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HIGHLIGHTS  11 

• The meteorological and air pollutant covariates allow identify extreme events. 12 

• The proposed approach improves the fitting mortality data with great variability. 13 

• Adding atmospheric parameters improves the basic demographic model. 14 

• Human mortality data modelling should consider its over-dispersion. 15 

 16 

ABSTRACT 17 

The human mortality data under a demographic approach often are modeled as a function 18 

of time. This approach does not present an adequate fit model for the number of deaths 19 

with great variability. For this reason, it is necessary for additional information (social, 20 

economic, and environmental) that complements and improves demographic modelling. 21 

This article evaluated the association between human mortality data (segregated by age 22 

groups and sex) with meteorological and air pollutant covariates at three geographical 23 

levels: country, macro-climate regions, and county. The modelling was based on a 24 

generalized linear modeling framework, and it takes into account the common 25 
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characteristic of overdispersion in human mortality data through the application of 26 

negative binomial distribution. The proposed approach improved the dynamic behavior 27 

of the Farrington-like model (basic demographic model), and it took into account the 28 

extreme meteorological and natural air pollution events. The proposed modelling worked 29 

well in cases where the amount of data was scarce. 30 

 31 

Keywords: Air quality, Environmental statistics, ENSO, Volcanic, Negative Binomial, 32 
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 36 

 37 

1. Introduction 38 

In demographic studies is common to assess human mortality (count of deaths) across a 39 

period of time using non-linear regression models, where the time as covariate has a 40 

fundamental role (Holford, 1983; Koissi et al., 2006; Viner et al., 2014; Bozikas and 41 

Pitselis, 2018; Czaja et al., 2020). For instance, a widely used method is the Lee-Carter 42 

(LC) model, which has a high dependency to the time (Siu-Hang and Wai-Sum, 2013; 43 
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Neves et al., 2017). The Serfling regression model used to estimate the number of 44 

influenza-attributable deaths consists of applying a cyclic regression to the time series of 45 

mortality rates observed. This model uses two variables to adjust fluctuation (sine and 46 

cosine) and the linear and squared time term. Another example commonly used in the 47 

demographic field is the Farrington-like model, which is a basic regression model related 48 

to time; in this article, we referred to it as a common or basic demographic approach 49 

(Farrington et al., 1996; López-Cuadrado et al., 2012; Zhou et al., 2017). Furthermore, 50 

demographic models beyond the temporal characteristic may also have spatial 51 

characteristics. For instance, the Spatiotemporal Epidemiological Modeler proposed and 52 

used by Edlund et al. (2011) in Israel. 53 

Socio-economic, biological and environmental factors could improve the mortality data 54 

modelling considering the different studies and territorial context. A better knowledge 55 

about the influence of environmental conditions over the human mortality is crucial to 56 

understand the resulting socio-economic impacts, especially if it is a region susceptible 57 

to climate change due to the drastic changes in the meteorological variables (Martínez et 58 

al, 2009; Rao et al., 2013; Nunes et al., 2016; Lucas et al., 2019; Alahmad et al., 2020, 59 

Tsekeri et al., 2020). 60 

Globally, the air quality is being continuous deteriorated (Matus, 2012; Chen at al., 2017; 61 

Zhang and Zhou, 2020; Spezzano, 2021). Several statistical epidemiological studies have 62 

associated the air pollution with human mortality (Armstrong, 2006; Barnett et al., 2010, 63 

Tran et al., 2018; Saini and Sharma, 2020). Air pollution cause about seven million 64 

premature deaths each year (Neira and Prüss-Ustün, 2016).  65 

It is common to use models with Poisson distribution in studies related to human mortality 66 

and atmospheric conditions (Liddle, 2011; Cutter, 2017; Liang et al., 2018; Guo et al., 67 

2019; Wang et al., 2020; Hyun et al., 2020). However, it has a restrictive assumption that 68 
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the variance is equal to the mean (Hilbe, 2007; Tsekeri, 2020). Count data in human 69 

mortality are often “overdispersed”, i.e, the mortality data exhibit more variation than 70 

given by the mean (Currie and Djeundje, 2010, Cruz et al., 2020). A way to deal with 71 

overdispersion for counts is to use a generalized linear model framework (GLM), where 72 

an approach few used and with satisfactory results in environmental studies is the 73 

negative binomial model (NB2, based on the Poisson-gamma mixture distribution) (Ver-74 

Hoef and Boveng, 2007; Li et al., 2009; Cameron and Trivedi, 2013; Hilbe, 2014; 75 

Alahmad et al., 2020; Muche et al., 2020; Tsekeri, 2020). 76 

This article proposes to evaluate at different geographical levels (country, macro-climates 77 

regions, and counties) the association between human mortality data disaggregated by 78 

sex and age, with meteorological and air pollution data, using negative binomial 79 

regression models (NB2). The remaining of this article provides the site description, 80 

datasets used, a brief background on statistical tools (Farrington-like model and GLM 81 

with negative binomial approach), and methodology (Section 2), the results (Section 3), 82 

the discussion (Section 4), and the principal conclusions (Sections 5). 83 

 84 

2. Data and methodology 85 

2.1. Site description 86 

Ecuador is a tropical country located in South America (Figure 1a), it boasts an 87 

extraordinary array of geographical systems that range from high altitude glaciers 88 

(Andean Region) to tropical rainforest in the Amazon region (east) upper tributaries to 89 

dry tropical forest on the Pacific coast (northwest, Coast Region) (Figure 1b). Ecuador is 90 

crossed north to south by the Andes Highlands creating a highly variable topography and 91 

micro-climates. Given its geographical location and rugged topography, Ecuador is a 92 
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highly vulnerable country to impacts of climate change. A clear example is El Niño 93 

Southern Oscillation, ENSO (Ministry of the Environment of Ecuador, 2000).  94 

Ecuador is one of the countries in America with the highest volcanic activity. Its situation 95 

within the Pacific Ring of Fire determines that it is in an area of high seismic, volcanic 96 

and landslide risk, due to the presence of more than 75% of the 850 most active volcanoes 97 

in the world (Pan American Health Organization, 2005). 98 

The administrative counties are distributed by macroclimate region, as is showed in the 99 

Figure 1c. The Coast Region is conformed by Esmeraldas (8), Manabí (14), Guayas (10), 100 

Los Ríos (13), El Oro (7), and Santa Elena (20); the Andean Region by Carchi (3), 101 

Imbabura (11), Pichincha (19), Cotopaxi (6), Tungurahua (23), Bolivar (2), Chimborazo 102 

(5), Cañar (4), Azuay (1), Loja, Santo Domingo de los Tsáchilas (21); and the Amazon 103 

Region by Sucumbíos (22), Napo (16), Pastaza (18), Orellana (17), Morona Santiago 104 

(15), and Zamora Chinchipe (24). 105 

106 
Figure 1. Study area. (a) Ecuador within South America, (b) three main macroclimate 107 

regions in Ecuador and altitude, and (c) Distribution of Ecuador by counties. 108 

 109 

2.2. Data 110 

2.2.1. Mortality data 111 
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The annually data of mortality by sex, age, and county level was extracted from the 112 

statistical register of general deaths, which are under the supervision of the National 113 

Institute of Statistics and Censures of Ecuador (INEC, acronym in Spanish). The data was 114 

collected during twenty-eight years (1990-2017). 115 

 116 

2.2.2. Meteorological and air pollution data 117 

The meteorological covariates used in this paper were air temperature (K), pressure (Pa), 118 

specific humidity (kg kg-1), and precipitation (mm). The meteorological data was monthly 119 

compiled from the meteorological assimilation systems based on satellite data. The 120 

results presented in this article are derived from three data products: (1) air temperature 121 

(MATMNXSLV), it had a spatial resolution of 0.5° × 0.667° lat-lon; (2) pressure and 122 

specific humidity (FLDAS_NOAH01_C_GL_M), both had a spatial resolution of 0.1° × 123 

0.1° lat-lon; (3) precipitation (GPCPMON), it had a spatial resolution of 0.5° × 0.5° lat-124 

lon. 125 

The air pollution covariates used in this paper were carbon monoxide (CO, ppbv), sulphur 126 

dioxide (SO2, kg m-3), and particulate matter with aerodynamic diameter less than 2.5 127 

m (PM2.5, kg m-3). The air pollution data was monthly compiled from the meteorological 128 

assimilation system based on satellite data. The Modern- Era Retrospective analysis for 129 

