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Resum (CAT)
En aquest treball desenvolupem i estudiem el comportament d’un mètode per a

la solució d’EDPs de 4rt ordre amb aproximacions d’Elements Finits C0 estàndar.

El mètode es basa en una forma feble que introdueix integrals entre elements per

imposar continüıtat C1 en forma feble. El mètode es desenvolupa per les equacions

que modelitzen una placa de Kirchoff, però es preveu que l’extensió a altres EDPs

de 4rt ordre sigui natural. La convergència i aplicabilitat del mètode s’estudia amb

exemples numèrics.

Abstract (ENG)
A method to solve 4th-order PDEs using the Finite Element Method (FEM) with

standard C0 elements is derived and studied. It is based on a special weak form

accounting for the discontinuous derivatives of the approximation and imposing their

normal continuity across element sides in weak form. The method is developed for

the equations of the deformation of a Kirchoff plate, but its extension to other

4th-order PDEs is expected to be straightforward. The accuracy and convergence

of the resulting numerical approximation is studied with numerical experiments.
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A C0 IPM for 4th order PDEs

1. Introduction

There are two main strategies for the numerical solution of 4th order PDEs. The first one consists on con-
sidering an approximation space with C1 continuity to discretize a weak form involving 2nd order derivatives.
The main drawback of this approach is that the definition of C1-continuous approximations on non-cartesian
meshes, such as the ones necessary to adapt to non-rectangular domains, is really cumbersome. Thus, these
approximations are limited to the solution of problems in rectangular domains or in combination with a
technique for embedded domains; see for instance [3].

An alternative is splitting the 4th order PDE in two 2nd order PDEs, allowing the use of C0 Finite Element
(FE) approximations. However, the approximation spaces for the primal unknown and the additional
unknown must fulfil some conditions for stability that, again, lead to approximation spaces with cumbersome
definitions, and difficult extension to high-order approximations; see for instance [4].

A not so common approach is considering a modified weak form suitable for standard C0 FE approxi-
mations, imposing continuity of the derivative in weak form. This is the strategy considered in this work.

The developed formulation is based on the ideas of the Interior Penalty Method (IPM) [1], which
considers discontinuous approximations and imposes C0 continuity in weak form, in the context of 2nd

order PDEs. Here, the same ideas are applied for 4th order PDEs, but considering C0 approximations
and imposing the continuity of the derivative in weak form. The resulting weak form involves second
order derivatives, two different types of Dirichlet and Neumann boundary conditions and punctual forces
on corners of the boundary. It coincides with the one proposed and analyzed in [2], but without some
limitations for the boundary conditions. The derivation here is based on the use of the surface divergence
theorem, instead of considering a limit from rounded corners to sharp corners, leading to a more natural
understanding of the contribution of interior and boundary corners (vertices). In addition, a convergence
study based on numerical experiments, assessing the real applicability of the method, is included here,
and an strategy based on an eigenvalue problem is also proposed for the estimate of the value for the
stabilization parameter to ensure coercivity.

Einstein notation (repeated indexes sum over) is assumed in the whole text.

2. A C0 Interior Penalty Method for Kirchoff plates

The equations modelling the behaviour of a plate with the Kirchoff model are

∂2σij(u)

∂xi∂xj
= f on Ω

u = g1 on Γ1
D

∂u

∂n
= g2 on Γ2

D

t(u) = tn on Γ1
N

r(u) = rn on Γ2
N

jk(u) = jext
k on Vk ∈ VN ,

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)
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Figure 1: Left and right tangent and normal vectors at a corner of the domain.

where

σij(u) = Cijkl
∂2u

∂xk∂xl

t(u) =

(
∂σij(u)

∂xi
−∇τ · (n)niσij(u)

)
nj +∇τ · (σ(u) · n)

r(u) = n · σ(u) · n
jk(u) = τ L

k · σ(u) · nL
k + τR

k · σ(u) · nR
k ,

(2)

Γ1
D ∪ Γ1

N = Γ2
D ∪ Γ2

N = ∂Ω, VN are the vertices in the boundary in Γ1
N , n is the exterior unitary normal

vector, τ is the tangent vector, and ∇τ · f := τk∂fk/∂τ . At each vertex, superscripts L and R refer to the
left and right sides that meet there; see Fig. 1

In these equations u is the vertical displacement on the plate, the 4th order tensor C depends on
the material, equation (1a) is the 4th-order PDE stating equilibrium with the vertical applied load f ,
equations (1b) and (1c) are the first and second Dirichlet conditions, equations (1d) and (1e) are the first
and second Neumann conditions, and equation (1f) imposes punctual forces on the exterior vertices where
the displacement is unknown. The boundary conditions (1c), (1e), and (1f), that may be not intuitive, can
be justified from mechanical reasonings, or can be derived from the weak form of (1a).

