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ABSTRACT
This paper presents some techniques for efficient thread forking
and joining in parallel execution environments, taking into
consideration the physical structure of NUMA machines and the
support for multi-level parallelization and processor grouping.
Two work generation schemes and one join mechanism are
designed, implemented, evaluated and compared with the ones
used in the IRIX MP library, an efficient implementation which
supports a single level of parallelism.

Supporting multiple levels of parallelism is a current research goal,
both in shared and distributed memory machines. Our proposals
include a first work generation scheme (GWD, or global work
descriptor) which supports multiple levels of parallelism, but not
processor grouping. The second work generation scheme (LWD, or
local work descriptor) has been designed to support multiple levels
of parallelism and processor grouping. Processor grouping is
needed to distribute processors among different parts of the
computation and maintain the working set of each processor across
different parallel constructs.

The mechanisms are evaluated using synthetic benchmarks, two
SPEC95fp applications and one NAS application. The
performance evaluation concludes that: i) the overhead of the
proposed mechanisms is similar to the overhead of the existing
ones when exploiting a single level of parallelism, and ii) a
remarkable improvement in performance is obtained for
applications that have multiple levels of parallelism. The
comparison with the traditional single-level parallelism
exploitation gives an improvement in the range of 30-65% for
these applications.

1. INTRODUCTION
Several current multiprocessor machines are based on building
blocks (modules) consisting of 2 to 8 processors along with 128 to
512 Mb. of local memory. For instance, the SGI Origin 2000 [1]
and the SUN Enterprise 10000 [2] are built using this approach. By
joining several blocks, current machines can scale to a large
number of processors. Although in these machines the physical

memory is globally shared, the access from a processor to a remote
memory location can be 2 to 3 times slower than the access to a
local memory location due to the non-uniform memory access
(NUMA) architecture or memory contention.

When the access to remote memory is slow, the processor
utilization is very influenced by the amount of data shared among
the processors. When data sharing increases, the actual processor
utilization decreases due to the search for data in remote memory.
Even when there are no data sharing problems at application level,
the way the parallel tasks are supplied to processors and the way
the threads join at the end of parallel regions are the aspects that
have to be carefully tuned in order to achieve good performance.
These aspects become specially important when support for both
fine-grain and multi-level parallelism are required.

Current multiprocessor systems provide parallel execution
environments mostly targeted to loop-level parallelism that try to
obtain good processor utilization when running parallel programs.
Current trends in the development of parallel execution
environments include the possibility of expressing and exploiting
multiple-levels of parallelism. The OpenMP [3] proposal for
Fortran and C/C++ is a good example, although by now, no
implementation of OpenMP is able to exploit multiple levels of
parallelism.

We are working in the design and implementation of a parallel
execution environment (called nano-threads [4]) which allows the
exploitation of multiple levels of parallelism, along with some
mechanisms to group processors for the execution of parallel
regions. The execution environment is targeted to Fortran
applications containing both parallel sections and loops. In this
paper, several techniques for supplying work to processors and to
implement thread joining in NUMA machines are first compared.
Our proposed techniques are aware of the cache behavior to
minimize memory conflicts, although they may incur overheads
higher than existing implementations that only support a single
level of parallelism. We use the performance counters of the MIPS
R10000 processor [5] to keep track of the cache behaviour in the
different implementations. Then, two applications (the SPEC95fp
Hydro2D and the NAS APPBT) are used to validate the proposed
fork/join implementations. Both applications benefit from
exploiting multiple levels of parallelism, achieving higher speedup
than their corresponding single-level versions. 

The rest of the paper is structured as follows: Section 2
summarizes the functionalities related to thread forking and joining
supported by current parallelization environments. Section 3
describes the proposed fork/join techniques, enlightening the
differences with the existing ones. Section 4 presents an evaluation
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of the overhead introduced by the proposed techniques. Section 5
shows the structure of the applications used to validate our
proposals and Section 6 presents their evaluation. Finally, Section
7 concludes the paper and presents future work.

2. CURRENT PARALLELIZATION 
ENVIRONMENTS

Current parallelization environments are based on highly tuned and
customized thread packages. Each package provides mechanisms
to spawn and join parallelism. The implementation of such
mechanisms greatly influences the type of parallelism which can
be exploited at application level. Current implementations do not
allow the exploitation of more than one level of parallelism,
because the run-time execution environment forbids spawning
parallelism when already running in a parallel region. 

