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Abstract

This paper provides a classification of all monotonic bipartite simple games. The prob-
lem we deal with is very versatile since simple games are inequivalent monotonic Boolean
functions, functions that are used in many fields such as game theory, neural networks, artifi-
cial intelligence, reliability or multiple-criteria decision-making. The obtained classification
can be implemented in an algorithm able to enumerate bipartite simple games. These numbers
provide some light on enumerations of several subclasses of bipartite simple games, for which
we find formulas.

Complete simple games, a subclass of all simple games for which the desirability relation
is a complete preordering, were already classified by means of two parameters: a vector
and a matrix fulfilling some conditions. Complete simple games are inequivalent monotonic
regular Boolean functions. In this paper, we deduce a procedure for bipartite non-complete
games, which allows enumerating the number of bipartite simple games. Several formulas are
obtained, in particular polynomial expressions for the number of bicameral meet games and
the number of bicameral join games, two types of voting systems widely used in practice.

Key words: Dedekind numbers and simple games; Inequivalent monotonic Boolean functions;
Classification of bipartite simple games and bipartite Boolean functions; Enumeration of bi-
partite simple games and bipartite Boolean functions; Enumeration of the bicameral meet and
bicameral join voting systems.
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1 Introduction

In this paper we consider monotonic simple games with two types of equivalent players, bipartite
simple games, by the well-known desirability relation [26, 33]. If this relation is a complete pre-
ordering then the simple game is called complete or linear [5, 7, 43]. A classification theorem for
complete simple games was obtained in [7], which made it possible to enumerate some subclasses
of these simple games and to study other game theory problems. For instance, the characterization
of weighted games by means of the properties of trade robustness and invariant trade robust-
ness [19, 15] or the study of weighted games with a unique representation in integers, [20, 18, 28].
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matics; e-mails: josep.freixas@upc.edu, daniel.samaniego.vidal@upc.edu; postal address: EPSEM, Avda. Bases de
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Another consequence was the enumeration of bipartite complete games, in [21]. Let BCG(n) be
the number of bipartite complete games with n players. The following closed formula (sequence
A163250 in OEIS, [37]) was deduced:

BCG(n) = F (n+ 6)− (n2 + 4n+ 8) ∈ Θ

((
1 +
√

5

2

)n)
, (1)

where F (n) are the Fibonacci numbers which constitute a well-known sequence of integer num-
bers defined by the following recurrence relation: F (n) = F (n− 1) +F (n− 2) for all n > 1 and
F (0) = 0, F (1) = 1. See also [30] for an alternative shorter proof based on generating functions.
Close games to bipartite complete games are also enumerated in [16].

The purpose of the paper is to classify all bipartite simple games, up to isomorphism. As
complete games were already classified, we are concerned here with bipartite non-complete simple
games. For these games, we propose a classification that allows to generate and to enumerate all of
them for a moderate number of players. This enumeration together with the one in Equation (1) for
bipartite complete games allows to generate and enumerate bipartite simple games for a moderate
number of players. Criteria to algebraically characterize weighted games within bipartite simple
games can be found in [24, 17, 15].

Many real-world examples are bipartite simple games. Bipartite simple games with a House
and a Senate are common in almost all the countries in the world. A proposal passes if and only if
it passes in both chambers (the meet of the games in the two chambers) or in either chamber (the
join of the games in the two chambers). The first situation is known as the bicameral meet and the
second as the bicameral join, see [43, 12] for more details on these games. The bicameral meet
and bicameral join games are bipartite simple games, which are classified and enumerated in this
paper with respect to the number of players.

It is worth noting that the problem we deal with in this paper is of interest in many different
fields. In mathematics, the Dedekind numbers (sequence A000372 in the OEIS) form a rapidly
growing sequence of integers. This sequence counts the number of monotonic Boolean functions
of n variables. If two monotonic Boolean functions just differ in the labels of some variables, they
are said to be equivalent. A variant of the Dedekind numbers is the sequence of the number of
inequivalent monotonic Boolean functions (sequence A003182 in the OEIS). Note that monotonic
simple games up to isomorphism are the same as inequivalent monotonic Boolean functions, and,
complete simple games are the same as regular Boolean functions. Bipartite simple games are the
same as Boolean functions with two types of equivalent variables. Thus, the results in this paper
are of interest in various scientific disciplines such as Game Theory [9, 10, 42, 6, 3, 4, 30, 29],
Boolean Algebra [22, 23], Reliability [2, 40, 31, 32], Neural Networks [41, 38], Threshold Logic
and Coherent Structures [11, 35, 36, 39], Cryptography and Secret Sharing [34, 25, 24], Multiple-
Criteria Decision Analysis (MCDA) [8] and even in Risk Analysis [1, 27].

The rest of the paper is organized as follows. Section 2 is devoted to the necessary preliminar-
ies to follow up the paper. Section 3 contains parametrizations for bipartite complete games and
for bipartite non-complete games, which allow to generate all of these games, up to isomorphism.
Enumerations of bipartite simple games for small numbers of players is provided in Section 4,
which follows from the parameterizations in Section 3. A formula for the number of bipartite
simple games with a unique minimal winning model representative is obtained in Section 5 and
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another formula for the number of bipartite simple games with a maximal number of minimal
winning model representatives is obtained in Section 6. Some widely-used voting systems, the
bicameral meet and the bicameral join, are presented in Section 7 and we show that their enumer-
ations are directly connected to the enumerations found in Section 5. The Conclusion ends the
paper in Section 8.