Let us consider now a partition of Ω in subdomains Ωe , that will in fact be the elements, and definitions
for broken domain and boundaries, such as Ω̂ =

⋃
e Ωe . Then, the problem can be stated as

∂2σij(u)

∂xi∂xj
= f on Ω̂

u = g1 on Γ̂1
D

∂u

∂n
= g2 on Γ̂2

D

t(u) = tn on Γ̂1
N

r(u) = rn on Γ̂2
N

jk(u) = jext
k on Vk ∈ VN

JunK = 0 on Γ

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

(3g)
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s
∂u

∂n

{
= 0 on Γ

Jt(u)K = 0 on Γ

Jnr(u)K = 0 on Γ∑
e∈Ek

jek (u) = 0 on Vk ∈ Vint ,

(3h)

(3i)

(3j)

(3k)

where Γ is the union of all interior sides Γf ,

Γ =

[⋃
e

∂Ωe

]
\ ∂Ω =

⋃
f

Γf , (4)

Ek is the set of elements touching the vertex Vk , Vint is the set of all interior vertices (i.e., vertices in Γ),
and the jump operator is defined on each side Γf as JaK = aL + aR , with aL and aR being the values from
the elements ΩL and ΩR sharing the side. Note that the jump operator is always used including the normal
vector, for instance, JunK = uLnL + uRnR = (uL − uR)nL, thus, it is zero for a continuous function.

Equations (3g) and (3h) impose continuity of the displacement and its normal derivative. And equa-
tions (3i), (3j), and (3k) impose equilibrium of internal forces across sides between elements and on internal
vertices.

Now, multiplying equation (3a) by an arbitrary function v , integrating over any element Ωe and using
twice integration by parts leads to∫

Ωe

vf dΩ =

∫
Ωe

∂2v

∂xi∂xj
σij(u) dΩ−

∫
∂Ωe

∂v

∂xi
σij(u)nj dS +

∫
∂Ωe

v
∂σij(u)

∂xj
ni dS (5)

Now, the derivative in the first boundary integral can be split in normal and tangential derivative as
∂v
∂xi

= τi
∂v
∂τ + ni

∂v
∂n , and the integral for the tangential derivative can be expressed as∫
∂Ωe

τi
∂v

∂τ
σij(u)nj dS =

∫
∂Ωe

∇τ · (vσ(u) · n) dS −
∫
∂Ωe

v∇τ · (σ(u) · n) dS ,

or, using the surface diverge theorem,∫
∂Ωe

τi
∂v

∂τ
σij(u)nj dS =

∫
∂Ωe

∇τ ·(n)v n ·σ(u) ·n dS +

#sides Ωe∑
s=1

v [τ · σ(u) · n]end0 −
∫
∂Ωe

v∇τ ·(σ(u) ·n) dS ,

where [ · ]end0 denotes the value at the end minus the value at the beginning of the side, for each side of
the element. Thus, equation (5) can now be written as∫

Ωe

vf dΩ =

∫
Ωe

∂2v

∂xi∂xj
σij(u) dΩ

+

∫
∂Ωe

v

[(
∂σij(u)

∂xi
−∇τ · (n)niσij(u)

)
nj +∇τ · (σ(u) · n)

]
dS

−
∫
∂Ωe

∂v

∂n
[niσij(u)nj ] dS −

#vertices ∂Ωe∑
k=1

v
(
τ L
kσ(Vk)nL

k + τR
k σ(Vk)nR

k

)
,

(6)
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Figure 2: Left and right tangent and normal vectors for a side Γf inside the mesh, and left and right tangent
and normal vectors for an interior vertex of an arbitrary element Ωe inside the mesh.

where the L and R indices refer to the values at the vertices from the left and right sides, and the tangent
vectors τ L,R

k point outward on the vertex for each side; see Fig. 2, right. Now, applying Definitions (2),
equation (6) becomes

