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Executive summary
In this report, we study the use of Multi-Level Monte Carlo (MLMC) methods for time
dependent problems. It was found that the usability of MLMC methods depends strongly
on whether or not the underlying time dependent problem is chaotic in nature. Numerical
experiments are conducted on both simple problems, as well as fluid flow problems of
practical interest to the ExaQUte project, to demonstrate this. For the non-chaotic cases,
the hypotheses that enable the use of MLMC methods were found to be satisfied. For
the chaotic cases, especially the case of high Reynolds’ number fluid flow, the hypotheses
were not satisfied. However, it was found that correlations between the different levels
were high enough to merit the use of multi-fidelity or control-variate approaches. It was
also noted that MLMC methods could work for chaotic problems if the time window of
analysis were chosen to be small enough. Future studies are proposed to examine this
possibility.
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1 Introduction
MLMC methods have shown success in the last decade to improve the complexity of
expensive UQ problems [5, 8, 15, 16]. However, they have seen limited use for UQ in time-
dependent PDEs with random parameters. We mention e.g. [9] where MLMC approaches
were demonstrated for the Langevin SDE with a strongly-concave potential. The idea
was extended in [6] to non-contractive SDEs. MLMC approaches were also demonstrated
successfully for systems of hyperbolic conservation laws in [11] and [12].

The target application area of ExaQUte is in civil engineering involving time-dependent
turbulent fluid flow models and the target QoI are typically time averages of some aero-
dynamic quantity such as force or moment coefficients on a building or structure. In this
report, we discuss the possibility of using MLMC methods for such time-dependent prob-
lems with the goal of computing time averaged quantities. We also explore the potential
for the use of ergodicity to improve the efficiency of computations.

In the application context, we are interested in studying the behavior of a QoI of the
following form.

Q = 〈Q̃〉T := 1
T

∫ T

0
Q̃(t)dt, (1)

where T can either be a finite time window or can go to infinity, signifying an infinite
time average if the limit exists, and Q̃(t) is the time series of the output QoI of our
computational model, containing random parameters (typically inlet wind conditions).
Both cases of finite and infinite time horizon have important implications for the use of
MLMC methods to make computations more efficient.

MLMC methods aim to improve the complexity of Monte Carlo methods by construct-
ing the QoI Q on a sequence of L + 1 meshes of characteristic sizes h0 > h1 > ... > hL
used to discretize the underlying system of PDEs, such that hl = δ−lh0 where δ > 1. The
goal is to estimate E [QhL

] on the finest discretization level as an approximation to E [Q].
The linearity of the expectation can be used to rewrite it as

E [QhL
] = E [Qh0 ] +

L∑
l=1

E
[
Qhl
−Qhl−1

]
(2)

Each of the expectations is estimated by independent Monte Carlo estimators using a
different number of i.i.d. replicas {Nl}Ll=0, giving rise to the following MLMC estimator.

µ̂ = 1
N0

N0∑
i=1

Qh0(ω(i,0)) +
L∑
l=1

1
Nl

Nl∑
i=1

[
Qhl

(ω(i,l))−Qhl−1(ω(i,l))
]

(3)

=
L∑
l=0

1
Nl

Nl∑
i=1

Y
(i,l)
l , (4)

where we have defined Y
(i,0)

0 := Qh0(ω(i,0)) and Y
(i,l)
l := Qhl

(ω(i,l)) − Qhl−1(ω(i,l)) and
ω(i,l) are all i.i.d. realizations of the underlying noise process inducing randomness in the
system. The MSE of the estimator is defined as MSE(µ̂) := E [(µ̂− E [Q])2] and is given
by

MSE(µ̂) = (E [Qh −Q])2 +
L∑
l=0

Var [Yl]
Nl

, (5)
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where the first and second terms are respectively the bias and statistical error. Under the
assumption that there exist positive constants Cα, α, Cβ, β, Cγ, γ such that the following
hold:

Bl := |E [Qhl
−Q] | 6 Cαe

−lα, (6a)
Vl := Var [Yl] 6 Cβe

−lβ, (6b)
Cl := Cost(Y (i)

l ) 6 Cγe
lγ, (6c)

it has been shown in [7] that the cost of the MLMC simulation to obtain a tolerance of ε2

on the MSE, split equally between the bias and statistical error contributions, behaves as

Cost(µ̂) =
L∑
l=0

NlCl .


ε−2 β > γ,

ε−2(log ε)2, β = γ,
ε−2−(γ−β)/α, β < γ.

(7)

when L = L(ε) and Nl = Nl(ε) are optimally chosen. For β > γ, the cost is dominated
by Monte Carlo sampling on the coarsest levels. For β = γ, the cost is distributed evenly
across levels and for β < γ, the cost is primarily on the finest levels. Even in the worst
case, MLMC estimators are an improvement over the standard Monte Carlo complexity
of ε−2−γ/α. During implementation, the number of samples Nl and levels L required to
attain a given tolerance with optimal complexity depend strongly on the rates α, β and γ.
For some problems, these rates are available from theoretical considerations. However in
most applications, they are obtained by fitting on estimates of Bl, Vl and Cl respectively.
These estimates can be obtained by running a “screening” phase with a few samples or
can be estimated and improved on the fly in a continuous manner. The reader is referred
to [8, 14] for detailed descriptions of different MLMC algorithms.

2 MLMC theory for time dependent problems
The main challenge in using MLMC methods for time dependent problems is to retain the
correlation in time of the fine and coarse QoI time signals. This strongly depends on the
properties of the underlying system of equations. Particularly, this depends on whether
the governing equations are chaotic or not and if yes, what the time-scales of decorrelation
are. Namely, it is important to retain pathwise correlation of the time signals on both
fine and coarse meshes through the time window of analysis.

In this report, we study four problems of interest to demonstrate the effects of the
chaos on the levelwise convergence hypotheses in Eqs. (6). Namely, we present two simple
oscillators - one non-chaotic and one chaotic, which are proxy models for more complex
fluid dynamics problems. We also present two cases of practical relevance to the project
- Navier-Stokes equations at a low Reynolds’ number and at a higher Reynolds’ number
that supports turbulence. We demonstrate that for the chaotic problems, the hypotheses
of Eqs. (6) no longer hold true due to a lack of pathwise-convergence.