Research and Applications version 2 (MERRA-2). MERRA-2 published many analysis 130 

products used in air quality modelling (Kuo, 2017; Qin et al., 2018). The results presented 131 

in this article are derived from three data products: (1) carbon monoxide 132 

(M2TMNXCHM), (2) sulphur dioxide (M2TMNXAER), (3) particulate matter with 133 

aerodynamic diameter less than 2.5 m (M2T1NXAER). The data products of air 134 

pollution had a spatial resolution of 0.5°×0.625° lat-lon.  135 

 136 
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2.3. Statistical model 137 

Equation 1 represent the Negative Binomial distribution and it is used to model count 138 

data. 139 

𝑌𝑡~𝑁𝐵(𝜇𝑡)  (1) 140 

where 𝑌𝑡 denoted the count variable at the time t and 𝜇𝑡 its expectation. With the structure 141 

of a Farrington-like model, the expectation is defined as 142 

𝜇𝑡 = exp⁡(𝛽0 + 𝛽1𝑡)  (2) 143 

where⁡𝛽0 is called the intercept, 𝛽1 accounts for the linear time trend, and a time term that 144 

could be measured in days, weeks, months, years, etc. (Zhou et al., 2017). Our approach 145 

defined the expectation as 146 

𝜇𝑡 = exp⁡(𝛽0 + 𝛽1𝑡 + 𝛽2𝑋1,𝑡 + 𝛽3𝑋2,𝑡 +⁡…⁡+ 𝛽𝑘𝑋𝑘−1,𝑡).  (3) 147 

Where the regression coefficients 𝛽2,⁡𝛽3, …,⁡and 𝛽𝑘 are unknown parameter that are 148 

calculated from a set of data. 𝑋𝑖,𝑡 represents the vector of regressors that change 149 

temporally.  150 

 151 

2.4. Methodology 152 

To propose a mortality model with atmospheric covariates at different geographical levels 153 

using a generalized linear modelling framework (GLM) with Negative Binomial 154 

distribution, our approach encompasses the following steps: (i) Data treatment (mortality 155 

data disaggregated, and meteorological and air pollution dataset with annual temporal 156 

resolution), (ii) applying the GLM model to data, and (iii) evaluating the models (between 157 

common or basic approach with the proposed approach). 158 

Models were created using the packages MASS (glm.nb and stepAIC functions) and lmtest 159 

(lrtest fuction) in the R statistical Environment (Ripley et al., 2020; Zeileis, 2020). The R 160 

script is described in Sánchez-Balseca and Pérez-Foguet (2020). 161 
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 162 

Step 1. Data treatment 163 

The monthly means value of each meteorological and air pollution covariate was obtained 164 

from all grid cells that were covered by the polygon of each geographical level. The 165 

polygon describes the different geographical level: county, macro-climate region, and 166 

country. Then, the meteorological and air pollution monthly dataset was calculated as the 167 

annual mean value over each geographic level. Wang et al. (2020) used a similar method 168 

to obtain the annual average concentrations of PM2.5 in their epidemiological studies. The 169 

concentration of pollutants was transformed into µg m-3. Finally, the trend analysis for 170 

each meteorological and air pollution covariate was performed. 171 

The mortality data was disaggregated by sex and age group for each geographic level. 172 

Following the suggestion of Pan American Health Organization in 2017, we used the 173 

three “functional” age groups: A (young people under 24 years), B (middle-aged people 174 

between 25 and 54 years), and C (people over 55 years). 175 

 176 

Step 2. Model Application 177 

We applied GLM model to the dataset considering the Negative Binomial distribution, 178 

where 𝑌𝑡 denoted the observed annual deaths at year t, and 𝑋𝑖,𝑡 denote the large-scale 179 

component including meteorological, geographical, and environmental (air pollution 180 

concentration) covariates.  181 

First, we applied the GLM using the structure of a Farrington-like model to the 182 

disaggregated data by sex and age ranges for each geographic level, i.e., we only 183 

considered the time t (year) as the covariate.  184 

To check the model selection between Poisson and BN2 in mortality data, we used a 185 

likelihood ratio test. NB2 assume the conditional means are not equal to the conditional 186 
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variances. This inequality is captured by estimating a dispersion parameter that is keeping 187 

constant in a Poisson regression model. Taking account, the Poisson regression model is 188 

actually nested in the negative binomial model, we can then use a likelihood ratio test to 189 

compare these two and test the model selection (we used the function lrtest in R). For this 190 

purpose, we used the basic model explained in the last paragraph in a Poisson regression 191 

modelling framework at the country level for mortality data disaggregated by sex. 192 

Then, we applied the model using the atmospheric covariates (air temperature, pressure, 193 

specific humidity, precipitation, CO, SO2, and PM2.5). We applied the GLM to the 194 

disaggregated data by sex and age ranges for each geographic level, i.e., in each 195 

geographic level we had six models. For covariates selection in GLM approach, the 196 

suggested Akaike Information Criterion (AIC) was used (Gelman et al., 2014). We used 197 

the function stepAIC in R to produce the optimal set of covariates (taking into account 198 

their significance), this function also removes the multicollinearity if it exists. The 199 

function stepAIC choose the model by AIC in a stepwise algorithm. 200 

 201 

Step 3. Model Evaluation 202 

The Nash-Sutcliffe Efficiency Index (NSE) and Pearson correlation were used in the 203 

model evaluation. We compared the common and basic approach (only time t as 204 

covariate) with the proposed approach (with significant covariates) for each geographic 205 

level. NSE (Eq. 5) is a widely used and potentially reliable statistic for assessing the 206 

goodness of fit of models. The NSE scale is from 0 to 1, whereby NSE = 1 means the 207 

model fitted perfect. NSE = 0 means that the model is equal to the average of the observed 208 

data, and negative values mean that the average is a better predictor (McCuen et al., 2006)  209 

𝑁𝑆𝐸 = 1 −
∑(𝑌𝑜𝑏𝑠𝑖−𝑌𝑠𝑖𝑚𝑖)

2

∑(𝑌𝑜𝑏𝑠𝑖−𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2
.  (3) 210 
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The NSE and Pearson correlation are independent of the scale of measurement of the 211 

variables. 𝑌𝑜𝑏𝑠𝑖 denotes the observed annual count mortality.  𝑌𝑠𝑖𝑚𝑖  denotes simulated 212 

annual count mortality. The quality metrics for both basic and proposed approaches for 213 

each age range and sex at different geographic level were obtained. 214 

 215 

3. Results 216 

Meteorological and air pollution data description 217 

The meteorological variables at country level show some extreme events (see Figure 2), 218 

and they are related with the ENSO. For instance, in 1997-1999 were recorded pikes in 219 

the temperature, humidity, and precipitation. During these years Ecuador had the most 220 

extreme ENSO event in the last century (UCL, 2018). The temperature in the country 221 

level does not show a trend and it was constant along the time. The pressure and humidity 222 

show a slight growing trend, while, precipitation shows a strong trend increase.  223 

The ENSO effects also are visible in the macro-climatic regions, but the most important 224 

pikes are in the Coast Region. In this region, all counties presented highest values in the 225 

humidity. Stand out with the highest values of precipitation, “Los Ríos” and “Santa 226 

Elena” in the Coast region; in the Andean region “Bolivar” and “Santo Domingo de los 227 

Tsáchilas”. While in the Amazon region, stand out with the highest values of temperature 228 

“Orellana”, “Pastaza”, and “Sucumbios”. 229 

In general, the Coast region presented a decreasing trend of temperature, the Andean 230 

region presents a strong trend of temperature increase while the Amazon region does not 231 

show a trend. The three macro-climate regions present a trend of precipitation increase. 232 

Morán-Tejeda et al. (2016) and Eguiguren-Velepucha et al. (2020) presented similar 233 

behavior of temperature and precipitation in their study of climate trends in Ecuador. 234 
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Country 

 

Macro-climate regions 

 

   

Counties at Coast Region Counties at Andean Region Counties at Amazon region 

Figure 2. Meteorological data trend. (a) Temperature (K), (b) Pressure (Pa), (c) Specific humidity (kg kg-1), and (d) Precipitation (mm). 235 
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At the county geographical level, the variability of air pollutant was more evident. For 237 

instance, the annual mean concentration of SO2 varied between 0.0746 to 3.54 µg m-3. 238 

