 + 7x1x3 − 11x2x3 − 9x23 + 2x24 + 48x4x5 + 16x25 ,
Q2 = 2x1x2 + 3x22 − 2x1x3 + 4x2x3 − 3x23 − 4x24 + 16x25 ,
Q3 = x2x4 − x3x4 − 2x1x5 + x2x5 + x3x5 .

Now, Lns2 = 〈Q3〉. For all possible choices (i, j) ∈ {(1, 2), (1, 3), (2, 3), (4, 5)}, we only have the
possibility (i, j) = (4, 5) satisfying condition (3.3), i.e. Q − Q(x1, x2, x3,−x4,−x5) ∈ Lns2 for
all Q ∈ L2. Therefore, there is a unique non trivial involution u sending (ω1, ω2, ω3, ω4, ω5) to
±(ω1, ω2, ω3,−ω4,−ω5). The number of eigenvalues equal to 1 is the genus of Xu = X∗0 (N)/〈u〉
and the corresponding eigenvectors among the differentials {ωi, i ≤ 5} is a basis of the pullback
of Ω1

Xu
. To decide the precise sign, we compute the number of fixed points of u. The set of such

points in P4(Q) is the set of points of the form (0, 0, 0, x4, x5) and of the form (x1, x2, x3, 0, 0)
satisfying Qi(x1, · · · , x5) = 0 for 1 ≤ i ≤ 3. Since this set has 4 points, all of them of the
form x4 = x5 = 0, the genus of Xu is 2 and {ω4, ω5} form a basis of the pullback of Ω1

Xu
. Take

X = ω4/ω5 and Y = dx/ω5 and we obtain

Y 2 = X6 + 8X4 + 20X2 + 12X + 4 .

For g∗N = 6, we get dimLns2 = 0. The genus of a quotient curve by an involution must be 2
or 3. For the possible choices of pairs (i, j) or triples (i, j, k), there are polynomials in L2 that
are not simultaneously even in the corresponding variables. Hence, all curves X∗0 (N) of genus
6 have trivial automorphism group.

For g∗N ≥ 6, in all cases dimLns2 = (g − 1)(g − 6)/2. We have to consider all choices
(i1, · · · , ir) such that (g∗N − 5)/2 ≤ r ≤ (g∗N + 1)/2 and ωi1 , · · · , ωir is a basis of the pullback of
regular differentials of a quotient of J∗0 (N) of dimension r. After computing the vector space
L2, we can claim that in all these cases there are polynomials in L2 not satisfying the condition
(3.3).

Nevertheless, we note that some of these computations can be simplified by using Proposition
and Remark 1. Indeed, for the pairs (N, p) in the set

{(1155, 3), (705, 3), (987, 3), (1365, 3), (1365, 5), (957, 3), (1055, 5)} ,

the curveX∗0 (N/p) has trivial automorphism group andX∗0 (N/p)/Fp is not hyperelliptic. Hence,
the choice (i1, · · · , ir) should contain the variables corresponding to the basis of the pullback
of Ω1

J∗0 (N/p)
. Next, in the four following examples, we show how we use these results.

For instance, if X∗0 (1365) of genus 9 has a nontrivial involution u, by Porposition1, the
jacobian of the quotient curve Xu has J∗0 (273) and J∗0 (455) as factors. This fact leads to the
contradiction that Jac(Xu) has a factor of dimension 6 when the genus of Xu is at most 5.

For N = 957, take a basis {gi}1≤i≤4 of S∗2(319) ∩ Q[[q]] and consider the set of the cusp
forms hi(q) = gi(q) + 3gi(q

3) ∈ S∗2(957). By observing the splitting of J∗0 (957), the vector space
spanned by hi(q)dq/q would be the pullback of the regular differential of the unique possible
quotient curve and the vector space of the homogenous polynomial in Q[x1, · · · , x4] of degree
2 vanishing at these differentials would have dimension 1. After a computation, the dimension
obtained is 0. So, we can exclude the level 957. Note that for X∗0 (957), dimL2 = 36.

For N = 705, take a basis {gi}1≤i≤5 of S∗2(235) ∩ Q[[q]] and consider the set of the cusp
forms hi(q) = gi(q) + 3gi(q

3) ∈ S∗2(957). The vector space spanned by hi(q)dq/q should be the
pullback of the regular differential of the unique possible quotient curve and the vector space of
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the homogenous polynomial in Q[x1, · · · , x5] of degree 2 vanishing at these differentials should
have dimension 3. After a computation, the dimension obtained is 0. So, we can exclude the
level 705.

