
A stabilised displacement-volumetric strain formulation

for nearly incompressible and anisotropic materials

R. Rossia,b,∗, R. Zorrillab, R. Codinaa,b
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Abstract

The simulation of structural problems involving the deformations of volumet-
ric bodies is of paramount importance is many areas of engineering. Although
the use of tetrahedral elements is extremely appealing, tetrahedral discretisa-
tions are generally known as very stiff and are hence often avoided in typical
simulation workflows.

The development of mixed displacement-pressure approaches has allowed
to effectively overcome this problem leading to a class of locking-free elements
which can effectively compete with hexahedral discretisations while retaining
obvious advantages in the mesh generation step. Despite such advantages the
adoption of the technology within commercial codes is not yet pervasive.

This can be attributed to two different reasons: the difficulty in making
use of standard constitutive libraries and the implied continuity of the pres-
sure, which makes the application of the method questionable in the context
of multi-material problems. Current paper proposes the adoption of the vol-
umetric strain instead of the pressure as a nodal value. Such choice leads to
the definition of a modified strain making the use of standard strain-driven
constitutive laws straightforward. At the same time, the continuity of the vol-
umetric strain across multimaterial interfaces can be understood as a sort of
kinematic constraint (stresses can still remain discontinuous across material
interfaces). The new element also opens the door to the use of anisotropic
constitutive laws, which are typically problematic in the context of mixed
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1. Motivation1

The use of tetrahedral (or triangular) meshes in the simulation of complex2

geometries presents important advantages due to the availability of robust3

automatic mesh generation technologies. Unfortunately, tetrahedral meshes4

typically show poor accuracy and are very prone to locking when used in the5

vicinity of the incompressible limit. A number of proposals were developed6

over the years to retrofit such situation. One line of research, see e.g. [1, 2],7

proposes the use of neighbourhood information to reconstruct an improved8

strain or displacement field. A different approach is based on the use of mixed9

formulations in which the displacement field is complemented by other vari-10

ables. An early example in the context of structural mechanics can be found11

in [3], which proposes the use of a displacement-pressure-volumetric strain12

approach stabilised by the use of a bubble function for the displacement field.13

For such element the “bubble displacement” and volumetric strain (which is14

assumed to be only piece-wise continuous) can be statically condensed at the15

element level to provide a final form in terms of nodal displacements and16

pressures.17

A more general framework to the development of stable, equal order, el-18

ements is provided by the Variational Multiscale Stabilisation which allows19

to sidestep the limitations of the inf-sup condition, known to be necessary20

and sufficient for the Galerkin method to be well posed. The development of21

stabilised, mixed Q1/Q1 (multi-linear/multi-linear) and P1/P1 (linear/linear)22

displacement-pressure approaches [4] has represented a milestone in the finite23

element (FE) technology, offering the possibility of improving the accuracy24

of low order meshes while guaranteeing a provably lock-free behaviour at25

the nearly-incompressible limit. The key idea of displacement-pressure (u-p)26

approaches is to split the constitutive response into its deviatoric and vol-27

umetric parts. The deviatoric part of the strain is then recovered from the28

displacement field and introduced into the constitutive law, which returns29

the corresponding deviatoric stress. The volumetric part on the other hand30

is obtained in terms of the nodal pressure field. Even though this approach31

can effectively solve any volumetric locking issue, it implies that the total32
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strain is never explicitly computed (in the FE implementation, only the de-33

viatoric strain and pressure are available at the Gauss points). The practical34

downside of this issue is that one cannot make use of standard strain-driven35

constitutive laws. This represents a practical blocker in the context of com-36

mercial codes, which need to leverage large material libraries. The proposed37

approach overcomes such limitation by choosing the volumetric strain εv, in-38

stead of the pressure, as primal variable. In this way, the total strain can39

be recovered at the Gauss point level as the sum of the deviatoric part, ob-40

tained as before in terms of the displacement gradient, and the volumetric41

part, obtained by interpolating εv. Thus, the use of standard constitutive42

models becomes straightforward and the above described problem is effec-43

tively resolved.44

The second well known difficulty, which is intrinsic to the use of equal-45

order mixed displacement-pressure fields, is that the pressure is treated as a46

continuous FE variable. This becomes problematic when multiple materials47

need to be considered within the domain, since in the presence of pressure48

discontinuities, continuous approximations typically manifest unwanted oscil-49

lations. Although this can be remedied for example by doubling the pressure50

degrees of freedom at the interface [5], such approach is normally inconve-51

nient when more than two materials are present. On the contrary, the use of52

a continuous discretisation for εv does not impede the appearance of discon-53

tinuous pressures across the material interface, implying that this difficulty54

is effectively circumvented.55

Interestingly, for isotropic linear constitutive relations the proposed for-56

mulation can be understood simply as a displacement-pressure approach with57

a change of variables. When considered in this context, the u-εv formulation58

inherits all the stability properties of the original u-p approach (see e.g. [6]59

for a recent discussion).60

We shall also remark that the use of displacement-strain (total strain)61

formulations has been proposed in [7] as an alternative to the displacement-62

stress approach, also described in [7]. Moreover, an enhanced three field63

formulation (displacement-strain-pressure) u-ε-p has recently been proposed64

in [8]. To the best of our knowledge however, this is the first time that a u-εv65

formulation is discussed in detail. To this end, the paper is structured as66

follows: a mixed displacement-volumetric strain formulation for small strain67

elasticity is derived as a special case of the displacement-strain formulation in68

Section 2, where the problem is set at the continuous level and an FE discreti-69

sation is proposed. The case of anisotropic materials is studied in Section 3,70
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retrofitting the original formulation to allow the solution of anisotropic prob-71

lems. This is accomplished by a redefinition of the modified volumetric strain72

which accounts for the anisotropic behaviour of the material. The article is73

concluded by a set of convergence tests in Section 4, that are performed for74

both the isotropic and anisotropic cases, as well as by a number of test ex-75

amples assessing the performance of the proposed formulation. Finally, the76

last section collects the outcomes and further work lines of the paper.77

The u-εv formulation that we propose is implemented whitin the open78

source Kratos Multiphysics framework [9, 10].79

2. Formulation80

2.1. Governing equations81

The essence of the proposed formulation is to modify the (small) strain82

definition to avoid volumetric locking. This is accomplished by employing83

a mixed formulation in which, the volumetric strain εv is considered as an84

unknown, and interpolated as such when the problem is approximated using85

FE. The key idea is that the standard deviatoric-isochoric splitting is per-86

formed at the strain level. The deviatoric part is then computed in terms of87

the displacements while the isochoric one is expressed in terms of εv. This is88

expressed mathematically as89

ε(x) = ∇su− 1

α
∇ · uI︸ ︷︷ ︸

εdev

+
1

α
εvI︸ ︷︷ ︸
εiso

(1)

where I is the identity matrix. The coefficient α is taken here as α = 3 in90

the 3D case and α = 2 in the 2D one (both for plane strain and plane stress91

cases). This choice implies that in 2D plane stress cases, the “volumetric”92

strain should be understood as a measure of the area change in the plane93

rather than a measure of the real volume change.94

Once the strain splitting is defined, the governing equations can be written
as

−∇ · σ(ε) = f (2a)