∫
Ωe

vf dΩ =

∫
Ωe

∂2v

∂xi∂xj
σij(u) dΩ +

∫
∂Ωe

vte(u) dS −
∫
∂Ωe

∂v

∂n
r e(u) dS −

#vertices ∂Ωe∑
k=1

vjek (u), (7)

where a superscript e remarks that the value is taken from element Ωe . Summing (7) for all elements,∫
Ω̂

vf dΩ =

∫
Ω̂

∂2v

∂xi∂xj
σij(u) dΩ +

∫
∂Ω

vt(u) dS −
∫
∂Ω

∂v

∂n
r(u) dS

+

∫
Γ

v Jt(u)K dS −
∫

Γ

[
∂vL

∂nL
rL(u) +

∂vR

∂nR
rR(u)

]
dS

−
∑

Vk∈Vint

v
∑
e∈Ek

jek (u)−
∑

Vk∈Vext

v
∑
e∈Ek

jek (u),

where Vint, Vext are the set of interior and exterior vertices, respectively. Now, using the identity

∂vL

∂nL
rL(u) +

∂vR

∂nR
rR(u) =

s
∂v

∂n

{
{r(u)}+ {∇v} · Jnr(u)K ,

with the mean operator {a} := 1
2

(
aL + aR

)
, and the equilibrium equations (3i), (3j), and (3k), leads to∫

Ω̂
vf dΩ =

∫
Ω̂

∂2v

∂xi∂xj
σij(u) dΩ+

∫
∂Ω

vt(u) dS−
∫
∂Ω

∂v

∂n
r(u) dS−

∫
Γ

s
∂v

∂n

{
{r(u)} dS−

∑
Vk∈Vext

v
∑
e∈Ek

jek (u).

Finally, replacing the Neumann boundary conditions, (1d), (1e), and (1f), imposing the first Dirichlet
boundary condition in strong form (that is, (1b) and, consequently v = 0 on Γ1

D), and adding some
integrals with null sum (as a consequence of the C1 continuity of the solution (3h) and the second Dirichlet
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boundary condition (1c)), we get the final weak form: find u ∈ H2(Ω̂) ∩ C0(Ω) such that u = g1 on Γ1
D

and a(u, v) = `(v), for all v ∈ H2(Ω̂) ∩ C0(Ω) such that v = 0 on Γ1
D , where

a(u, v) =

∫
Ω̂

∂2v

∂xi∂xj
σij(u) dΩ

−
∫

Γ

s
∂v

∂n

{
{r(u)} dS −

∫
Γ
{r(v)}

s
∂u

∂n

{
dS + β

∫
Γ

s
∂v

∂n

{ s
∂u

∂n

{
dS

−
∫

Γ2
D

∂v

∂n
r(u) dS −

∫
Γ2
D

r(v)
∂u

∂n
dS + α

∫
Γ2
D

∂v

∂n

∂u

∂n
dS ,

(8a)

`(v) =

∫
Ω̂

vf dΩ−
∫

Γ1
N

vtn dS +

∫
Γ2
N

∂v

∂n
rn dS +

∑
Vk∈VN

vjext
k

−
∫

Γ2
D

r(v)g2 dS + α

∫
Γ2
D

∂v

∂n
g2 dS .

(8b)

The terms added to the weak form recover symmetry and coercivity of the bilinear form, provided that
parameters β and α are large enough. They also weakly enforce continuity of the normal derivative across
elements interior sides (continuity along sides is given by the C0 continuity), and the second Dirichlet
boundary condition. In fact, the parameters β and α act as penalty parameters, but differently to a non-
consistent penalty formulation, moderate values of the parameters, of order O(h−1), provide convergence
for any degree of approximation, avoiding the typical ill-conditioning problems of non-consistent penalty
methods. Proper values for the parameters can be obtained solving an eigevalue problem, as commented
in Section 3.

The methodology considered here for the weak imposition of interface conditions and boundary condi-
tions is inspired by the Interior Penalty Method [1], developed in the context of discontinuous approximations
to weakly impose C0 continuity, and on Nitsche’s method [6], developed for Dirichlet boundary conditions,
here applied for the second Dirichlet boundary condition. Both methods are well known in the context of
second-order PDEs. The difficulties for its application with fourth-order PDEs have been overcome here
thanks to the use of the surface divergence theorem.