For instance, in the SGI MP library, when the master thread
spawns parallelism in a parallel construct, it sets the starting
program counter and the arguments for the slave threads and
assigns a sequence number to the parallel construct. It collects all
this information in a common and fixed memory area, known as
the work descriptor. Then, the slave threads pick up their work
from this descriptor. They all participate in the parallel construct
identified by the current sequence number, executing the same
function with the same arguments. This mechanism supports all
the work-sharing constructs defined in OpenMP-like extensions to
sequential languages such as Fortran or C/C++. However, it
restricts the parallelism that can be exploited by the application to
a single level because the descriptor cannot be reused till t he
previous parallelism has been joined.

The SGI MP library provides two different implementations for
thread joining. The first one, used by default, is a global join
structure in shared memory (SHM). The slave threads use the
global sequence number assigned to the current parallel construct
to mark in the global join structure, located in the work descriptor,
that the parallel work has been finished. Meanwhile, the master
thread, after participating in the spawned work, waits for all the
sequence numbers in the join structure to reach the current one.
Usually, the join structure is distributed along several cache lines
in order to minimize false sharing when the slave threads access it.
The second implementation replaces the join structure by a counter
on uncached atomic memory (FOP’s [6]) based on specialized
hardware present in the memory modules of the Origin2000
system. The use of a shared counter or a single joining structure
and a global sequence number to implement thread joining or
barrier synchronization also disables multi-level parallelism
exploitation because only one thread may act as the master thread
for managing the joining process.

The parallelization environment based on the SUIF compiler [7] is
also based in a run-time package which restricts the parallelism to
a single level. The limitation of the SUIF run-time library is also
motivated by the use of a shared work descriptor to supply work to
the slave processors and only one join structure with a global
sequence number to identify which parallel construct is active.

The Illi nois-Intel Multithreading Library (IML [8]) is also targeted
to shared memory multiprocessors. This one does support multiple
levels of general, unstructured parallelism. Application tasks are
inserted in task queues before execution, allowing several task

descriptions to be active at the same time. IML focuses on the
design alternatives for implementing such task queues (centralized
and/or distributed). The library is also in charge of mapping the
tasks to the available processors and of load balancing issues. 

There are other research projects targeting at the exploitation of
multiple levels of parallelism. They focus on providing some kind
of coordination support to allow the interaction of a set of program
modules in the framework of data parallel programs for distributed
memory architectures. For instance, [9] propose a library-based
approach that provides a set of functions for coupling multiple
HPF tasks to form task-parallel computations. The Fx [10] and
PARADIGM [11] projects propose extensions to integrate task and
data parallelism in an HPF environment. The use of task
parallelism is proposed to improve the performance when data
parallelism is not enough. 

Our thread package implementation (NthLib [12]) is built based on
the Nano-Threads Programming Model [13][14]. It is targeted to
shared memory and supports multiple levels of parallelism. The
user expresses the multiple levels of parallelism through nested
OpenMP directives. The NANOS compiler [4] (based on
Parafrase-2 [15]) analyses the directives and generates a
hierarchical task graph structure which represents the application.
Each level of the hierarchy represents one possible level of
parallelism. Each nested parallel construct makes the hierarchy one
level deeper. The compiler generates code based on this internal
representation. At run-time, tasks are mapped to nano-threads and
these ones are dynamically mapped one-to-one to the currently
available processors. The words thread and processor are used
indistinctly along the paper.

The NthLib package interface is designed in such a way that it
provides different primitives to spawn parallelism, depending on
the hierarchy level in which the application is working. The
deepest level is generated using the most efficient thread creation
primitives, based on work descriptors and the techniques presented
in Section 3. This level is the one which contains the finest grained
parallelism. Higher (less deeper) levels are generated using nano-
threads, a different (more costly) interface which provides threads
with a stack. Local variables residing in the thread stack can be
maintained (as in a local address space) to be used by the threads
executing inner levels of parallelism. In addition, the latter
interface also provides support for the general unstructured
parallelism found in the hierarchical task graph. A detailed
description of this interface and its implementation can be found
elsewhere [12].

3. THREAD FORK/JOIN TECHNIQUES
The main goal of our proposals for implementing efficient thread
fork/join in the nano-threads environment is the support for
multiple levels of parallelism and processor grouping. In this
section, two different techniques for supplying work to processors
and an improved thread joining scheme are presented.

3.1. Forking Threads
Forking threads efficiently at the inner-most level of parallelism is
based on supplying a work descriptor to the participating
processors. The work descriptor consists of a pointer to the
function encapsulating the work that has to be executed and its



arguments. When the same work descriptor is supplied to a group
of processors, each one decides the portion of work that has to
execute, based on the arguments, the number of processors
working in the group and its own identifier inside the group.