∇ · u− εv = 0 (2b)

where the first equation is the classical equilibrium condition and the second95

one expresses the kinematic relation between the volume variation and the96

displacement field, which is exact for the small deformation case.97
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Up to this point, no assumption is made about the constitutive behaviour98

other than a dependency of the stress on the strain, σ = σ(ε). More specifi-99

cally, we remark that the formulation is not limited to the case of elastic ma-100

terials and can include more complex models, which could eventually feature101

a dependency on internal variables (e.g. plasticity). Likewise, the introduc-102

tion of the volumetric strain as a variable can be done both for stationary103

and time dependent problems, although in this paper we restrict ourselves104

to the former case.105

Furthermore, we note that Eq. 2b can be written in incremental form as106

∇ ·∆u−∆εv = 0 (3)

with ∆(·) denoting an increment. In the case of linear problems, this choice is107

completely equivalent to Eq. 2b. However, it has some practical advantages in108

the application of initial conditions or the initial guess for iterative schemes.109

2.2. Variational approach110

Obtaining a symmetric variational form for the problem described in Eqs.111

2a and 2b is not obvious. Our approach for doing so is to begin by considering112

the mixed displacement-strain form described in [7], or in [11, 12] for the113

explicit case.114

2.2.1. Standard u-ε formulation115

Let us start considering the differential form of the u − ε formulation,
which reads

−∇ · C : ε = f

C : ε− C : ∇su = 0

where C is the constitutive tensor and f denotes the vector of external body116

forces. To simplify the exposition, let us consider homogeneous Dirichlet117

boundary conditions u = 0 on the whole boundary ∂Ω of the domain Ω118

where the problem is posed.119

Let δu (vanishing on the boundary) and δε be the displacement and strain
test functions. The weak form of the problem consists of finding u and ε in
the appropriate spaces such that∫

Ω

∇sδu : C : ε =

∫
Ω

δu · f (4a)
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−
∫

Ω

δε : C : (ε−∇su) = 0 (4b)

for all test functions δu and δε. The problem can also be written in the form

Buε(u, ε; δu, δε) :=

∫
Ω

∇sδu : C : ε−
∫

Ω

δε : C : (ε−∇su) =

∫
Ω

δu · f (5)

It is observed that the bilinear form Buε is semi-definite:

Buε(u, ε; u,−ε) =

∫
Ω

ε : C : ε

From this, one can easily get a stability estimate for the strain, but not for the120

displacement. An inf-sup condition is required to bound it in the continuous121

case, which needs to be inherited by the FE interpolation, unless a stabilised122

FE method is employed. A similar comment applies to the formulation that123

is to be proposed later.124

If we introduce the functional

Euε(u, ε) =
1

2

∫
Ω

(ε−∇su) : C : (ε−∇su)− 1

2

∫
Ω

∇su : C : ∇su +

∫
Ω

u · f

it is easily seen that Eqs. 4 are precisely its stationary conditions. The way125

we have written Euε is intended to motivate the following formulation.126

2.2.2. u-εv formulation127

Our proposal is to start from the variational form of the u-ε formulation
and to substitute the strain formula ε := ∇su− 1

α
∇·uI+ 1

α
εvI into it. Thus,

let us consider the functional

Euεv(u, εv) =
1

2

1

α2

∫
Ω

(εv −∇ · u)I : C : I(εv −∇ · u)

− 1

2

∫
Ω

∇su : C : ∇su +

∫
Ω

u · f (6)

Defining

κ :=
1

α2
I : C : I (7)
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which coincides with the volumetric modulus for isotropic materials, allows
us to write the stationary conditions of the functional in Eq. 6 as

Buεv(u, ε
v; δu, δεv) :=

∫
Ω

(δεv −∇ · δu)κ(εv −∇ · u)

−
∫

Ω

∇sδu : C : ∇su = −
∫

Ω

δu · f (8)

for all test functions δu, δεv . Buεv is the counterpart of the bilinear form Buε

in Eq. 5 for the formulation we propose. The problem in Eq. 8 can also be
split as ∫

Ω

∇sδu : C : ∇su +

∫
Ω

∇ · δu κ(εv −∇ · u) =

∫
Ω

δu · f (9a)∫
Ω

δεvκ(εv −∇ · u) = 0 (9b)

for all test functions δu and δεv . This is the counterpart of Problem 4 obtained
for the u-εv formulation. The strong (differential) form of these equations
(for a constant κ) is:

−∇ · C : ∇su− κ∇(εv −∇ · u) = f (10a)

εv −∇ · u = 0 (10b)

recalling that the zero Dirichlet conditions have been assumed throughout128

the boundary.129

Remark 1. In the case of an arbitrary stress-strain relation, Problem 9 can
be modified by replacing C : ∇su with the stress σ(ε) and introducing a scal-
ing physical parameter κ̃ (with the same units as κ), so that the variational
form of the problem would be∫

Ω

∇sδu : σ(ε) +

∫
Ω

∇ · δu κ̃(εv −∇ · u) =

∫
Ω

δu · f (11a)∫
Ω

δεv κ̃(εv −∇ · u) = 0 (11b)

for all test functions δu and δεv . �130

Remark 2. Even though no assumption has been stated on C to obtain
Problem 9, we will use it only for isotropic materials; the way we deal with
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anisotropic cases is explained in Section 3. Consider then an isotropic mate-
rial, and let us introduce Πdev as the projection of second order tensors onto
their deviatoric component. We may rewrite Eq. 10a as

−∇ · Πdev(C : ∇su)− 1

α
∇ · (∇ · uC : I)− κ∇(εv −∇ · u) = f (12)

For isotropic materials the property:

1

α
∇ · (∇ · uC : I) = κ∇(∇ · u)

holds, hence Eq. 12 can be simplified to

−∇ · Πdev(C : ∇su)− κ∇εv = f

The change of variable p = κεv yields the classical u-p formulation of linear131

elasticity, which would allow us to deal with purely incompressible materials,132

i.e. κ =∞. In this case, Eq. 10b would be ∇ · u = 0. �133

Remark 3. In line with the previous remark, let us note that for anisotropic134

materials the incompressibility condition ∇ · u = 0 is not implied by any135

limiting value of a physical property as in the isotropic case, but by different136

conditions that relate the physical properties of an anisotropic material (see137

for example [13, 14]). �138

2.3. Variational Multi-Scale stabilisation139

Let us consider the continuous problem given in Eq. 8. The bilinear form
of the problem satisfies

Buεv(u, ε
v;−u, εv) =

∫
Ω

κ(εv)2 −
∫

Ω

κ(∇ · u)2 +

∫
Ω

∇su : C : ∇su (13)

For isotropic materials, the second term is precisely the volumetric compo-140

nent of the third one, and since the deviatoric and volumetric components141

of a tensor are orthogonal, we are left with only the deviatoric part. In the142

case of anisotropic or nonlinear materials, the scaling coefficient κ̃ should be143

chosen such that the second term could be absorbed by the third one. In144

any case, it is observed that this expression provides control only over the145

deviatoric part of ∇su and εv, that is to say, this expression will allow one146

to bound only the norm of these two functions, for which one will be able to147
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obtain a stability estimate. Thus, we miss the control over the volumetric148

part of ∇su, which can be obtained at the continuous level from an inf-sup149

condition from the control over εv. This means that the norm of the volu-150

metric part of ∇su can be bounded in terms of the norm of εv provided the151

inf-sup condition holds. It is outside the scope of this paper to show how152

this can be done, but the procedure is similar to the bounding of the norm of153

the pressure from the bound on the norm of ∇su and the inf-sup condition154

in the displacement-pressure formulation for incompressible materials. How-155

ever, if we use the standard Galerkin FE discretisation, this inf-sup condition156

will not necessarily hold. Moreover, since derivatives of εv do not appear in157

Eq. 13, there is no guarantee to have them bounded, and the FE approx-158

imation to this variable may display node-to-node oscillations. This effect159

is particularly important in materials close to the incompressible limit, in160

which εv → 0, even if κ→∞, κ(εv)2 → 0 (since κεv must remain bounded).161

In our numerical experiments we have observed that the Galerkin approx-162

imation to the problem in Eq. 8 leads to severe node to node oscillations,163

similarly to what is found with other unstable mixed methods. In order to164

avoid such spurious oscillations, we now present a stabilised FE formulation165

based on the Variational Multi-Scale (VMS) concept [15, 16].166

Let us consider the domain Ω to be discretised in a partition {Ωe} of167

elements with a characteristic size h and and index e that ranges from 1 to168

the total number of elements. From this, we may construct the interpolating169

spaces for u and εv; standard continuous Lagrangian interpolations will be170

assumed for both variables. Henceforth, we will denote FE functions with171

the subscript h.172

The VMS method is based on the separation of the unknown fields, in
this case the displacement u and the volumetric strain εv, in two scales. On
one hand we have the scale which can be represented by the FE solution, uh
and εvh. On the other hand we have the so called sub-scales, which represent
the part of the solution that cannot be captured by the FE mesh and needs
to be modelled. The sub-scales are denoted with the subindex s, as us and
εvs . We thus have the decomposition

u = uh + us (14a)

εv = εvh + εvs (14b)

A similar splitting holds for the test functions, yielding an equation in the FE173

space as well as in the space of sub-scales. Here, the idea is to insert these174
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splittings into the variational form of the problem, integrate by parts the175

terms involving derivatives of the sub-scales, and then, give an approximation176

for them (not for their derivatives).177

Introducing the splitting presented in Eqs. 14 into Problem 9 and taking
the test functions from the corresponding FE spaces, upon performing the
integration by parts for each element, results in:∫

Ω

∇sδuh : C : ∇suh −
∑
e

∫
Ωe

us · ∇ · C : ∇sδuh

+

∫
Ω

∇ · δuh κ (εvh + εvs −∇ · uh) +
∑
e

∫
Ωe

us · κ∇∇ · δuh

=

∫
Ω

δuh · f (15a)∫
Ω

δεvhκ(εvh + εvs −∇ · uh) +
∑
e

∫
Ωe

us · κ∇δεvh = 0 (15b)

where the sub-scales have been discarded on the element boundaries, al-
though this assumption can be relaxed as it is described in [17]. Combining
Eqs. 15 we have:∫

Ω

∇sδuh : C : ∇suh +

∫
Ω

(δεvh +∇ · δuh)κ (εvh −∇ · uh)

+
∑
e

∫
Ωe

us · [−∇ · C : ∇sδuh + κ∇(εvh +∇ · δuh)]

+
∑
e

∫
Ωe
εvs κ (δεvh +∇ · δuh) =

∫
Ω

δuh · f (16)

The model is completed by choosing an approximation for the sub-scales.
The counterpart of Eq. 16 with the test functions taken from the space of
sub-scales would lead to an equation projected onto this space, stating that
the differential operator of the problem is equal to the residual of the FE
scales. This operator applied to the sub-scales can then be approximated
by a diagonal matrix using different arguments (see [16] for a review and
details). In view of the equations to be solved 10, the final result is

us = τ1Ps[f +∇ · C : ∇suh + κ∇(εvh −∇ · uh)] (17a)

εvs = τ2Ps[∇ · uh − εvh] (17b)
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where τ1 and τ2 are the stabilisation parameters, given below, and Ps is the178

projection onto the space of sub-scales, of either us or εvs .179

Inserting the sub-scales given by Eqs. 17 into Eq. 16, we finally obtain
the stabilised FE method we propose, which consists in finding uh and εvh
such that

Buεv ,stab(uh, ε
v
h; δuh , δεvh)

:=

∫
Ω

∇sδuh : C : ∇suh +

∫
Ω

(δεvh +∇ · δuh)κ (εvh −∇ · uh)

+
∑
e

∫
Ωe
τ1Ps[∇ · C : ∇suh + κ∇(εvh −∇ · uh)]

· [−∇ · C : ∇sδuh + κ∇(δεvh +∇ · δuh)]

+
∑
e

∫
Ωe
τ2Ps(∇ · uh − εvh)κ (δεvh +∇ · δuh)

=

∫
Ω

δuh · f −
∑
e

∫
Ωe
τ1Ps[f ] · [−∇ · C : ∇sδuh + κ∇(δεvh +∇ · δuh)]