2 Preliminaries

Let N = {1, 2, . . . , n} be a set of players. Any subset S ⊆ N is a coalition and s denotes its
cardinality |S|. Let W be a set of coalitions such that: (i) ∅ /∈ W , (ii) if S ⊂ T and S ∈ W then
T ∈W , and (iii)N ∈W . The pair (N,W ) defines a (monotonic) simple game. The coalitions in
N that are in W are called winning coalitions and the coalitions in N that are not in W are called
losing coalitions. The intuition here is that a coalition S is a winning coalition if and only if the
bill or amendment passes when the players in S are the ones who voted for it. A minimal winning
coalition is a winning coalition all of whose proper subsets are losing. Because of monotonicity,
any simple game is determined by its set of minimal winning coalitions, here denoted by Wm.

Two simple games (N,W ) and (N ′,W ′) are isomorphic if there exists a one-to-one corre-
spondence f : N → N ′ such that S ∈ W if and only if f(S) ∈ W ′; f is called and isomorphism
of simple games.

Let (N,W ) be a simple game. Let Wa = {S ∈ W : a ∈ S}, τab : N → N denotes
the transposition of players a, b ∈ N . The desirability relation is the binary relation % on N :
a % b if and only if τab(Wb) ⊆ Wa, and say that a is at least as desirable as b. The
relation % is a preorder. The equi-desirability relation, is the equivalence relation ≈ on N : a ≈
b if and only if a % b and b % a. The preorder % induces an ordering > in the quotient set
N/ ≈ of equi-desirable classes, N1, N2, . . . , Nt. Hence, Np > Nq if and only if a % b for any
a ∈ Np and any b ∈ Nq.

A game (N,W ) is complete if the desirability relation is a total preordering. If the number,
t, of equi-desirable classes of a simple game is t = 1 then the game is complete and it is called a
symmetric game, or more specifically a k-out-of-n game with k = 1, . . . , n, which indicates that a
minimum of k votes over n are required to defeat the status quo. The number of non-isomorphic
symmetric games of n players is n since k can be any integer between 1 and n. In particular, the
n-out-of-n game is called the unanimity game.

A bipartite simple game is a simple game with t = 2 equi-desirable classes, N1 and N2. If the
bipartite simple game is complete, we assume, w.l.o.g., that N1 > N2. A bipartite simple game is
not necessarily complete. With as few as n = 4 players one may find bipartite simple games not
being complete.

Example 2.1 Let N = {1, 2, 3, 4} and Wm = {{1, 2}, {3, 4}}. Then, (N,W ) is a bipartite
game with N1 = {1, 2} and N2 = {3, 4} which is not complete since, for example, 1 %/ 3 and
3 %/ 1.
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3 Two parametrizations for bipartite simple games

The purpose of this section is to present bipartite simple games in a more compact way that allows
their enumeration. We distinguish between complete and non-complete games.

Assume (N,W ) is a bipartite game with classesN1 andN2. We can associate to each coalition
S its pair s = (|S ∩ N1|, |S ∩ N2|). Let R and S be two coalitions, notice that if r = s, then
R is winning if and only if S is winning, and, R is minimal winning if and only if S is minimal
winning. In 2N we define the equivalence relation R ∼ S if and only if r = s. Thus, the elements
in the quotient set 2N = 2N/ ∼ are partitioned into winning and losing pairs, denoted here W
and L respectively. The minimal winning pairs s ∈ Wm verify: s ∈ W and r ∈ L if r ≤ s and
r 6= s. Thus, a bipartite game admits the more compact representation given by n and the list of
minimal winning pairs s1, s2, . . . , sr. If s and s′ are distinct minimal winning pairs, they cannot
have the same first coordinate or the same second coordinate because of monotonicity, thus we
can take s1, s2, . . . , sr indexed so that the first coordinates of the pairs form a strictly decreasing
sequence (and the second coordinates form a strictly increasing sequence).

Example 3.1 (Example 2.1 revisited) As shown, this bipartite game is not complete. Clearly, 1 ≈
2 and 3 ≈ 4. Thus, we can arbitrarily choose N1 = {1, 2} and N2 = {3, 4} so that (n1, n2) =
(2, 2). The set of winning pairs is W = {(2, 0), (0, 2), (2, 1), (1, 2), (2, 2)}, the set of losing pairs
isL = {(0, 0), (0, 1), (1, 0), (1, 1)} and the set of minimal winning pairs isWm = {(2, 0), (0, 2)},
thus r = 2. The pair (2, 0) represents the coalition {1, 2} and the pair (0, 2) represents the coali-
tion {3, 4}. Note that the losing pair (1, 1) represents the coalitions {1, 3}, {1, 4}, {2, 3}, {2, 4}
and the winning pair (2, 1) represents the coalitions {1, 2, 3}, {1, 2, 4}.

Let M(N,W ) be the 2 × r matrix whose i-th row is the pair si, we claim that n together
with the matrix M of minimal winning coalition pairs defines the simple game. Of course, the
conditions thatM must verify differ depending on whether the game is complete or not. These
respective conditions are stated in the next two subsections.

3.1 Parameterization for bipartite non-complete games

Players a and b are incomparable if and only if there are minimal winning coalitions S and S′ such
that:

a. S contains a but not b.

b. If a is replaced by b in S, the coalition becomes losing.

c. S′ contains b but not a.

d. If b is replaced by a in S, the coalition becomes losing.

We now recall a standard notation. Let x ∈ (N ∪ {0})2 and y ∈ (N ∪ {0})2, we write that
x ≥ y if either x = y or xi ≥ yi for i = 1, 2 and write x > y if x ≥ y and x 6= y.

From the above comments about players incomparability and monotonicity, it follows that
there is a row (s1, s2) inM with s1 > 0 and s2 < n2 such that (s1 − 1, s2 + 1) is not greater or
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equal than a row ofM (i.e., the pair (s1 − 1, s2 + 1) represents losing coalitions) and (s1, s2) in
M with s1 < n1 and s2 > 0 such that (s1 + 1, s2 − 1) is not greater or equal than a row ofM
(i.e., the pair (s1 + 1, s2 − 1) represents losing coalitions).