To illustrate the potential pitfalls in using MLMC for time-dependent problems, let
us consider a system of SDEs with additive noise given by

dX(t) = f(t,X(t))dt+ σdW (t), t > 0, X(0) = X0, (8)
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where X(t) ∈ Rn, σ ∈ Rn×k, and W (t) is a Rk-valued standard Wiener process. Relevant
to the ExaQUte project and this report is the accurate computation of time averages of
some output quantities Q̃(X(t)) with Q̃ : Rn → R a smooth function. Namely, our goal
is to compute

Q = 〈Q̃(X(t))〉T = 1
T

∫ T

0
Q̃(X(t))dt. (9)

We consider as well a discretized version of Eq. (9) by, for example, the Euler–Maruyama
scheme.

Xn+1 = Xn + hf(tn, Xn) + σ∆Wn, n = 0, 1, ..., X0 = X0, (10)

with ∆Wn ∼ N (0, h) i.i.d. (where h is the step size) and a piecewise linear reconstruction
of the solution

Xh(t) =
(
tn+1 − t

h

)
Xn +

(
t− tn
h

)
Xn+1, t ∈ (tn, tn+1], n = 0, 1, ... (11)

This leads to the following approximation of the time average.

Qh = 〈Q̃(Xh(t))〉T = 1
T

∫ T

0
Q̃(Xh(t))dt. (12)

Under reasonable assumptions on the Hölder continuity of f and Q̃, it is well known [10,
Theorem 14.1.5] that∣∣∣E [Q̃(Xh(t))

]
− E

[
Q̃(X(t))

]∣∣∣ 6 c1(t)h, ∀t > 0, (13)

E
[(
Q̃(Xh(t))− Q̃(X(t))

)2
]1/2

6 c2(t)h, ∀t > 0. (14)

The left hand side of Eq. (13) and Eq. (14) are called the weak error and strong (or
pathwise) error, respectively. For general SDEs with Lipschitz coefficients, the strong
error of the Euler-Maruyama scheme scales as O

(
h1/2

)
whereas in the current setting of

additive noise, we have rather that it scales as O (h). Also, assuming that f(t, ·) and Q̃(·)
are at least Lipschitz continuous, the constant c2(t) typically has the form c2(t) = c̄2e

Lt.
For chaotic systems, the constant L is typically positive and large, meaning that the error
estimate is meaningful only for a time horizon T of the order O (L−1). On the other hand,
under reasonable assumptions1on f , one has that E

[
Q̃(X(t))2

]1/2
6 C for all t > 0 so

that Eq. (14) can be replaced by

E
[(
Q̃(Xh(t))− Q̃(X(t))

)2
]1/2

6 min
{
c̄2e

Lth, 2C
}
, ∀t > 0. (15)

Concerning the weak error, if both the SDE and its discretized form are ergodic, the
constant c1(t) is uniformly bounded in time so that Eq. (13) can be replaced by∣∣∣E [Q̃(Xh(t))

]
− E

[
Q̃(X(t))

]∣∣∣ 6 c̄1h, ∀t > 0. (16)

1E.g. X>f(t, X) 6 −k1|X|2 + k2 for |X| > R for suitable non-negative constants k1, k2 and R.
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The estimates in Eqs. (15) and (16) can be used to estimate the decay of the bias and
variance estimates Bl and Vl defined in Eqs. (6) on the time averaged QoI Qhl

. We have
that

Bl = E [Qhl
−Q] = E

[
〈Q̃(Xhl

(t))〉T − 〈Q̃(X(t))〉
]
6 c̄1hl = ĉ1δ

−l, (17)

Vl = Var
[
Qhl
−Qhl−1

]
6 E

[(
Qhl
−Qhl−1

)2
]

(18)

6 2E
[
(Qhl

−Q)2
]

+ 2E
[(
Qhl−1 −Q

)2
]

(19)

6 4 min
{

4C2,
c̄2

2e
2LT

2L h2
l−1

}
(20)

6 min{ĉ2, ĉ3e
2LT δ−2l}, (21)

for suitable time independent constants ĉ1, ĉ2, ĉ3. We see from these estimates that the
bias term always features an exponential decay with respect to the level l, whereas to
observe a decay of the variance in the chaotic case, we have to either consider very large
l or T = O(L−1) so that the second term in the minimum of Eq. (21) is smaller than the
first one. In other terms, variance decay should be expected only for short time intervals
in which the two approximated outputs Q̃(Xhl

(t)) and Q̃(Xhl−1(t)) remain correlated. For
long time horizons, the two time series decorrelate completely and the variance term Vl,
while remaining bounded, does not feature any decay with respect to l.

3 Results for Oscillator Problems

3.1 Van der Pol Oscillator
The Van der Pol Oscillator is an oscillator whose trajectory x(t) is governed by the second-
order differential equation

d2x

dt2
− µ(1− x2)dx

dt
+ x = 0. (22)

The oscillator has the favorable property that it has a limit cycle to which it converges
independent of the initial coordinates in the phase space. It is also a good proxy model
for vortex shedding fluid flows. To assess the effectiveness of MLMC methods in this case,
we consider a stochastic version of Eq. (22) where the right hand side is replaced by white
noise (derivative of a Wiener process). We are interested in studying the convergence
properties of the time average of the trajectory x(t). We first analyze the convergence
properties of 〈x〉T in the unforced case. We rewrite Eq. (22) as a set of first order ODEs
by introducing the variable y = dx/dt.

dx

dt
= y, t ∈ (0, T ], (23)

dy

dt
= µ(1− x2)y − x, t ∈ (0, T ], (24)

x(0) = x0, y(0) = y0. (25)

We discretize this system with the explicit Euler time stepping scheme on a time grid
given by 0 = t0 < t1 < · · · < tN = T where tn = nh and h = T/N . This leads to the
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following time stepping scheme.[
yn+1
xn+1