3.1.1  Functionality
The forking techniques are GWD (Global Work Descriptors) and
LWD (Local Work Descriptors), WD for short. The GWD can be
used in spawning the inner-most level in a multil evel parallel
application. It supports multiple levels of parallelism because it
allows the coexistence of multiple opened parallel constructs,
solving the limitation of a single work descriptor found in previous
implementations. All processors share a single GWD structure,
they all can simultaneously supply work to the GWD and they
execute the same work. GWD is expected to perform comparable
to existing highly tuned implementations when exploiting a single
level of parallelism. Figure 1A shows the execution of a parallel
construct consisting of a parallel loop, four independent sections
(also containing parallel loops) and another parallel loop. In this
case, the master thread executing each section spawns the
parallelism associated to the parallel loops inside the section to all
the processors. Since the same descriptor is supplied to all the
processors for each parallel loop, each processor in the system will
execute a chunck of iterations of all the loops (probably always the
same, if the compiler exploits loop affinity).

Figure 1: Two alternatives for the exploitation of multiple 
levels of parallelism

LWD is a more advanced technique that inherits most of the
characteristics of the GWD and also allows processor grouping.
Using processor grouping, the application is able to drive several
processors to work on a independent task or set of tasks. Each
group has a master and (possibly) several slave processors. The
master processor starts the task and it is in charge of spawning the
parallelism encountered inside it. After that, the slave processors
cooperate with the master to execute the parallelism. At the end,
the master processor waits for the slaves to complete the work.
This execution model requires that any processor can supply work
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to any other processor. There exists one LWD structure for each
processor, allowing different work to be supplied to different
processors from different parts of the parallel application. In
Figure 1B, the master thread executing each section spawns the
parallelism associated to the parallel loops inside the section to just
a subset of all the processors (in this case, each group of four
processors is supplied with a different work descriptor). Due to the
definition of these groups, now each processor executes a chunk of
iterations for a subset of all the loops inside the parallel sections.
However, for loops outside them, all processors cooperate in the
execution of the parallel loops. Care should be taken into account
about how this change in the structure of the parallelism can
influence data locality. 

As a result, the LWD overhead can be higher than that of GWD
due to the individual supply of work descriptors, but it is expected
that limiting the number of processors participating in an inner
parallel construct makes worthwhile the exploitation of multiple
levels of parallelism.

3.1.2  Implementation
The two WD proposals are implemented as arrays of pointers to
work descriptors, behaving as circular li sts (see Figure 2, A and B).
There is a shared GWD structure and one per-processor LWD
structure. Each processor searches for work first in its own LWD
and then in the GWD. The size of the WD structures is a multiple
of the secondary cache line size and they are aligned to cache line
boundaries to avoid false sharing. Both implementations use one-
way communication from the master processor to the slave
processors. This means that the master processor writes pointers
and the slaves read them. After the master processor writes a
pointer to a WD location, it takes advantage of having exclusive
access to the cache line to also clear a previously used location.
This one-way communication mechanism saves several cache
misses and invalidations while generating work, thus speeding up
part of the criti cal path of the run-time library. Each processor has
its own local index to the WD structures to extract work from
them. It knows that there is no work in a WD structure when the
location pointed by its index is NULL. The master processor uses a
global index (WDP) to store a new pointer in the next available
location of the WD structures. The global index is necessary to
allow several processors to add work at the same time. Mutual
exclusion through load-linked and store conditional instruction
sequences is used to update this global index.

For example, in Figure 2A, four work descriptor pointers (shaded
area) are currently stored in the GWD, possibly from different
parts of the application. Not all processors have executed the same
number of descriptors and some of them are extracting work from
different locations. Each processor has a local index for work
extraction.

Figure 2B presents the implementation of the LWD. It shows four
LWD structures for four different processors. In the example, two
groups of two processors are already spawned. Each master
processor (0 and 2) uses an index associated to each LWD to insert
new work. This index is accessed in mutual exclusion to allow
several processors to add work to a LWD at the same time. Again,
clearing an already used location during work insertion improves
the cache behaviour. Each processor waits for work in its LWD



using a local index. Processors working in a group are consecutive
and are identified 0 (the master), 1, 2, and so on.