Thus, every bipartite non-complete game can be represented by n and M with these two
properties, and choose n1 ≥ n2 to avoid duplicities in the presentation of the game. We distinguish
the case n1 6= n2 to the case n1 = n2.

If n1 > n2, and the vector n = (n1, n2) together with M define a bipartite non-complete
game, then n′ = (n2, n1) together withM′, whereM′ is obtained fromM by swaping the two
columns and inverting their orderings, is isomorphic to the bipartite non-complete game given by
n andM. Hence, if n1 6= n2 it is sufficient to consider only n1 > n2 for generating all feasible
(non-isomorphic) bipartite non-complete games.

If n1 = n2 the previous process leads to the same bipartite non-complete game since n = n′

andM =M′. Nevertheless, another type of duplicity may arise, to avoid it consider the following
relation for vectors. Let x ∈ (N ∪ {0})r and y ∈ (N ∪ {0})r, we write that x L y if either x = y
or there is some i (1 ≤ i ≤ r) such that xi > yi and xj = yj for all j with j < i. Then the
duplicities for n1 = n2 are avoided by demanding to the matrixM the condition:

(s1,1, s2,1, . . . , sr,1) L (sr,2, sr−1,2, . . . , s1,2).

The next example illustrates these two situations.

Example 3.2 a. The bipartite non-complete game given by n = (4, 3) andM =

(
3 0
1 2

)
is

isomorphic to the bipartite non-complete game given by n′ = (3, 4) andM′ =
(

2 1
0 3

)
.

By convention, we will only consider the former game since n1 > n2. This non-complete
game of 7 players is defined by 16 minimal winning coalitions: (3, 0) represents 4 minimal
winning coalitions and (1, 2) represents the other 12.

b. The bipartite non-complete game given by n = (4, 4) andM =

(
3 0
1 2

)
is isomorphic

to the bipartite non-complete game n = (4, 4) andM′ =

(
2 1
0 3

)
. By convention, we

will only consider the former game since (3, 1)L (2, 0).

From the explanations in this section and the similarity with the classification of complete
games provided in [7], we state an equivalent, but more compact, way to present bipartite non-
complete games.

Definition 3.3 The pair (n ,M) associated with a bipartite non-complete simple game (N,W )
satisfy the following properties:

(1) n1 ≥ n2 > 0,

(2) 0 < si < n for i = 1, 2, . . . , r,
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(3) si,1 > si+1,1 and si,2 < si+1,2 for i = 1, 2, . . . , r − 1,

(4) it exists a row sp = (sp,1, sp,2) ofM such that 0 < sp + (−1, 1) < n and sp + (−1, 1) is
not greater or equal than a row ofM,

(5) it exists a row sp = (sp,1, sp,2) ofM such that 0 < sp + (1,−1) < n and sp + (1,−1) is
not greater or equal than a row ofM,

(6) (s1,1, s2,1, . . . , sr,1) L (sr,2, sr−1,2, . . . , s1,2) if n1 = n2.

Moreover, each bipartite non-complete game (N,W ) can be obtained from a pair (n,M) satisfy-
ing the conditions (1)-(6).

Observe that neither 0 nor n can be a row ofM because 0 corresponds to the empty coalition,
which is always losing, and, n corresponds to the grand coalition N , which cannot be minimal
in a bipartite game. Condition (4) guarantees that N2 >/ N1 and condition (5) that N1 >/ N2.
From the conditions of Definition 3.3 we can exhaustively list all bipartite non-complete games
for moderate values of n. The next example shows all of these games for n < 7.

Example 3.4 a. For n = 1 there are no bipartite simple games and for n = 2 and n = 3 all
bipartite simple games are complete.

b. For n = 4 there are two bipartite non-complete games, which are obtained from the vector
n = (2, 2) and the matrices:

(1 1);

(
2 0
0 2

)
.

Note that the second game is a compact presentation of the game introduced in Example
2.1.

c. For n = 5 there are six bipartite non-complete games, which are obtained from the vector
n = (3, 2) and the matrices:

(2 1); (1 1);

(
3 0
1 2

)
;

(
3 0
1 1

)
;

(
3 0
0 2

)
;

(
2 0
0 2

)
.

d. For n = 6 there are 27 bipartite non-complete games, which are obtained from the vectors
(3, 3) and (4, 2). The matrices for (3, 3) are:

(2 2); (2 1); (1 1);

(
3 1
1 3

)
;

(
3 1
1 2

)
;

(
3 0
1 3

)
;

(
3 0
1 2

)
;

(
3 0
1 1

)
;

(
3 0
0 3

)
;

(
3 0
0 2

)
;

(
2 1
1 2

)
;

(
2 0
0 2

)
;

 3 0
2 2
0 3

 ;

 3 0
2 1
0 3

 ;

 3 0
1 1
0 3

 .

The matrices for (4, 2) are:

(3 1); (2 1); (1 1);

(
4 0
2 2

)
;

(
4 0
2 1

)
;

(
4 0
1 2

)
;

(
4 0
1 1

)
;(

4 0
0 2

)
;

(
3 0
1 2

)
;

(
3 0
1 1

)
;

(
3 0
0 2

)
;

(
2 0
0 2

)
.
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3.2 A parameterization for bipartite complete games

A parameterization for complete simple games was obtained in [7] by using models of shift-
minimal winning coalitions (a subclass of minimal winning coalitions). Here we adapt it for the
bipartite case and for pairs of minimal winning coalitions. As the game is complete we can assume
w.l.o.g. thatN1 > N2 so that if a ∈ N1, b ∈ N2 and S is a minimal winning coalition containing b
but not a, then (S \ {b})∪{a} is winning (see condition (3) in Definition 3.5). Moreover, it exists
a minimal winning coalition T that contains a but not b such that (T \ {a}) ∪ {b} is not winning
(see condition (4) in Definition 3.5).

