8th BSC Doctoral Symposium

VIA: A Smart Scratchpad for Vector Units
with Application to Sparse Matrix Computations

Julian Pavén'2, Osman Unsal'and Adrian Crista

11,2

!Barcelona Supercomputing Center
firstname.lastname @bsc.es
2Universitat Politécnica de Catalunya
firstname.lastname @upc.edu
Barcelona, Spain

Abstract—Sparse matrix operations are critical kernels in multiple
application domains such as High Performance Computing, artifi-
cial intelligence and big data. Vector processing is widely used to
improve performance on mathematical kernels with dense matrices.
Unfortunately, existing vector architectures do not cope well with
sparse matrix computations, achieving much lower performance in
comparison with their dense counterparts.

To overcome this limitation, we present the Vector Indexed Archi-
tecture (VIA), a novel hardware vector architecture that accelerates
applications with irregular memory access patterns such as sparse ma-
trix computations. There are two main bottlenecks when computing
with sparse matrices: irregular memory accesses and index matching.
VIA addresses these two bottlenecks with a smart scratchpad that
is tightly coupled to the Vector Functional Units within the core. As
a result, VIA achieves significant performance speedup over highly
optimized state-of-the-art C++ algebra libraries. On average, VIA out-
performs sparse matrix vector multiplication, sparse matrix addition
and sparse matrix matrix multiplication kernels by 4.22 %<, 6.14x and
6.00x respectively.

Index Terms—Sparse Algebra, Vector Computing, Scratchpad
Memory

I. INTRODUCTION

Many applications can potentially benefit from vectorized exe-
cution for better performance, higher energy efficiency and greater
resource utilization [4]. Ultimately, the effectiveness of a vector
architecture depends on the quality of the vectorized code [5].
Sparse matrix operations are a clear example of computations
difficult to vectorize [3]. Such computations are a key kernel in
High Performance Computing (HPC), Attificial Intelligence (AI)
and big data workloads. In particular, two such killer-applications
are Sparse Matrix Vector multiplication (SpMV) and Sparse Matrix
Matrix Multiplication (SpMM). There are two intertwined obstacles
against efficient execution of sparse matrix computations on vector
architectures: (1) existing sparse matrix representations are not
easily vectorizable, and (2) current vector hardware implementations
are not optimized for sparse matrix operations.

In this paper, we propose the Vector Indexed Architecture
(VIA), a vector architecture that aims at accelerating sparse matrix
computation. VIA features a smart scratchpad memory specially
designed to cope with sparse-dense (SpMV) and sparse-sparse
(SpMM) matrix computations.

II. VIA: KEY DESIGN IDEAS

Sparse matrix kernels present a set of challenges for current
Vector Architectures: 1) High usage of inefficient memory indexed

56

instructions and 2) index matching operations. The key idea in VIA
is to attach a scratchpad memory (SPM) next to the vector functional
units. The VIA SPM features two mapping techniques to tackle
both challenges. For sparse-dense kernels, VIA performs a direct-
mapped access to the SPM. The indexed instructions are executed
between the Vector Functional Unit(VFU) and the SPM in VIA,
thus reducing memory traffic and releasing memory bandwidth
to load the low-locality sparse matrix from main memory more
efficiently. For sparse-sparse kernels, the SPM in VIA works
as a CAM memory. CAM memories are specialized hardware
structures that are particularly suitable for search and index matching
algorithms. The CAM-based mapping technique, allows VIA to
execute index matching operations between two input vectors in a
single instruction.

III. VIA: DESIGN IMPLEMENTATION

VIA is composed of two main building blocks: a Smart Scratch-
Pad Memory (SSPM) and the Fused Indexed Vector Unit (FIVU)
(see Figure 1). FIVU is the control interface between the Vector
Functional Units (VFU) and the SSPM.

A. The Smart Scratchpad Memory

The SSPM is a dedicated high bandwidth structure used to feed
the VFU and it can be used in direct-mapped mode, or in CAM-
based mode. The SSPM consists of three main building blocks:
@ the SRAM cells to store the actual data; @) the valid bitmap
to specify when an entry in the SRAM has been written before;
and @ the Index tracking logic that provides the CAM-based
functionality to SSPM.

SRAM cells (SRAM): stores the values to compute, e.g. for
SpMV operations, SSPM stores the vector and for both SpMM and
SpMA operations, SSPM stores the sparse row data and indices of
only one of the input matrices. In our implementation, SRAM is
built using four byte length blocks and each block stores a single
value independently on the data length.

Valid bitmap: This structure is used in the direct-mapped mode
as a written value indicator for the entries in the SRAM. It consists
of a vector of bits, where each bit corresponds to an entry in the
SRAM structure and determines whether an entry has been written.

Index tracking logic: This block implements SSPM-CAM
functionality over the indexes. The index tracking logic consists of
three key components: € The index table, a CAM structure that



8th BSC Doctoral Symposium

READ WRITE CAM Direct
PATH PATH Mapping ’ Mapping
i Valid
“HEEEH s
Index Bitmap
Readin Table— "
indices

Configuratior}
selector

Output Data

Writing P
indices/data

mMmrCcCOmIOwn

Configu ratiﬁ\

selector

a b
Fig. 1. VIA building blocks: (a) inter(C())nnection between FIVU, VIA and the issue logic of an out—of—orc(le)r core; (b) microarchitecture of SSPM. It consists of the index
tracking mechanism (Index table, Insert new Idx and Elements Count), valid bitmap, and the storage system (SRAMs). Read and write paths are depicted separately.