The FE solution can now be obtained replacing the classical C0 FE approximations in the weak form
and solving the resulting linear system of equations for the nodal values.

3. Analysis of the β parameter

A study of the value of parameter β ensuring the coercivity of the bilinear form (8a), which can be easily
replicated for parameter α, is presented next. It is inspired in the analysis developed in [3] for embedded
domains. We consider the problem with Γ2

N = ∂Ω (i.e., without second Dirichlet boundary conditions),

and a FE space V h
0 , which discretizes the space of functions in H2(Ω̂)∩C0(Ω) with null value on Γ1

D . The
matrix resulting from the discretization will be positive definite if a(v , v) > 0 for all non-null v ∈ V h

0 .

http://reportsascm.iec.cat16

http://reportsascm.iec.cat


Dani Fojo, David Codony, Sonia Fernández-Méndez

Using Cauchy–Schwartz inequality, the bilinear form can be bounded as

a(v , v) =

∫
Ω̂

∂2v

∂xi∂xj
σij(v) dΩ− 2

∫
Γ

s
∂v

∂n

{
{r(v)} dS + β

∫
Γ

s
∂v

∂n

{2

dS

≥
∫

Ω̂

∂2v

∂xi∂xj
σij(v) dΩ− 2

∥∥∥∥s∂v

∂n

{∥∥∥∥
L2(Γ)

‖{r(v)}‖L2(Γ) + β

∥∥∥∥s∂v

∂n

{∥∥∥∥2

L2(Γ)

.

Now, let us consider a constant c (depending only on the considered FE discretization space) such that

‖{r(v)}‖2
L2(Γ) ≤ c2

∫
Ω̂

∂2v

∂xi∂xj
σij(v) dΩ ∀v ∈ V h

0 . (9)

Then, using Young’s inequality
(

ab ≤ a2

2ε + ε
2 b2 ∀a, b, ε > 0

)
, we have

a(v , v) ≥
[

1− c2

ε

] ∫
Ω̂

∂2v

∂xi∂xj
σij(v) dΩ + [β − ε]

∥∥∥∥s∂v

∂n

{∥∥∥∥2

L2(Γ)

(10)

for any ε > 0. Thus, the matrix will be positive definite if β > c2.

In practice, β can be taken slightly larger than the largest eigenvalue of the generalized eigenvalue
problem KV = λMV, being M and K the matrices corresponding to the discretization of

∫
Ω̂

∂2v
∂xi∂xj

σij(u) dΩ

and
∫

Γ {r(v)} {r(u)} dS , respectively. Moreover, under nested mesh refinement, with characteristic element
size h, the matrices M and K scale as h−3 and h−2, respectively, thus, the maximum eigenvalue (and
parameter β) scales as h−1.

4. Numerical Experiments

4.1 Convergence and sensitivity to β parameter

As commented in the introduction, [2] presents a theoretical convergence analysis of the formulation valid
for smooth boundaries (without corners) or pure Dirichlet boundary conditions. The conclusion of the
analysis is that the method is convergent for large enough parameter β, but too large values may lead
to suboptimal convergence. To assess the applicability of the method in real computations, the accuracy
and convergence of the numerical solution of (1a), with boundary conditions (1b) and (1e) in the whole
boundary, is tested next with

σij(u) =
τ3

12

(
2µ

∂2u

∂xi∂xj
+ λ

∂2u

∂xk∂xk
δij

)
,

and material parameters τ = λ = µ = 1, in a square domain Ω = [0, 1]2. The body force f , the Dirichlet
boundary value g1 and the second Neumann boundary value rn are chosen in accordance with the analytical
solution u(x , y) = x4y . Note that with this boundary conditions, the method depends only on β, and not
on the parameter associated to second Dirichlet boundary conditions α.

Fig. 3 shows the evolution of the L2 error of the displacement under uniform refinement with charac-
teristic element size h. Optimal convergence would lead to errors ||u − uh||L2 = O(hp+1) for degree of
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Figure 3: Convergence plots for different values of β and different degrees p. The numbers indicate the
slopes of the segments.
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approximation p, which would correspond to slope p + 1 in the plots. As expected, for degree p = 1, 2,
the approximation space is not rich enough to weakly impose continuity of the derivatives and at the same
time properly approximate the solution. This kind of locking leads to poor accuracy and convergence.
However, for degree p ≥ 3, a reasonably large range for β ((1 − 100)τ3/h for p = 3) provides optimal
convergence. Higher values of β lead to slightly suboptimal convergence, but still provide accurate results
and good convergence. Much higher values of β are not recommended mainly because they may lead to a
very ill-conditioned matrix, but also because we expect a continuous degradation in the convergence and
accuracy due to the locking associated to a too strong imposition of the continuity of the derivative.

