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Facultat de Matemàtiques i Estad́ıstica

Degree in Mathematics

Bachelor’s Degree Thesis

Numerical Model of Cardiac
Electrochemistry

Ana Garcia Delgado

Supervised by Blas Echebarria Dominguez, Pablo Saez Viñas
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Abstract

Given the relevance of cardiac maladies in today’s society, investigation driven towards the understanding
of how our hearts work has been gaining importance. In this bachelor degree thesis we approach the matter
by giving a numerical implementation of the ten Tusscher model of the heart’s electrophysiology, a very
complete and accurate model, even if it may be more complex and computationally expensive than others.
We will also incorporate the model to work with the electrochemical problem for a single cardiac cell and
for a cardiac tissue, giving a numerical implementation for both, using the Backward Euler method in the
first case and a the Finite element method in the second one.

Keywords

Computational biophysics, Cardiac electrochemistry, Cardiac electrophysiology, Numerical implementation,
Finite elements method, Backward Euler method

1



Contents

1 Introduction 3

1.1 A simple approach to a human heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Electrochemical model 6

2.1 Chemical problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Discrete problem of electrochemistry 9

3.1 Working without the space variable: Backward Euler method . . . . . . . . . . . . . . . . 9

3.2 Working with the space variable: Finite elements method . . . . . . . . . . . . . . . . . . 10

4 Numerical implementation 13

4.1 ODE numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 PDE numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Simulations 17

5.1 Simulation for a single epicardial cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Simulation for a piece of epicardial tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Conclusions and future work 23

A Parameters for the gating variables 25

B Gates and Currents of the tissue problem 27

C Links to the codes 29

2



1. Introduction

Understanding how does our heart work has been a recurrent topic of multiple studies in the past few
years. Since the cardiac issues represent around 30% of all deaths worldwide, the study and detailed
comprehension of the human heart has become necessary to allow the scientific community to deal with
the cardiac problems.

Besides the experimental data that can be obtained directly from working with human patients, it is
possible to do a mathematical approach to model the functioning of our heart. With a mathematical model
formulated it is possible to take advantage of the power of the computation using the numerical approaches
to obtain results from simulations. If the modeling and the numerical implementation are accurate enough
we will be capable of reproducing the human heart’s electrochemical behaviour.

The first model of a cell’s electrophysiology was proposed by Hodgkin and Huxley in [HH52]. Their
modeling of the action potential in neurons was the basis to many other models for different types of
cells, including the cardiomyocytes, the cardiac cells. We can check a few of the cardiac electrophysiology
models in [FC08]. For this work we have chosen the ten Tusscher model exposed in [tTNNP04]. Although
it is more complex and computationally more expensive than other models, it is also more complete and
accurate. We will develop the model extensively in the following sections but for a first introduction this
model takes into account 4 ion concentrations, 15 ionic currents and 13 gating variables to reproduce the
electrophysiology of a cardiac human cell.

The objectives of this bachelor degree thesis are:

• First, to learn how to treat the electrical potential problem in a heart cell reducing it to a mathematical
expression that we can work with.

• Second, to understand the workings of the ten Tusscher’s model to reproduce the electrophysiology
in the cardiac cells.

• Following this to implement a numerical code that adapt this mentioned model to obtain a complete
simulation of electrochemistry for a single cardiac cell.

• Finally to extend the previous code to contemplate many cells attached forming a tridimensional
piece of cardiac tissue.

With this goal in mind we are going to work at two levels. We will see then, throughout the project,
that working at the level of a single cell will imply implementing a numerical scheme to solve an ordinary
differential equation while working at the tissue level will imply adding to the single cell scheme a numerical
method to work with a partial differential equation.

The project will be structured as follows:

• First there will be an explanation of the electrochemical model we are going to use. In this first
section, the equations that model the electrical problem at both levels will be obtained and the
details of the chemical model will be given.

• Following we will find the detailed explanation of the numerical methods we are going to use tho
solve the cell problem, Backward Euler, and the tissue problem, Finite Elements Method.

• After that we will find the schemes used in the numerical implementation codes.
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• Finally we will see some of the results obtained and will give the conclusions of the work.

This work has three appendixes, the first one to specify the formulas for some intermediate parameters
needed in one of the variables we use, the gating variables, the second one to show the values obtained for
the gating variables and the currents, both variables used in the simulation with the tissue and the final
one to host the links to the repositories with the implementation codes.

Before the end of this introduction we are going to give some general details about how a human heart
is and how it works.

1.1 A simple approach to a human heart

Figure 1: Scheme of the human heart. Image taken from [MP+95]

The human heart is a hollow organ about the size of a fist constituted by four chambers arranged two by
two as is shown in Figure 1. It also has four valves, two called atrioventricular separating the atria from
the ventricles and two more valves separating the ventricles from the principal arteries, the pulmonary and
the aorta.

The walls of our heart are formed by thousands of cells, mostly muscular ones called cardiomyocytes.
The union of all these cells forms the so-called cardiac tissue. This tissue is composed by the epicardium,
the most external layer full with vessels, the myocardium, the middle tissue that is the muscle itself and
the endocardium, the most internal of the three.

