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I. EXTENDED ABSTRACT
A. Introduction

When planar wavefronts from distant stars traverse the
atmosphere, they become distorted due to the atmosphere’s in-
homogeneous temperature distribution. Adaptive Optics (AO)
is the field in charge of correcting those distortions allowing
high-quality observations of distant targets. The AO solution
is composed of three main components: a deformable mir-
ror (DM) that corrects the deformation in the wavefront, a
wavefront sensor (WFS) that allows characterising the current
turbulence in the wavefront and a real time controller (RTC)
that issues commands to, via the deformation of the DM,
correct the wavefront. Usually, the operations are performed
on closed-loop with stringent real-time requirements (in the
order of 103 − 104 actions per second). At each iteration, the
WFS observes the wavefront after being corrected by the DM
and the RTC issues the commands to correct for the evolution
of turbulence and previous uncorrected errors (Figure 1 left).

One of the primary sources of error for an AO control
algorithm is the temporal error. The delay between charac-
terising the turbulence with the WFS and setting the desired
commands in the DM creates the need that any successful
control approach must take into account past commands and
the probable evolution of the atmosphere in this gap of time.
To do that, the most common approach in AO are variants
of Linear Quadratic Gaussian (LQG) with Kalman filters with
one of its initial iterations presented in [1]. Usually, a linear
model of the system’s evolution is built with a set of parameters
that are usually fitted based on observations or on theoretical
assumptions, which limits the capability of the system to
correct the turbulence.

In this paper, we present a novel solution based on Re-
inforcement Learning (RL), based on a reward signal to be
optimised, that does not need any previously built model (as
LQG) and is non-linear. RL has been already applied in the
domain of AO, however, it has been limited to WFS-less
systems (e.g. [2]) or, more recently, to control a very limited
number of actuators [3]. This work’s main practical objective
is to be applied in the 8.2 m Subaru telescope (located in
Hawaii), which includes thousands of actuators.
B. AO Control: Integrator with gain

The traditional AO control algorithm is the integrator with
gain. At each iteration, the WFS obtains a vector of mea-
surements, m, where each element indicates a local deviation
from the seen wavefront to a planar wavefront. The relationship

Fig. 1: Left: AO closed-loop. Right: Mode example.

between m and commands in the DM at a timestep, t, can be
approximated as a linear relationship:

mt = D · ct (1)
Where D is the interaction matrix obtained with a least

squares approach method on the loss ||m−Dc||2. By inverting
the interaction matrix in equation (1), we obtain the commands
to be applied to the DM to correct the current wavefront
deviations on ideal conditions. To deal with non-ideal issues,
such as the temporal error, integration with past commands,
C, with a gain factor, g, is used:

Ct = Ct−1 + gct (2)

C. Adaptive Optics as a Reinforcement Learning problem
RL [4] is concerned of finding a function (called policy,

π(θ) parametrized with weights θ) that maximises the expected
cumulative reward (r) obtained by interacting with an environ-
ment. To do so, RL maps the state describing the environment
(s) to actions (a) with the objective of obtaining the optimal
policy, π∗(θ).

π∗(θ) = argmax
θ

E
env

[∑
i

ri(π(θ))

]
(3)

Concretely, RL requires the following elements:
1) The states, s: Defined as the union of the integrator

commands, c, which will give information of current pertur-
bation in the atmosphere and past integrated commands, C,
which will give information of commands that will be applied
in the next timesteps (due to delay), and the evolution of the at-
mosphere at every time step t: st = (ct, Ct−1, Ct−2, ..., Ct−n).

The commands issued by the RTC are usually a vector of
na dimensions (C ∈ Rna ) where each element of the command
vector controls one actuator in charge of deforming the mirror.
This way of handling the commands is said to be zonal as each
value of the command vector only modifies a particular zone of
the mirror. However, one can build a modal basis, e.g. by using
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Fig. 2: Left: Training curves (77 modes, D=2 m). Right: Avg
final performance (62 modes, r0=0.16 m, v=20 m/s). Results
averaged over 3 seeds.

the Zernike polynomials [5] (see Figure 1), to act globally in
the whole DM with each element of the command vector. The
usage of modal basis has two benefits: (1) we can just correct
a subset of modes if the number of actuators to control is
problematically high and (2) RL method performance depends
on the feature definition [4]. Empirically, we have observed
that a value of n = 3 for the state and using a modal basis for
the commands Ct leads to better performance.

2) The actions, a: Defined as a correction applied to the
commands computed with the ”integration with gain” AO
control, as follows: Ct = Ct−1 + gct + a.

3) The reward, r: Defined as a function that determines
how well the turbulence distortion has been corrected. To
do that, we apply two different strategies: (1) A reward
based on the spatial variance of the wavefront phase φ,
ropt,t = −var(φt), in which a variance of 0 indicates that
all the wavefront points are on phase, hence, the wavefront is
planar; and (2) a reward based on the average measurements,
mt, squared: rreal,t = −avg(m2

t ). The former strategy is
optimal but unrealistic as it is not possible to get the variance
of the wavefront at each timestep; the latter provides an
approximation of the former strategy but can be obtained at
each time step.