The threshold level suggested World Health Organization for the daily mean 239 

concentration for SO2 was 125 µg m-3, and it is statistically equivalent to 40 µg m-3 for 240 

the yearly mean of hourly average (Yanagisawa, 1973). The annual mean concentration 241 

of PM2.5 was between 0.0264 to 6.898 µg m-3. The threshold level suggested by the World 242 

Health Organization for the annual mean concentration for PM2.5 is 10 µg m-3 (WHO, 243 

2006). Finally, the annual mean concentration of CO was in the range from 67.75 to 244 

176.68 µg m-3. These values were lower than 20 000 µg m-3 which is measured in urban 245 

traffic environments of large European cities (WHO, 2000). 246 

The air pollutant data description in Figure 3 shows some pikes across the time, overview 247 

the most important pikes were identified in 1991-1993, 1996-1997, 2000-2002, 2005-248 

2006, and 2010-2012.  If we evaluated the period 1996-1997, the concentrations of CO 249 

and SO2 stand out at the country level, in low proportion the concentration of PM2.5. In 250 

the same period at macro-climate region, the Coast region had the most important 251 

variation in the concentrations of CO and SO2.  252 

Considering the period 2000-2002, the three air pollutants showed clear pikes in the 2002 253 

at the country and macro-climate region, where the concentration of SO2 stand out in the 254 

Andean Region, and the concentration of PM2.5 stand out in the Coast Region. This event 255 

is mainly related with the volcanic activity, in 2001-2003 the volcanoes “Guagua 256 

Pichincha” and “Reventador” presented a high activity, with a Volcanic Explosivity Index 257 

(VEI) superior to three. Figure 3 at the county level shows important peaks for the period 258 

2001-2003 in the counties of “Pichincha” and “Sucumbios for concentrations of CO and 259 

SO2 where there are located the volcanoes “Guagua Pichincha” and “Reventador” 260 

respectively. Other important volcanic events are:  In 2009-2012 the volcanoes 261 
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“Tungurahua” and “Sangay” presented volcanic activity; In 2015-2016 three volcanoes 262 

were actives (“Sangay”, “Cotopaxi”, and “Tungurahua”).  263 

The concentration of SO2 and PM2.5 at the country level increased, while the trend of CO 264 

decreased. In general, the three macro-climatic regions had positive trends for SO2 and 265 

PM2.5. Related with the concentration of CO, the Amazon region has the highest 266 

concentrations, while the Coast region had the lowest. 267 

In the air pollution analysis at county level is necessary take account the human activities 268 

(chimneys, emissions from vehicles, etc). Guayas and Los Ríos had the highest 269 

concentrations of SO2, Bolivar and Cañar in the Andean region, Orellana and Sucumbíos 270 

in the Amazon region. Zalakeviciute et al. (2020) showed through satellite images the 271 

spatial distribution of SO2 concentration in Ecuador, and their results are similar to our 272 

description. For instance, Guayas is the principal port of Ecuador and it has the most 273 

important affectation due to the emissions of SO2 from ship chimneys (Quevedo, 2015). 274 

Related to CO at the county level, Guayas had the highest concentrations until 2005, after 275 

this year Los Ríos in the Coast Region. Pichincha had the highest concentrations of CO 276 

in the Andean Region. Orellana presented highest concentrations in the Amazon Region. 277 

These counties have the largest vehicle fleet and thus the most important CO emissions 278 

(Estrella et al., 2019). Santa Elena and Guayas had the highest concentrations of PM2.5 in 279 

the Coast region, Cañar in the Andean region, and Zamora Chinchipe in the Amazon 280 

region.  281 
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Counties at Coast Region Counties at Andean Region 

 
Counties at Amazon region 

Figure 3. Air Pollution data trend. (a) CO (g m-3), (b) SO2 (g m-3), and (c) PM2.5 (g m-3) 283 
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Application and evaluation model 285 

Geographical level: Country 286 

If we aggregate the data between female and male people at the country level, skipping 287 

for a moment the age groups, we can see that the figure 4 shows that the number of deaths 288 

(denoted by dots) of male people was higher than female people. For instance, the 289 

numbers of death in 1990 was superior in male infants than female infants. In 2001, the 290 

number of male infant deaths was even higher in 1990 (INEC, 2001). Additionally, some 291 

pikes in the number of deaths are notorious in the years 1992, 2000, 2006, 2010 and 2011 292 

for both female and male people. 293 

In the assessment of model assumption using a likelihood ratio test, the p-value from the 294 

chi-squared distribution with one degree of freedom (Df) strongly suggested the BN2 295 

model is more appropriate then the Poisson model for the mortality data used in this work.  296 

Table 1. Results of the likelihood ratio test for Poisson and NB2 regression models by 297 

sex at the country level. 298 
Country Model Df LogLik Df Chisq Pr (>Chisq) 

Female 

Poisson 2 -855.36    

NB2 3 -235.93 1 1238.9 < 2.2e-16 *** 

 

Male 
Poisson 2 -446.81    

NB2 3 -227.04 1 439.53 < 2.2e-16 *** 

 299 

The mortality data modeling under a demographic approach (DM) (as a function of the 300 

time) presents good quality metrics (see figure 4). The demographic approach for female 301 

data mortality has an NSE equal to 0.8221, and a correlation coefficient equal to 0.9078. 302 

Under the same scenario, if we add meteorologically and air pollution covariates to the 303 

analysis, the quality metrics present better values. Table 2 shows the selected covariates 304 

for female mortality data modelling and these were time, CO, and SO2. Using our 305 

approach (PM), we obtained an NSE equal to 0.9278 and a correlation coefficient equal 306 

to 0.9633 to female data mortality. The AIC criterion value was lower using our approach 307 
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and it is equal to 456.16 while using the demographic approach the AIC is equal to 308 

477.85. 309 

The selected covariates for male mortality data modelling were time, pression, and SO2. 310 

For these selected covariates the model presented an AIC criterion equal to 454.3, while 311 

under a demographic approach the AIC criteria was equal to 460.08 (see Table 2). For 312 

male data mortality, we obtained NSE values equal to 0.6756 and 0.9401 for both 313 

demographic and proposed approaches respectively. Additional, correlation coefficients 314 

equal to 0.9595 and 0.9696 for both demographic and proposed approaches respectively.  315 

 316 
Figure 4. Mortality data modelling by sex at geographic level of country using both 317 

demographic (DM) and proposed (PM) approaches. 318 

 319 

Table 2. Covariates selection using AIC for mortality data modelling by sex at the 320 

country level. 321 
Year T P H Prec. CO SO2 PM2.5 AIC 

Country: Female 

x x x x x x x x 460.53 

x x  x x x x x 458.71 

x x  x x x x  457.12 
x x  x  x x  456.92 

x   x  x x  456.31 

x     x x  456.16 

x        477.85 

Country: Male 
x x x x x x x x 462.67 

x x x x x x x  460.67 

x  x x x x x  459.01 



 17 

x   x x x x  457.6 

x   x  x x  456.09 

x   x   x  455.71 

x  x    x  454.3 

x        460.08 

 322 

If we disaggregated the mortality data at country level by age groups and sex (see Figure 323 

5), the first age group had a pike in 2010 for both sexes. Mortality data in middle-aged 324 

people presented three notorious pikes in the number of deaths in male people in the years 325 

2000, 2005, and 2009. The third age group had pikes in 1991 and 2000 for both sexes, 326 

and one additional pike in 2008 for male people. Additionally, the mortality in people 327 

over 55 years had a strong trend increase. 328 

 329 
Figure 5. Mortality data segregated by sex and age range at geographic level of country 330 

using both demographic (DM) and proposed (PM) approaches.  331 

 332 

The mortality data modeling under a demographic approach presents good quality 333 

metrics, except to mortality data of male middle-aged people that it had an NSE equal to 334 

0.4367 and a correlation coefficient equal to 0.6625 (see Table 1). For this same case, our 335 

approach presented an NSE equal to 0.7926 and a correlation coefficient equal to 0.8903. 336 
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The time, temperature, and SO2 were the variables selected. In general, the covariate 337 

pressure at the country level was not significant.  338 

Table 3. NSE, and correlation coefficient for both basic and proposed approach for each 339 

sex and age range with its significant covariates at the country level. 340 

Age Range Sex 
Proposed Model NSE Coef. Corr. 