]
=
[
yn
xn

]
+ h

[
µ(1− x2

n)yn − xn
yn

]
. (26)

The time average in Eq. (1) is approximated as

〈x〉T ≈ 〈x〉h,T := 1
N

N∑
n=1

xn (27)

For the current study, we select µ = 1, x0 = 1 and y0 = 1. We select a time window
of T = 100 which corresponds to approximately 15 periods of the limit cycle. We carry
out the simulation for 5 different values of N , namely 16000, 32000, 64000, 128000 and
256000 points. A plot of the phase space trajectory of the solution for the finest mesh
is shown in Fig. 1 The finest mesh is selected as a reference value 〈x〉ref,T . In Fig. 2, we
plot the values |〈x〉h,T − 〈x〉ref,T | for different values of h. We observe a convergence rate
of approximately 1 based on a least squares fit, which is consistent with the order of the
Euler scheme.

Figure 1: Phase space trajectory of Van der Pol oscillator
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Figure 2: Mesh convergence in the deterministic case for the Van der Pol oscillator

For the stochastic study, we first look at the pathwise convergence of the forced Van
der Pol oscillator given by

d2x

dt2
− µ(1− x2)dx

dt
+ x = τẆ (t), (28)

where W (t) is a standard Wiener process and τ is the strength parameter for the forcing
term. Similar to earlier, we rewrite this equation as a system of first order ODEs.

dx

dt
= y, t ∈ (0, T ] (29)

dy

dt
= µ(1− x2)y − x+ τẆ (t), t ∈ (0, T ] (30)

x(0) = x0, y(0) = y0. (31)

We discretize the system using the Euler-Maruyama scheme, which reads as follows.[
yn+1
xn+1

]
=
[
yn
xn

]
+ h

[
µ(1− x2

n)yn − xn + τ√
h
ξn

yn

]
, (32)

where ξn are i.i.d. realizations of a standard normal random variable. All parameters
remain identical as to the deterministic case. The strength parameter is chosen as τ = 1.0
and the time horizon T is chosen to be 100. The solution x(t) is plotted versus t for the
same realization of the white noise solved on both finest and coarsest meshes in Fig. 3.
Pathwise correlation can clearly be observed in the plot.
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Figure 3: One realization of the stochastic Van der Pol oscillator solution on the finest
and coarsest meshes

We simulate the system for 10 independent realizations of the Brownian path. We
plot the values |〈x〉(i)h,T − 〈x〉

(i)
ref,T | vs. h for i = {1, ..., 10}, where for each realization of

the Brownian path, the finest mesh is taken to be the reference solution. Each color
corresponds to a different underlying Brownian path realization. The resultant plot is
shown in Fig. 4. We observe convergence rates of between 1.0 to 1.3 based on least
squares fits, which is again consistent with the predicted strong convergence rate of the
Euler-Maruyama scheme.

Figure 4: Pathwise mesh convergence in the stochastic case for the Van der Pol oscillator
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We wish to study the applicability of MLMC algorithms to this problem. For MLMC
to produce the optimal complexity for a given tolerance, the underlying problem should
satisfy the rate hypotheses of Eqs. (6). We keep the system parameters the same as
earlier. Indexing the meshes in decreasing step size as l = {0, ..., L}, we denote the
quantity of interest on mesh l as 〈x〉l,T and the corresponding step size as hl. We study
the convergence of the quantities

Bl := |E [〈x〉l,T − 〈x〉ref,T ] |, (33a)
Vl := Var [〈x〉l,T − 〈x〉l−1,T ] , (33b)

with respect to hl. For each l, we estimate the expectation and variance using their corre-
sponding sample average and sample variance estimators using 100 independent Brownian
path realizations. For each Brownian path, the problem is solved on both the fine and
coarse levels. The variation of the bias and variance with levels is shown in Fig. 5. We
observe rates of approximately 1 and 2 for the bias and variance respectively.

Figure 5: Bias (left) and variance (right) convergence for the stochastic Van der Pol
oscillator

We observe that the stochastic Van der Pol oscillator possesses favorable properties
in terms of retaining pathwise correlations. In addition, we have also shown that the
Van der Pol oscillator satisfies the MLMC hypotheses Eqs. (6) and hence can obtain the
demonstrated complexity behavior with an optimally selected hierarchy. To demonstrate
this optimal complexity behavior, we estimate the expectation E [〈x〉T ] using an optimally
tuned MLMC estimator µ̂. The input uncertainty is the Brownian forcing term. We
prescribe a tolerance ε on the total error of the MLMC estimator defined as

TE(µ̂) := |E [〈x〉L,T − 〈x〉L−1,T ] |+ Cα

√√√√ L∑
l=0

Var [〈x〉l,T − 〈x〉l−1,T ]
Nl

, (34)

where Cα corresponds to the inverse of the CDF of the standard normal distribution at
significance 1− α/2.

We use the CMLMC algorithm [5, 16] to tune the hierarchy optimally for a given
tolerance on the total error. The cost of computing the optimally tuned hierarchy is then
measured and plotted against the corresponding tolerance. For each tolerance tested, the
entire MLMC simulation is repeated 15 times and the corresponding simulation time is
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noted for the optimally tuned hierarchy. The results are shown in Fig. 6. It can be seen
that the cost grows as ε−2, thus demonstrating optimal complexity behavior for CMLMC.
In addition, the estimated cost for a Monte Carlo simulation to reach the same tolerance
is also shown.

Figure 6: Complexity behavior for CMLMC algorithm on Van der Pol oscillator

3.2 Lorenz Oscillator
The Lorenz oscillator is a three dimensional chaotic oscillator governed by the following
system of ODEs.

dx

dt
= σ(y − x), (35a)

dy

dt
= x(ρ− z)− y, (35b)

dz

dt
= xy − βz. (35c)

For the purposes of this study, we select the parameter values to be σ = 10, ρ = 28 and
β = 8/3. The Lorenz oscillator has the property that it is chaotic. This means that
two trajectories with the initial conditions differing by an arbitrarily small perturbation
will eventually diverge. This poses a challenge for MLMC since pathwise convergence is
important for the hypotheses to be satisfied.