3.2. Thread Joining
Like many implementations, our proposal for thread joining is
based on a distributed structure, to minimize false sharing.
However, we add a local sequence number for each processor and
a per-processor join values array (PJV) to support multiple levels
of parallelism. The per-processor sequence number allows that
each individual processor participates in a different number of
parallel regions before collaborating again in the same group due
to a change in the structure of the parallelism. This is different
from the previous implementations, where the sequence number
was identifying the currently executing parallel construct.

Figure 2: Thread fork / join data structures

Figure 2C shows the proposed implementation. When a slave
processor in a group terminates its work, it writes its per-processor
join sequence number in the Distributed Join Structure (DJS). One
cache line stores the sequence numbers of four processors. The
master processor has a copy of each thread sequence value in its
PJV. It waits for completion of the parallel work by looking at both
ends of the DJS. When it detects that the value stored in DJS for
one of the two current locations is greater than its local copy, it

A

WDP3

i) Several master processors generate work for their group

ii) Slave processors take work from their local WD

Local
Work
Desc.

i) Master processor generates work and clears some previous
location. It uses the global insertion index

NULL WDP

ii) Slaves take some new work

Global Work Descriptors

Each one uses its own index

B

All processors get all work

WDP2WDP1WDP0
First group Second group

LW
D

 0

LW
D

 1

LW
D

 2

LW
D

 3

Per-processor (current) Join Values

......

0 12

Distributed Join Struct.

0-3 4-7 8-11

......

ii) The master waits for
 values greater than the

iii) and copies them

current join value

to record the last
join value for each
processor in PJV

i) Slave threads in a processor group (6-11) indicate termination.
Each thread stores its own join sequence number in DJS

C

6 11

records the new value in PJV and proceeds to the next processor.
Both the DJS and the PJV are allocated in the stack of the master
processor in order to allow the existence of several master
processors at the same time.

4. EVALUATION OF THE FORK/JOIN 
TECHNIQUES

The goal of this section is to evaluate the proposed fork/join
techniques and compare them with the ones currently implemented
in the SGI MP library. Later in this paper we show the usefulness
of the multiple levels of parallelism exploitation and processor
grouping. This will validate the fork/join techniques and justify the
additional overhead they introduce.

All the experimental evaluation in this paper has been done on a
dedicated SGI Origin2000 machine [16] containing 64 R10000
processors (250 Mhz., chip revision 3.4) and 8 Gb. of main
memory. Each processor uses separate primary caches for
instructions (32 Kb.) and data (32 Kb.) and a unified 4 Mb.
secondary cache. The operating system is IRIX release 6.5. Unless
noted otherwise, all benchmarks have been compiled with the
MIPSpro FORTRAN 77 release 7.2.1.1m, using the following
compiler flags: -Ofast=ip27 -
LNO:prefetch_ahead=1:auto_dist=ON. These are the options used
to compile the base versions of the SPEC95fp benchmarks.

A synthetic benchmark (called “overhead”) is used to evaluate the
overhead introduced by the techniques presented in Section 3 when
executing fine-grain parallelism. “Overhead” consists of 1,000
iterations spawning and joining parallelism. Several experiments
have been carried out in the Origin2000 machine with a work size
ranging from 1,000 to 1,000,000 iterations. From them, we have
selected the most relevant ones: Experiment #2 executes 4,000
iterations, taking around 100 us.; Experiment #6 does 50,000
iterations, taking 1.2 ms.; And experiment #9 is 400,000 iterations,
taking 10 ms. The benchmark is run on both the SGI MP library
and NthLib.

Figure 3: Evaluation of the fork/join mechanisms

Figure 3 compares the four techniques for work generation with
respect to the execution time and cache behaviour. MP-FOP and
MP-SHM stand for the two different joining mechanisms inside
the MP library. NNTH-GWD and NNTH-LWD stand for the two
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different forking mechanisms with distributed joining in NthLib.
Each bar represents the execution time of the benchmark on 32
processors, running the experiment indicated by the associated
label. For instance, NNTH-LWD2 corresponds to the experiment
#2 using the LWD technique. Along with the execution times of
the benchmark, the plot presents the normalized numbers of
primary and secondary data cache misses and the normalized
number of store operations requiring exclusive access to a shared
cache line. These events have been collected using the R10000
hardware event counters, through the perfex analysis tool, provided
by SGI.