Year T P H Prec. CO SO2 PM2.5 DM PM DM PM 

A 
F X     X X  0.969 0.975 0.985 0.987 

M X        0.973 0.973 0.986 0.986 

B 
F X X      X 0.646 0.722 0.804 0.849 
M X X     X  0.436 0.792 0.662 0.890 

C 
F X X  X X X X  0.968 0.989 0.984 0.994 

M X   X  X X  0.976 0.989 0.988 0.994 

 341 

Geographical level: Macro-climate regions 342 

If we evaluate the first age group (young people), the number of deaths had a decreased 343 

trend in all macro-climate regions, the Andean region had the strongest decreased trend 344 

(from around 5000 deaths in 1990 to around 1250 deaths in 2017). The Coast and Andean 345 

regions had similar pikes in 1991-1992, 1997 and 2000 (see Figures 6a, and 6b). These 346 

regions had higher deaths in Ecuador. The Amazon region also presented pikes in 1991-347 

1992, 2000, and 2010. Additionally, the Amazon region presented over-dispersed data 348 

and low numbers of deaths in young people (see Figure 6c). The mortality data modeling 349 

for young people (age group A) under a demographic approach presented adequate 350 

quality metrics, except for the Amazon region. The mortality data of female young people 351 

in the Amazon region had an NSE value equal to 0.3896 and a coefficient of correlation 352 

equal to 0.6256. In the same scenario, our approach with time and PM2.5 as selected 353 

covariates did not present adequate quality metrics, we obtained an NSE equal to 0.4434 354 

and a coefficient of correlation equal to 0.6668. The quality metrics for mortality data of 355 

male young people were even lower than in the female young people (see Table 356 
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 357 

   
(a) (b) (c) 

Figure 6. Mortality data segregated by sex and age group at geographic level of macro-climate region (a) Coast, (b) Andean, 358 

and (c) Amazon; using both demographic (DM) and proposed (PM) approaches. 359 
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 360 

In the second age group (middle-aged people), each macro-climate region had different 361 

behavior of mortality data. The Coast region presented a trend increase, where it is 362 

strongest in the male people. The Andean region did not show a notorious trend, keeping 363 

the mortality data apparently constant. The mortality data for Coast and Andean regions 364 

had similar pikes in 1991, 1998, 2000, 2005, and 2008-2010, being it more visible in the 365 

male people. The Amazon region present a similar trend to the Coast region, despite that 366 

the mortality data had overdispersion, was possible identify important pikes in 2000, and 367 

2009-2010. For this age group, the mortality data modelling presented adequate quality 368 

metrics for all macro-climatic regions, our approach presented a slight improvement. The 369 

Andean region had the lowest quality metrics. The mortality data modelling of female 370 

middle-aged people had values of NSE equal to 0.633 and 0.7539, and correlation 371 

coefficients equal to 0.795 and 0.868 for both demographic and proposed approach 372 

respectively. Time, temperature, pressure, CO, and PM2.5 were the selected covariates in 373 

this scenario (see Table 2).   374 

Table 4. NSE, and correlation coefficient for both demographic and proposed 375 

approaches for each sex and age group with its selected covariates at the macro-climate 376 

regions. 377 

Age group Sex 
Proposed Model NSE Coef. Corr. 

Year T P H Prec. CO SO2 PM2.5 BM PM BM PM 

Climatic Region: Coast 

A 
F X   X   X  0.939 0.952 0.969 0.976 

M X X  X    X 0.904 0.944 0.951 0.972 

B 
F X X  X   X X 0.866 0.909 0.931 0.954 
M X X    X X X 0.554 0.833 0.751 0.913 

C 
F X     X X  0.968 0.988 0.985 0.994 

M X     X X  0.981 0.993 0.991 0.997 

Climatic Region: Andean 

A 
F X X       0.975 0.979 0.988 0.989 
M X X  X     0.977 0.981 0.989 0.991 

B 
F X X X   X  X 0.633 0.753 0.796 0.868 

M X X  X  X   0.550 0.743 0.742 0.862 

C 
F X X     X  0.963 0.985 0.982 0.993 

M X      X  0.954 0.969 0.977 0.984 
Climatic Region: Amazon 

A 
F X       X 0.389 0.443 0.626 0.667 

M X  X    X  0.018 0.207 0.134 0.455 

B 
F X X       0.660 0.696 0.813 0.835 

M X     X   0.871 0.875 0.933 0.936 

C 
F X  X    X  0.971 0.979 0.986 0.989 

M X    X X  X 0.977 0.985 0.989 0.992 

 378 
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The third age group presented a strong increasing trend in all macro-climate regions. The 379 

Coast and Andean regions had a higher number of deaths. The mortality data in the Coast 380 

region showed some pikes and great data variability in 1992-1993, 1998-2000, and 2009-381 

2010. The mortality data in the Andean region presented notorious pikes in 1991, 1992, 382 

and 1999-2000. In the case of Amazon region, the pikes of female deaths were notorious 383 

in 2000, 2006, and 2010-2012. The mortality data modelling for this age group presented 384 

good quality metrics for the demographic and proposed approach with NSE > 0.9543 and 385 

correlation coefficient values over 0.9682.  386 

 387 

Geographical level: County 388 

At this stage, we will describe a significant county as an example for each macro-climate 389 

region, and then, we will present the general results of the modelling process. For the 390 

Coast, Andean, and Amazon regions we choose the counties of “Los Ríos”, “Pichincha”, 391 

and “Morona Santiago” respectively. Each county fulfills three conditions: (i) 392 

founded/created before 1990, (ii) having difference in the quality metrics between 393 

demographic and proposed approach, and (iii) having the majority of meteorological and 394 

air pollutant data as selected covariates. 395 

“Los Ríos” county belongs to the Coast region. The number of deaths in “Los Ríos” 396 

county for young male people is superior to the young female people (see Figure 7). The 397 

mortality data for female young people had a decreased trend, while the mortality data 398 

for male people had an increasing trend. The mortality data in young female people had 399 

notable pikes in 1999-2001. The data for young male people showed overdispersion, but 400 

it had some pikes in 1993, 1998-2001, 2008-2009, and 2016. The number of deaths for 401 

female middle-aged people was superior to male people. The mortality data for middle-402 

aged people had an increasing trend, but it is stronger in the mortality data of female 403 



 22 

people with some pikes in 2000, and 2008-2010. Finally, the mortality data in people over 404 

55 years old had an increasing trend and were notorious two pikes in 2000 and 2010 for 405 

both sexes. 406 

 407 
Figure 7. Mortality data segregated by sex and age group at geographic level of county 408 

“Los Ríos” using both demographic (DM) and proposed (PM) approaches. 409 

 410 

The counties located in the Coast region presented adequate quality metrics in the 411 

mortality data modeling of young people (age group A) for both demographic and 412 

proposed approaches, except for Santa Elena using a demographic approach (see Table 413 

3). Santa Elena was created in 2007, thus the data collected was scarce in comparison 414 

with the other counties. Overview, the NSE values were over 0.712 and 0.809, and the 415 

correlation coefficient values over 0.844 and 0.899 for demographic and proposed 416 

approaches respectively. These threshold values corresponding to Esmeraldas county. 417 

Santa Elena county presented important improvements in the quality metrics using the 418 
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proposed approach in the modeling of mortality data. For example, the mortality data 419 

modelling of female young people had an NSE value equal to 0.950, and a correlation 420 

coefficient equal to 0.975; while using the demographic approach we obtained an NSE 421 

equal to 0.323 and a correlation coefficient equal to 0.569. The selected covariates in this 422 

example were time, temperature, pressure, humidity, precipitation, and SO2.  423 

The modelling under a demographic approach did not showed adequate quality metrics 424 

for mortality data in middle-aged people for both male and female sex at the county level 425 

(see Table 3). Only two counties presented a well-fitted modelling under a demographic 426 

approach. “Guayas” county presented good quality metrics for mortality data of female 427 

and male people, also, “El Oro” county presented good quality metrics for mortality data 428 

of male people (NSE equal to 0.528 and correlation coefficient equal to 0.727). The 429 

proposed modelling approach for mortality in middle-aged people presented important 430 

improvements in the quality metrics. However, the modelling of female mortality data in 431 

“Esmeraldas” did not have adequate quality metrics (NSE equal to 0.437 and correlation 432 

coefficient equal to 0.661). In this case, the time, temperature, humidity, and CO were 433 

the selected covariates. 434 

The both demographic and proposed approach in the mortality data modelling for people 435 

over 55 years had good quality metrics, and respectively, with NSE values over 0.732 436 

and 0.885; and correlation coefficients over 0.856 and 0.941. These threshold values 437 

corresponding to Esmeraldas county, similar to mortality data modelling in young people. 438 

Table 5. NSE, and correlation coefficient for both basic and proposed approach for each 439 

sex and age range with its significant covariates at county level of Coast region. 440 

Age group Sex 
Proposed Model NSE Coef. Corr. 