Thus, in practice, the recommendation is using a value of β slightly larger than the one corresponding
to the maximum eigenvalue of the problem in Section 3. It is also worth noting that, assuming material
parameters λ and µ constant or in a small range, M scales as τ3 h−2, K scales as τ6 h−3, and, therefore,
the maximum eigenvalue scales as τ3/h. Consequently, if the eigenvalue problem is solved for a particular
mesh and a particular value of τ , the value for β for finer nested meshes, or other values of τ , can be
estimated without solving the eigenvalue problem.
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Figure 4: Condition number for degrees p = 1, ... , 4, and for two different values of β, varying the element
size h.

Fig. 4 shows the condition number of the matrix corresponding to the discretization of the problem for
two different values of β, both above the bound for positiveness of the matrix. As expected, the condition
number increases when increasing β. In addition, we observe an increase in the condition number as
O(h−4), that is the expected behaviour for the numerical solution of a fourth-order PDE, regardless of the
discretization method.

4.2 Plate under uniform distributed load

A more realistic problem is solved in this section to demonstrate the applicability of the proposed method:
a plate under a uniformly distributed applied load of f = 100Pa. In this case, the material parameters are
µ = E/(2(1 + ν)) and λ = νE/(1− ν2), with Young’s modulus E = 200 · 109Pa, Poisson’s ratio ν = 0.28
and thickness of the plate τ = 0.001m, corresponding to a thick steel plate taken from [5]. The problem is
solved on the p = 4 mesh depicted in Fig. 5, discretizing a plate of 1× 1 meters. The considered penalty
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Figure 5: FE mesh. Blue dots are nodes for the p = 4 approximation.

parameters are β = α = 10τ3µ/h = 781.25/h with element size h = 0.125m. Fig. 6 shows the solution
for a simply supported plate (left) and a clamped plate (right). As expected, deformations are much larger
for the simply supported plate.

Figure 6: Solution of the problem with distributed load for a simply supported plate (left) and a clamped
plate (right).

In both cases the first boundary condition is u = 0 on ∂Ω. The second boundary condition is rn(u) = 0
(Neumann) for the simply supported plate, and ∂u/∂n (Dirichlet) for the clamped plate. The null normal
derivative on the boundary can be clearly observed in the right solution, corresponding to the clamped
plate.

5. Conclusions and final remarks

A method for the solution of 4th-order PDEs, with standard C0 FE approximations, has been proposed.
The method has been developed and tested for the solution of the equations of Kirchoff plates. It is based
on a formulation that weakly imposes C1 continuity across element sides. Numerical experiments are in
agreement with the theoretical analysis in [2]: a large enough penalty parameter β is needed to ensure
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coercivity of the bilinear form, and convergence, but, on the other hand, too large β parameters may lead
to suboptimal convergence. However, the numerical experiments show that a wide range of β parameter,
within 3 orders of magnitude of difference, provides optimal convergence for degree p ≥ 3, demonstrating
the robustness of the method in practice. In fact, even for very large parameters, that should in practice not
be considered to avoid ill-conditioning, the loss of optimal convergence is not catastrophic, since accurate
results are still obtained.

The method is promising for the solution of other problems modelled by 4th-order PDEs, such as the
ones modelling strain-gradient elasticity or flexoelectricity, overcoming the inconveniences or limitations of
other techniques. Differently to B-spline approximations or Hermite interpolants, the discretization with
standard FE allows the use of non-cartesian meshes, fitting to the boundary of non-rectangular domains,
without the need to use a technique for embedded domains in non-fitted meshes, and avoiding the typical
ill-conditioning problems related to the so-called cut elements. On the other hand, standard C0 FEs are easy
to define and implement for any degree, differently to mixed approximations whose definition is cumbersome
and not developed for high-order approximations and, in addition, involve additional unknowns increasing
the computational cost.

In the next future, we aim to apply the same methodology to other 4th-order PDEs, and study its
applicability and robustness in real applications of interest.
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