Definition 3.5 The pair (n ,M) associated with a bipartite complete simple game (N,W ) satis-
fies the following properties:

(1) 0 < si < n for i = 1, 2, . . . , r,

(2) either s1,1 = n1 or s1,2 = 0,

(3) si+1,1 = si,1 − 1 and si,2 < si+1,2 for i = 1, 2, . . . , r − 1,

(4) it exists a row sp = (sp,1, sp,2) ofM such that 0 < sp + (−1, 1) < n and sp + (−1, 1) is
not greater or equal than a row ofM.

Moreover, each bipartite complete game (N,W ) can be obtained from a pair (n,M) satisfying
the conditions (1)-(4).

Condition (1) expresses that the pairs of minimal winning coalitions are well-defined for the
bipartite game. Condition (2) guarantees that N1 > N2 if r = 1, and, conditions (2) and (3)
guarantee that N1 > N2 if r > 1, because for each row sp ofM such that 0 < sp + (1,−1) < n,
it holds that sp + (1,−1) is equal or greater than a row ofM. Finally, condition (4) witnesses the
existence of a minimal winning coalition T such that (T \ {a})∪ {b} is not winning with a ∈ N1

and b ∈ N2. Hence, N2 >/ N1 and therefore N1 > N2.

Observe that if sr,1 > 0 and si+1,2 = si,2 + 1 for all i = 1, 2, . . . , r − 1, then sr,2 < n2,
otherwise (4) would fail.

4 Enumeration of bipartite simple games for a small number of play-
ers

Some enumerations can be deduced from the classifications given in Definitions 3.3 and 3.5. For
this purpose we respectively denote by BCG(n), BNCG(n) and BSG(n) the number of bipartite
complete games, bipartite non-complete games and bipartite simple games of n players. Let r
be the number of minimal winning pairs of a bipartite simple game, we respectively denote by
BCG(n, r), BNCG(n, r) and BSG(n, r) the number of bipartite complete games, bipartite non-
complete games and bipartite simple games of n players and r minimal winning pairs.

The aim of the next result is to identify the infeasible combinations for n and r.
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Lemma 4.1 BNCG(n) = 0 if n ≤ 3 and BNCG(n, r) = 0 if n > 3 and r >
⌊n

2

⌋
.

Proof: If n ≤ 3, n has at least a component equal to 1 so that either (4) or (5) fail in Definition 3.3.
From Definition 3.3 (conditions (1) and (3)) we have n1 ≥ n2 and si,1 > si+1,1 and si,2 < si+1,2

for i = 1, . . . , r−1. These conditions together with (2) imply that the maximal number of minimal
winning pairs r is r ≤ min{n1 + 1, n2 + 1}, but the conditions (4) and (5) in Definition 3.3 imply
that none of the two columns in the matrix of minimal winning pairs is formed by consecutive
numbers. Thus, the maximal number of rows is r = min{n1, n2}. As n2 = n − n1 and n1 =
1, . . . , n− 1, it holds:

max
n1

min{n1, n− n1} =
⌊n

2

⌋
and, therefore, bn2 c is an upper bound for r if the bipartite game is not complete and n ≥ 4. �

In Section 6 we will see that BNCG(n, r) 6= 0 if n > 3 and r ≤
⌊n

2

⌋
. The following result

is immediately deduced from Lemma 4.1.

Corollary 4.2

BNCG(n) =


0 if n ≤ 3

bn/2c∑
r=1

BNCG(n, r) if n > 3

From the conditions of Definition 3.3 we have obtained, by the implementation of a routine,
the number of bipartite non-complete games for some small combinations of n and r, see Table 1.

n ↓ / r→ 1 2 3 4 5 6
4 1 1
5 2 4
6 6 18 3
7 10 45 16
8 19 107 72 6
9 28 206 210 39

10 44 381 543 190 10
11 60 634 1190 633 76
12 85 1025 2425 1817 406 15
13 110 1556 4528 4480 1522 130

Table 1: The positive numbers of bipartite non-complete games BNCG(n, r), up to isomorphisms,
for n < 14.

Table 2 shows BNCG(n), BCG(n) and BSG(n) for small values of n. The numbers BNCG(n)
are deduced from Corollary 4.2 and Table 1, which are both consequences of Definition 3.3. The
numbers BCG(n) are derived from Equation (1) and the numbers BSG(n) are simply the sum of
BCG(n) and BNCG(n).
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n BCG(n) BNCG(n) BSG(n)

1 0 0 0
2 1 0 1
3 5 0 5
4 15 2 17
5 36 6 42
6 76 27 103
7 148 71 219
8 273 204 477
9 485 483 968

10 839 1168 2007
11 1424 2593 4017
12 2384 5773 8157
13 3952 12326 16278

Table 2: The numbers of bipartite non-complete BNCG(n), bipartite complete BCG(n), and bi-
partite simple games BSG(n), up to isomorphisms, for n < 14.

5 A formula for the number of bipartite simple games with a unique
minimal winning pair

The aim of this section is to determine the number of bipartite simple games with a unique pair
of minimal winning coalitions, i.e., to determine BSG(n, r = 1) for all n. We start by finding
BNCG(n, r = 1) for all n.

Lemma 5.1 Let r = 1 and n = n1 + n2. The conditions in Definition 3.3 imply that:

a. there are (n1−1)(n2−1) bipartite non-complete games with r = 1 for each vector decom-
position (n1, n2) such that n1 > n2,

b. there are n(n− 2)/8 bipartite non-complete games with r = 1 for each vector decomposi-
tion (n1, n2) such that n1 = n2.