Year T P H Prec. CO SO2 PM2.5 BM PM BM PM 

El Oro 

A 
F X X       0.931 0.968 0.965 0.984 

M X X       0.841 0.879 0.917 0.937 

B 
F X     X X  0.343 0.526 0.585 0.726 

M X     X X  0.528 0.755 0.727 0.869 

C 
F X    X    0.975 0.991 0.987 0.995 

M X      X  0.967 0.979 0.983 0.989 

Esmeraldas 

A 
F X       X 0.896 0.927 0.949 0.963 

M X X       0.707 0.827 0.842 0.909 
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B 
F X X  X  X   0.035 0.437 0.188 0.660 

M X X     X  0.173 0.537 0.424 0.733 

C 
F X  X X X X   0.794 0.899 0.892 0.948 

M X X X X  X   0.732 0.886 0.856 0.941 
Guayas 

A 
F X       X 0.712 0.809 0.844 0.899 

M X       X 0.659 0.795 0.812 0.892 

B 
F X       X 0.864 0.885 0.930 0.941 

M X     X X X 0.597 0.845 0.778 0.919 

C 
F X     X   0.956 0.975 0.979 0.988 

M X X X X  X  X 0.964 0.980 0.982 0.990 

Los Ríos 

A 
F X X  X   X X 0.929 0.967 0.967 0.983 

M X X     X  0.849 0.923 0.927 0.961 

B 
F X     X X X 0.024 0.546 0.154 0.739 

M X X     X X 0.185 0.655 0.438 0.809 

C 
F X X  X  X   0.942 0.971 0.970 0.985 

M X X      X 0.960 0.975 0.979 0.987 

Manabí 

A 
F X        0.913 0.913 0.955 0.955 

M X  X      0.907 0.926 0.952 0.962 

B 
F X   X  X   0.103 0.505 0.322 0.711 

M X X X      0.353 0.734 0.599 0.857 

C 
F X      X  0.962 0.978 0.981 0.988 
M X        0.976 0.976 0.9877 0.987 

Santa Elena 

A 
F X X X X X  X  0.323 0.950 0.569 0.974 

M X X X X X  X  0.198 0.979 0.445 0.989 

B 
F X X X X X  X X 0.238 0.918 0.488 0.957 
M X X X X X  X  0.021 0.861 0.144 0.928 

C 
F X X X X X X X X 0.849 0.992 0.921 0.996 

M X X X X X X X X 0.896 0.994 0.947 0.997 

 441 

“Pichincha” county presented a similar behavior to “Los Ríos” county in the mortality 442 

data in young people. The number of deaths in young male people was superior to the 443 

number of deaths in female people, and it followed an increasing trend (see Figure 8). 444 

The pikes in 2000, 2007, and 2015 were more notorious in the mortality data of young 445 

male people. The number of deaths in female middle-aged people is superior to the 446 

number of deaths in male people, and it showed an increased trend with important pikes 447 

in 2000, 2006, and 2012. Finally, the mortality data for people over 55 years presented 448 

an increasing trend with pikes in 2000, 2007, and 2012.  449 
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 450 
Figure 8. Mortality data segregated by sex and age group at geographic level of county 451 

“Pichincha” using both demographic (DM) and proposed (PM) approaches. 452 

 453 

The counties located in the Andean region presented adequate quality metrics in the 454 

mortality data modeling of young people (age group A) for both demographic and 455 

proposed approaches, except for “Santo Domingo de los Tsáchilas” using a demographic 456 

approach (see Table 4). Santo Domingo was created in 2007, thus the data collected was 457 

scarce in comparison with the other counties in its macro-climate region. However, the 458 

quality metrics for “Santo Domingo de los Tsáchilas” showed improvements using the 459 

time, temperature, humidity, SO2, and PM2.5 as selected covariates. We obtained an NSE 460 

equal to 0.649 and a correlation coefficient equal to 0.820. 461 

The modelling of mortality data for female middle-aged people using a demographic 462 

approach did not present adequate quality metrics for Azuay, Bolivar, Cañar, Carchi, 463 

Imbabura, and Pichincha. The low threshold values corresponding to Pichincha county 464 

with an NSE value of 0.045 and correlation coefficient value of 0.211. In the same 465 
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scenario, the addition of meteorological and air pollutant covariates improvement the 466 

quality metrics, except to Imbabura and Pichincha, with NSE values of 0.389 and 0.402, 467 

and correlation coefficient values of 0.629 and 0.634 respectively. The modeling of 468 

mortality data for male middle-aged people using a demographic approach did not present 469 

adequate quality metrics to Bolivar, Carchi, and Pichincha. For Carchi, adding 470 

meteorological and air pollutant covariates did not improve the modelling of male middle-471 

aged people with an NSE equal to 0.499 and a correlation coefficient equal to 0.707. For 472 

Bolivar and Pichincha, the improvement was notorious. 473 

The modelling of mortality data for female people over 55 years using a demographic 474 

approach presented unacceptable quality metrics for Bolivar, and Cotopaxi; with NSE 475 

values of 0.259 and 0.239, and correlation coefficient values of 0.510 and 0.489 476 

respectively. Adding meteorological and air pollutant covariates did not register 477 

significantly improves in the modelling of mortality data of female people over 55 years 478 

in Cotopaxi, while the modelling in Bolivar with time and temperature as selected 479 

covariates showed improvements. The modelling of mortality data for male people over 480 

55 years using a demographic approach presented bad quality metrics for Carchi, 481 

Chimborazo, and Cotopaxi. In the same scenario, adding meteorological and air pollutant 482 

covariates only improvements the modelling of mortality data of Carchi county, where 483 

the selected covariates were time and pressure. 484 

Table 6. NSE, and correlation coefficient for both basic and proposed approach for each 485 

sex and age range with its significant covariates at county level of Andean region. 486 

Age group Sex 
Proposed Model NSE Coef. Corr. 

Year T P H Prec. CO SO2 PM2.5 BM PM BM PM 

Azuay 

A 
F X X  X  X X  0.816 0.945 0.909 0.972 

M X   X  X X  0.759 0.909 0.877 0.954 

B 
F X X    X X  0.383 0.519 0.619 0.721 

M X   X     0.646 0.778 0.804 0.882 

C 
F X X  X  X X  0.889 0.964 0.944 0.982 
M X   X  X X  0.877 0.938 0.937 0.969 

Bolivar 

A 
F X     X   0.908 0.980 0.955 0.990 

M X X X    X  0.854 0.915 0.924 0.956 

B 
F X X       0.229 0.506 0.479 0.712 
M X X       0.372 0.744 0.612 0.863 

C F X X       0.259 0.643 0.510 0.802 
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M X        0.521 0.521 0.722 0.722 