As before, we study two variations of the oscillator. The first is the pathwise con-
vergence of the deterministic oscillator in Eqs. (35). The second is a stochastic oscillator
where the right hand sides of all three of Eqs. (35) are forced with independent white
noises as follows,

dx

dt
= σ(y − x) + τẆ1(t), (36a)

dy

dt
= x(ρ− z)− y + τẆ2(t), (36b)

dz

dt
= xy − βz + τẆ3(t), (36c)
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for t ∈ (0, T ], where T denotes the time horizon, W1,W2 and W3 are independent Wiener
processes and τ is the strength parameter whose value is chosen to be 1.0 for the purposes
of this study.

For the first study, we discretize Eqs. (35) using the explicit Euler scheme on a uniform
grid with 0 = t0 < t1 < · · · < tN = T with tn = nh and h = T/N . The discretized system
reads xn+1

yn+1
zn+1

 =

xnyn
zn

+ h

 σ(yn − xn)
xn(ρ− zn)− yn
xnyn − βzn

 . (37)

We analyze the system for T = 400 and for different values ofN , namely - {4, 8, 16, 32, 64}×
104. Considering the finest mesh as a reference, we plot the value of the differences
|〈x〉h,T −〈x〉ref,T | for different values of h. The resultant plot is shown in Fig. 7. We note
that we do not observe convergence of the quantity of interest in this case.

Figure 7: Convergence of time averages for the deterministic Lorenz oscillator

For the second study, we discretize Eqs. (36) using the Euler-Maruyama scheme. The
discretized system reads

xn+1
yn+1
zn+1

 =

xnyn
zn

+ h


σ(yn − xn) + τ√

h
ξ1,n

xn(ρ− zn)− yn + τ√
h
ξ2,n

xnyn − βzn + τ√
h
ξ3,n

 , (38)

where ξ1,n, ξ2,n and ξ3,n are independent standard normally distributed random variables.
Fig 8 shows one realization of the solution of the forced Lorenz oscillator computed on the
finest and coarsest meshes with the same underlying white-noise realizations. We observe
that the solutions very quickly decorrelate.

Page 17 of 34



Deliverable 5.4

Figure 8: A realization of the stochastic Lorenz oscillator solution computed on the finest
and coarsest meshes

Similar to before, we simulate the system for 10 independent realizations of the Brow-
nian paths. We plot the values |〈x〉(i)h,T − 〈x〉

(i)
ref,T | vs. h for i = {1, ..., 10}, where for each

realization of the Brownian path, the finest mesh is taken to be the reference solution. The
resultant plot is shown in Fig. 9 where different colors indicate the different realizations.

Figure 9: Convergence of time averages for the stochastic Lorenz oscillator

Lastly, we conduct a screening MLMC similar to Section 3.1 with 104 samples per pair
of levels. We study the decay of the bias and variance defined in Eqs. (33) with levels l.
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It is expected that the bias decays for a large enough time window T but that variance
decay cannot be guaranteed. The resultant behavior is reported in Fig. 10 and it can be
observed that although the bias decays with rate better than 1 in h, the variance does
not decay at all.

Figure 10: Bias (left) and Variance (right) convergence for the stochastic Lorenz oscillator

4 Results for Fluid Flow Problems

4.1 Low Reynolds’ Number Fluid Flow
In the ExaQUte project, we aim to simulate the fully turbulent flow over a three dimen-
sional building. As an intermediate case, we consider a reduced problem in two dimensions
- the flow over a 5 × 1 rectangle. A schematic of the problem is shown in Fig. 11 and
Fig. 12.

Figure 11: Problem description [4], D = 1

The incompressible Navier-Stokes equations for the velocity field u and pressure field
p are used to model the fluid flow:

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = 0, (39)

∇ · u = 0; (40)
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Figure 12: Rectangle problem dimensions. Inner rectangle 5× 1.

and the QoI considered is the time-averaged drag force. The details of the case are
described extensively in [1]. It was shown in ibid. that pathwise convergence could be
obtained at a relatively low Reynolds’ number of 100 if the correct adaptive mesh strategy
was used. The details of the resultant meshes can be found in Appendix A. The problem
was solved on a background mesh for an inlet velocity of 2.0 m/s and the resultant velocity
and pressure fields were used to refine and create a hierarchy of meshes. A description of
the adaptive strategy can also be found in ibid. We refer to ibid. for the results on the
convergence study.

This test case however converges to a steady solution. We are currently investigating
the more interesting case of Re = 150 which exhibits vortex shedding and limit cycle
oscillations on both lift and drag forces. We will consider a normally distributed random
inlet velocity. We plan to explore bias and variance convergence for this problem and
also to combine it with continuation type MLMC algorithms [5] to iteratively improve the
meshes based on information from all random samples.

4.2 High Reynolds’ Number Fluid Flow
For the study of higher Reynolds’ number, we present here the results from [1]. The same
numerical example as in Section 4.1 is simulated but with the viscosity adjusted to yield
a higher Reynolds’ number. The time-averaged velocity field is used to compute metrics
for mesh adaptivity. The parameters of the resultant meshes can be seen in Table 1.
The simulations are done for Re ≈ 1.3 × 105. The inlet velocity is made stochastic. A

Interpolation Error hmin Nodes [×1000] CFL h
101 0.035 1.1 80 0.7
100 0.012 2 80 0.24
10−1 0.0033 5 80 0.066
10−2 0.0011 15 80 0.022
10−3 0.00037 92 80 0.0075

Table 1: Mesh parameters for high Reynolds’ number study

total of 50 realizations of the inlet velocity vinlet ∼ N (2.0, 0.02) are simulated on all of
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the meshes, which are designed with the ‘mean’ case of vinlet = 2.0. It is of interest to
study the convergence of |〈F (i)

D,l〉−〈F
(i)
D,l−1〉|, i ∈ {1, 2, ..., 50} for each of the samples, where

〈FD, l〉 denotes the time averaged value of the drag force FD over the the time window
[140, 300]. We measure the convergence of this quantity versus the interpolation error
prescribed to the adaptive remesher in order to obtain each level of mesh.