Execution times in Figure 3 show that all techniques are
comparable with respect performance. Differences arise when
comparing the behaviour of the cache. Observe that for the FOP,
SHM and GWD techniques, the amount of cache events are
similar. In LWD, the number of stores that reclaim exclusive
access to a cache line increases. This is due to the way the work is
supplied to processors, one to one. The store event is caused each
time the master processor generates work, getting exclusive access
to the cache line where it stores the pointer to the work descriptor.
The cache line is, then, read by the destination slave processor,
which requests shared access to the line. Thus, one cache line per
processor exchanges twice its status each time work is generated.
This movement between cache memories is not affecting the
performance of the overhead benchmark, but it can affect the
performance of parallel applications.

Figure 4 shows the execution times obtained when running the
overhead benchmark (4096 iterations, from 1 to 64 processors).
The results confirm that the GWD and LWD implementations are
comparable to the MP library implementation. In addition, the
figure also presents results for a multilevel version of the overhead
benchmark. This version spawns a first level of parallelism
consisting of four sections and an inner level of loop parallelism
executing 1,024 iterations (using LWD), so the total amount of
work is the same. This is represented by the bar labeled NNTH-
2L2. It shows that the overhead of the multil evel version is
comparable to the overhead of the single level one.

Figure 4: Fork/join evaluation (overhead)

Figure 5 shows the execution times for a parallel version of the
SPEC95fp Swim application (with one level of parallelism and
using the GWD technique) using from 1 to 64 processors. The
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execution times of the Swim application show that the GWD
approach is comparable to the SGI implementation also when
running complete applications.

Figure 5: Fork/join evaluation (SPEC95fp Swim)

5. MULTI-LEVEL PARALLELISM 
EXPLOITATION

In the rest of the paper, we use two different applications to
validate the implementation of the fork/join techniques presented
in Section 3. First, we show that their efficiency is good enough to
support multiple-levels of parallelism. A second result which is
obtained is that multiple-levels of parallelism can be effectively
exploited inside applications. The applications selected are the
SPEC95fp Hydro2D and the NAS APPBT benchmarks. The
structure of the applications is described in the following
subsections.

5.1. SPEC95fp Hydro2D Benchmark
The Hydro2D application solves the hydrodynamical Navier
Stokes equations to compute galactical jets. The reference input for
Hydro2D executes 200 iterations of a time-step loop. 

Figure 6 shows the structure of one of the two computational steps
in the main time-consuming routine (advnce) executed inside the
time-step loop. Up to a maximum of three levels of parallelism can
be detected in this application. In the advnce subroutine, a set of
functions can be executed in parallel since they access different
data (nodes 2, 3 and 4); these functions contain two levels of
parallelism as shown in the right part of Figure 6. Nodes 5 and 6
corresponds to the invocation of functions trans1 and trans2,
respectively; both functions also contain two-levels of parallelism
as shown in the left part of Figure 6. Nodes 7 to 10 contain a call to
the fct subroutine. This subroutine has parallel loops. 

Two different parallelization strategies have been tested. The first
one exploits a single level of loop parallelism. The second one is a
two-level version which exploits all the parallelism inside corif/
stagf1/stagf2, trans1/trans2 and the parallelism of the parallel
invocations to fct subroutine including parallel loops. Although
nodes 2, 3 and 4 can be also executed in parallel (so three levels of
parallelism could be exploited), we decided to execute them
sequentially in order to improve data locality. Spawning at the
outer level distributes work to the master processors for each
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group. For instance, in the 16 processor execution, processors
numbered 0, 4, 8 and 12 are the group master processors. At the
inner level, each group master processor entering a new work-
sharing construct spawns parallelism on its group. For example,
processor 4 is going to spawn parallelism on processors 4 (itself),
5, 6 and 7.

As the application structure is regular, Hydro2D is useful to
demonstrate how a well balanced allocation of the work at the
different levels of parallelism to processors can result in a better
processor utili zation.

Figure 6: Multiple levels of parallelism inside the SPEC95fp 
Hydro2D benchmark

5.2. NAS APPBT Benchmark
The NAS APPBT benchmark [17][18] solves three sets of
uncoupled block tridiagonal systems of equations, first in the x,
then in the y and finally in the z direction. Each block contains 5x5
elements. These systems arise in many CFD applications.

The structure of the application is as follows: An iterative loop
sequentially calls to routines compute_rhs, x_solve, y_solve and
z_solve. The dependences in these routines determine which loops
can be parallelized. For instance, x_solve carries the dependence in
the first dimension being the loops that traverse the second and
third dimension completely parallel; similarly, y_solve carries the
dependence in the second dimension and z_solve in the third
dimension. A possible strategy would be to parallelize the loop that
traverses the third dimension in routines x_solve and y_solve and
parallelize the loop that traverses the second dimension in routine
z_solve. Although this parallelization strategy implies totally
parallel loops, it suffers from the data movement overhead
(transposition) that occurs when going from y_solve to z_solve and
back again to x_solve. 