Cañar 

A 
F X   X  X X  0.813 0.925 0.907 0.962 

M X  X X  X X  0.607 0.914 0.792 0.956 

B 
F X X       0.425 0.559 0.652 0.748 

M X        0.699 0.699 0.836 0.836 

C 
F X X       0.842 0.896 0.918 0.947 

M X   X   X X 0.675 0.807 0.822 0.898 

Carchi 

A 
F X        0.899 0.899 0.948 0.948 

M X   X     0.928 0.945 0.963 0.972 

B 
F X       X 0.389 0.503 0.624 0.709 

M X X       0.282 0.499 0.531 0.707 

C 
F X        0.604 0.604 0.777 0.777 
M X  X      0.310 0.526 0.557 0.726 

Chimborazo 

A F X   X  X   0.939 0.958 0.969 0.979 

 M X   X   X  0.928 0.959 0.964 0.979 

B F X  X      0.874 0.911 0.935 0.954 
 M X      X  0.896 0.929 0.946 0.964 

C F X        0.728 0.728 0.853 0.853 

 M X        0.493 0.493 0.702 0.702 

Cotopaxi 

A F X   X     0.963 0.976 0.981 0.988 
 M X X       0.968 0.978 0.984 0.989 

B F X X       0.759 0.817 0.872 0.904 

 M X   X     0.691 0.809 0.832 0.899 

C F X        0.239 0.239 0.489 0.489 

 M X        0.256 0.256 0.506 0.506 
Imbabura 

A F X        0.926 0.926 0.964 0.964 

 M X X       0.964 0.967 0.982 0.983 

B F X X    X   0.078 0.389 0.279 0.624 
 M X        0.659 0.659 0.812 0.812 

C F X  X      0.656 0.783 0.810 0.885 

 M X  X    X  0.582 0.767 0.763 0.876 

Loja 

A F X        0.939 0.939 0.969 0.969 
 M X        0.970 0.970 0.985 0.985 

B F X    X  X  0.561 0.765 0.749 0.875 

 M X    X  X  0.096 0.250 0.309 0.5001 

C F X      X  0.923 0.949 0.961 0.975 

 M X   X X X X  0.905 0.947 0.952 0.973 
Pichincha 

A F X   X  X   0.927 0.955 0.963 0.978 

 M X   X X X X  0.839 0.937 0.919 0.968 

B F X    X X   0.045 0.402 0.211 0.634 

 M X   X X X  X 0.003 0.619 0.050 0.787 
C F X   X X X X  0.949 0.981 0.974 0.990 

 M X    X X X  0.917 0.969 0.957 0.985 

Santo Domingo de los Tsáchilas 

A 
F X X  X   X X 0.499 0.649 0.732 0.820 

M X X X X X X X X 0.505 0.635 0.734 0.812 

B 
F X X  X   X X 0.662 0.771 0.832 0.888 

M X X X X   X X 0.598 0.693 0.794 0.846 

C 
F X X X   X X  0.786 0.853 0.901 0.928 

M X X X X X X X X 0.776 0.836 0.895 0.920 

Tungurahua 
A F X    X X   0.956 0.971 0.978 0.986 

 M X      X  0.947 0.957 0.973 0.978 

B F X X       0.530 0.578 0.728 0.760 

 M X        0.543 0.543 0.737 0.737 

C F X        0.880 0.880 0.938 0.938 
 M X  X      0.771 0.822 0.878 0.907 

 487 

“Morona Santiago” had low number of deaths in comparison with the counties located in 488 

the Coast and Andean macro-climate regions (Figure 9). The number of deaths in young 489 

male people was superior to female people, even it has an increasing trend. Despite the 490 
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overdispersion, it was possible to identify pikes in 1991, 1998-2000, 2009-2010, and 491 

2014-2015. The mortality data in middle aged people had an increased trend, being it 492 

more notorious in the mortality data of female people. Additionally, the number of deaths 493 

of female middle-aged people is superior to male people and were notorious pikes in 494 

2000, 2006-2009, 2013, and 2016. The mortality data for people over 55 years had 495 

increasing trend, with pikes in 1999, 2006, 2013-2015. 496 

 497 

 498 
Figure 9. Mortality data segregated by sex and age group at geographic level of county 499 

“Morona Santiago” using both demographic (DM) and proposed (PM) approaches. 500 

 501 

The modelling of mortality data for young female people using a demographic approach 502 

presented bad quality metrics for “Morona Santiago”, “Orellana”, “Pastaza”, and 503 

“Sucumbíos”; with NSE values under 0.315 and correlation coefficients under 0.492. The 504 

selected covariates time, temperature, CO, SO2, and PM2.5 improvement the quality 505 
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metrics in the modelling of mortality data for young female people only in “Orellana” 506 

(see Table 5). The modelling of mortality data for young male people using a 507 

demographic approach presented inadequate quality metrics for “Morona Santiago”, 508 

“Orellana”, “Pastaza”, and “Sucumbíos”. Only in “Orellana” our approach did not present 509 

adequate quality (NSE equal to 0.429, and correlation coefficient equal to 0.655), while 510 

in the remain of counties had well quality metrics. 511 

The modelling of mortality data for female middle-aged people using a demographic 512 

approach presented problems in “Morona Santiago”, “Napo”, “Orellana”, and “Zamora 513 

Chinchipe”. For this scenario, adding extra information worked well for “Orellana”, 514 

where the selected covariates were time, temperature, CO, SO2, and PM2.5. The modelling 515 

of mortality data for male middle-aged people using meteorological and air pollutant data 516 

improvement the demographic approach, and it had adequate quality metrics, except to 517 

“Napo” and “Zamora Chinchipe”. 518 

In general, the modelling of mortality data for people over 55 years using our approach 519 

presented better quality metrics than using the demographic approach. However, “Napo” 520 

did not present adequate quality metrics, with an NSE equal to 0.480 and a correlation 521 

coefficient equal to 0.693. For this case, the time and SO2 were the selected covariates. 522 

Table 7. NSE, and correlation coefficient for both basic and proposed approach for each 523 

sex and age range with its significant covariates at county level in the Amazon macro-524 

climate region. 525 

Age group Sex 
Proposed Model NSE Coef. Corr. 

Year T P H Prec. CO SO2 PM2.5 BM PM BM PM 

Morona Santiago 

A 
F X    X  X  0.315 0.492 0.562 0.702 

M X    X X   0.008 0.358 0.089 0.598 

B 
F X X       0.212 0.483 0.463 0.708 

M X     X   0.461 0.606 0.681 0.778 

C 
F X   X     0.902 0.924 0.949 0.961 

M X   X     0.843 0.894 0.918 0.946 

Napo 

A 
F X X       0.683 0.794 0.840 0.897 

M X      X  0.582 0.700 0.779 0.849 

B 
F X        0.285 0.285 0.536 0.536 

M X      X  0.171 0.349 0.415 0.591 

C 
F X  X    X  0.550 0.758 0.743 0.872 
M X      X  0.392 0.480 0.627 0.693 

Orellana 

A 
F X X    X X X 0.081 0.715 0.284 0.845 

M X X    X X X 0.067 0.429 0.258 0.655 

B F X X    X X X 0.361 0.624 0.601 0.789 
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M X X X  X X X  0.599 0.796 0.776 0.892 

C 
F X X    X X X 0.860 0.953 0.929 0.976 

M X X     X X 0.781 0.921 0.885 0.959 

Pastaza 

A 
F X       X 0.128 0.403 0.359 0.635 

M X   X    X 0.098 0.568 0.314 0.753 

B 
F X       X 0.502 0.585 0.709 0.765 

M X       X 0.467 0.641 0.687 0.802 

C 
F X       X 0.846 0.870 0.919 0.933 
M X       X 0.876 0.950 0.936 0.975 

Sucumbíos 

A F X       X 0.001 0.422 0.033 0.649 

 M X       X 0.412 0.643 0.642 0.802 

B F X      X  0.612 0.699 0.782 0.836 
 M X      X  0.736 0.889 0.862 0.943 

C F X      X  0.919 0.941 0.959 0.970 

 M X X       0.948 0.961 0.973 0.980 

Zamora Chinchipe 

A F X      X  0.656 0.704 0.809 0.839 
 M X x       0.714 0.801 0.845 0.895 

B F X     x   0.033 0.146 0.182 0.383 

 M X      X  0.019 0.179 0.141 0.425 

C F X     X   0.911 0.939 0.955 0.969 

 M X X       0.902 0.941 0.950 0.970 

 526 

4. Discussion 527 

This article proposed modelling the association between mortality data segregated by age 528 

group and sex with atmospheric parameters using GLM with negative binomial 529 

distribution at different geographic levels. We used the three “fundamental” age groups 530 

for practicality and simplicity in data management. However, our approach presented 531 

difficulties in modeling mortality data in middle-aged people, this limitation could be 532 

caused by using wide age ranges. However, for further works, each age group proposed 533 

could be divided to identify the association between mortality data and atmospheric 534 

covariates in more detail. 535 

The negative binomial regression model is often used for over-dispersed data (Currie and 536 