Fig. 13 shows the variation of |〈F (i)
D,l〉 − 〈F

(i)
D,l−1〉| with the interpolation error for each

of the different realizations, as well as E[〈FD,l〉 − 〈FD,l−1〉] estimated using a sample
average over the 50 realizations. It can be seen from the plot that geometric decay of
this quantity in the mesh is not observed. The variation of the variance of the differences

Figure 13: Bias decay plot for the flow problem with high Reynolds number. Same color
for same realization at different levels. Black line denotes sample average. Levels defined
by Table 1.

Var[〈FDl
〉−〈FDl−1〉] is also plotted in Fig. 14. As can be seen from the figure, this quantity

does not decay with the mesh parameters either.
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Figure 14: Variance decay plot for the flow problem with high Reynolds number. Levels
defined by Table 1

On further investigation, it was found that bias and variance decay could be difficult
to obtain at high Reynolds’ numbers due to the chaotic nature of the flow. This makes
it very difficult to retain pathwise correlation of both fine and coarse samples. As a
result, the MLMC hypotheses of Eqs. (6) are likely to not be fulfilled. In the following
sections, we outline some promising ideas and algorithms for increasing the efficiency of
computations

5 Recommendations and Future Scope

5.1 Multi-Fidelity Monte Carlo Methods
From the data available from the studies in Section 4.2, it is possible to compute cross-level
correlations. Although pathwise-convergence was not observed, the correlations observed
suggested the use of MFMC methods to provide significant speed-ups. The correlation
data is presented in Table 3. We present here the basic theory of the methods of control
variates and MFMC.

Let X be a random variable with bounded second moment. We recall the definition
of a MC estimator of E [X] with m samples:

µm(X) := 1
m

m∑
i=1

X(i), (41)

where X(i))mi=1 are i.i.d. replicas of X. This is an unbiased estimator of E [X], therefore
its mean squared error is

E
[
(µm(X)− E [X])2

]
= Var [µm(X)] = Var [X]

m
. (42)
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A straightforward way to improve the accuracy of the Monte Carlo estimator is to increase
m. In our applications, this is often infeasible. An alternative method is to “reduce”
Var [X] by substituting to X a random variable X̃ of smaller variance and equal mean
value.

We introduce here the idea of variance reduction by control variates. Let Z be another
random variable with bounded second moment. Z serves as a control variate by defining
the controlled variable X̃ = X − α(Z − E [Z]). We have, purposely, E

[
X̃
]

= E [X]. The
variance Var

[
X̃
]

= Var [X]− 2αCovar (X,Z) + α2 Var [Z] is minimal for

α = Covar (X,Z)
Var [Z] , (43)

with minimum

min
α∈R

Var
[
X̃
]

=
(

1− Covar (X,Z)2

Var [X]Var [Z]

)
Var [X] . (44)

We observe from equation (44) that, whatever Z is, a variance reduction can always
be achieved with a suitable choice of the parameter α. A good control variate should
be highly correlated to X: the higher the correlation between X and Z, the greater
the variance reduction. However, E [Z] must be precisely known lest the control variate
introduces a bias. Assuming that it is not known a priori, we propose to approximate
E
[
X̃
]

= E [X − αZ] + αE [Z] with the unbiased estimator

µm1,m2(Z,X) := 1
m2

m2∑
i=1

(X(i) − αZ(i)) + α

m1

m1∑
i=1

Z(i), (45)

where ∀i ∈ N, X(i) ∼ X and Z(i) ∼ Z; and with m2 ∈ N∗ and m1 > m2. Note the
subsampling: the first m2 samples of Z appear twice in (45). Therefore, the variance of
this estimator is2

Var [µm1,m2(Z,X)] = Var [X]
m2

+ m1 −m2

m1m2

(
α2 Var [Z]− 2αCovar (X,Z)

)
. (46)

The cost of the estimator is e (µm1,m2(Z,X)) := m2e (X) + m1e (Z). Additionally, the
benefit of an optimal α comes at the cost of estimating Var [Z] and Covar (X,Z).

Let us generalize estimator (45) to any number of control variates. We have a set
of random variables X := (Xi)M+1

i=1 , alternatively called “models”. XM+1 is the “high-
fidelity” model whose expectation we want to estimate (formerly X), and the others are
M “low-fidelity” models used as control variates. Our MFMC estimator is defined as

µm(X) := 1
mM+1

mM+1∑
i=1

X(i)
M+1 −

M∑
j=1

αjX
(i)
j

+
M∑
j=1

αj
mj

mj∑
i=1

X
(i)
j , (47)

with m ∈ NM+1 samples chosen such that ∀i ∈ J1,MK, mi > mM+1 > 0. There, again,
we use subsampling so that for every pair {j, k} ⊂ J1,MK and for any i ∈ N, X(i)

j and
X

(i)
k use the same realization of the underlying noise process and are therefore correlated.
2This is a particular case of the expression obtained in appendix B.
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To express its variance, let us introduce the following notations:

r :=
(

mj

mM+1

)
j∈J1,MK

, (48)

R := diag r, (49)

C :=
(
Covar (Xi, Xj)
Var [XM+1]

)
i,j∈J1,MK

, (50)

c :=
(
Covar (XM+1, Xj)

Var [XM+1]

)
j∈J1,MK

, (51)

C̃ := (Ci,j(min{ri, rj} − 1))i,j∈J1,MK , (52)
and

A := (R−1 − I)C(R−1 − I) +R−1C̃R−1, (53)
with the identity operator

I := (δi,j)i,j∈J1,MK. (54)

Then, the values of the control coefficients which minimize the variance of the MFMC
estimator are

α? := A−1(1−R−1)c (55)
for which

Var [µm(X)] = Var [XM+1]
mM+1

(
1− c>(R−1 − 1)A−1(R−1 − 1)c

)
. (56)

The detailed proof of (55) and (56) is presented in appendix B, p. 33. For a fixed budget
B, we define the optimal allocation of samples m̆ as

m̆ :=
⌊

arg min
{
Var [µm(X)] :

m ∈ ]0,+∞[M+1; ∀i ∈ J1,MK, mi > mM+1; e (µm(X)) 6 B
}⌋

(57)

where e (µm(X)) = ∑M+1
i=1 mie (Xi).