The cardiomyocytes are cells with a high resistance to fatigue. These cells answer to the electrical
pulse contracting and relaxing, fact that allows circulation of blood around the body. The membrane of
the cardiomyocytes has a selective permeability. That means that there is circulation of ions through ionic
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gates that are open or close depending on the potential difference between the interior and the exterior of
the cell.

Located in the wall of the right atrium we find a group of particular cells called the sinus node. These
cells are capable of, spontaneously, generating an electric pulse. This pulse acts as a trigger, the stimulus
increases the membrane potential above a threshold, and once exceeded, the response called action potential
will begin with the final result of the muscle contraction. This kind of system is called excitable system
and it has an attractive fixed point, the resting state, where it always returns to and where it has to remain
for a while between stimulus.
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2. Electrochemical model

As we have explained previously, the heart contraction is generated by a variation of the potential in the
cell’s membrane. Concretely, each cardiac cell membrane, works as a little capacitor. The main goal of
this section is to model the change in the membrane potential with a mathematical equation. To do so,
we start using the well known functioning of a capacitor.

We have two conductor surfaces separated by a dielectric material arranged so that the total amount
of lines in the electric field go from one surface to the other. The result of this arrangement is that if there
is difference in the potential, one of the surfaces acquires positive charge and the other acquires negative
charge. Furthermore, we get that the charge stored in the capacitor directly depends on the difference of
potential between the two surfaces. The specific formula detailing this interaction is the following simple
equation:

C =
Q

V1 − V2
(1)

where C is the capacitance, a constant related to the capacitor, Q is the stored charge and V1−V2 is the
potential difference between the two surfaces.

The membrane of the cardiomyocytes has multiple ionic channels that regulate the entrance and exit
of the ionic currents in a binary manner: either the channel is open or it is closed. Another current arrives
periodically coming form the sinus node which will act as a stimulus to open some of the gates of the
channels, and doing so, some of the ionic current will start to flow through the membrane starting all the
changes. Then, knowing that the total amount of charge has to be 0, we have that:

Iions + Istim + Istored = 0 (2)

where Iions is the sum of the different ionic currents that affect the cell, fifteen in our model as mentioned
before, Istim is the stimulus current and Istored is the charge stored in the membrane. Using that the
electrical current is the variation of charge per unit of time we get the following equation:

Iions + Istim + Istored = Iions + Istim +
δ(Ve − Vi )

δt
C = 0 (3)

From now on we are going to use Φ = Ve − Vi and we will note the time derivative as Φ̇.

Φ̇ = − Iions + Istim
C

(4)

In addition, the sum of the currents is a function depending on the potential difference Φ, thirteen gating
variables, noted as ggate , and 4 ionic concentrations, noted as cion, all three being variables. Therefore we
can rewrite our expression:

Φ̇ = f (φ, ggate , cion) (5)

The specific details of the function will be explained in the following subsection.

This last equation works for a single cell and depends only of the time, which means that it is an
Ordinary Differential Equation (ODE). To deal with a piece of tissue, i.e. multiple cells, we have to
take into account a correcting factor that will add the spatial dependence. This term will represent the
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connection between cells and will transform our local equation into a more accurate expression to model
the propagation of the electrical wave trough the fibers. The most common way to do so is adding the
term ∇(D · ∇φ). We will work assuming D, the diffusion, as a constant even if other works like [WGK11]
assume D is a second order tensor.

So, we have finally obtained a Partial Differential Equation (PDE) that takes into account the time
variable and the spatial structure to model the wave that goes through our heart to make it beat.

φ̇ = ∇(D · ∇φ) + f (φ, ggate , cion) (6)

In the following subsection we are going to discuss the details of the constitution of the function f (φ, ggate , cion).

2.1 Chemical problem

Figure 2: Scheme for currents, gates and concentrations in a cardiomyocytes. Image taken from [WGK11]

As we have mentioned before, we are following the ten Tusscher model of the electrophysiology of a human
cardiomyocyte [tTNNP04]. In general terms this model describes the ionic scheme of the cardiac cells
taking into account:

• 4 ion concentrations → cion = [cK , cNa, cCa, cCasr ].

• 15 ionic currents → Icurrent = [INa, IbNa, INaK , INaCa, IK1, IKr , IKs , IpK , It0, ICaL, IbCa, IpCa, Ileak , Iup, Irel ].

• 13 gating variables → ggate = [gm, gh, gj , gK1, gxr1, gxr2, gxs , gr , gs , gd , gf , gfCa, gg ].

The function f (φ, ggate , cion) is defined as the negative sum of 12 of the previously mentioned currents:

f (φ, ggate , cion) = −[INa + IbNa + INaK + INaCa + IK1, IKr + IKs + IpK + It0 + ICaL + IbCa + IpCa] (7)

All the currents are obtained differently, the complete formulas will be written in the following section,
but some of them take into account the gating variables and the ions concentrations.