Djeundje, 2010), however, additional information through both meteorological and 537 

pollution covariates improvements the dynamic behavior of modelling with a 538 

demographic approach. This characteristic allows modeling better the peaks of numbers 539 

of deaths. In this work, we analyzed the relationship between the mortality data and 540 

atmospheric factors through the selected covariates in our approach. Additionally, we 541 

have sought to answer the high variability of atmospheric factors through extreme events 542 
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related to ENSO and volcanoes. The meteorological and air pollutant covariates influence 543 

directly mortality in the with or without ENSO/volcano-related-extremes.  544 

The peaks of number of deaths in this study were related with some meteorological and 545 

air pollution extreme events. The ENSO in the period of 1991-1992 with a moderate 546 

intensity generated high values of temperature at the country level. It was notable a high 547 

number of deaths in people over 55 years and we used the time, temperature, humidity, 548 

precipitation and CO as covariates to modelling. At the macro-climate region level, stand 549 

out the high values of temperature in all regions and the high values in the precipitation 550 

for the Amazon region. In this context the high number of deaths in young people for all 551 

regions was notable, where the selected covariates for modelling were time, temperature, 552 

and humidity. Also, a high number of deaths in middle-aged people and people over 55 553 

years was evident mainly in the Coast and Andean regions, where the selected covariates 554 

were temperature, humidity, and CO. Additionally, the concentration of carbon monoxide 555 

was affected for ENSO events, for this reason, the concentration presented pikes. This 556 

behavior has been widely studied and it is related to the affectation of the carbon cycle in 557 

the biospheric uptake of CO2 (e.g. due to drying of tropical land regions) (Chatterjee et 558 

al., 2017). Rowlinson et al. (2019) explained that the ENSO events influence fire 559 

occurrences, wetland emission, and atmospheric circulation and thus the CO 560 

concentration increase; for instance, they concluded that during the ENSO event in 1997 561 

and 1998, there were increased the emission from biomass burning globally, causing 562 

global CO concentrations to increase by more than 40%. Ecuador had the most extreme 563 

ENSO event in the last century in 1997-1998 (Espinoza et al., 2009; Morán-Tejada et al. 564 

2016), where the meteorological covariates and concentration of CO in this work showed 565 

important association with the modelling of mortality data. For ENSO in 1997 the number 566 

of deaths showed a slight increase in relation to the previous years. At the country level, 567 
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there were observed pikes in the number of deaths of male people for all age groups, 568 

while in the female data only in middle-aged people and people over 55 years. At macro-569 

climate region, the high number of deaths for this event were identified in all age groups 570 

in the coast region, in the young male people of the Andean region, and in the female 571 

people in the Amazon region. The main selected covariates were time, temperature, 572 

humidity, and CO. The effects also were visible at the county level, “Los Ríos” and 573 

“Pichincha” presented a high number of deaths of male people for all age groups. The 574 

selected covariates for modelling were time, temperature, humidity, precipitation, and 575 

CO.  576 

In the proposed work, SO2 was a selected covariate in most cases. High emissions of SO2 577 

allow us to determine volcanic activities in our work, despite previous studies did not 578 

present consistent conclusions on the effect of SO2 in the mortality data (Park et al., 2011; 579 

Analitis et al., 2014, Chen et al., 2017). For instance, the number of deaths for young 580 

male people and male middle-aged people in 2009 at country level were high. At macro-581 

climate region, the Amazon region had highest number of young people, the three regions 582 

showed pikes in the middle-aged people, and Coast and Amazon regions showed pikes 583 

in the number of deaths of people over 55 years. In this year “Tungurahua” and “Sangay” 584 

volcanoes had activity, they are located in the counties of Tungurahua and Morona 585 

Santiago. Additional, 2010 had the highest number of reported disasters related to the 586 

climatic change (meteorological, hydrological, and climatological), Ecuador had between 587 

31 to 60 disaster events (Leonard, 2018).  588 

In the proposed work we have three counties, which were created recently and thus the 589 

mortality data was less than the other counties. These counties presented better quality 590 

metrics with our approach. Although the Negative Binomial approach is not 591 

recommended for small data samples (Hilbe, 2007), the additional information through 592 
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meteorological and air pollutant covariates helped to obtain improvements in the 593 

modelling. For further works under our approach for count data with excess zeros of 594 

unknown sources such as the number of deaths, the Hurdle negative binomial model and 595 

the Zero-inflated model are the suggested options (Muche et al., 2020).   596 

Hilbe (2007, 2041) explained that the confidence intervals for the negative binomial 597 

regression model are narrower as compared to those from a Poisson regression model, 598 

thus the uncertainties in fitted values could be lower. For this reason, the likelihood ratio 599 

test showed that is more appropriate use BN2 for count data with overdispersion. 600 

For further works, the proposed model could be applied to make short-term mortality 601 

predictions using different environmental scenarios. Also, it could be used with 602 

environmental predictions and their uncertainty on a specific country, macroclimate 603 

region, or county to obtain the prediction of the number of deaths by sex and age. 604 

 605 

5. Conclusions 606 

The proposed approach with meteorological and air pollution data at different 607 

geographical levels improved the Farrington-like model, which is a classical demographic 608 

approach to modeling mortality data as a function of time. The additional information 609 

through the meteorological and air pollutant covariates adequately described the great 610 

variability present in the mortality data. Thus, it improved the dynamic behavior of the 611 

classical demographic modelling. The meteorological and air pollutant data allowed us to 612 

identify extreme environmental events, like ENSO and volcanic activity, and their 613 

relationship with the most important pikes in the human mortality data of Ecuador. The 614 

modeling presents better quality metrics in the aggregated data related to the geographic 615 

level. For instance, at the country level, the proposed model presents better quality metrics 616 

than on at the county level. The macro-climate regions with a high number of human 617 
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deaths present better-fitted values using our approach. Additionally, in cases with limited 618 

mortality data, the proposed model presented adequate behavior as well. The proposed 619 

model could support making short-term projections in the number of human deaths by 620 

sex and age in different environmental scenarios. 621 

 622 

Acknowledgements 623 

Joseph Sánchez Balseca is the recipient of a full scholarship from the Secretaria de 624 

Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT), Ecuador. The 625 

authors want to thank the research group on Engineering Sciences and Global 626 

Development (EScGD) and the Agència de Gestió d'Ajuts Universitaris i de Recerca de 627 

la Generalitat de Catalunya (Ref. 2017 SGR 1496). 628 

 629 

Appendices 630 

Table A.1. Covariates selection using AIC for mortality data modelling by sex and age 631 

range at the country level. 632 
Covariates 

AIC 
Year T P H Prec. CO SO2 PM2.5 

Country: Female 

x x x x x x x x 460.53 

x x  x x x x x 458.71 

x x  x x x x  457.12 
x x  x  x x  456.92 

x   x  x x  456.31 

x     x x  456.16 

         

Country: Male 
x x x x x x x x 462.67 

x x x x x x x  460.67 

x  x x x x x  459.01 

x   x x x x  457.6 

x   x  x x  456.09 
x   x   x  455.71 

x  x    x  454.3 

         

Country: Female-Age range: A 

x x x x x x x x 391.06 
x x x  x x x x 389.13 

x x x   x x x 387.23 

x    x x x x 385.32 

x    x x x  383.48 

x     x x  381.8 
         

Country: Female-Age range: B 

x x x x x x x x 353.01 

x x x  x x x x 351.02 

x x x  x x  x 349.04 
x x x  x   x 347.24 

x x   x   x 345.5 
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x x      x 345.35 

         

Country: Female-Age range: C 

x x x x x x x x 421.77 
x x x x x x x  420.08 

x x  x x x x  418.72 

         

Country: Male-Age range: A 

x x x x x x x x 391.54 
x x x x x x x  389.55 

x x x  x x x  387.63 

x x x   x x  385.67 

x x    x x  383.9 

x x     x  382.65 
x      x  380.87 

x        379.27 

         

Country: Male-Age range: B 

x x x x x x x x 409.87 
x x x x  x x x 408.75 

x x x   x x x 407.57 

x x x    x x 406.21 

x x     x x 405.09 

x x     x  405.08 
         

Country: Male-Age range: C 

x x x x x x x x 430.23 

x  x x x x x x 428.27 

x  x x x x x  426.55 
x   x x x x  425.38 

x   x  x x  424.47 

 633 

Table A.2. Covariates selection using AIC for mortality data modelling by sex and age 634 

range at macro-climate region: Coast. 635 
Covariates 

AIC 
Year T P H Prec. CO SO2 PM2.5 

Coast region: Female-Age range: A 

x x x x x x x x 347.98 

x x x x x  x x 345.98 

x x x x x  x  344.12 
x x  x x  x  342.46 

x   x x  x  341.54 

x   x   x  340.57 

         