Note that no assumption has been made regarding the comparative accuracy of the
low-fidelity models. In the case where the models can be ordered in a hierarchy satisfying
some assumptions, [13] has proposed a different class of estimators with explicit formulæ
for optimal control coefficients {αi : i ∈ J1,MK} and sample allocation {mi : i ∈ J1,MK}.

We wish to assess the efficacy of the previous MFMC approach on the results presented
in Section 4.2. This dataset contains time series of the drag force FD generated on several
meshes for the same set of 50 realizations of the inlet velocity. We consider the random
variable

Qi(ω) := 1
160

∫ 300

140
F

(i)
D (t, ω) dt (58)

where i ∈ {1, 2, 3, 4} refers to one of our selected models, which correspond to discretiza-
tion on different meshes. Table 2 describes these models, of which Q4 is the high-fidelity
one.
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Model Nodes Mesh size Timestep (s) Average cost (s)
1 1100 0.035 0.7 106
2 2000 0.012 0.24 423
3 5000 0.0033 0.066 2821
4 15 000 0.0011 0.022 26 123

Table 2: Models

We will assess the variance reduction that the MFMC estimator presented above can
provide compared to a plain MC estimator with the same budget. From formula (56),
the data we need are the cost of each model and the covariance of each pair of models.
Both are computed from the 50 samples that we have for each model; the average cost
measured is displayed in table 2 while the estimated covariance matrix is:

Covar (Q) =


0 .707 0.726 0.512 0.833
0.726 2 .17 0.559 1.098
0.512 0.559 1 .391 0.64
0.833 1.098 0.64 2 .312

× 10−3. (59)

For better insights, we look at the correlation coefficient matrix presented in Table 3.

Correlations 1 2 3 4
1 1
2 0.586 1
3 0.516 0.322 1
4 0.652 0.490 0.357 1

Table 3: Correlation data for high Reynolds’ number fluid flow

To assess the performance of the MFMC estimator, we compute the optimal sample
allocation for a fixed budget B := 50×e (Q4). Then we calculate the variance reduction
compared to the MC estimator with the same budget:

Var [µ50(Q4)]
Var [µm̆(Q)] . (60)

Finally, for insight into cost reduction, we provide the factor f by which the number of
samples of the MC estimator would have to be multiplied to achieve the same variance
reduction, i.e. Var [µf×50(Q4)] = Var [µm̆(Q)]. All these results are summarized in table 4.

Note that some of the low-fidelity models are actually detrimental to the MFMC
estimator, due to their poor correlation. The performance of the MFMC estimator was
improved by removing them, as is visible in lines “mfmc–3” and “mfmc–2” of Table 4.
Lastly, Algorithm 1 describes a tentative MFMC algorithm to calibrate the estimator in
Eq. (47).
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Estimator Samples per model Variance reduction Equivalent MC
1 2 3 4 sample factor

Monte Carlo 50 1 1
mfmc–4 356 44 44 43 0.751 1.332
mfmc–3 531 50 46 0.681 1.468
mfmc–2 319 48 0.657 1.522

Table 4: Variance reduction at fixed budget

Algorithm 1 MFMC algorithm to compute optimal number of samples for a given budget
Require: Budget B; screening sample number m′; models {Xi : i ∈ J1,M + 1K}.

1: Conduct m′ simulations each of the M + 1 correlated models.
2: Estimate the covariances and variances in Eqs. (50) and (51) using their respective

sample estimators.
3: Compute the optimal control coefficients in Eq. (55)
4: Compute the optimal sample numbers in Eq. (57) for budget B.
5: Simulate the additional required samples.

5.2 Burn-in Time Reduction
During the computation of time averages such as the one presented in Eq. (1), it is
common practice to leave out a first time interval since the trajectory in this interval is
heavily influenced by the initial conditions. This corresponds to computing the QoI as

Qb = 〈Q̃〉T,Tbt
= 1
T − Tbt

∫ T

Tbt

Q̃(t)dt. (61)

The window Tbt that is discarded is known as the burn-in time. It can be shown that for
geometrically ergodic systems, the bias error of the estimator Qb is reduced by a factor
exponentially decaying in Tbt with respect to the bias of Q (without burn-in). However,
adequately reducing the bias can imply that a large burn-in time needs to be discarded.
In addition, solutions can be computed in parallel in space but not in time, making it
important to reduce overall the number of time steps that are computed. Lastly, for
ergodic systems, multiple samples can be computed with relatively shorter time windows
instead of one sample with a long time window. However, for each sample, the time
average of the output QoI has to be computed only after the burn-in time is complete in
order to collect statistics with respect to the invariant measure. To make computations
more efficient, it is hence important to reduce the burn-in time.

To this end, studies were conducted for the rectangle problem for higher Reynolds’
numbers to assess the burn-in time characteristics and propose strategies for its reduction.
Instead of the inlet perturbations described in Sec. 4.2, multiple realizations are created by
randomly perturbing the initial conditions on the velocity field. A pre-computed velocity
field, which is the time-averaged velocity field of a reference solution, is loaded as the
initial condition. Perturbations are computed in a manner that the resultant velocity
field is divergence-free and observes no-slip conditions on all surfaces.

Page 26 of 34



Deliverable 5.4

The QoI in consideration is the time average of the drag force Q = 〈Fd〉T,Tbt
. The

sample average estimator for the expected value of the time average then reads

E [Q] ≈ µ̂ = 1
M

M∑
i=1

1
T − Tbt

∫ T

Tbt

F
(i)
d (t)dt, (62)

where F (i)
d is the time series of the output QoI for the ith realization of the initial velocity.