:=Luεv ,stab(δuh , δεvh) (18)

for all test functions δuh and δεvh .180

To complete the definition of the method, we need to define the projection181

Ps and the expression of the stabilisation parameters. Even though the space182

for the sub-scales can be defined in different manners (bubble functions,183

approximation to Green’s function, etc.), when arriving at Eq. 17 there are184

essentially two options, namely, to take the space of sub-scale as the space185

of FE residuals, yielding Ps = I (the identity) or to take it as L2 orthogonal186

to the FE space, case in which Ps is the orthogonal projection to this space.187

The second option has theoretical and practical advantages, as reported for188

example in [7, 18, 19, 20]. However, here we will consider the most common189

option of taking Ps = I, which leads to classical residual-based stabilised FE190

methods. See also [16] for further discussion.191

Regarding the stabilisation parameters, they can be determined by scaling
arguments or by assuming that the sub-scales are bubble functions. In either
case, the result is that they should behave as

τ1 = c1
h2

G
, τ2 = c2

G

G+ κ
(19)
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where G is an equivalent effective shear modulus, and c1 and c2 are algorith-192

mic constants, which we take as c1 = 2, c2 = 4 for triangles and tetrahedra.193

Let us remark that the definition of an “equivalent effective shear modulus” is194

not univocal in the context of anisotropic materials. We defer the discussion195

on the exact definition of such term to the following sections.196

The formulation we propose is given by Eq. 18 with Ps = I in combination
with the τ1 and τ2 values given in Eq. 19. Considering the case of linear
elements, in which second derivatives inside the elements are zero, Eq. 18
can be arranged to give

Buεv ,stab,lin(uh, ε
v
h; δuh , δεvh)

:=

∫
Ω

∇sδuh : C : ∇suh +

∫
Ω

(1− τ2)(δεvh +∇ · δuh)κ (εvh −∇ · uh)

+

∫
Ω

τ1κ
2∇δεvh · ∇ε

v
h =

∫
Ω

δuh · f −
∫

Ω

τ1f · κ∇δεvh (20)

Remark 4. Even though it is not the purpose of this paper to analyse the
stability and convergence properties of the method in detail, the simplified
problem presented in Eq. 20 allows us to understand the effect of τ1 and τ2

on the stability. Assuming both τ1 and τ2 to be constant for the sake of
simplicity, we have that

Buεv ,stab,lin(uh, ε
v
h; uh, ε

v
h) = ‖C1/2 : ∇suh‖2 + (1− τ2)‖κ1/2εvh‖2

− (1− τ2)‖κ1/2∇ · uh‖2 + τ1‖κ∇δεvh‖
2

where C1/2 is the square root of the positive-definite tensor C and ‖ · ‖ is the197

L2 norm in Ω. From this expression we observe that198

• τ2 reduces the (positive) L2 control on εvh.199

• τ2 reduces the subtracting L2 norm of ∇ · uh.200

• τ1 provides control on the derivatives of εvh.201

It is observed that the crucial parameter from the numerical point of view is202

τ1 and that we need to ensure that τ2 < 1. �203

Remark 5. In order to be able to use generic materials we may proceed as
indicated in Remark 1. If κ̃ is an adequate physical scaling parameter, the
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problem to be solved for a general constitutive law σ = σ(ε) is∫
Ω

∇sδuh : σ(εh) +

∫
Ω

(1− τ2)(δεvh +∇ · δuh) κ̃ (εvh −∇ · uh)

+

∫
Ω

τ1κ̃
2∇δεvh · ∇ε

v
h =

∫
Ω

δuh · f −
∫

Ω

τ1f · κ̃∇δεvh (21)

We remark here that the stabilisation factor τ2 does not enter in the definition204

of the FE strain εh, and is hence not employed in the calculation of the stress.205

The formulation given by Eq. 21 reduces to the linear one when the strain
εh = ∇suh is used in the constitutive law. Another choice is to include the
εvh in the εh calculation. This choice , which comes from the (admittedly
heuristic) rationale that such enhanced strain is “better” at the Gauss point
level, leads to the modified strain

εh := ∇suh −
1

α
∇ · uh I +

1

α
εvhI (22)

Should this be the case, the first term on the left hand side of Eq. 21 becomes∫
Ω

∇sδuh :

[
σ(εh)− C :

(
− 1

α
∇ · uh I +

1

α
εvhI

)]
(23)

where C := ∂σ
∂εh

∣∣∣
εh

should be interpreted as the tangent constitutive tensor206

of the constitutive law.207

As we will show later, the tangent matrix of a Newton–Raphson lineari-208

sation of the problem described in Eq. 21, which assumes εh = ∇suh, is209

identical to that one obtained after inserting the modification in Eq. 23,210

which includes the modified strain given by Eq. 22. In any case, we note211

that the residual would of course be different. In our numerical examples,212

we have employed the modification in Eq. 23, although similar results are213

expected if such modification is not considered. �214

2.4. Finite Element Implementation—Isotropic case215

A number of, rather standard, definitions are useful to write the FE dis-216

cretisation of the proposed discrete variational problem (Eq. 21). For a node217

I of the FE mesh, let NI be its standard (Lagrangian) shape function while218

x, y, z denote its Cartesian coordinates. Furthermore, let us introduce the219
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following arrays, whose definition depends on the number of space dimensions220

221

BI =



∂NI
∂x

0 0
0 ∂NI

∂y
0

0 0 ∂NI
∂z

∂NI
∂y

∂NI
∂x

0

0 ∂NI
∂z

∂NI
∂y

∂NI
∂z

0 ∂NI
∂x


(3D) , BI =

∂NI
∂x

0
0 ∂NI

∂y
∂NI
∂y

∂NI
∂x

 (2D) (24)

222

m :=


1
1
1
0
0
0

 (3D) , m :=

1
1
0

 (2D) (25)

GI :=

∂NI
∂x
∂NI
∂y
∂NI
∂z

 (3D) , GI :=

(∂NI
∂x
∂NI
∂y

)
(2D) (26)

223

P := I− 1

α
mmt (27)

224

κ :=
mtCm

α2
(28)

where C is the Voigt representation of the tangent constitutive tensor C :=225

∂σ
∂εh

∣∣∣
εh

.226

The FE residual varies slightly depending on the choice of εh (see Remark227

5). If we choose εh := ∇suh − 1
α
∇ · uh I + 1

α
εvhI (option we followed in our228

implementation) the residual is229

RI :=
(
NI f −BtIσ(εh) + 1

α
BtICm

(
NJε

v
hJ
−Gt

JuhJ
)
− (1− τ2)κGI

(
NJε

v
hJ
−Gt

JuhJ
)