If X∗0 (1551) has a non trivial involution, then the jacobian of the genus six curve X∗0 (211) is
isogenous to the jacobian of the quotient curve. Since |X∗0 (1555)(F2)|−2|X∗0 (211)(F2)| = 4 > 0,
we can discard N = 1551. �

5 Even levels

The next proposition is the key result to determine the even levels.

Proposition 4. Let N > 1 be an odd square-free integer. Then,

g∗2N − 2g∗N ≤ 2 .

Moreover, g∗2N − 2g∗N < −1 for all N > 1239 and, for the particular case g∗N > 2, one has that

(i) g∗2N = 2 g∗N − 1 if, and only if, N is in the set

{109, 113, 139, 151, 203, 227, 259, 263, 319, 355, 411, 445, 451, 455, 461,
491, 505, 521, 555, 573, 581, 591, 695, 699, 779, 1001, 1131, 1239} .

(ii) g∗2N = 2 g∗N if, and only if, N is in the set

{173, 267, 281, 295, 339, 341, 359, 371, 377, 413, 419, 429, 431,
447, 479, 483, 501, 551, 623, 627, 645, 663, 671, 755, 789, 987} .

(iii) g∗2N = 2 g∗N + 1 if, and only if, N is in the set

{149, 179, 239, 249, 251, 269, 305, 311, 321, 329, 393, 395, 519, 545, 689, 861, 897} .

(iv) g∗2N = 2 g∗N + 2 if, and only if, N = 303.

Proof. Let us denote by P the set of integer primes dividing N and set n := |P|. We have
that the genera of X0(N) and X0(2N) are

gN = 1 +
ψ(N)

12
− ν2

4
− ν3

3
− 2n−1 , g2N = 1 +

ψ(N)

4
− ν2

4
− 2n , (5.1)

where

ν2 =

{
0 if ∃p ∈ P , p ≡ −1 (mod 4),
2n otherwise.

, ν3 =

{
0 if ∃p ∈ P , p ≡ −1 (mod 3),

2n−v3(N) otherwise.
,

where v3 denotes the 3-adic valuation. The genera of X∗0 (N) and X∗0 (2N) are

g∗N = 1 +
1

2n
(gN − 1)− 1

2n+1

∑
1<d|N

ν(N, d) , g∗2N = 1 +
1

2n+1
(g2N − 1)− 1

2n+2

∑
1<d|2N

ν(2N, d) ,

(5.2)
where ν(M,d) denotes the number of fixed points of X0(M) by the Atkin-Lehner involution
wd. Hence g∗2N − 2g∗N + 1 is equal to

1

2n+1

−ψ(N)

12
+

3 ν2
4

+
4 ν3
3
− 1

2
ν(2N, 2) +

∑
1<d|N

2ν(N, d)− 1

2
ν(2N, d)− 1

2
ν(2N, 2d) + 2n

 .
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Let s = 0, 1. By [Klu77], we know when d ≥ 5:

ν(d, d) =

{
h(−4d) , if d 6≡ −1 (mod 4),
h(−4d) + h(−d) , if d ≡ −1 (mod 4),

ν(2d, d) =

{
h(−4d) , if d 6≡ −1 (mod 4),
h(−4d) + 3h(−d) , if d ≡ −1 (mod 4),

where h(D) is the class number of the order of discriminant D of a quadratic field, and for d|N :

ν(2sN, d) =
∏
p|N/d

(
1 +

(
−d
p

))
ν(2sd, d) , ν(2N, 2d) =

∏
p|N/d

(
1 +

(
−d
p

))
ν(2d, 2d) .

For d < 5:

ν(2N, 2) =
∏
p|N

(
1 +

(
−1

p

))
+
∏
p|N

(
1 +

(
−2

p

))
, ν(2s3N, 3) = 2

∏
p|N

(
1 +

(
−3

p

))
.

We also know that for d ≡ −1 (mod 4), h(−4d) is h(−d) or 3h(−d) depending on whether
d ≡ −1 (mod 8) or not (see [Cox13][Theorem 7.24]).

Since ν2 ≤ ν(2N, 2) and ν2, ν3 ≤ 2n, we have

g∗2N − 2g∗N + 1 ≤ 1

2n+1

−ψ(N)

12
+
∑
1<d|N

(2ν(N, d)− 1

2
ν(2N, d)) +

31

12
2n

 .