Proof:

a. Assume n1 > n2. For the row (s1, s2) ofM we can choose any s1 such that 0 < s1 < n1
and any s2 such that 0 < s2 < n2. Any of these choices verify the conditions in Defini-
tion 3.3. Thus, there are (n1 − 1)(n2 − 1) bipartite non-complete games.

b. Assume n1 = n2 = n/2. For the row (s1, s2) of M we can choose any s1 such that
0 < s1 < n/2 and any s2 such that 0 < s2 ≤ s1. Any of these choices verify the conditions
in Definition 3.3. Thus, there are n(n− 2)/8 bipartite non-complete games.

�
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Theorem 5.2 The number of bipartite non-complete games with one pair of minimal winning
coalitions is:

BNCG(n, r = 1) =


(n− 2)(n2 − 4n+ 6)

12
, if n is even

(n− 1)(n− 2)(n− 3)

12
, if n is odd

Proof: Assume n is even. We apply the result obtained in Lemma 5.1 to each vector (n1, n2) with
integer components satisfying n1 ≥ n2, n2 > 0 and n1 + n2 = n. The vectors n we need to
consider are:

(a+ 1, a+ 1), (a+ 2, a), . . . , (a+ (n− a− 3), 3), (a+ (n− a− 2), 2)

where a = n/2− 1. According to Lemma 5.1 the respective number of games is: (a+ k)(a− k)
for k = 1, . . . , n/2− 2. Thus,

BNCG(n, r = 1) =
n(n− 2)

8
+

n
2
−2∑

k=1

(a+ k)(a− k),

where
n
2
−2∑

k=1

(a+ k)(a− k) =

n
2
−2∑

k=1

a2 −

n
2
−2∑

k=1

k2 =
(n

2
− 2
)
a2 −

n
2
−2∑

k=1

k2. (2)

We now use the identity
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
, (3)

and replace a by n/2− 1 in equation (2). Then, for n even we obtain:

BNCG(n, r = 1) =
(n− 4)(n− 2)2

8
−(n− 2)(n− 3)(n− 4)

24
+
n(n− 2)

8
=

(n− 2)(n2 − 4n+ 6)

12

Assume n is odd. The procedure followed is, mutatis mutandis, the same. The vectors n we
need to consider are:

(a+ 2, a+ 1), (a+ 3, a), . . . , (a+ (n− a− 3), 3), (a+ (n− a− 2), 2)

where a = (n − 3)/2. According to Lemma 5.1 the respective number of games is: (a + 1 +

k)(a − k) for k = 0, 1, . . . , (n − 5)/2. By using again the identity (3) and
n∑

k=1

k = n(n+1)
2 we

deduce the final expression for n odd.

BNCG(n, r = 1) =

n−5
2∑

k=0

(a+1+k)(a−k) =

n−5
2∑

k=0

a2 +a−

n−5
2∑

k=1

k+k2 =
(n− 1)(n− 2)(n− 3)

12
.

�
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Once determined a closed formula for BNCG(n, r = 1) we proceed to compute BCG(n, r = 1).

We recall here that a player a ∈ N is null in a simple game (N,W ) if a /∈ S for every
S ∈Wm. The null players of a game (if any) form an equi-desirable class, which is the minimum
for >. A player a ∈ N has veto if a ∈ S for every S ∈ W . The veto players of a game (if any)
form an equi-desirable class, which is the maximum for >.

Proposition 5.3 The number of bipartite complete games with one pair of minimal winning coali-
tions is:

BCG(n, r = 1) = (n− 1)2.

Proof: As the game is bipartite and complete it follows t = 2 and n ≥ 2 and we assumed, w.l.o.g.,
that N1 > N2 with respective cardinalities n1 and n2 verifying: n1 > 0, n2 > 0 and n1 +n2 = n.

As r = 1, let (s1, s2) be the unique pair of minimal winning coalitions. As stated in condition
(2) of Definition 3.5 it is either s1 = n1 or s2 = 0, otherwise (s1 + 1, s2 − 1) is not greater or
equal than (s1, s2) and therefore N1 > N2 would be false.

For an arbitrary number of players n ≥ 2, let us consider all the vector decompositions
(n1, n2) verifying n1 > 0, n2 > 0 and n1 + n2 = n. For each of these n − 1 decomposi-
tions there are n− 1 pairs (s1, s2) verifying either s1 = n1 or s2 = 0 because (n1, n2) and (0, 0)
are not possible for condition (1) in Definition 3.5. Thus, BCG(n, r = 1) = (n− 1)2. �

In words, the (n− 1)2 bipartite complete games with a unique pair of minimal winning coalitions
have either veto players or nulls.

From Theorem 5.2 and Proposition 5.3 we obtain the formula for the number of bipartite
simple games with one pair of minimal winning coalitions.

Corollary 5.4 The number of bipartite simple games with one pair of minimal winning coalitions
is:

BSG(n, r = 1) =


(n− 2)(n2 − 4n+ 6)

12
+ (n− 1)2, if n is even

(n− 1)(n− 2)(n− 3)

12
+ (n− 1)2, if n is odd

The sequence BNCG(n, r = 1) obtained in Theorem 5.2 appears (sequence A005993 in OEIS)
for an alternative enumeration and its generating function is: 1+x2

(1−x)2(1−x2)2
.

6 A formula for the number of bipartite simple games with a maxi-
mal number of minimal winning pairs

The aim of this section is to determine the number of bipartite simple games, as a function of the
number of players n, with a maximal number of minimal winning pairs. The next result is the
analogous to Lemma 4.1 for bipartite complete games.

11



Lemma 6.1 For n > 1, BCG(n, r) = 0 if r >
⌈n

2

⌉
.