= CSR SPC5 mEm SELL-C-SIGMA mmm CSB
= VIACSR mEm VIA-SPC5 VIA-SELL VIA-CSB
6
Q_S
S 4
23
a2
n
1
0 48 503 1197 6384 MEAN

Fig. 2. Speedup for VIA SpMV kernel. Results are normalized to the CSR
implementation for every category.

stores the indices used to write data in the SRAM; @) The insertion
logic, which inserts new indices and elements in order in the first
available position in the index table and the SRAM respectively;
and @ The element count register, which holds the number of
stored indices in the index table.

B. The Fused Indexed Vector Unit

VIA introduces the Fused Indexed Vector Unit (FIVU) to
operate over data stored in the SSPM. The FIVU works as the
interface between the SSPM memory and the processor pipeline
and minimally extends a generic Vector Functional Unit (VFU)
with new pipeline stages to control operations to the SSPM.

IV. EXPERIMENTAL SETUP
We model and evaluate VIA using Gem5 [1] to simulate an x86

full-system running an Ubuntu 16.04 OS with a 4.9.4 Linux Kernel.

We simulate a single core processor using the out-of-order CPU and
memory models, extended with the micro-architectural support and
performance counters for VIA. We evaluate VIA efficiency using
three representative sparse matrix kernels: Sparse Matrix Vector
multiplication (SpMV), Sparse Matrix Addition (SpMA) and Sparse
Matrix Matrix multiplication (SpMM). As input dataset, we use
1,024 sparse matrices from 56 different application domains of the
University of Florida Sparse Matrix Collection [2].

V. EVALUATION

Figure 2 depicts performance results for VIA-SpMYV kernel using
different compressed representations on all the input dataset. The
most noteworthy results are presented by the CSB (Compress Sparse
Block) version. All the evaluated matrices were sorted by the CSB

57

CSR mm VIA-CSR-SPMA VIA-CSR-SPMM
8
7
%6
23
g3
02
1
0

118 MEAN
Fig. 3. Speedup for VIA SpMA and VIA SpMM. Both Kernels are normalized to
their base CSR implementation.

block density and evenly split among 4 categories. The x-Axis at
Figure 2 shows the median non-zero values per block among each
category. VIA SpMV achieves on average speedup of 4.22x with
CSB; and average speedups of 1.25x, 1.24x and 1.31x over the
CSR, SPCS5 and Sell-C-0 implementations repectively. The CSB
format increases the locality of the input and output vectors, thus a
chunk of the input vector needs to be placed in SSPM only once to
compute with a single block. For the other formats, the indices to
map the input or output vectors of two consecutive matrix values
can be really sparse, thus the efficiency of VIA is limited to work as
an accumulator for the output vector. Nevertheless, even with this
limitation, VIA improves performance over the other formats by
1.26 x on average. For the best usage case (executing with CSB VIA-
SpMV), VIA: (1) reduces the total energy consumption (leakage +
dynamic) by a factor of 3.8 x. (2) increases the memory bandwidth
by 2.5x%.

Figure 3 shows the performance of the SpMA (VIA-CSR-SPMA
column) and SpMM kernels. In a similar manner to SpMYV, results
were sorted and evenly split into 4 categories. As we use CSR
format in both kernels construction, we used the non-zero elements
per row as the criteria to sort the entire input dataset.

On average, VIA achieves 6.14x and 6.0 speedup on the input
dataset for SpMA and SpMM respectively. In terms of energy, VIA
reduces on average 5.6x and 5.1 x of the total energy and increases
the memory bandwidth by a factor of 2.1x and 3.2x for SpMA
and SpMM respectively. The components of VIA allow to vectorize
the index matching computation with a single vector instruction
without any extra software comparisons. This capability helps to
reduce the memory traffic, reduce the store-load forwarding and to
increase the efficiency of the VFU over this kernel.



8th BSC Doctoral Symposium

VI. AUTHOR BIOGRAPHY

Julian Pavon was born in Panuco,
Mexico, in 1992. He received the
B.E degree in Electronic Engineering
from the Panuco’s Institute of technol-
ogy, Mexico, in 2015, and the MIRI
degree in Research of Informatics
from the Universitat Politecnica de
Catalunya (UPC) Barcelona, Spain in
2018.

Since March 2018 he has been
with the Computer Architecture for Parallel Paradigms group,
Barcelona Supercomputing Center, where he was a research
engineering, and became a PhD student in 2019. His current
research topics include vector architectures, Embedded Systems
RTL design and RISCV SoC design.

58

—_

REFERENCES

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib Bin Altaf, N. Vaish, M. Hill, and D. Wood, “The gem5
simulator,” SIGARCH Computer Architecture News, vol. 39, pp. 1-7, 08
2011.

T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,”
ACM Transactions on Mathematical Software (TOMS), vol. 38, no. 1, p. 1,
2011.

E. F. D’Azevedo, M. R. Fahey, and R. T. Mills, “Vectorized sparse matrix
multiply for compressed row storage format,” in Computational Science —
ICCS 2005, V. S. Sunderam, G. D. van Albada, P. M. A. Sloot, and J. J.
Dongarra, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 99-106.

J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth Edition:
A Quantitative Approach, 6th ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2017.

N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy,
M. Girkar, and P. Dubey, “Can Traditional Programming Bridge the Ninja
Performance Gap for Parallel Computing Applications?” in Proceedings
of the 39th Annual International Symposium on Computer Architecture
(ISCA), 2012, pp. 440-451. [Online]. Available: http://dl.acm.org.recursos.
biblioteca.upc.edu/citation.cfm?id=2337159.2337210