(1− τ2)κNI
(
NJε

v
hJ
−Gt

JuhJ
)

+ κ2Gt
Iτ1GJε

v
hJ
− κGt

Iτ1f

)
(29)

and if εh := ∇suh is chosen, the residual simplifies to230

RI :=
(

NI f −BtIσ(εh)− (1− τ2)κGI

(
NJε

v
hJ
−Gt

JuhJ
)

(1− τ2)κNI
(
NJε

v
hJ
−Gt

JuhJ
)

+ κ2Gt
Iτ1GJε

v
hJ
− κGt

Iτ1f

)
(30)

The definition of the discrete problem is completed by the Newton–Raphson
linearization. The derivative of the stress term can be computed as
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Bt
I

∂σ(ε)

∂uhJ
= Bt

I

∂σ(ε)

∂ε

∂ε

∂uhJ
= Bt

I

∂σ(ε)

∂ε

∂
(
∇suh − 1

α
∇ · uhI + 1

α
εvhI
)

∂uhJ

= Bt
ICBJ −

1

α
Bt
ICmGt

J (31)

and

Bt
I

∂σ(ε)

∂εvhJ
= Bt

I

∂σ(ε)

∂ε

∂ε

∂εvhJ
= Bt

I

∂σ(ε)

∂ε

∂
(
∇suh − 1

α
∇ · uhI + 1

α
εvhI
)

∂εvhJ

=
1

α
Bt
ICmNJ (32)

This allows to obtain the tangent operator as

LHSIJ :=(
Bt
ICBJ − (1− τ2)κGIG

t
J (1− τ2)κGINJ

(1− τ2)κNIG
t
J − (1− τ2)κNINJ − τ1κ

2Gt
IGJ

)
(33)

providing as expected a symmetric tangent (provided that C is symmetric).231

Remark 6. Note that the same expression of the tangent matrix is obtained232

independently on the definition of εh. We observe however that for a non233

linear material, the current value of the constitutive tensor, which we recall234

is defined as C := ∂σ
∂εh

∣∣∣
εh

), may vary according to the previous definition of235

εh, and thus result in a different stiffness matrix. �236

3. Anisotropy237

The proposed formulation works properly when the material is approxi-238

mately isotropic; however, experimentation with strongly anisotropic mate-239

rials shows that instabilities appear in both the volumetric strain and the240

displacement fields. A possibility to address this problem is to reduce the241

anisotropic case to a “similar” isotropic problem, for which the method is242

known to perform well. To this end, we observe that any anisotropic ten-243

sor C can be written as C = Tt : Ĉ : T where Ĉ is an isotropic elasticity244

tensor. Such property will allow us to propose a slight change in the choice245

of our modified volumetric strain. The following subsections detail first the246

construction of the “isotropic mapping” and to then introduce the proposed247

change in the definition of the volumetric strain.248
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3.1. Constitutive tensor scaling: the closest isotropic tensor249

The property C = Tt : Ĉ : T is easily proved by construction. Let us250

assume that C and Ĉ are the Voigt counterparts of C and Ĉ, which are251

known to be symmetric and positive definite and hence admit a square root.252

Thus, by defining c := C1/2 and ĉ := Ĉ1/2, and considering that these253

matrices are also symmetric, we can write254

C = cc = ctc = TtĈT = TtĉtĉT (34)

which implies that255

c = ĉT =⇒ T = ĉ−1c (35)

Even though such decomposition is valid for any choice of Ĉ, in practice256

it is convenient to choose such tensor as close as possible to its anisotropic257

counterpart in order to guarantee that for an initially isotropic material the258

matrix T is exactly the identity. Following the ideas presented in [21], we259

choose the Ĉ tensor that minimizes the Frobenius norm ||C− Ĉ||F , with the260

additional constraint of exactly representing the bulk modulus of the original261

anisotropic tensor (Eq. 7). This gives rise to the formulas262

Ĉ = 3
(α

3
κ
)

J + 2µK (36)

where J := ttt and K := I4 − J, with t defined as263

t :=



1√
3

1√
3

1√
3

0
0
0


(3D) , t :=

 1√
2

1√
2

0

 (2D) (37)

and264

I4 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5

 (3D) , I4 =

1 0 0
0 1 0
0 0 0.5

 (2D) (38)
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Using Voigt’s notation, the bulk modulus κ defined in Eq. 7 and appearing265

in Eq. 36 is266

κ =
mtCm

α2
(39)

which enforces that the bulk of the original anisotropic tensor C coincides267

exactly with that of the “closest” tensor Ĉ.268

Under these assumptions, the 1st Lamé parameter µ of the closest isotropic
tensor in Eq. 36 can be obtained in closed form by minimizing the Frobenius
error norm ||C− Ĉ||F to give

µ = 0.2(C00 − 2C01 + C11 + C22) (2D) (40a)

µ =
4

33

[
C00 − C01 − C02 + C11 − C12 + C22

+
3

4
(C33 + C44 + C55)

]
(3D) (40b)

3.2. Variational approach269

With the proposed mapping, the mixed strain-displacement problem pre-
sented in Eq. 4 becomes ∫

Ω

∇sδu : Tt : Ĉ : T : ε =

∫
Ω

δu · f (41a)

−
∫

Ω

δε : Tt : Ĉ : T : (ε−∇su) = 0 (41b)

which shows an obvious similarity to the isotropic case once we define ε̂ :=
T : ε (and likewise for the test function). The essential idea of our proposal
is hence to modify ε̂ instead of ε to obtain an equation in terms of the
volumetric strain. Doing so we obtain

ε̂ = T : ∇su− 1

α
Tr (T : ∇su) I +

1

α
ε̂vI

What follows is simply an algebraic exercise to follow the same steps as270

in the general case, now particularised to the proposed change of variables.271

Taking into account that T−1 : T = T : T−1 = I and that the trace can272

be written as Tr (T : ∇su) = I : T : ∇su, we obtain273

ε̂ = T : ∇su− I : T : ∇su

α
T : T−1 : I +

ε̂v

α
T : T−1 : I (42)

17



Premultiplying by T−1 we can recover the enrichment of the original strain274

as275

ε = ∇su− I : T : ∇su

α
T−1 : I +

ε̂v

α
T−1 : I (43)

Note that for isotropic materials with T = I the original formulation is re-276

covered.277

Once arrived at this point, the derivation follows exactly the same path
as in the general case. By substituting Eq. 42 into Eqs. 41a and 41b we
obtain ∫