The gating variables ggate represent the ionic channels that control the entrance and exit of the currents
in the cell. The equations that rule the state of the gates are ODEs of the time variable. We can divide
the gates into sets according to the characteristics of their ODE:
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• ggateI = [gm, gh, gj , gxr1, gxr2, gxs , gr , gs , gd , gf ]

• ggateII = [gK1, gfCa, gg ]

The ggateI differential equation only depends on the potential φ. So we have ġgateI := gI (φ, ggateI ),
and the concrete formula for gI is the following one:

gI (φ, ggateI ) =
1

τgateI (φ)
[g∞gateI (φ)− ggateI ] (8)

The ggateII formula depends on the potential, φ, and on one of the concentrations cion. Then we note
ġgateII := gII (φ, cion, ggateII ), with the formula for gII being:

gII (φ, cion, ggateII ) =
1

τgateII (φ)
[g∞gateII (φ, cion)− ggateII ] (9)

This type of equations to model the gating variables follows the model of Hodgkin-Huxley [HH52]. τgateI (φ)
and τgateII (φ) are mostly exponential functions that only depend of φ, constants in time. g∞gateI and g∞gateII
represent the steady state value and are also commonly exponential functions of the membrane potential.
The concrete formulas used for each g∞gateI , g∞gateII , τgateI (φ) and τgateII (φ) can be found on the Annex A.
We can see, however, that the characteristics of the equations allow us to solve them analytically, so no
numerical approximations will be necessary.

We also need to take into account the variation on the concentrations of the 3 most relevant ions found
in the cardiomyocytes: K +, Na+, Ca2+. We will note the K + concentration as cK , the Na+ concentration
as cNa, the total concentration of calcium as cCa and the calcium concentration on the sarcoplastic reticulum
as cCasr . The evolution of each one of the four concentrations will add to our scheme another set of ODEs
dependents of the time. Therefore we have ċion := h(cion,φ, ggate) and more precisely, the 4 differential
equations can be written in terms of the currents such follows:

ċK = − C

VF
[IK1 + IKr + IKs − 2INaK + IpK + It0] (10)

ċNa = − C

VF
[INa + IbNa + 3INaK + 3INaCa] (11)

ċCa = γCa[− C

2VF
[ICaL + IbCa + IpCa − 2INaCa] + Ileak − Iup + I rel ] (12)

ċCasr = γCasr
V

Vsr
[−Ileak + Iup − I rel ] (13)

To work with this 4 ODE we are going to use the backward Euler method. The details of the implementation
will be explained in the next section.
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3. Discrete problem of electrochemistry

This section is a necessary previous step to finally be able to obtain numerical solutions to our equations.
It is going to be divided in two parts, the first one related to the local problem of the electrochemistry
state of a single cell, and the second part related to the global problem of the electrochemistry state for a
piece or cardiac tissue.

Each one of this subsection will be divided in 2 parts:

1. Technical explanation of the numerical method chosen to solve the problem in a general way.

2. Rewriting and discretitzation of our problem according to the method.

3.1 Working without the space variable: Backward Euler method

We have explained in the previous section that the cell electrochemistry works under different ODEs. We
will explain the method we are going to use to work with them, Backward Euler, and then, apply it to our
simplified problem (5).

Backward Euler to solve an ODE

We define a general ODE as dy
dt = f (t, y(t)) in a time domain [0, T ] with a discretization [0, T ] =

∪n−1
i=0 [ti , ti+1]. We take the order 1 Taylor series expansion of y(t): y(t) = y(ti ) + ẏ(ti )(t − ti ). If we

evaluate the series expansion in ti+1 and reorganize the expression we obtain:

ẏ(ti+1) =
y(ti+1)− y(ti )

ti+1 − ti
= f (ti+1, y(ti+1)) (14)

y(ti+1)− y(ti )− f (ti+1, y(ti+1))(ti+1 − ti ) = 0 (15)

We call (14) a backward approximation of the derivative. Once we have the expression (15), we can
solve it with a Newton-Raphson method or other numerical method to find zeros on functions.

Backward Euler applied to our ODE problem

To use this implicit method the first step is discretize our time frame. We will work in the time interval
[0, T ], where the t0 = 0 corresponds to the resting state. Then we take [0, T ] = ∪n−1

i=0 [ti , ti+1] with n =
number of time steps as our time discretization. It is trivial then that T = n∆t being ∆t the constant
length of the intervals. Solve the problem then is finding φ such that:

φ̇ = f (φ, ggate , cion) in [0, T ] (16)

We apply the Backward Euler scheme explained previously and we obtain:

φ(ti+1)− φ(ti )−∆t · f (φ(ti+1), ggate , cion) = 0 (17)

From here we are going to use the Newton-Raphson method to obtain the membrane potential.
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3.2 Working with the space variable: Finite elements method

Our ultimate goal is to implement a finite element method, FEM, to solve the space related problem of the
equation (6) and to implement a finite difference numerical scheme to do the same with the related time
one. In this subsection we are going to focus on laying the groundwork to implement the FEM method.

Finite elements method in three dimensions

This part of the work will be used to explain in general terms how to apply the FEM method.

We start having a PDE in a tridimensional space. We are going to work in a domain Ω ⊂ R3, connex
and Lipschitz. We note as δΩ the borders of our space and as x = (x1, x2, x3) ∈ Ω a generic point on our
domain.

First we will rewrite our equation to a suitable form: the weak form. To do it, the steps are as follows:

1. We suppose that exist a classical solution for our PDE in the Hilbert space U = H1(Ω), our trial
space. We are going to note this solution as u := u(x , t) ∈ U .

2. We multiply both sides of our function for a so called test function, v := v(x , t) ∈ C∞0 . We define
C∞0 = {f ∈ C∞ : f = 0 on δΩ}. Then we integrate in each side of the equality.