Coast region: Female-Age range: B 
x x x x x x x x 330.71 

x x x x  x x x 328.75 

x x x x   x x 327.31 

x x  x   x x 325.68 

         
Coast region: Female-Age range: C 

x x x x x x x x 396.25 

x x x x x x x  394.25 

x  x x x x x  392.31 

x   x x x x  390.86 
x    x x x  389.67 

x     x x  388.41 

         

Coast region: Male-Age range: A 

x x x x x x x x 361.44 
x x x x x  x x 359.44 

x x x x   x x 357.48 

x x  x   x x 355.55 

x x  x    x 353.76 

         
Coast region: Male-Age range: B 

x x x x x x x x 404.63 

x x x x  x x x 400.66 

x x x   x x x 398.9 

x x    x x x 398.35 
         

Coast region: Male-Age range: C 
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x x x x x x x x 393.04 

x x x x  x x x 391.28 

x x x x  x x  389.83 

x  x x  x x  388.11 
x   x  x x  386.28 

x     x x  386.25 

 636 

Table A.3. Covariates selection using AIC for mortality data modelling by sex and age 637 

range at macro-climate region: Andean. 638 
Covariates 

AIC 
Year T P H Prec. CO SO2 PM2.5 

Andean region: Female-Age range: A 

x x x x x x x x 350.56 

x x x x x x x  348.57 

x x  x x x x  346.87 

x x  x x x   345.22 
x x  x  x   343.63 

x x  x     343.57 

x x       342.07 

         

Andean region: Female-Age range: B 
x x x x x x x x 310.27 

x x x x x x  x 308.64 

x x x x  x  x 307.62 

x x x   x  x 306.27 

         
Andean region: Female-Age range: C 

x x x x x x x x 387.37 

x x  x x x x x 385.41 

x x  x  x x x 383.55 
x x  x  x x  381.75 

x x  x   x  380.16 

x x     x  378.75 

         

Andean region: Male-Age range: A 
x x x x x x x x 354.47 

x x  x x  x x 350.74 

x x  x x   x 348.97 

x x  x x    347.64 

x x  x     346.8 
         

Andean region: Male-Age range: B 

x x x x x x x x 340.68 

x x x x x x x  338.75 

x x  x x x x  337.08 
x x  x x x   335.37 

x x  x  x   334.51 

         

Andean region: Male-Age range: C 

x x x x x x x x 400.39 
x x x x  x x x 398.5 

x x  x  x x x 396.59 

x x    x x x 394.86 

x     x x x 393.49 

x      x x 392.31 
x      x  391.87 

 639 

Table A.4. Covariates selection using AIC for mortality data modelling by sex and age 640 

range at macro-climate region: Amazon. 641 
Covariates 

AIC 
Year T P H Prec. CO SO2 PM2.5 

Amazon region: Female-Age range: A 
x x x x x x x x 275.58 

x x x x x  x x 273.58 

x  x x x  x x 271.6 

x  x  x  x x 269.71 

x    x  x x 268.08 
x    x   x 266.76 

x       x 265.73 
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Amazon region: Female-Age range: B 

x x x x x x x x 254.42 

x x x x  x x x 252.42 
x x x x   x x 250.45 

x x x x    x 248.57 

x x x     x 246.94 

x x x      245.6 

x x       245.5 
         

Amazon region: Female-Age range: C 

x x x x x x x x 258.08 

x x x x x  x x 256.1 

x x x x   x x 254.21 
x x  x   x x 253.01 

x x  x   x  252.47 

x   x   x  251.56 

         

Amazon region: Male-Age range: A 
x x x x x x x x 288.71 

x x x x x  x x 286.71 

x x x  x  x x 284.79 

x x x  x  x  282.89 

x x x    x  281.07 
x  x    x  278.18 

         

Amazon region: Male-Age range: B 

x x x x x x x x 269.51 

x x x  x x x x 267.51 
x x x  x x x  265.53 

x  x  x x x  263.79 

x  x   x x  262.83 

x     x x  262 
x     x   261.53 

         

Amazon region: Male-Age range: C 

x x x x x x x x 266.46 

x x x x x x  x 262.76 
x  x   x  x 261.15 

x    x x  x 259.65 

 642 

Table A.5. Covariates selection using AIC for mortality data modelling by sex and age 643 

range at the county level: Los Ríos. 644 
Covariates 

AIC 
Year T P H Prec. CO SO2 PM2.5 

Los Ríos County: Female-Age range: A 

x x x x x x x x 258.08 

x x x x  x x x 256.15 

x x x x   x x 254.28 

x x  x   x x 253.26 
         

Los Ríos County: Female-Age range: B 

x x x x x x x x 251.49 

x x  x x x x x 249.59 

x x   x x x x 247.69 
x     x x x 246.99 

         

Los Ríos County: Female-Age range: C 

x x x x x x x x 281.06 

x x  x x x x x 279.13 
x x  x  x x x 277.25 

x x  x  x   276.29 

         

Los Ríos County: Male-Age range: A 

x x x x x x x x 291.2 
x x x x  x x x 289.21 

x x x   x x x 287.24 

x x    x x x 285.39 

x x     x  283.97 

         
Los Ríos County: Male-Age range: B 

x x x x x x x x 315.91 
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x x  x x x x x 314.08 

x x  x  x x x 312.39 

x x     x x 311.51 

         
Los Ríos County: Male-Age range: C 

x x x x x x x x 293.81 

x x x x x x  x 292.13 

x x x x x   x 290.6 

x x x  x   x 289.09 
x x   x   x 287.51 

x x      x 286.41 

 645 

Table A.6. Covariates selection using AIC for mortality data modelling by sex and age 646 

range at the county level: Pichincha. 647 
Covariates 

AIC 
Year T P H Prec. CO SO2 PM2.5 

Pichincha county: Female-Age range: A 

x x x x x x x x 316.05 

x x x x x x x  314.51 

x  x x x x x  312.82 

x  x x x x   311.61 
x  x x  x   310.17 

x   x  x   309.96 

         

Pichincha county: Female-Age range: B 

x x x x x x x x 296.43 
x x x x x x  x 294.46 

x  x x x x  x 292.71 

x  x x x x   291.41 

x x  x   x x 288.92 
         

Pichincha county: Female-Age range: C 

x x x x x x x x 343.07 

x  x x x x x x 341.09 

x   x x x x  339.68 
         

Pichincha county: Male-Age range: A 

x x x x x x x x 333.33 

x x  x x x x x 331.42 

x   x x x x x 329.84 
x   x x x x  328.89 

         

Pichincha county: Male-Age range: B 

x x x x x x x x 326.39 

x x  x x x x x 324.44 
x   x x x  x 323.03 

         

Pichincha county: Male-Age range: C 

x x x x x x x x 354.49 

x  x x x x x x 353.54 
x    x x x  352.62 

 648 

Table A.7. Covariates selection using AIC for mortality data modelling by sex and age 649 

range at the county level: Morona Santiago. 650 
Covariates 

AIC 
Year T P H Prec. CO SO2 PM2.5 

Morona Santiago county: Female-Age range: A 
x x x x x x x x 200.06 

x x x x x x x  198.06 

x x x  x x x  196.07 

x x   x x x  194.37 

x x   x  x  193.04 
x    x  x  191.9 

Morona Santiago county: Female-Age range: B 

x x x x x x x x 208.95 

x x  x x x x x 206.96 

x x  x  x x x 205.22 
x x  x  x  x 203.46 

x x       202.26 
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Morona Santiago county: Female-Age range: C 

x x x x x x x x 213.71 

x x x x x  x x 211.77 

x x  x x  x x 209.91 
x x  x x  x  208.28 

x x  x   x  207.63 

x   x     207.04 

Morona Santiago county: Male-Age range: A 

x x x x x x x x 233.54 
x x  x x x x x 231.54 

x x  x x  x x 229.74 

x x  x x  x  228.68 

x    x x   228.34 

Morona Santiago county: Male-Age range: B 
x x x x x x x x 209.03 

x x  x x x x x 207.15 

x   x x x x x 205.81 

x   x x  x x 204.5 

x    x  x x 203.42 
x     x   203.37 

         

Morona Santiago county: Male-Age range: C 

x x x x x x x x 228.34 

x x x x x x  x 226.34 
x x x x  x  x 224.39 

x x x x    x 222.63 

x x x     x 222.14 

x   x     221.85 

 651 
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