Ω

∇sδu : Tt : Ĉ :

(
T : ∇su− I : T : ∇su

α
I +

ε̂v

α
I

)
=

∫
Ω

δu · f

and by proceeding similarly for the strain test function we have

−
∫

Ω

(
∇sδu : Tt − I : T : ∇sδu

α
I +

δε̂v

α
I

)
: Ĉ :

(
−I : T : ∇su

α
I +

ε̂v

α
I

)
= 0

Substituting Tt : Ĉ : T by the original C and then rearranging and collecting
the relevant terms leads to ∫

Ω

∇sδu : C : ∇su

−
∫

Ω

(
−I : T : ∇sδu

α

)
I : T−t : C : T−1 : I

(
−I : T : ∇su

α
+
ε̂v

α

)
=

∫
Ω

δu · f (44a)

−
∫

Ω

(
δε̂v

α

)
I : T−t : C : T−1 : I

(
−I : T : ∇su

α
+
ε̂v

α

)
= 0 (44b)

Unfortunately, the previous form is not fully convenient for modelling the278

mechanical response as the constitutive law input strain would be ∇su rather279

than ε̂. This can be avoided by rearranging the enriched strain definition in280

Eq. 42 as281

∇su = T−1 : ε̂− 1

α
T−1 : I

(
ε̂v − I : T : ∇su

)
(45)

and substituting it into Eq. 44a.282

We can now observe that with the proposed choice of “closest isotropic
tensor” the equality

κ̂ :=
I : T−t : C : T−1 : I

α2
=

I : Ĉ : I

α2
=

I : C : I

α2
= κ

18



holds. This gives the final set of equations:∫
Ω

∇sδu : σ (ε)−
∫

Ω

(I : T : ∇sδu) κ̂
(
ε̂v − I : T : ∇su

)
=

∫
Ω

δu · f (46a)

−
∫

Ω

δε̂v κ̂
(
−I : T : ∇su + ε̂v

)
= 0 (46b)

In essence, the mixed formulation that we propose for the anisotropic case
consists in taking the displacement u and the modified volumetric strain

ε̂v = I : T : ∇su = Tr(T : ∇su)

as unknowns instead of εv = Tr(∇su) = ∇ · u.283

3.3. Variational Multi-Scales stabilisation284

The discussion needs to be completed by the definition of a suitable sta-
bilisation. Proceeding similarly to the isotropic case, we can take a subgrid
stabilisation in the form of (see Eqs. 17 with Ps being the identity):

us = τ1

[
f +∇ ·

(
C : ∇suh + κ̂

(
ε̂vh − I : T : ∇suh

)
I
)]

(47a)

ε̂vs = τ2

(
I : T : ∇suh − ε̂vh

)
(47b)

Upon substitution in the Galerkin form and assuming the use of linear FE,
we obtain (see Eq. 20):∫

Ω

∇sδuh : σ (εh) +

∫
Ω

(1− τ2) (I : T : ∇sδuh) κ̂
(
ε̂vh − I : T : ∇suh

)
=

∫
Ω

δuh · f (48a)∫
Ω

(1− τ2) δε̂vh
κ̂
(
ε̂vh − I : T : ∇suh

)
+

∫
Ω

τ1κ̂
2∇δε̂vh · ∇ε̂

v
h = −

∫
Ω

κ̂∇δε̂vh · τ1f (48b)

3.4. Finite Element Implementation - Anisotropic case285

As for the isotropic case, the residual in FE notation obtains slightly286

different forms depending on the choice of εh. The option εh := ∇suh− 1
α
∇·287

uh I + 1
α
εvhI gives288

RI :=

(
NIfext −Bt

Iσ(εh) + 1
α
Bt
ICT−1mHJ − (1− τ2) κ̂Ψt

IHJ

(1− τ2) κ̂NIHJ + κ̂2Gt
Iτ1GJε

v
hJ − κ̂Gt

Iτ1f

)
(49)
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while the choice εh := ∇suh results in289

RI :=

(
NIfext −Bt

Iσ(εh)− (1− τ2) κ̂Ψt
IHJ

(1− τ2) κ̂NIHJ + κ̂2Gt
Iτ1GJε

v
hJ − κ̂Gt

Iτ1f

)
(50)

with ΨJ := mtTBJ ,290

HJ := NJε
v
hJ −Ψt

JuhJ (51)

and291

κ̂ :=
mtT−tCT−1m

α2
(52)

In either case, the LHS is identical and is given by

LHSIJ :=(
Bt
ICBJ − (1− τ2) κ̂ΨIΨ

t
J (1− τ2) κ̂ΨINJ

(1− τ2) κ̂NIΨ
t
J − (1− τ2) κ̂NINJ − κ̂2Gt

Iτ1GJ

)
(53)

4. Results292

4.1. Manufactured solution test293

We begin the result section by verifying the convergence rates of the
proposed formulation. To that end, we employ the Method of Manufactured
Solutions [22] and focus on a problem defined over a unit square, positioned
so that the bottom left corner coincides with the position (0,0). The chosen
target displacement field is

ū = A

sin (4πx)
cos (4πy)

0


where A represents an adjustable amplification factor which in our tests is
set to 10−3 to ensure that the solution remains well within the small strain
regime. Such displacement field yields the volumetric strain field

ε̄v = 4πA (cos (4πx)− sin (4πy))

The force field in equilibrium with such displacement can be obtained by
substitution into Eq. 2 to give

f̄ = (4π)2A

C00 sin (4πx) + C21 cos (4πy)
C11 cos (4πy) + C20 sin (4πy)

0
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where the coefficients Cij are the entries of the Voigt form of the constitu-294

tive tensor. For the sake of the benchmark, the domain is meshed using a295

linear quadrilateral structured mesh with 2n lateral subdivisions. Different296

choices of the elastic parameters are employed with the aim of evaluating the297

performance in different conditions.298

4.1.1. Incompressible isotropic material299

A plain strain constitutive law with the material properties E and ν equal300

to 200 N/m2 and 0.4999 is used with the aim of assessing the convergence at301

the incompressible limit.302

Table 1 collects the u and εv error norms for each one of the meshes303

we use. These results are also depicted in Fig. 1. We observe that the304

convergence is quadratic for the u field and h3/2 for the εv field.305

Table 1: Incompressible isotropic material manufactured solution test. u and εv strain
error norms.

n 1 2 3 4 5 6 7 8 9

h 0.5 0.25 0.125 6.25e-2 3.13e-2 1.56e-2 7.81e-3 3.91e-3 1.95e-3

‖u− ū‖
L2(Ω)

2.56e-1 3.57e-2 1.38e-2 2.60e-3 5.66e-4 1.34e-5 3.26e-5 8.06e-6 2.00e-6

‖εv − ε̄v‖
L2(Ω)

5.37e-2 1.95e-2 1.73e-3 5.37e-4 1.94e-4 6.56e-5 2.24e-5 7.79e-6 2.73e-6

(a) u convergence. (b) εv convergence.