4) The algorithm: We choose Soft Actor Critic, which
slightly modifies eq. 3 to include the entropy of the policy,
π(θ), as a regularisation term [6].
D. Results

This section evaluates the AO RL controller in a different
range of atmospheric conditions, specifically, different values
for Fried parameter, r0, which a lower value denotes a higher
strength of turbulence, and wind speed, v, which a higher value
will drive up the temporal error. Moreover, it evaluates the
performance of RL when increasing the telescope diameter, D,
and thus the complexity of the problem as the number of actua-
tors to control, and the number of measurements of the WFS to
process, increases as well, when considering the optimal (ropt)
and the realistic (rreal) rewards. The performance is measured
in terms of Strehl Ratio (0 ≤ SR ≤ 1), the ratio between the
peak intensity of the target image and its theoretical maximum.
The experiments presented use an AO control simulator named
COMPASS [7], including the simulation of the atmosphere and
the AO control, executed on a IBM Power9 8335-GTH CPU
(40 cores) with a GPU NVIDIA V100 (16 GB).

Figure (2) left evaluates different atmospheric conditions.
We can observe that the RL agent outperforms the traditional

integrator and is both robust to variations of v and r0 with
both reward functions, i.e., ropt and rreal. RL agent’s quasi-
constant performance in terms of wind speed may indicate that
we are solving mainly temporal error.

Figure (2) right compares the performance of the RL agent
when controlling 62 modes while increasing the telescope
diameter with a fixed atmospheric configuration. While the RL
agent with a limited number of modes performs better when
compared with the integrator, the agent is incapable of scaling
to bigger diameters with the realistic reward function, rreal.
It therefore remains as future work to derive a more efficient
reward function. Furthermore, while the use of a modal basis
allows to significantly reduce the state’s size and so avoid the
problem of the curse of dimensionality [4], it remains as a
future work as well, to control a higher number of modes.
In addition to performance, we must take into account the
inference time. Currently, for the given machine and 62 modes,
the inference time is ∼ 1.2 ms which is below the threshold
of 2 ms to not increase the delay as to affect proper operation
of the telescope. However, we must take into account that for
large telescopes we will probably end up controlling a higher
number of modes hence increasing the inference time.
E. Conclusion

We have presented a novel AO control based on RL that
outperforms traditional controllers in a set of limited experi-
ments. However, we must address some challenges before its
application in the real world.
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• RL agent tackles non-linear effects such as temporal error.

• Dimensionality problem.

• Realistic reward function does not work for large telescopes.

Adaptive Optics Control with Reinforcement 
Learning: First steps
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2. Adaptive Optics (AO)

3. Reinforcement Learning (RL)

RL allows capturing non-linear effects not addressed by linear 
solutions

RL objective: find a function, ( ), that maps states (s) to actions (a)
that maximizes a cumulative reward function (r) via trial and error.

• a corresponds to a correction term to the linear RTC: = +· +
• s = , , , … , corresponds to the current linear and

previous commands and provides information about:

• Commands that will be executed in the future
• Statistics of evolution of the atmosphere.

• r is based on spatial variance of the wavefront phase, and average
of measurements squared: = − and = − ,
respectively

Our RL agent does not consider a single 
DM actuator but global orthogonal 

shapes in the DM inspired in Zernike 
polynomials [1].

4. Results

5. Conclusions

Image of DM shape. 
(Left) acting on a single actuator. 
(Right) acting on a single mode.

AO loop with RL elements

a) RL agent (77 modes) on 2m

telescope with different

atmospheric conditions.

b) RL agent controlling 62 modes with

different D. Atmospheric conditions

constant.

Results
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• An AO system characterizes the distortion ( ) using a
Wavefront sensor (WFS)

• A Real-time Controller (RTC) computes commands to the DM
actuators ( ) to correct observed distortion, considering the
following linear relationship:

• (1)  t = · 
• (2)  = −1 + · 

• The RTC have high-performance and real-time requirements
• Commands must be issued every ~2ms to ensure the

correct operation

Experiments:

• Simulated in COMPASS [2] (GPU-based high-performance

AO simulations).

• Characterisation of different range of atmospheric conditions.

• Fried parameter, : inverse relationship to strength of

turbulence.

• Wind speed, v. Related to temporal error.

• Different diameter (D) of telescope.

• Measuring results in Strehl Ratio ((worst) 0 ≤ SR ≤ 1 (best)).

6. Future work

• In ground-based telescopes, the light from distant
stars is distorted due to small variations of index of
refraction in the atmosphere

• Adaptive Optics (AO) systems are responsible of
correcting the distortion by means of a deformable 
mirror (DM).

1. Motivation

AO Control-Loop

Image of Ground-Based Telescopes
Credit: Claire E. Max, UCSC
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Large telescopes includes non-linear effects not captured by current RTC 
that diminishes the performance of telescopes

• Multi-agent system: each agent controls a small amount of modes.

• Preliminary results show an improvement over the integrator with a large

telescope and realistic reward function.