Proof: As the game is complete and bipartite we can assume N1 > N2, where |Ni| = ni > 0
for i = 1, 2 and n1 + n2 = n. From conditions (1), (2) and (3) in Definition 3.5 it follows that
r ≤ min{n1, n2}+ 1. As n2 = n− n1 and n1 = 1, . . . , n− 1, it holds:

max
n1

min{n1, n− n1}+ 1 =
⌊n

2

⌋
+ 1

and, therefore, dn2 e =
⌊
n
2

⌋
+ 1 is an upper bound for r, if the bipartite game is complete, n is odd

and n 6= 1. If n is even, the upper bound for r is n
2 + 1, but the only matrix that verifies conditions

(1), (2) and (3) fails to verify condition (4). Thus, there are not complete games for n players and
r >

⌈n
2

⌉
. �

The next result provides BCG(n, r) if r =
⌈n

2

⌉
.

Proposition 6.2 The number of bipartite complete games with a maximal number of minimal
winning pairs

⌈n
2

⌉
, is:

BCG(n, r =
⌈n

2

⌉
) =


1

8
(n2 + 14n− 24), if n is even

1

2
(n− 1), if n is odd

Proof: Assume n even. Only the vectors (n/2 + 1, n/2− 1), (n/2, n/2), and (n/2− 1, n/2 + 1)
allow for matrices with n/2 rows. For the matrices of each of these vectors n, we have:

a. n = (n/2 + 1, n/2− 1). The second column is then formed by all the consecutive numbers
from 0 to n/2− 1. Thus, condition (4) in Definition 3.5 is not verified.

b. n = (n/2, n/2). As the first column is formed by consecutive numbers there are only two
choices for it. Only one number from 0 to n/2 does not appear in the second column. Thus,
we have 2(n/2+1) = n+2 possible matrices. If the missing number in the second column is
any number between 1 and n/2−1 then the conditions (1)-(4) in Definition 3.5 are verified.
The remaining 4 matrices have the second column formed by consecutive numbers, from
these only the matrix verifying s1,1 = n/2 and s1,2 = 0 satisfies the conditions (1)-(4) in
Definition 3.5. Hence for the vector n = (n/2, n/2) we have (n+ 2)− 3 = n− 1 matrices.

c. n = (n/2 − 1, n/2 + 1). The first column is formed by all the consecutive numbers from
0 to n/2 − 1 in decreasing order. The second column is formed by n/2 numbers from 0

to n/2 + 1 in increasing order. Thus, there are
(n

2
+2
n
2

)
choices, which all of them verify

the conditions (1)-(4) in Definition 3.5, with the exception of condition (4) when the n/2
numbers of the second column are consecutive. Thus, there are

(n
2
+2
n
2

)
−3 = 1

8(n2+6n−16)

bipartite complete games for the vector (n/2− 1, n/2 + 1).

12



Then, the result for n even is obtained by adding (n − 1) + 1
8(n2 + 6n − 16) which equals

1
8(n2 + 14n− 24).

Assume n odd. Only the vectors ((n− 1)/2, (n+ 1)/2) and ((n+ 1)/2, (n− 1)/2) allow for
matrices with (n+ 1)/2 rows. For the matrices of each of these vectors n, we have:

a. ((n − 1)/2, (n + 1)/2). All matrices have the first column formed by all the consecutive
numbers from 0 to (n − 1)/2 in decreasing order and only one number from 0 to (n +
1)/2 is missing in the second column. Thus, we have (n + 3)/2 possible matrices. Two
of these matrices have the second column formed by consecutive numbers, which do not
verify condition (4) in Definition 3.5. The remaining matrices verify all the conditions in
Definition 3.5. Thus, we have (n− 1)/2 matrices.

b. ((n+ 1)/2, (n− 1)/2). All matrices have the second column formed by all the consecutive
numbers from 0 to (n−1)/2 in increasing order and only one number from 0 to (n+1)/2 is
missing in the first column. If the missing number in the first column is not 0 nor (n+ 1)/2
then condition (3) in Definition 3.5 is not verified. If the missing number in the first column
is either 0 or (n + 1)/2 then condition (4) in Definition 3.5 is not verified. Thus, there are
not bipartite complete games for the vector ((n+ 1)/2, (n− 1)/2) with (n+ 1)/2 pairs of
minimal winning coalitions.

Then, for n odd we have (n− 1)/2 bipartite complete games. �

The next more elaborated result determines BNCG(n, bn2 c) for n ≥ 4, which together with
Proposition 6.2 allows to find the number of bipartite simple games with a maximal number of
minimal winning pairs.

Theorem 6.3 The number of bipartite non-complete simple games, for n ≥ 4, with a maximal
number of minimal winning pairs bn2 c, is:

BNCG(n, r =
⌊n

2

⌋
) =


1

8
n(n− 2), if n is even

1

16
(n3 + n2 − 25n+ 39), if n is odd

Proof:

a. Let n be an even number. As r = bn2 c = n
2 , the only decompositions for (n1, n2) with

n1 ≥ n2 that achieve r = n
2 are: (n2 ,

n
2 ) and (n2 + 1, n2 − 1) because the conditions (1),

(2) and (3) in Definition 3.3 establish that the numbers in the first column should appear in
decreasing ordering and those in the second column in increasing ordering. Nevertheless,
conditions (4) and (5) tell that none of the two columns can be formed by consecutive
numbers. Thus, no matrix with the decomposition (n2 +1, n2 −1) can achieve r = n

2 because
the second column of the matrix has only room for n/2 numbers, which necessarily would
need to be consecutive, contradicting the requirements in Definition 3.3.
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Assume from now on that the bipartite non-complete game has the decomposition (n2 ,
n
2 ), by

the same stated reason only one number p from 0 to n
2 is missed in the first column and only

one number q from 0 to n
2 is missed in the second column, but from the conditions (4) and

(5) in Definition 3.3 no column can be formed by consecutive numbers. Thus, the missing
number p of the first column of the matrix verifies 1 ≤ p ≤ n

2 − 1 and the same applies for
the missing number q of the second column. Hence, potentially there are (n2 − 1)2 bipartite
non-complete games with r = n

2 , but some of them are isomorphic. Indeed, condition (6) in
Definition 3.3 avoids these duplicities. Verification of condition (6) means that only those
the (p, q) such that p+ q ≥ r need to be counted. Hence, the cardinality of the set:

{(p, q) ∈ N× N : p+ q ≥ r, 1 ≤ p ≤ r and 1 ≤ q ≤ r}

provides the number of bipartite non-complete games with a maximal number of minimal
winning pairs for an even number of players n. This number is

r−1∑
j=1

j =
r(r − 1)

2
=

1

8
n(n− 2).

b. Let n be an odd number. As r = bn2 c = n−1
2 , the only decompositions for (n1, n2) with

n1 > n2, as assumed in Definition 3.3, are: (n+1
2 , n−12 ) and (n+3

2 , n−32 ), but no matrix ver-
ifies the conditions in Definition 3.3 for (n+3

2 , n−32 ) because all the numbers from 0 to n−3
2

appear in the second column. Thus, the only possibility is the decomposition (n+1
2 , n−12 ).

Given any matrix, for this vector we have n+3
2 feasible digits for the first column and n+1

2
feasible digits for the second column. According to the conditions (1), (2) and (3) in Defi-
nition 3.3 the numbers in the first column should appear in decreasing ordering and those in
the second column in increasing ordering. Thus, potentially we have:(n+3

2

2

)
·
(n+1

2

1

)
=

(n+ 3)(n+ 1)2

16
(4)

feasible choices with these orderings. But, there are three types of these matrices that do not
verify some condition in Definition 3.3. These three types are those matrices which have at
least a column formed by consecutive numbers. The remaining matrices fulfill conditions
(4) and (5) in Definition 3.3. We distinguish the three different cases formed by consecutive
numbers in some column:

• Matrices with s1,2 6= 0.
For all these matrices we have si,2 = i for all row i. But then condition (4) in Def-
inition 3.3 fails, which means that N2 > N1 and the game is complete, a contradic-
tion with the assumed non-completeness of the game. The number of matrices with
s1,2 6= 0 is: (n+3

2

2

)
=

(n+ 3)(n+ 1)

8
(5)

• Matrices with s1,2 = 0 and all numbers in the first column being consecutive.
This implies that Condition (5) in Definition 3.3 fails, which implies N1 > N2 and
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the game is complete, a contradiction. The number of matrices with s1,2 = 0 and all
numbers in the first column being consecutive is:

3
n− 1

2
(6)

• Matrices with sr,1 = 0 and si,2 = i− 1 for all i = 1, . . . , r.
Then condition (4) in Definition 3.3 fails, which implies N2 > N1 and the game is
complete. The number of matrices with sr,1 = 0 and si,2 = i−1 for all i = 1, . . . , r−1
is: (n+1

2

2

)
=

(n+ 1)(n− 1)

8
(7)

but one of these matrices has been already counted in the previous item.

Thus, BNCG(n, r = n−1
2 ) for an odd integer n is obtained by subtracting the sum of the

expressions (5), (6) and (7) to the expression in equation (4) plus 1. Hence,

BNCG
(
n, r =

n− 1

2

)
=

(n+ 3)(n+ 1)2

16
+1−(n+ 3)(n+ 1)

8
−3

n− 1

2
−(n+ 1)(n− 1)

8
,

which after simplification becomes

BNCG
(
n, r =

n− 1

2

)
=

1

16
(n3 + n2 − 25n+ 39).

�

Note that the last number in each row in Table 1 is given by the formula in Theorem 6.3. As a
consequence of Proposition 6.2 and Theorem 6.3 we can deduce the number of bipartite simple
games with a maximal number of minimal winning pairs.

Corollary 6.4

BSG
(
n, r =

⌈n
2

⌉)
=


1

4
(n2 + 6n− 12), if n even

1

2
(n− 1), if n odd

7 Bicameral meet and bicameral join: classification and enumera-
tion

Two of the most widely used voting systems in practice are the bicameral meet and the bicameral
join. The purpose of this section is to enumerate up to isomorphism the number of these games
for all n. In addition, a strong link between the results of this section and those of the previous one
is proved.

Let N1 and N2 be two independent chambers (for example a House and a Senate), i.e. N1 ∩
N2 = ∅, and (Ni,Wi) for i = 1, 2 is a ki-out-of-ni game.
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a. The bicameral meet of the two chambers is the simple game (N,W ) such thatN = N1∪N2

and S ∈W if and only if S = S1 ∪ S2 with S1 ∈W1 and S2 ∈W2.

b. The bicameral join of the two chambers is the simple game (N,W ) such thatN = N1∪N2

and S ∈W if and only if either S ⊇ S1 or S ⊇ S2 with S1 ∈W1 and S2 ∈W2.

Whenever N1 and N2 are known (and thus n1 and n2 are also known), we refer to the first
game as the (k1, k2)-bicameral meet and to the second as the (k1, k2)-bicameral join. Note that
neither the (k1, k2)-bicameral meet game nor the (k1, k2)-bicameral join have null voters because
the integer numbers ki are positive.

These two types of games are linked by duality as shown in the next result. Recall that the
dual game (N,W ∗) of a simple game (N,W ) is defined as W ∗ = {S ⊆ N : N \ S /∈ W}. It is
easy to verify that %∗ = % and ≈∗ = ≈ and a game is complete if and only if the dual is.

Proposition 7.1 The dual game of the (k1, k2)-bicameral meet game is the
(n1 − k1 + 1, n2 − k2 + 1)-bicameral join game.

Proof: Consider the (k1, k2)-bicameral meet game. Any coalition S formed by either k1 − 1
members of the first type and n2 members of the second type or by n1 members of the first type
and k2 − 1 members of the second type is not winning, moreover any superset of S is a winning
coalition. Thus,N \S is a minimal winning coalition in the dual game and it has either n1−k1+1
members of the first type or n2 − k2 + 1 members of the second type. �

Proposition 7.2 The (k1, k2)-bicameral meet game of two chambers with respective cardinalities
n1 and n2 is:

a. a bipartite game if and only if k1 + k2 < n1 + n2.

b. a bipartite complete game if ki = ni for one of the two chambers i = 1, 2.

c. a bipartite non-complete game if ki < ni for every i = 1, 2.