Figure 1: Manufactured solution test. Incompressible isotropic material convergence anal-
ysis. τ1 computed with C.
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4.1.2. Anisotropic material306

A plane-strain anisotropic material is checked next, using the constitutive307

tensor308

C =

54469.29 8284.82 17726.94
8284.82 5981.77 2615.99
17726.94 2615.99 8305.89

 (54)

The calculated Ciso and T matrices are309

Ciso =

29692.637 8817.713 0.
8817.713 29692.637 0.

0. 0. 10437.462

 (55)

and310

T =

 1.32161932 0.0931325 0.35389397
−0.04531568 0.41023417 −0.01086188
0.58737628 0.07153362 0.66756935

 (56)

We recall that in the anisotropic case, the obtained “volumetric strain” is311

not any longer ∇·u but I : T : ∇suh. After computing the anisotropy matrix312

T corresponding to the constitutive matrix in Eq. 54, we obtain the analytical313

volumetric strain field ε̄v = 4πA (1.2763 cos (4πx)− 0.503367 sin (4πy)).314

Table 2 collects the u and ε̂v error norms for each one of the meshes we315

use. These results are also depicted in Fig. 2.316

Table 2: Anisotropic material manufactured solution test. u and εv strain error norms.

n 1 2 3 4 5 6 7 8 9

h 0.5 0.25 0.125 6.25e-2 3.13e-2 1.56e-2 7.81e-3 3.91e-3 1.95e-3

‖u− ū‖
L2(Ω)

2.08e-2 1.94e-3 2.58e-3 1.33e-3 4.11e-4 1.09e-4 2.76e-5 6.92e-6 1.73e-6

‖ε̂v − ε̄v‖
L2(Ω)

1.94e-2 1.61e-2 2.13e-2 9.89e-3 3.03e-3 8.05e-4 2.07e-4 5.36e-5 1.41e-5

4.2. 2D Cook’s membrane317

The second benchmark test considered is the well known Cook’s mem-318

brane benchmark, described for example in [8]. The setup of the test is319

shown in Fig. 3. A vertical line load of 6.25× 10−3 N/mm is applied at the320

right edge (amounting to a total load of 0.1 N). A plain strain constitutive321

model with unit thickness is used in all the 2D simulations. The proposed322

mixed formulation is tested with linear triangle and bilinear quadrilateral323

elements. The obtained results are compared with irreducible linear triangle324

and bilinear quadrilateral elements as well as with Bbar elements.325
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(a) u convergence. (b) mTBu convergence.

Figure 2: Manufactured solution test. Anisotropic material convergence analysis. τ1
computed with C.

4.2.1. Incompressible isotropic material326

We first conduct the test using a linear elastic plane strain constitutive law327

with the material properties stated in Fig. 3. The plot of the y-displacement328

on the top right point is shown in Fig. 4 for uniform mesh subdivisions329

by factors 2-29. We observe that the proposed formulation converges much330

faster to the expected value than the irreducible one. When comparing to331

the Q1P0 (Bbar) element, the proposed formulation exhibits a slightly better332

behaviour for the coarser meshes.333

Complementarily, we solve the problem for a set of unstructured triangu-334

lar meshes whose sizes can be computed as 5/2n, n ∈ (0, 6). Fig. 5 depicts335

the y-displacement convergence on the top right point. The superior perfor-336

mance of the mixed u-εv formulation becomes evident in this case.337

Finally, we also present a view of selected results in Fig. 6 which shows338

that a good solution is found for all the variables of interest.339

4.2.2. Incompressible anisotropic material340

We carry out the same test but using an incompressible anisotropic ma-
terial whose response is modelled by the constitutive tensor

C =

 970870.07 1239555.39 0.0
1239555.39 1622077.42 0.0

0.0 0.0 6711.41
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Figure 3: Setup of Cook’s Membrane Benchmark [mm].

with the associated Ciso and T matrices341

Ciso =

1292124.1915 1243904.9435 0.
1243904.9435 1292124.1915 0.

0. 0. 24109.624

 (57)

and342

T =

0.34121548 −0.20655167 0.
0.53340404 1.31787552 0.

0. 0. 0.52760836

 (58)

Fig. 7 presents the convergence results. Once again, the proposed mixed343

formulation far outperforms the irreducible approach.344

4.3. 2D bimaterial Cook’s membrane345

4.3.1. Two isotropic materials346

In the third test, we modify the second benchmark by introducing two347

different materials as shown in Fig. 8. Only one of the two materials is348

considered incompressible in order to introduce a large difference in the con-349

stitutive behaviour. Thus, E = 2.0× 104 Pa and ν = 0.4995 in the top half350

of the membrane while E = 2.0× 102 Pa and ν = 0.3 in the bottom half.351
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(a) Quadrilateral elements. (b) Triangular elements.

Figure 4: Cook’s membrane test. Incompressible isotropic material uy structured meshes
convergence results.

Figure 5: Cook’s membrane test. Incompressible isotropic material uy unstructured tri-
angular mesh convergence results.

We shall remark that introducing a discontinuity in the material is clas-352

sically challenging for mixed approaches, but the proposed approach seems353

to handle the case without difficulties, thus proving that one of the design354

goals of the method is accomplished.355

The plot of vertical displacement vs mesh subdivision for such configura-356

tion is shown in Fig. 9.357

Fig. 10 shows a view of the u, εv and stress fields showing that no spurious358

oscillations are found.359
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4.3.2. Isotropic - anisotropic materials360

We repeat the same bimaterial Cook’s membrane example but substi-
tuting the isotropic material in the bottom half of the membrane by the
anisotropic one characterized by the constitutive tensor

C =

54469.29 8284.82 17726.94
8284.82 5981.77 2615.99
17726.94 2615.99 8305.89


The plot of vertical displacement vs mesh subdivision for such configura-361

tion is shown in Fig. 11.362

Fig. 12 shows a view of the u, εv and stress fields showing that no spurious363

oscillations are found.364

4.4. 3D anisotropic Cook’s membrane365

We extrude the same geometry by 16 mm. The surface load is now366

105 N/mm2, corresponding to a total load of 25.6× 106 N. We fix the out of367

plane displacements on the front and rear surfaces. The anisotropic consti-368

tutive tensor we use is369

Caniso :=

5.99E + 11 5.57E + 11 5.34E + 11 0 0 4.44E + 09
5.57E + 11 5.71E + 11 5.34E + 11 0 0 −3.00E + 09
5.34E + 11 5.34E + 11 5.37E + 11 0 0 9.90E + 05