If D is the discriminant of an order of an imaginary quadratic field, we known h(D) ≤
1
π
|D|1/2 log(|D|) (see Appendix in [Ser89]). On the one hand,

2ν(d, d)− 1

2
ν(2, d) =


3
2
h(−4d) if d 6≡ 1 (mod 4),
2h(−d) if d ≡ 7 (mod 8),

5
3
h(−4d) if d ≡ 3 (mod 8),

,

and, on the other hand, log(4d) ≤ d1/4 + 3. Hence, we get

2ν(d, d)− 1

2
ν(2, d) ≤ 10

3π
(d1/2 + 3d1/4) .

Since
31

12
<

10

3π
(13/4 + 3 · 11/2), we have

g∗2N − 2g∗N + 1 <
1

2n+1

−ψ(N)

12
+

10

3π

∑
d|N

2ω(N/d)(d3/4 + 3 d1/2)

 .

Since ∑
d|N

2ω(N/d)d3/4 =
∏
p∈P

2 + p3/4 ,
∑
d|N

2ω(N/d)d1/2 =
∏
p∈P

2 + p1/2 ,

the following inequality

10

3π

(∏
p∈P

2 + p3/4

1 + p
+ 3

∏
p∈P

2 + p1/2

1 + p

)
− 1

12
< 0 (5.3)
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implies g∗2N − 2g∗N + 1 < 0. Write P = {p1 < · · · < pn}. For two odd square-free integers

N =
∏n

i=1 pi and N ′ =
∏n′

i=1 p
′
i, we define the order N � N ′ if, and only if, n ≤ n′ and pi ≤ p′i

for al i ≤ n. The real function f(x) = 2+xα

1+x
with 1

2
≤ α ≤ 3

4
is decreasing for x ≥ 3 and

f(x) < 1 for x ≥ 5. Hence, if the the inequality (5.3) is satisfied for N , then it holds for all
integers N ′ � N . Therefore, the inequality (5.3) is right for the values N that satisfy some of
the following conditions

(i) ω(N) ≥ 8.

(ii) For ω(N) = 7 when p1 ≥ 5 or p7 > 73.

(iii) For ω(N) = 6 when p1 ≥ 7 or p6 > 569.

(iv) For ω(N) = 5 when p1 ≥ 13 or p5 > 3373.

(v) For ω(N) = 4 when p1 ≥ 23 or p4 > 16573.

(vi) For ω(N) = 3 when p1 ≥ 53 or p3 > 37993.

(vii) For ω(N) = 2, when p1 ≥ 269 or p2 > 63737.

(viii) For ω(N) = 1 when p1 > 54277 .

The statement is obtained after computing g∗2N − 2g∗N for the remaining values of N . �

Remark 2. The proof presented in the above proposition needs a laborious computation because
it involves a lot of possibilities and, thus, many class numbers. In opinion of the authors, there
has to exist a deeper explanation to justify the inequality stated for g∗2N − 2 g∗N .

5.1 Candidates X∗0(2N) with non trivial automorphism group

Combining Propositions 1 and 4, the cases g∗2N − 2 g∗N < −1 can be discarded, because of the
inequality g∗N > (g∗2N + 1)/2 (see Corollary 1). Now, we only have to study the automorphism
group of X∗0 (2N) for the odd values N contained in the following five lists:

(i) The list of values of N with g∗N ≤ 2 such that g∗2N > 3:

`1 = {101, 107, 131, 161, 167, 177, 191, 205, 209, 213, 221, 285, 287, 299, 357}

By Lemma 1 we discard N = 191 at p = 5. For the remaining N , the splitting of the
jacobian of X∗0 (2N) is

N J∗0 (2N)
101 1101 + 3202

131 1131 + 1262 + 2262

107 2107 + 1214 + 1214

161 2161 + 2322

N J∗0 (2N)
167 2167 + 2314

177 1118 + 2177 + 1354

213 1142 + 2213 + 1426

285 157 + 1190 + 1285 + 1570

N J∗0 (2N)
205 182 + 2205 + 2410

209 2209 + 3418

221 2221 + 3442

N J∗0 (2N)
287 182 + 2287 + 1574 + 1574

357 1102 + 1238 + 2357 + 1714

299 2299 + 4598
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The genus of a quotient curve of any of these curves X∗0 (2N) by an involution non
bielliptic must be equal to 2 when g∗2N = 4 and equal to 2 or 3 when 5 ≤ g∗2N ≤ 6.
Hence, we can discard N = 101 and for the remaining cases we apply Lemma 2. Finally,
we get that all curves X∗0 (2N) with N ∈ `1 have trivial automorphism group.