The statistical error SE of this estimator can be estimated as

SE := Var [µ̂] ≈ V [Fd]
M(T − Tbt)2

∫ T

Tbt

∫ T

Tbt

ρ(t− s)dtds, (63)

where ρ(t− s) denotes the autocorrelation function of the time series and V[Fd] is defined
as

V [Fd] := 〈(Fd − 〈Fd〉T,Tbt
)2〉T,Tbt

. (64)

In the earlier studies the burn-in time was set approximately equal to the washout
time Tbt = 140 s to ensure converged computations. We try to analyze how the statistical
results of the time-averaged drag force would change with different burn-in times. We plot
the expected value E [〈Fd〉T,Tbt

] as a function of Tbt, together with its confidence interval.
Such intervals are computed as Cα

√
SE, similar to Eq. (34), with a confidence of 99%. As

we can see in Fig. 15a, from a statistical point of view, the statistical error is relatively
insensitive to Tbt for Tbt > 20. However, we decide to apply a physical constraint, which is
the time the flow need to go from the inlet to the body. Such time, for an average speed
of 2 m/s, is 40 s. As a result, we decided to take Tbt = 40 s when the system is initialized
as described above.

Another way to estimate Tbt is following the same approach as in [3], in which the
authors choose a burn-in time which minimizes the estimated variance of the sample
average estimator of the time average for a given signal. For this reason, we average at
each time step over all realizations for a different numbers of realizations and apply the
procedure to the resultant time signal. We report the results of this analysis in Fig. 15b
for different numbers of realizations. As can be seen from the plot, we reach a minimum
value after relatively few seconds. From these results, we assume that it is safe to reduce
Tbt to 40 s without affecting the statistical properties of the signal.
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Figure 15: Summary of burn in time reduction experiments.

Another approach we consider to reduce the time to solution is to exploit a larger CFL
number during the burn-in time. To do so, we must first verify that a larger CFL number
does not change the statistical results. We should also verify that the chosen larger time
step, if used during the whole time window, would give different results.

We report in Table 5 the expected value and the associated statistical error for a
confidence of 99%. We can see that in the case of time step h = 0.02 used in the averaging
window [Tbt, T ], we obtain consistent statistical results independent of the tested values of
hbt. On the other hand, for a different h we obtain a different statistical result. Therefore,
a larger time step can safely be employed to reduce the time to solution of the burn-in
phase.

E [〈Fd〉T ] Cφ
√

SE T Tbt h hbt
3.237284 0.009183 900 140 0.02 0.02
3.232869 0.008286 900 140 0.02 0.05
3.312648 0.008199 900 140 0.05 0.05

Table 5: Expected value and associated statistical error with 99% confidence for different
time steps during both burn-in and effective phases.

5.3 MLMC for Short Time Windows
It was seen from earlier numerical experiments that for chaotic systems, some correlation
could still be expected for time windows that were shorter than the decorrelation time.
Since pathwise correlation can be expected within such short time windows, it is possible
that the simulation can benefit from MLMC approaches. The challenge is then to reduce
or eliminate the burn-in time such that the random process is very close to its stationary
distribution from the initial time. In this way, the bias error can be eliminated and all
samples within the relatively short time window can be used for statistical estimation.

To initialize the problem very close to its stationary distribution, one can run a few
simulations on coarser meshes until convergence. An oracle can then be trained on infor-
mation from this converged solution. This oracle can then be used to propose candidates
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for initializing the finer simulations to a state that is close to the stationary distribu-
tion. This can be achieved using any of a number of different approaches - reduced basis
methods, neural networks, etc. We aim to explore such a method for the case of higher
Reynolds’ numbers since we can still expect some correlation on the temporal and spatial
scales introduced by inlet forcing.

A relatively simple set of studies is planned to first assess the correlations introduced
in lift and drag time signals through random inlet forcing with certain spatial and tem-
poral correlations. As long as the scales of the forcing are larger than those of turbulent
fluctuations in the fluid, we expect to retain some correlation between finer and coarser
meshes since we still expect both simulations to exhibit similar macroscopic structures.

6 Software release
In addition to this report, deliverable 5.4 comprises a new version of the library for
hierarchical Monte Carlo methods developed for the ExaQUte project. This version 2.0.0
of the XMC library has been publicly released online [2]. Below is a summary of the
major changes with respect to the previous release, i.e. version 1.0.0.

Added

• Updating moment estimators in small batches.
• Asynchronous algorithms for single- and multi-level Monte Carlo methods.
• Estimation of “combined” expectation (time and events) for random processes.
• Support for multi-valued (e.g. vectors) random variables.
• Estimation of moments of order 3 and 4, with a posteriori estimation of sta-

tistical error.
• Examples both built-in and using Kratos as external solver.
• Test cases.
• New features of the Kratos interface:

– different meshing strategies (support distributed environments);
– write to file in distributed environments.

Changed

• Documentation re-created anew, updated and extended; available in HTML for-
mat.

• The choice of framework for distributed computing is contained in a single
module definition.

Fixed

• Excessive memory usage in case of high number of estimators.
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7 Conclusions
In this report, we studied the use of MLMC methods for forward UQ in time dependent
problems. It was found that the hypotheses Eqs. (6) were strongly affected by whether
or not the underlying problem was chaotic in nature. Studies on two simple oscillators
and two fluid problems of practical interest to the ExaQUte project were conducted to
illustrate this.

It was shown that the MLMC method could be successfully used for the Van der
Pol oscillator, which is a non-chaotic oscillator with a limit cycle. Pathwise convergence
was observed and as a result, bias and variance convergence could be obtained at the
theoretically predicted rates. A successful CMLMC simulation was also demonstrated
that calibrates the MLMC estimator to obtain the optimal complexity behavior.

For the Lorenz oscillator, theoretical considerations predicted that bias convergence
could be obtained for long time windows but that variance convergence would be difficult
to obtain given that pathwise convergence cannot be maintained for chaotic systems with
large Lyapunov exponents. Both predictions were numerically confirmed with the bias
decaying at a rate predicted by the theoretical considerations.