0 0 0 1.92E + 09 9.78E + 06 0
0 0 0 9.78E + 06 2.12E + 09 0

4.44E + 09 −3.00E + 09 9.90E + 05 0 0 2.56E + 10

 (59)

We use an unstructured mesh conformed by around 230k linear tetrahe-370

dral elements (Fig. 13).371

As can be seen in Fig. 14, smooth results are obtained for all the fields372

thus confirming that the formulation also works correctly in the 3D case.373

4.5. 3D necking bar374

The objective of the benchmark is to compare the behaviour of the pro-375

posed formulation, using both a structured and unstructured discretisation,376

to a reference Bbar implementation in a case involving plasticity. To that pur-377

pose we solve the well-known necking bar example using a perfect isotropic378

J2 plasticity law. The Young modulus, Poisson ratio, and yield stress are379

210× 109 GPa, 0.29 and 200 MPa respectively. The specimen, whose dimen-380

sions are 5.4× 0.5× 0.2 cm3, is clamped at its left face while an incremental381

total displacement of 0.006 cm is imposed at its right face.382
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A structured hexahedral mesh conformed by 4.4k elements (Fig. 15) is383

employed. A fairly similar discretisation level in terms of element sizes is384

achieved with an unstructured mesh of around 33k tetrahedra (Fig. 16).385

Figs. 17 and 18 present the plastic dissipation and the uniaxial stress ob-386

tained for the three cases. As it can be observed in Fig. 18 the final deformed387

shape and the uniaxial stress distribution is very similar in all the cases. No388

spurious oscillations are visible in the mixed solution. Plastic dissipation is389

slightly underestimated in the unstructured mesh results, probably because390

of a slightly stiffer behaviour of the tetrahedral element.391

4.6. Automotive machinery piece392

This last example presents the (purely qualitative) results of a simulation393

involving the plastic deformation of an industrial piece. The problem con-394

sists in the mechanical analysis of an aluminium object from the automotive395

industry. The testcase is selected to showcase the capability of the method in396

application ot a realistic usecase involving both elastic and inelastic regions,397

in which a standard tetrahedral formulation would perform unsatisfactorily398

The specimen (Fig. 19) has a length around 280 mm and a thickness of399

8.5 mm. It is clamped in the magenta region in Fig. 19c. A surface load of400

300 kPa is incrementally applied in the yellow region in Fig. 19c.401

The material response is modeled using an isotropic small strain perfect402

J2 plasticity law. E and ν are set to 70 GPa and 0.35. The plastic regime403

is characterized by the yield stress σy = 120 MPa. Such material model404

implies a quasi-incompressible behaviour within the plastic region (imply-405

ing that the volumetric deformation will be small compared to the total406

deformation), thus making unappealing the use of low order irreducible ele-407

ments. The complexity of the shape prevents the use of Bbar type hexahedral408

meshes, thus leaving the proposed u-εv technology as one of the few possible409

alternatives.410

The domain was meshed using 550k linear tetrahedra, employing the411

proposed mixed formulation.412

Fig. 20 depicts the obtained results. The piece shows a rather ductile413

behaviour up to the point at which a plastic hinge appears in the vicinity of414

the clamping (Fig. 20c).415

Fig. 20 collects a set of snapshots describing the evolution of the plastic416

deformation. More specifically, it can be noted that prior to the formation417

of the plastic hinge at the basis, large parts of the specimen reach the yield418
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stress (120 MPa) (Figs. 20a and 20b) and thus present a plastic energy419

dissipation (Fig. 20c).420

5. Conclusion421

The paper presents a novel mixed element, which is able to tackle the422

quasi-incompressible limit. The proposed formulation aims at addressing423

problems with material nonlinearity, and is effective also in the presence of424

multiple material interfaces. A convenient modification that allows dealing425

with initially anisotropic problems is described. The proposed mixed method426

is also proved effective in combination with a plastic material behaviour.427
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(a) ‖u‖ (b) εv

(c) S1 (d) S2

Figure 6: Cook’s membrane test. Solution snapshots for the 256 divisions quadrilateral
mesh (S1, S2: principal stresses).

32



Figure 7: Cook’s membrane test. Incompressible anisotropic material uy convergence
results.

Figure 8: Setup of Cook’s Membrane Benchmark using two distinct materials [mm].
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Figure 9: Bimaterial Cook’s membrane test. uy convergence.
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(a) ‖u‖ (b) εv

(c) S1 (d) S2

Figure 10: Bimaterial Cook’s membrane test. Solution snapshots for the 256 divisions
quadrilateral mesh.
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Figure 11: Bimaterial (isotropic - anisotropic) Cook’s membrane test. uy convergence.

36



(a) ‖u‖ (b) εv

(c) S1 (d) S2

Figure 12: Bimaterial (isotropic - anisotropic) Cook’s membrane test. Solution snapshots
for the 256 divisions quadrilateral mesh.
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Figure 13: 3D anisotropic Cook’s membrane. Unstructured linear tetrahedra mesh.
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(a) ‖u‖ (b) εv

(c) S1 (d) S3

Figure 14: 3D anisotropic Cook’s membrane. Solution snapshots.
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(a) Isometric view.

(b) xy-plane view.

Figure 15: 3D necking bar. Structured hexaedra mesh.
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(a) Isometric view.

(b) xy-plane view.

Figure 16: 3D necking bar. Structured tetrahedra mesh.
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(a) Bbar. (b) u-εv hexaedra. (c) u-εv tetrahedron.

Figure 17: 3D necking bar. Plastic dissipation (deformation scale x40).
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(a) Bbar.

(b) u-εv hexaedra.

(c) u-εv tetrahedron.

Figure 18: 3D necking bar. Uniaxial stress [Pa] (deformation scale x40).
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(a) yz-plane view.

(b) y-axis isometric view 1.

(c) y-axis isometric view 2.

Figure 19: Automotive machinery piece. Problem geometry.
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(a) Uniaxial stress rear view [Pa] (deformation scale ×5).

(b) Uniaxial stress lateral view
[Pa]. (c) Plastic dissipation (log scale).

Figure 20: Automotive machinery piece. Plasticity magnitudes isometric view.
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