(ii) The list containing the values of N with g∗N > 2 such that X∗0 (N)/F2 could be hyperel-
liptic:

`2 = {183, 185, 187, 203, 335, 345, 385} .

The splitting of the jacobian of X∗0 (2N)

N J∗0 (2N)
183 161 + 1126 + 2183

185 137 + 1185 + 1185 + 1370

187 3187 + 1374

N J∗0 (2N)
203 158 + 3203 + 1406

385 177 + 1154 + 3385

335 267 + 2335 + 2670

345 2115 + 1138 + 2345 + 1690

The curves X∗0 (2N) with N ∈ `2\{183} have trivial automorphism group. Indeed, we can
discard N = 187 because J∗0 (374) has no two dimensional quotients and the remaining
values of N can be excluded by applying Lemma 2. For X∗0 (366) the automorphism group
has order 2 (cf. [BG19]).

(iii) The list containing the values of N with g∗N > 2 such that Aut(X∗0 (N)) is not trivial
(except to 183 because it is in the list `2) is:

`3 = {249, 303, 455} ,

with

N 249 303 455
J∗0 (2N) 183 + 1166 + 1249 + 1249 + 3498 1101 + 3202 + 2303 + 2606 165 + 191 + 1455 + 2910

By applying Lemma 2, we get that all these three curves X∗0 (2N) have trivial automor-
phism group. We point out that X∗0 (202)/F3 is not hyperelliptic (see Lemma 4) and the
automorphism group of X∗0 (202) is trivial. Hence, by Proposition 1, for X∗0 (606) we only
have to consider as possible quotient the curve whose jacobian is isogenous to J∗0 (202).

(iv) The list `4 contains the values of N with g∗N > 2 and −1 ≤ g∗2N − 2g∗N ≤ 0, except to
N = 203 that is in the list `2. So, the list `4 is the union of the sets

{109, 113, 139, 151, 227, 259, 263, 319, 355, 411, 445, 451, 455, 461, 491,
505, 521, 555, 573, 581, 591, 695, 699, 779, 1001, 1131, 1239} ,

for which g∗2N − 2g∗N = −1, and

{173, 267, 281, 295, 339, 341, 359, 371, 377, 413, 419, 429, 431,
447, 479, 483, 501, 551, 623, 627, 645, 663, 671, 755, 789, 987} .

For all these values, X∗0 (N) has trivial automorphism group and its reduction modulo 2 is
not hyperelliptic (see Lemma 5). By Proposition 1, if X∗0 (2N) has a non trivial involution,
then the jacobian of the quotient curve is isogenous to J∗0 (N) because g∗N is the greatest
genus of a quotient curve of X∗0 (2N).
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When g∗2N − 2g∗N = −1, if X∗0 (2N) has a non trivial involution, by Hurwitz, this cannot
have fixed points. Hence, for all odd primes p - N and all integers k > 0, the number
R(2N, pk) := |X∗0 (2N)(Fpk)| must be even. Since

N pk R(2N, pk)
109 33 21
113 3 9
139 33 21
151 3 17
227 3 9
259 5 17
263 33 17

N pk R(2N, pk)
319 3 9
355 3 7
411 55 3323
445 33 29
451 33 11
455 3 7
461 3 15

N pk R(2N, pk)
491 35 75
505 35 147
521 33 29
555 11 17
573 53 89
581 33 27
591 5 17

N pk R(2N, pk)
695 3 9
699 5 23
779 33 21
1001 35 305
1131 57 75993
1239 5 15

we can discard all these values.

When g∗2N = 2g∗N , by applying Lemma 1, we can discard some values of N . With the
prime p = 3, the values of N in the set

{173, 281, 359, 377, 419, 431, 479, 671, 755} ,

and with the prime p = 5, the following values

{413, 501, 623, 789} .

We only have to consider

N J∗0 (2N)
295 1118 + 3295 + 2590

429 1143 + 1286 + 2429 + 2858

267 189 + 2178 + 3267 + 2534

341 4341 + 4682

483 2161 + 2322 + 2483 + 1966 + 1966

339 3113 + 2226 + 2339 + 1678 + 2678

371 153 + 1106 + 1371 + 3371

+1742 + 3742

N J∗0 (2N)
551 158 + 2551 + 3551 + 21102 + 21102

645 143 + 1129 + 1215 + 1258

+1430 + 2645 + 31290

663 1102 + 2221 + 3442 + 3663 + 11326

447 3149 + 1298 + 3298 + 3447 + 1894 + 1894

627 157 + 2209 + 3418 + 3627 + 31254

987 1141 + 2282 + 3329 + 4658 + 2987

+3987 + 31974

It can be checked that the curves X∗0 (322)/F3, X
∗
0 (226)/F3,X

∗
0 (430)/F3, X

∗
0 (442)/F3,

X∗0 (298)/F3, X
∗
0 (418)/F3, and X∗0 (658)/F3 are not hyperelliptic. By Proposition 1, the

jacobian of a quotient curve de X∗0 (2N) is isogenous to J∗0 (N). Thus, we can discard the
values