3. We use the divergence theorem and we apply the boundary conditions to simplify our expression.

4. We change our initial v ∈ C∞0 for v := v(x , t) ∈ V taking V = H1
0(Ω). Our new space, the test

space, is a Hilbert space such that H1
0(Ω) := {v ∈ H1 : v = 0 on δΩ}

From this weak formulation we are going to obtain a weak solution of the original equation.

After reformulating our problem we proceed to discretize our domain. We have defined Ω such that it
is possible to divide it in n finite subsets Ω = ∪nee=1Ωe , called finite elements. Each element is a compact
subset with a Lipschitz border and we have that int(Ωi ) ∩ int(Ωj) = ∅, i 6= j . It is an extended practice
to take all the elements with the same “shape”, and the domain used as reference is called isoparametric
domain. Common domains for a tridimensional space are tetrahedrons or hexahedrons. In each element
we define a set of nodes, the points we are going to work with.

Finally, we have to transform our infinite test space V to a space with finite dimension. We take
Vh ⊂ V, with h > 0 the size of the finite sub-spaces, such that Vh h→0−−−→V. In this new space we choose a
basis, usually conformed by polynomial functions, {N1(x), ..., Nnh(x)} being nh the dimension of Vh. We
will obtain the solution of our problem approximated with this basis:

u ≈ uh =
nh∑
i=1

uiNi (x) (18)

We close this section and now we are going to apply the generic method to our concrete diffusion PDE.

Finite elements method applied to our diffusion problem

We start this part recovering the PDE (6) to work with the spatiotemporal problem.
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As is usual in the cardiac models, we take homogeneous Neumann conditions in the border of the
domain. Adding an initial value for the potential, solving the Cauchy problem for (6) is finding φ = φ(x , t)
such that:  φ̇ = ∇(D · ∇φ) + f (φ, ggate , cion) in Ω× (0, T ]

∇(D · ∇φ) = 0 in δΩ
φ0 = φ(x , 0) in Ω× (0, T ]

(19)

We take H = {φ = φ(·, t) ∈ H1(Ω), t ∈ [0, T ]} as our trial space and, due the homogeneous Neumann
boundary conditions in all of the border, we can take the same Hilbert space as our test space H̃. So,
having H = H̃, we obtain the weak form of the PDE as follows:∫

Ω
φ̃ · φ− φ̃ · ∇(D · ∇φ) dΩ =

∫
Ω
φ̃ · f (φ, ggate , cion) dΩ (20)

where φ̃ ∈ H̃.

In addition, we note f := f (φ, ggate , cion) and we apply the divergence theorem and the homogeneous
Neumann conditions to obtain a simplified form of our equation.∫

Ω
φ̃ · φ dΩ +

∫
Ω
∇φ̃ · (D · ∇φ) dΩ =

∫
Ω
φ̃ · f dΩ (21)

The next step is discretize our domain into a collection of finite elements. We take Ω = ∪nee=1Ωe ,
with {xj}nenj=1 nodes for each element, being ne the number of elements and nen the number of nodes per
element from now on. In addition the shape of our isoparametric domain will be an hexaedron.

In this space we define the functions Ni (x), with i = 1 ÷ nen, such that Ni (xj) = δij . We can form
now the linear polynomial basis {Ni (x)}neni=1 and approximate the potential function in this new basis:

φ
∣∣
Ωe
≈ φh

∣∣
Ωe

=
nen∑
i=1

φiNi (x) (22)

We are going to choose one of the functions of this basis as the trial function, φ̃ = Nj(x). We will obtain
a new form of our equation in terms of the new basis as follows:∫

Ω
Nj(x)

nen∑
i=1

φ̇iNi (x) dΩ +

∫
Ω
∇Nj(x) · (D∇ ·

nen∑
i=1

φiNi (x)) dΩ =

∫
Ω

Nj(x) · f dΩ (23)

We can reorganize the expression to obtain the integral terms only dependant of the basis functions:

nen∑
i=1

φ̇i

∫
Ω

Nj(x)Ni (x) dΩ +
nen∑
i=1

φi

∫
Ω
∇Nj(x) · (D · ∇Ni (x)) dΩ =

∫
Ω

Nj(x) · f dΩ (24)

Finally we are going to rewrite the expression with a more general notation:

K φ̇+ Lφ = F (25)
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where:

Kij =

∫
Ω

Nj(x)Ni (x) dΩ (26)

Lij =

∫
Ω
∇Nj(x) · (D · ∇Ni (x)) dΩ (27)

Fj =

∫
Ω

Nj(x) · f dΩ (28)

We want to compute integrals on polynomial functions element-by-element:

Kij =
ne∑
e=1

∫
Ωe

Nj(x)Ni (x) dΩ (29)

Lij =
ne∑
e=1

∫
Ωe

∇Nj(x) · (D · ∇Ni (x)) dΩ (30)

Fj =
ne∑
e=1

∫
Ωe

Nj(x) · f dΩ (31)

So we have K = AeKe , L = AeLe , F = AeFe , where Ke , Le , Fe are the integral matrix in the element e
and Ae is the connectivity matrix that gives the equivalence between the number inside the element with
the global number of the node. In each element we apply the Gauss quadrature to solve the integrals.