For the fluid flow problems, we presented results from [1], wherein mesh convergence
was observed for a Reynolds’ number of 100 and steady solutions with an appropriately
chosen time step size and adaptive meshing strategy. We aim to study the case with a
Reynolds’ number of 150 since we expect to see vortex shedding at this frequency. It is
expected that given the limit cycle behavior of the system, we will be able to benefit from
the use of MLMC methods to accelerate the simulations.

For the higher Reynolds’ number case, pathwise convergence could not be obtained
given the chaotic nature of the fluid flow. However, the resultant correlations were found
to be large enough to benefit from the use of MFMC and control variate methods. Future
studies are planned to further assess these algorithms and their potential benefits. In ad-
dition, strategies were proposed to sample an initial state close to the limit distribution so
as to dramatically reduce the burn-in time that is discarded for computing time averages.
Lastly, it is planned to explore the use of shorter time windows of analysis in the problem.
Theoretical considerations predict that the use of short time windows (in comparison to
the correlation time scales) can lead to variance decay as well.
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A Mesh Parameters

Table 6: List of meshes used in adaptive refinement study for the flow over a rectangle at
Re = 100. Error scaled in each approach to accomplish comparable number of nodes and
minimal mesh size.

Interpolation error Minimal mesh
size

Number of nodes

225 0,001206 2655
112,5 0,00093 3947
56,25 0,000619 6516
28,125 0,000434 11624
14,0625 0,000249 21838
7,03125 0,000183 42042
3,515625 0,000128 82410
1,757812 0,000101 162998
0,878906 0,000069 322375
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B Variance of MFMC estimator
Let us recall the definition of the MFMC estimator introduced in (47),

µm(X) := 1
mM+1

mM+1∑
i=1

X(i)
M+1 −

M∑
j=1

αjX
(i)
j

+
M∑
j=1

αj
mj

mj∑
i=1

X
(i)
j , (65)

with m ∈ NM+1 samples such that ∀i ∈ J1,MK, mi > mM+1 > 0. We also recall the
following notations:

r :=
(

mj

mM+1

)
j∈J1,MK

(66)

R := diag r (67)

C :=
(
Covar (Xi, Xj)
Var [XM+1]

)
i,j∈J1,MK

(68)

c :=
(
Covar (XM+1, Xj)

Var [XM+1]

)
j∈J1,MK

(69)

C̃ := (Ci,j(min{ri, rj} − 1))i,j∈J1,MK , (70)
and the identity operator

I := (δi,j)i,j∈J1,MK. (71)
Let us rearrange the right side of (65) into two independent groups:

µm(X) =
mM+1∑
i=1

X(i)
M+1

mM+1
+

M∑
j=1

(
1
mj

− 1
mM+1

)
αjX

(i)
j


︸ ︷︷ ︸

(72a)

+
M∑
j=1

αj
mj

mj∑
i=1+mM+1

X
(i)
j︸ ︷︷ ︸

(72b)

. (72)

From the independence of samples, we have that
Var [µm(X)] = Var [(72a)] + Var [(72b)] . (73)

We consider (72a) first.

Var [(72a)] = Var [XM+1]
mM+1

+ Var
mM+1∑

i=1

 M∑
j=1

(
1
mj

− 1
mM+1

)
αjX

(i)
j


− 2mM+1 Covar

XM+1

mM+1
,
M∑
j=1

(
1

mM+1
− 1
mj

)
αjXj

 . (74)

Let us develop separately the last two terms of the right side of (74):

Var
mM+1∑

i=1

 M∑
j=1

(
1
mj

− 1
mM+1

)
αjX

(i)
j

 (75)

= mM+1
∑

j,k∈J1,MK

αjαk

(
1
mj

− 1
mM+1

)(
1
mk

− 1
mM+1

)
Covar (Xj, Xk) (76)

= Var [XM+1]
mM+1

∑
j,k∈J1,MK

αjαk(1− r−1
j )(1− r−1

k )Cj,k (77)

= Var [XM+1]
mM+1

α>(I −R−1)C(I −R−1)α, (78)
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and

− 2mM+1 Covar
XM+1

mM+1
,
M∑
j=1

(
1

mM+1
− 1
mj

)
αjXj

 (79)

= −2
M∑
j=1

(
1

mM+1
− 1
mj

)
αj Covar (XM+1, Xj) (80)

= −2Var [XM+1]
mM+1

M∑
j=1

αj(1− r−1
j )cj (81)

= −2Var [XM+1]
mM+1

α>(I −R−1)c. (82)

Consequently,

Var [(72a)] = Var [XM+1]
mM+1

(
1− 2α>(I −R−1)c

+ α>(I −R−1)C(I −R−1)α
)
. (83)

Secondly, we consider (72b).

Var [(72b)] = Covar
 M∑
j=1

αj
mj

mj∑
i=1+mM+1

X
(i)
j ,

M∑
k=1

αk
mk

mk∑
i=1+mM+1

X
(i)
k

 (84)

=
∑

j,k∈J1,MK

αjαk
mjmk

(min{mj,mk} −mM+1)Covar (Xj, Xk) (85)

= Var [XM+1]
mM+1

∑
j,k∈J1,MK

αjαk
rjrk

(min{rj, rk} − 1)Cj,k (86)

= Var [XM+1]
mM+1

α>R−1C̃R−1α (87)

We put together (83) and (87) and get

Var [µm(X)] = Var [XM+1]
mM+1

(
1− 2α>(I −R−1)c

+ α>
(
(I −R−1)C(I −R−1) +R−1C̃R−1

)
︸ ︷︷ ︸

A

α

)
.

(88)

=: ν(α) (89)

Furthermore,

arg min
{
ν(α) : α ∈ RM

}
= A−1(I −R−1)c =: α? (90)

and

ν(α?) = Var [XM+1]
mM+1

(
1− c>(I −R−1)A−1(I −R−1)c

)
. (91)
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