N ∈ {483, 339, 645, 663, 447, 627, 987} .
Although X∗0 (178) has a unique non trivial involution, whose quotient curve is isogenous
to an elliptic curve of conductor 89, the curve X∗0 (534) can also be discarded. Indeed,
a non trivial involution of X∗0 (534) should induce the identity on the elliptic curve of
conductor 89 and, thus on the curve X∗0 (178). But this fact leads to the contradiction
that the jacobian of the quotient curve would have as a factor an abelian surface attached
to a newform of level 178. For the remaining values, i.e.

N ∈ {295, 429, 341, 371, 551} ,

we apply Lemma 2 and we get that the five curves X∗0 (2N) have trivial automorphism
group.
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(v) The list of values N with g∗N > 2 and g∗2N > 2g∗N , except to N = 249 and N = 303
because they are in the lists `3, are the following:

`5 = {149, 179, 239, 251, 269, 303, 305, 311, 321, 329, 393, 395, 519, 545, 689, 861, 897} .

For all these cases, g∗2N−2g∗N = 1. By Proposition 1, ifX∗0 (2N) has a non trivial involution,
then the pullback of the regular differentials of the quotient curve is the pullback of Ω1

J∗0 (N)

or Ω1
J∗0 (N)×E for some elliptic curve E in the decomposition of J∗0 (2N), whose conductor

does not divide N .

By applying Lemma 1 to X∗0 (2N), we can discard the values of N in the set

{149, 179, 239, 251, 269, 311, 393, 519, 545} ,

taking p = 5 for 2N = 2 · 393, 2 · 519, 2 · 179, p = 7 for 2N = 2 · 545 and p = 3 for the
remaining cases. The splitting of J∗0 (2N) for the non discarded cases is as follows

N J∗0 (2N)
329 3329 + 4658

305 161 + 1122 + 3305 + 4610

321 2107 + 1214 + 1214 + 2321 + 3642

395 179 + 1158 + 3395 + 4790

N J∗0 (2N)
861 182 + 1123 + 1246 + 2287 + 1574 + 1574

+4861 + 11722 + 11722 + 21722

897 1138 + 2299 + 4598 + 5897 + 31794

689 153 + 1106 + 1689 + 2689 + 3689

+3689 + 31378 + 61378

It can be checked that the curves X∗0 (214)/F3, X
∗
0 (574)/F3, and X∗0 (598)/F3 are not

hyperelliptic. By Proposition 1, the values N ∈ {321, 861, 897} can be discarded.

For the remaining values, i.e. N = 329, 305, 395, 689, we apply Lemma 2 and we get that
the five curves X∗0 (2N) have trivial automorphism group.

For instance, for N = 689 we can proceed in a easier way. If X∗0 (1378) has a non
trivial involution u, then the jacobian of the quotient curve Xu is isogenous to J∗0 (689)
or J∗0 (689) × Ag, where g is the only newform in New∗106. None of these curves could
be hyperelliptic because |Xu(F3)| > 8. Take a basis g1, · · · , g9 of S∗2(689) ∩ Q[[q]]. Put
hi(q) := gi(q)+2gi(q

2) and h10(q) := g(q)+13g(q13). It can be checked that the dimension
of the vector space of homogenous polynomials in 9 variables (resp. 10 variables) vanishing
at h1, · · · , h9 (resp. h1, · · · , h10) has dimension 1. Hence, N = 689 can be excluded. Note
that for X∗0 (1378), dimL2 = 153.

As a consequence of this analysis and taking into account [BG19][Proposition 24], we get
the following result.

Proposition 5. Let N > 1 be an even square-free integer such that g∗N > 3 and X∗0 (N) is not
bielliptic. The group Aut(X∗0 (N)) is non trivial if, and only if, N = 366. In this case, the order
of this group is 2 and an equation for the quotient curve by the non trivial involution is given
by

Y 2 = X6 − 6X5 + 23X4 − 42X3 + 53X2 − 24X + 4 .

This proposition together Proposition 3 concludes the proof of Theorem 2.
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