Our last step will be, as in the problem without the spatial variable, apply a backward Euler scheme
to solve the time problem. We discretize our time frame [0, T ] = ∪n−1

i=0 [ti , ti+1] with n = number of time
steps, and consequently T = n∆t being ∆t the constant length of the intervals.

K
φn+1 − φn

∆t
+ Lφn+1 − F = 0 (32)

From that we will use Newton-Raphson in each time step to actualize our membrane potential, that was
indeed our primal goal.
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4. Numerical implementation

In this section we are going to explain the details of the numerical implementation for our two exposed
problems: the simple cell problem with only time dependence and the more complex expression for a tissue
adding the space variable.

For the first problem we will obtain its own results but also we will be able to reuse the scheme at a
local level for the second problem.

4.1 ODE numerical implementation

Table 1: Numerical implementation scheme for a single cell

Initialize φ at steady state value
Initialize internal variables ggateI , ggateII , cion

Global Newton-Raphson iteration
Update type I gating variables ggateI ← ggateI + gI∆t
Initialize type II gating variables ggateII ← ggateII + gII∆t
Initialize ionic currents Icurrent ← I (φ, ggate , cion)
Local Newton-Raphson iteration

Calculate the ion concentration residuals Rion and the local iteration matrix dcionRion

Update ion concentrations cion ← cion − dcionRion
−1Rion

Update type II of gating variables ggateII ← ggateII + gII∆t
Update ionic currents Icurrent ← I (φ, ggate , cion)

Calculate the residual Rglobal and its derivative dφRglobal

Update the membrane potential φ← φ− dφR−1
globalRglobal

We start the procedure initializing φ, ggateI , ggateII , cion with the steady state values. We recover from
the previous section the expression (17). With this residual form we can apply a Newton-Raphson scheme,
with the dime discretization [0, T ] = ∪n−1

i=0 [ti , ti+1], and for each time step we actualize φ such follows:

Rglobal = φ(ti+1)− φ(ti )−∆t · f (φ(ti+1), ggate , cion) (33)

dφRglobal = 1−∆t · df (φ(ti+1), ggate , cion) (34)

φ(ti+1) = φ(ti )−
Rglobal

dφRglobal
(35)

In each time iteration we have to update f . To do so first, we update the ggateI variables the with
the previous step potential value. According to (8) we take the mentioned time discretization and apply a
backward approximation of the derivative to obtain:

ggateIi+1
= ggateIi +

1

τgateI (φ(ti ))
[g∞gateI (φ(ti )− ggateIi+1

]∆t (36)

Then we update the ggateII gating variables with the previous step concentrations and potential according
to (9). We take, as with the ggateI case, the mentioned time discretization and we apply the backward
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approximation of the derivative:

ggateIIi+1
= ggateIIi +

1

τgateII (φ(ti ))
[g∞gateII (φ(ti , cion)− ggateIIi+1

]∆t (37)

Both equations, 36 and 37, can be solved analytically.

Then we have to initialize the currents with the previous iteration values using the following equations:

INa = CmaxNag 3
mghgj [φ− φNa]

IbNa = CmaxbNa [φ− φNa]

INaK =
ImaxNaK (cK0cNa)

[(cNa + cNaK )(cK0 + cKNa)(1 + 0.1245e−0.1φF (RT )−1 + 0.0353E−φF (RT )−1)]

INaCa =
ImaxNaCa(eγφF (RT )−1

c3
NacCa0 − e(γ−1)φF (RT )−1

c3
Na0cCaγNaCa)

(c3
NaCa + c3

Na0)(cCaNa + cCa0)(1 + KNaCae(γ−1)φF (RT )−1)

IK1 = CmaxK1
gK1

[cK0

5.4

] 1
2

[φ− φK ]

IKr = CmaxKr gxr1gxr2

[cK0

5.4

] 1
2

[φ− φK ]

IKs = CmaxKs g
2
xs [φ− φKs ]

IpK = CmaxpK

[
1 + e

[25−φ]
5.98

]−1
[φ− φKs ]

It0 = Cmaxt0grgs [φ− φK ]

ICaL =
CmaxCaLgdgf gfCa(4φF 2)(cCae2φF (RT )−1 − 0.341cCa0)

RT (e2φF (RT )−1 − 1)

IbCa = CmaxbCa [φ− φCa]

IpCa = CmaxpCacCa[cpCa + cCa]−1

Ileak = Imax leak [cCasr − cCa]

Iup = Imax up

[
1 +

c2
up

c2
Ca

]−1

Irel = Imax relgdgg

[
1 +

γrelc
2
Casr

[c2
rel + c2

Casr ]

]

We denote as φion the following expression:

φion =
RT

zionF
log

(
cion0

cion

)
(38)

Next, we recover the equations (10), (11), (12) and (13) to work with the concentrations problem. In
each time step of the global Newton-Raphson we have to solve a system of 4 coupled ODEs. To do so, we
use the same scheme as in the previous cases. We take a fixed number of steps and an appropriate ∆h,
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we apply a backward approximation of the derivative and we obtain the following residual expressions:

RK = cKj+1
− cKj

+
C

VF
[IK1 + IKr + IKs − 2INaK + IpK + It0]∆h (39)

RNa = cNaj+1
− cNaj +

C

VF
[INa + IbNa + 3INaK + 3INaCa]∆h (40)

