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Executive summary
In this deliverable, the ExaQUte xmc library is introduced. This report is
meant to serve as a supplement to the publicly release of the library. In
the following sections, the ExaQUte xmc library is described along with its
current and future capabilities. The structure of the library, along with its
dynamic import mechanism, are described using samples of code. The algo-
rithms behind the example files supplied with the public release are explained
in detail as well.
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1 Introduction
The ExaQUte xmc library [released as 1] offers the user the ability to carry
out uncertainty quantification simulations using a multitude of Monte Carlo
algorithms. Users of the library will eventually be able to select one of many
pre-programmed algorithms such as

1. simple Monte Carlo;

2. adaptive Monte Carlo;

3. simple multi-level Monte Carlo;

4. adaptive multi-level Monte Carlo;

5. continuation multi-level Monte Carlo;

6. multi-index Monte Carlo;

7. multi-fidelity Monte Carlo.

They will also be able to chose from pre-programmed interfaces with widely
used numerical analysis packages. The library also offers parallelisation capa-
bilities using the PyCOMPSs [see 2, 4, 6] distributed computing framework
for use in high-performance machines.

The library is also programmed in a modular way that allows users to
construct their own ‘X’ Monte Carlo (xmc) algorithm from several building
block functions. It also allows them to write custom-interfaces easily for
their own numerical analysis packages such as custom-finite element analysis
or computational fluid dynamics libraries.

2 ExaQUte XMC library structure
The ExaQUte xmc library is organised as follows. The global directory xmc
is a python package that contains all the packages, subpackages and modules
of the library. Within this folder, each file contains the definition of one class.
Every file is treated as a module that can be imported. If the class is called
ClassName, the file is named className.py

Each class contains multiple types of members. They are as follows

1. Instances of classes

2. Instances of function definition objects
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3. Variables and other data structures

4. Method definitions

The instantiation of function objects is used to enable a function to
have multiple definitions. For example, we require that the optimalIndexSet
method of the HierarchyOptimiser class to be called as optimalIndexSet(), but
to evaluate different expressions for the optimal number of levels based on
the type of xmc algorithm used.

In this way the user can simply specify the type of algorithm they would
like to run and the definition of optimalIndexSet automatically changes based
on this, without any further intervention. This is achieved by instantiat-
ing optimalIndexSet dynamically to a specific function definition through the
constructor of the HierarchyOptimiser class as follows.
# hierarchyOptimiser .py
class HierarchyOptimiser ():

def __init__ (self , ** keywordArgs ):
...
self. optimalIndexSet =

dynamicImport ( keywordArgs .get(" optimalIndexSet "))
...

The dynamicImport method sets the definition of optimalIndexSet based on
inputs to the constructor. In this way, every call to optimalIndexSet in the
code is replaced by a call to the specific definition.

It is hence implied that every “general” method such as optimalIndexSet
will have a corresponding list of specific definitions, one of which is selected
at runtime during the construction of the class containing the method.

To organise this, every className.py file has a corresponding folder by
the name methodDefs_className. Inside this folder, there are multiple files
named generalMethod.py, one for each member of ClassName that is a function
object instance of the class. Within each generalMethod.py, there are a list of
definitions as follows -
# generalMethod .py
def specificDefinition1 ():

...

def specificDefinition2 ():
...

For the example in this section, the instantiation then occurs as follows.
# elsewhere .py
if ( xmcAlgorithmType == " xmcAlgorithm1 "):
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keywordArgs [" optimalIndexSet "] = "xmc.
methodDefs_hierarchyOptimiser . optimalIndexSet .
specificDefinition1 "

x = HierarchyOptimiser (** keywordArgs )

3 Instructions to run tutorial files
All tutorial files are to be run as follows
$ python3 example_ *.py

No additional arguments are required. If the user has the PyCOMPSs
scheduling tool installed and the imports in the required files appropriately
set, then the example files can be run with the following command.
$ runcompss --options =value / global /path/to/ example_ *.py

However, the user must note that the appropriate imports have to be changed
in places marked through the program. This functionality will be automated
in a future release.

4 Tutorial file and algorithm description
In the following subsections, we describe the algorithms currently available in
the example cases provided with the library. example_*_Kratos.py contains the
same algorithm as the corresponding example_*.py, but a partial differential
equation is solved for the quantity of interest in the Kratos solver [released
as 5] instead of a simple random number generator.

4.1 Simple Monte Carlo
example_mc.py contains a simple Monte Carlo algorithm that estimates the
mean of a standard normal variable. The algorithm begins with a prescribed
number of samples. It estimates the mean and the error in the mean estimate.
If the error does not satisfy a prescribed tolerance, it doubles the number of
samples and repeats the process until convergence.

4.2 Adaptive Monte Carlo
example_amc.py contains an adaptive Monte Carlo algorithm that estimates
the mean of a standard normal variable. The algorithm begins with a pre-
scribed number of samples. It estimates the mean and the error in the mean
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estimate. If the error does not satisfy a final tolerance, it then computes
a new number of samples that will be required to satisfy the tolerance re-
quirement based on the assumption of asymptotic normality, and repeats this
procedure until convergence.

4.3 Simple Multi-Level Monte Carlo
example_mlmc.py contains a simple Multi-Level Monte Carlo algorithm that
estimates the mean of a standard normal variable. A hierarchy of normal
random generators whose, the mean and variance of the differences of whose
samples decay geometrically with increasing level towards 0, are used to
generate samples. The algorithm begins with a prescribed number of samples
and levels. It estimates the mean and the error in the mean estimate. If the
error does not satisfy a prescribed tolerance, it increases the number of levels
by one, doubles the number of samples in all existing levels, and adds a
default number of samples to the new level. This process is repeated until
convergence.

4.4 Adaptive Multi-Level Monte Carlo
example_amlmc.py contains an adaptive Multi-Level Monte Carlo algorithm[de-
tailed in 3] that estimates the mean of a standard normal variable. A hier-
archy of normal random generators whose, the mean and variance of the dif-
ferences of whose samples decay geometrically with increasing level towards
0, are used to generate samples. The algorithm begins with a prescribed
number of samples and levels. It estimates the mean and the error in the
mean estimate. It then fits geometric models for the bias, variance and cost
across levels on the computed data. If the error does not satisfy a prescribed
tolerance, it increases the number of levels by one and computes the cost-
optimal number of samples for each level using level-wise bias, variance and
cost estimates as well as the models for these three quantities. to the new
level. This process is repeated until convergence.
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