Proof:

a. The conditions k1 = n1 and k2 = n2 imply unanimity in both chambers and then unanimity
in the bicameral meet game. Thus, the game has only one minimal winning coalition, N ,
and all players are equi-desirable. Hence, the game is not bipartite but symmetric. The next
two parts prove the other implication.

b. As ki = ni for one of the two chambers i = 1, 2, the players of such chamber have veto in
the (k1, k2)-bicameral meet game of the two chambers and the players in the other chamber
have no veto in the (k1, k2)-bicameral meet game. Thus, the players in the former chamber,
that with ki = ni, strictly dominate players in the other chamber in the (k1, k2)-bicameral
meet game. Hence, the game is bipartite and complete.
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c. As 0 < ki < ni for every i = 1, 2. Both (k1+1, k2−1) and (k1−1, k2+1) are well-defined
pairs of losing coalitions, which imply that neither N1 ≥ N2 nor N2 ≥ N1 are true. Thus,
the game is bipartite and non-complete.

�

The next result is a consequence of the duality result, Proposition 7.1, and Proposition 7.2.

Proposition 7.3 The (k1, k2)-bicameral join game of two chambers with respective cardinalities
n1 and n2 is:

a. a bipartite game if and only if k1 + k2 > 2.

b. a bipartite complete game if ki = 1 for one of the two chambers i = 1, 2.

c. a bipartite non-complete game if ki > 1 for every i = 1, 2.

Let BMCG(n), BMNCG(n) and BMSG(n) be the respective number of bicameral meet: com-
plete games, non-complete games, and simple games of n players. Let BJCG(n), BJNCG(n) and
BJSG(n) be the respective number of bicameral join: complete games, non-complete games, and
simple games of n players. From Proposition 7.2-(c) and Proposition 7.3-(c) it follows:

Corollary 7.4
BMNCG(n) = BJNCG(n) = BNCG(n, r = 1).

Moreover, BMCG(n) = BJCG(n) but they do not coincide with BCG(n, r = 1) because null
players are admitted when enumerating bipartite complete games with r = 1, but this is not the
case when enumerating bipartite complete games coming from a bicameral meet or a bicameral
join. The enumeration of BMCG(n) or BJCG(n) is obtained by subtracting the number of bipartite
complete games with r = 1 and having null players to BCG(n, r = 1). From this observation, we
obtain:

BMCG(n) = BJCG(n) =
1

2
(n− 1)(n− 2).

From the last equalities, Corollary 7.4 and Theorem 5.2 it follows:

BMSG(n) = BJSG(n) =


(n− 2)(n2 − 4n+ 6)

12
+

(n− 1)(n− 2)

2
, if n is even

(n− 1)(n− 2)(n− 3)

12
+

(n− 1)(n− 2)

2
, if n is odd

which after simplification becomes:

BMSG(n) = BJSG(n) =


n(n− 2)(n+ 2)

12
, if n is even

(n− 1)(n− 2)(n+ 3)

12
, if n is odd

17



8 Conclusion

In this paper, we have provided two parametrizations useful to generate all bipartite non-complete
games up to isomorphism and all bipartite complete games up to isomorphism; putting them to-
gether we could generate all bipartite simple games. The problem we have dealt with in this paper
is very versatile since monotonic simple games up to isomorphisms are inequivalent monotonic
Boolean functions. Thus, the problem of enumerating bipartite simple games is equivalent to the
problem of enumerating inequivalent monotonic Boolean functions with two types of equivalent
variables.

We have obtained polynomial expressions for the number of bipartite games with a unique pair
of minimal winning coalitions and with a maximal number of minimal winning coalition pairs.
These enumerations concern the number of bipartite: complete games, non-complete games and
simple games. These closed formulas have also equivalences in terms of inequivalent monotonic
Boolean functions.

The bicameral meet and the bicameral join are two real-world voting systems widely used in
practice. These commonly used voting systems are bipartite games. We have studied for them
their relation and their common enumeration.

As far as we know, the enumerations obtained in this paper do not appear in “The On-Line En-
cyclopedia of Integer Sequences” (www.oeis.org). The only exception is the sequence A005993,
which appears there in a different context.

We suggest some lines of future research related to our paper. First, the generalization of
our parametrizations from bipartite games to tripartite games or to games with more than two
equivalence classes, i.e., the extension to t = 3 or any t > 2 of Definitions 3.3 and 3.5. The
classification we obtain in this paper for non-complete bipartite games gives some hints on a
general classification for more than two equivalence classes. Second, finding closed formulas for
the number of bipartite games with two or more pairs of minimal winning coalitions, i.e., the
extensions to r ≥ 2 of Theorem 5.2, Proposition 5.3 and Corollary 5.4. Third, proving that

BNCG(n) ∈ Θ (2n) .

which would imply that BSG(n) ∈ Θ (2n) since BSG(n) = BCG(n) + BNCG(n) and 1+
√
5

2 < 2.
The analogous enumerations obtained in this paper for tripartite games with either vetoes or nulls
and for quadripartite games with vetoes and nulls have been obtained, in [13], quite recently as an
application of the results found in this paper.

A complementary study could be to determine the dimension (and codimension), the mini-
mum number of weighted games required to express the game as intersection (union) of them, of
bipartite simple games or finding an upper bound for the dimension of bipartite games depending
on the number of players.

Another interesting problem is to determine whether the characterization of weighted games
within the class of simple games in terms of pseudoweightings obtained in Theorem 1 in [14], can
be relaxed to inferior levels for bipartite simple games.
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