RCa = cCaj+1
− cCaj + γCa

[
− C

2VF
[ICaL + IbCa + IpCa − 2INaCa] + Ileak − Iup + I rel

]
∆h (41)

RCasr = cCasrj+1
− cCasrj + γCasr

V

Vsr
[−Ileak + Iup − I rel ]∆h (42)

We have then the vector of concentrations cion = [cK , cNa, cCa, cCasr ], the vector of local residuals
Rion = [RK , RNa, RCa, RCasr ] and we build the matrix of derivatives to apply the Newton-Raphson scheme:

dcionRion =


dcK RK dcNa

RK 0 0
0 dcNaRNa dcCaRNa 0
0 dcNa

RCa dcCaRCa dcCasr RCa

0 0 dcCaRCasr dcCasr RCasr

 (43)

Now for each local iteration we update the vector cion as follows:

cionj+1
= cionj − dcionRion

−1Rion (44)

With the new values of cion we update the currents and the ggateII variables.

When we obtain the final values for the currents, we can calculate f and df and update the membrane
potential for the time step.
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4.2 PDE numerical implementation

Table 2: PDE numerical implementation. Scheme proposed in [WGK11]

Initialize φ at steady state value
Initialize internal variables ggateI , ggateII , cion

Global Newton-Raphson iteration
Loop over all elements

Loop over all integration points
Update type I gating variables ggateI ← ggateI + gI∆t
Initialize type II gating variables ggateII ← ggateII + gII∆t
Initialize ionic currents Icurrent ← I (φ, ggate , cion)
Local Newton-Raphson iteration

Calculate the ion concentration residuals Rion and the local iteration matrix dcionRion

Update ion concentrations cion ← cion − dcionRion
−1Rion

Update type II of gating variables ggateII ← ggateII + gII∆t
Update ionic currents Icurrent ← I (φ, ggate , cion)

Calculate integration point residual Ripoint and its derivative dφRipoint

Calculate the element residuals Relem and element matrices dφRelem

Calculate the global residuals Rglobal and global iteration matrix dφRglobal

Update the membrane potential φ← φ− dφR−1
globalRglobal

We will add the spatial term and recover (6). The work done in the previous subsection will serve to
implement the iterations at integration point level to obtain the ggate and the cion. On the other hand our
unknown, the membrane potential φ, will be treated globally.

We start, as in the one cell case, initializing the membrane potential and giving the internal variables the
values in the steady state values. Parting from the expression (32) and taking the same time discretization
[0, T ] = ∪n−1

i=0 [ti , ti+1] with the time interval ∆t, we write the global time actualization for the membrane
potential as follows:

Rglobal = K
φn+1 − φn

∆t
+ Lφn+1 − F (45)

dφRglobal =
K

∆t
+ L− dφF (46)

φ(ti+1) = φ(ti )− dφRglobal
1Rglobal (47)

For each time step we retake the space discretization explained in the section 3.2, and we iterate through
each element and each integration point of the element. As it has been said previously, at the integration
point level we use exactly the same scheme as in the previous subsection (we can see the repeated scheme
colored in the Tables 1 and 2, we only have changed the notation Rglobal to Ripoint and dφRglobal to
dφRipoint). Finally, with the connectivity matrices we compose the global matrices to actualize our unknown
potential φ.
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5. Simulations

Table 3: Choice of parameters for the numerical implementation
Choice of parameters

Extracellular concentrations (in mM) Maximum conductance (in mm3/µ Fs)
cNa0 140 CmaxCal 0.175
cK0 5.4 Half saturation constants (in mM)
cCa0 2 cCaNa 1.38

Elementary charge per ion cNaCa 87.5
zNa 1 cKNa 1
zK 1 cNaK 40
zCa 1 cpCa 0.0005

Maximum currents (in pA/pF) cup 0.00025
ImaxNaCa 1000 crel 0.25
ImaxNaK 1.362 cbuf 0.001

Maximum currents (in mM/ms) csrbuf 0.3
Imax up 0.425/1000 Other parameters
Imax rel 8.232/1000 KNaCa 0.1
Imax leak 0.08/1000 PKNa 0.03
Maximum conductances (in nS/pF) Ctot 0.15

CmaxNa 14.838 Csrtot 10
CmaxbNa 0.00029 γNaCa 2.5
CmaxbCa 0.000592 γ 0.35
CmaxpCa 0.825 γrel 2
CmaxK1

5.405 Generic constants
CmaxKr 0.096 R 8.3143
CmaxKsepi 0.245 F 96.4867
CmaxKsendo 0.245 T 310
CmaxKsm 0.062 C 185
CmaxpK 0.0146 V 16404
Cmaxt0epi 0.294 Vsr 1094
Cmaxt0endo

0.073
Cmaxt0m 0.294

In this section we are going to simulate the variation of the potential in an epicardial cell and in a
piece of epicardial tissue following the schemes we have presented. In both cases we will initialize our
membrane potential at φ = −86 mV; the initial values for the four ion concentrations will be cNa = 11.6
mM, cK = 138.3 mM, cCa = 0.081̇0−3 mM and cCasr = 0.56 mM; and we give the gating variables the
initial values gm = 0, gh = 0.75, gj = 0.75, gd = 0, gf = 1, gfCa = 1, gr = 0, gs = 1, gxs = 0, gxr1 = 0,
gxr2 = 0, gK1 = 0.5 and gg = 1. The constant values we are going to use are the ones in the Table 3.
These values are the same used in [tTNNP04] and also in [WGK11]. The codes for both implementation
can be found following the links in the Annex C. We can also obtain the results for an endocardial cell and
an endocardial piece of tissue introducing the changes in gs that can be checked in the Tables 4 and 5.
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5.1 Simulation for a single epicardial cell

All the results that are shown in this subsection have been obtained using a time interval of one second
(1000 ms) and a time step ∆t = 0.02 ms.

Figure 3: Membrane potential evolution for an epicardial cell

The normal functioning of the action potential starts with a rapid increase of the Na+ ions due to an
influx coming from the fast sodium channels followed by a repolarization caused by an efflux of K + ions.
The concentration of Ca2+ influxed increases and is regulated again by the efflux of K + ions. The final
repolarization is due to the lack of Ca2+ input compared to K + output. There is a rest period between
the end of one cycle and the start of the next.

In Figure 3 we can see one cycle of this action potential. In less than 5ms the potential changes from
the initial value, -86 mV, to almost 40 mV. This fast upstroke is due to the external impulse generated
in the sinus node. This initial pulse will trigger the changes in the doors that affect the currents and
consequently, the concentrations.

The graphics we can find in Figure 4 represent the evolution of the four ions concentrations through
the evolution of membrane potential. We can see the fast increase of the sodium concentration quickly
followed by the increase of the potassium and calcium concentrations. The four concentrations return to
the initial state at the end of the cycle.

In Figures 5 and 6 we can see evolution of the 15 ionic currents INa, IbNa, INaK , INaCa, IK1, IKr , IKs ,
IpK , It0, ICaL, IbCa, IpCa, Ileak , Iup and Irel , the 13 gating variables gm, gh, gj , gK1, gxr1, gxr2, gxs , gr , gs ,
gd , gf , gfCa and gg through the interval chosen.

Finally, Figure 7 shows the time constants and the steady state values necessaries for the calculation
of the gating variables through the changes of the potential. The exception is the gate g∞fca that is shown
related to the variation of the concentration cCa.

The values we observe in the previous figures are pretty similar to the the ones in the work [WGK11]
that reproduce the obtained experimental values. Then we can say that we have obtained consistent values
for a human epicardial cell.
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Figure 4: Ion concentrations evolution

Figure 5: Ion currents evolution
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Figure 6: Gating variables evolution

Figure 7: Time constants,τgate , and steady state values, ggate
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5.2 Simulation for a piece of epicardial tissue

To obtain the evolution of the potential in a piece of tissue we have used a time interval of 400 ms and a
time step ∆t = 0.2 ms. The mesh created for the simulation contains 64 nodes. As explained before, the
FEM method operates by dividing the mesh into elements, and in our case the 64 nodes are divided in 24
tetrahedral elements. The diffusion used is D = 0.5 mm2. We have applied an external stimulus of 20 mV
in the left part of the mesh.

Figure 8: Membrane potential evolution for a piece of epicardial tissue

In Figure 8 is shown one cycle of the action potential obtained using the FEM method. We can see
that the potential evolution obtained is the same as in the cell case. In Figure 9 we can see in more detail
the fast upstroke of the potential and the slow decrease to the initial value on the three-dimensional mesh.

All the values obtained agree with the ones in the [WGK11]. In the Annex B are shown the values for
the evolution of the gating variables and the currents obtained in this simulation of the tissue problem.
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Figure 9: Action potential for a piece of epicardial tissue [2ms, 5ms, 8ms, 172ms, 261ms, 300ms]
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6. Conclusions and future work

The beginning of this bachelor degree thesis is focused on developing the mathematical equations that rule
the electrochemical behavior of a cardiac cell. We have obtained, after observing that the functioning of
the cell membrane can be compared to a capacitor, two expressions, an ODE and a PDE, that allow us
to follow the evolution of the potential in the membrane for a single cell and a tissue respectively thus
achieving our first objective.

Following that we have an extended explanation of how the ten Tusscher model works. The complexity
of the model is shown in the amount of variables that it takes into account, plus that the differential charac-
ter of some of them requires the implementation of numerical methods in a local level. This understanding
leads us to the achievement of our second main goal for this thesis.

Then, we have explained accurately the numerical methods necessaries to deal with the equations in
our problems and we have described the schemes used in the implementation codes. The extension of
this explanations in addition to the use of more visual schemes are meant to simplify the lecture and the
comprehension of the code files that are publicly deposited for anyone to use.

The link to the full codes for both problems can be found in Annex C.

As we can see in the previous section we have been able to implement a completely functional code to
simulate the single cell problem given by the ten Tusscher model for the electrophysiology of the cell. We
have also been able to do the implementation for the tissue problem and we can see the results obtained
with a small mesh. Due to the high computational cost of the program, a very powerful computer is
required to use a larger mesh.

For future works, these codes can be used as a base to add variations that reproduce cardiac issues,
like arrhythmia, and generate simulations that allow us to understand a little better the human heart, how
it can malfunction and how to fix it.
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A. Parameters for the gating variables

In this Annex we will present the formulas for the τgate parameters, that denote the time associated to
reaching the steady state, and the g∞gate parameters associated with the steady state necessaries to actualize
the gating variables.

Table 4: Parameters τgate

τh =

 0.1688
(

1 + e−
φ+10.66

11.1

)
if φ ≥ −40(

0.057 · e−
φ+80

6.8 + 2.7 · e0.079φ + 3.1 · 105 · e0.3485φ
)−1

if φ < −40

τd =

(
1.4 ·

(
1 + e−

φ+35
13

)−1
+ 0.25

)
·
(

1.4 ·
(

1 + e
φ+5

5

)−1
)
·
(

1 + e−
φ−50

20

)−1

τj =


0.6 · e0.057φ ·

(
1 + e−0.1(φ+32)

)−1
if φ ≥ −40(

−2.5428 · 10−4 · e0.2444φ − 6.948 · 10−6 · e−0.04391φ
)
· (φ+ 37.78) ·

(
1 + e0.311(φ+79.23)

)−1
+

+0.02424e−0.01052φ ·
(
1 + e−0.1378(φ+40.14)

)−1
if φ < −40

τm = 0.1
(

1 + e−
φ+60

5

)−1
((

1 + e
φ+35

5

)−1
+
(

1 + e
φ−50

200

)−1
)

τf = 1125 · e−
(φ+27)2

240 + 165
(

1 + e−
φ−25

10

)−1
+ 80

τr = 9.5 · e−
(φ+40)2

1800 + 0.8

τsepi = 85 · e−
(φ+45)2

320 + 5
(

1 + e
φ−20

5

)−1
+ 3

τsendo = 1000 · e−
(φ+67)2

1000 + 8

τxr1 = 2700
(

1 + e−
φ+45

10

)−1 (
1 + e

φ+30
11.5

)−1

τxs = 1100
(

1 + e−
φ+10

6

)− 1
2
(

1 + e
φ−60

20

)−1

τxr2 = 3.36
(

1 + e−
φ+60

20

)−1 (
1 + e

φ−60
20

)−1

We will get that for any gate in the subset ggateI ,

ggatej+1 =
ggatej + g∞gate

dt
τgate

1 + dt
τgate

(48)

whereas for all gates in the subset ggateII except gk1 we get ggatej+1 = ggatej if g∞gate > ggatej and φ < −60,
or

ggatej+1 =
ggatej + g∞gate

dt
2

1 + dt
2

(49)
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otherwise.

In the particular case of gk1 we have that

gk1j+1
=

0.1
(
1 + e0.06(φ−φk−200)

)−1

0.1
(
1 + e0.06(φ−φk−200)

)−1
+
(

3 · e0.0002(φ−φk+100)+e0.1(φ−φk−10)
) (

1 + e−0.5(φ−φk )
)−1

Table 5: Parameters g∞gate
Gates in ggateI

g∞h =
(

1 + e
φ+71.55

7.43

)−2

g∞d =
(

1 + e−
φ+5
7.5

)−1

g∞j =
(

1 + e
φ+71.55

7.43

)−2

g∞m =
(

1 + e−
φ+56.86

9.03

)−2

g∞f =
(

1 + e−
φ+20

7

)−1

g∞r =
(

1 + e−
φ−20

6

)−1

g∞sepi =
(

1 + e
φ+20

5

)−1

g∞sendo =
(

1 + e
φ+28

5

)−1

g∞xr1 =
(

1 + e−
φ+26

7

)−1

g∞xs =
(

1 + e−
φ+5

14

)−1

g∞xr2 =
(

1 + e
φ+88

24

)−1

Gates in ggateII

g∞fca = 0.685

((
1 +

( cantca
0.000325

)8
)−1

+ 0.1
(

1 + e
cantca−0.0005

0.0001

)−1
+ 0.2

(
1 + e

cantca−0.00075
0.0008

)−1
+ 0.23

)

g∞g =

 functional
(

1 +
(

cantca
0.00035

)6
)−1

if cantca ≤ 0.00035(
1 +

(
cantca

0.00035

)16
)−1

else
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B. Gates and Currents of the tissue problem

In this annex we can see the values obtained for the gating variables and the currents in the simulation for
the tissue problem.

Figure 10: Gating variables evolution for a node with direct stimulus in a piece of epicardial tissue

Figure 11: Currents evolution for a node with direct stimulus in a piece of epicardial tissue
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Figure 12: Gating variables evolution for a node with no direct stimulus in a piece of epicardial tissue

Figure 13: Currents evolution for a node with no direct stimulus in a piece of epicardial tissue

In Figures 10 and 11 is shown the evolution, in the 400 first milliseconds of the action potential, for
the gates and currents, respectively, of a node with external stimulus applied directly. In Figures 12 and
13 is also shown the evolution for the gates and currents but this time of a node with no external stimulus
applied directly. If we compare the results with the ones obtained in the simulation for a single cell we can
see that the values obtained are the expected ones.
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C. Links to the codes

Instead of including all the codes made for this project in an Annex we have created two repositories to
store the code and make it accessible.

This is the link to the ODE implementation code: https://github.com/Anagdelgado/Numerical-model-
of-cardiac-electrophysiology-ODE.git

This is the link to the PDE implementation code: https://github.com/Anagdelgado/Numerical-model-
of-cardiac-electrophysiology-PDE.git
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