The data movement overhead of the transposition can be avoided if
the third dimension is also parallelized in z_solve; this requires the
use of the OpenMP ORDERED clause and directive that forces the
sequential execution of the distributed loop iterations. In order to
allow a pipelined execution of the ORDERED dimension, loop
blocking is applied. In this way, a chunk of iterations in processor
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p+1 is executed when the same chunk of iterations finish its
execution in processor p. Figure 7 shows the data distribution
among processors and the resulting execution model for the one-
dimensional parallelization in the z_solve routine. Although this
introduces the overhead of blocking and synchronization, the
overlap of different chunks in different processors can result in an
improved performance.

When the number of iterations is small to fed a large number of
processors, two dimensions are worth to be parallelized. In order to
avoid data movement, our strategy parallelizes the second and
third dimension in all the routines. This implies that two
dimensions are executed in parallel in x_solve, but one of the two
dimensions parallelized are executed in an ORDERED way in both
the y_solve and z_solve routines. Figure 8 shows the data
distribution performed among processors and the resulting
execution model for the multidimensional parallelization in the
z_solve routine.

Figure 7: One-dimensional data distribution and pipelined 
ORDERED execution in the APPBT application

Figure 8: Two-dimensional data distribution and pipelined 
ORDERED execution in the APPBT application

6. MULTI-LEVEL PARALLELISM 
EVALUATION

6.1. SPEC95fp Hydro2D Benchmark
Four different versions of the Hydro2D benchmark have been
executed using the reference input file, as provided in the SPEC
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benchmarks. Figure 9 shows the speedup obtained. Sequential
execution time is 154.71 seconds, which agrees with the 154
seconds reported in the SPEC benchmark CFP95 summaries [19].

Bar labeled MP-SHM correspond to the speedup obtained when
the application is run on top of the SGI MP library. In this case, the
application has been manually parallelized using OpenMP
directives to exploit loop parallelism and compiled with the native
SGI compiler. Results are better than those reported in the SPEC
summaries because of the manual parallelization. For instance,
reported results using automatic parallelization through PFA
(Parallel Fortran Analyzer) are 39.1 seconds on 8 processors and
35.9 seconds on 16 processors. Results obtained through manual
parallelization are 32.7 seconds on 8 processors and 23.1 seconds
on 16 processors. These results validate the parallelization we have
manually performed on this application.

Bars labelled NNTH-1LVL have been obtained by executing the
same loop level parallelization on top of the NthLib threads
package using GWD. In this case, the application has been first
parallelized using the NANOS compiler. The resulting parallel
Fortran code, containing calls to the NthLib threads package is
then compiled using the MIPSpro Fortran 77 compiler with the
usual compilation options. As can be observed in Figure 9, the
execution time of this version is worse than the SGI MP library
version. The main reason for this poor performance is that the
quality of the code generated by the SGI OpenMP compiler is
better than the quality of the code generated for the NthLib. This is
because the MIPSpro Fortran 77 compiler applies some code
optimizations before and after the parallelization takes effect. This
behaviour is inhibited in our approach because the task of
parallelism extraction is done by the NANOS compiler, which is
not applying any optimization before parallelizing. This difference
in the quality of the generated code has a greater influence when
the number of processors is small . However, up to a certain
number of processors (32), the speedup obtained by the two one-
level implementations is similar. 

Figure 9: Execution time and speedup of the SPEC95fp 
Hydro2D benchmark

The last bar (labelled NNTH-MLV) is the result of the multi-level
execution. The application exploits two levels of parallelism as
explained in Section 5. Results show that the overhead introduced
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by the two-level parallelization is noticeable when running on a
small number of processors. A fair comparison can be established
with the NNTH-1LVL version, in which the quality of the code
generated is the same. As a result, for up to 8 processors, the
overhead of the two-level parallelization motivates an increment in
the execution time below 10%. In this application, four different
processor groups are established at the outer parallelization level,
so at least 8 processors are required to effectively exploit multiple
levels of parallelism. Four groups of 2 processors give an speedup
of 4.0 compared to the 4.5 achieved by the one-level version
running in 8 processors. When 16 processors (four groups of 4
processors) are used, nearly the same speedup is achieved by both
NNTH versions. When using more than 16 processors, the one-
level version is unable to scale, while the multi-level version scales
till a speedup of 9.3 on 48 processors and giving an improvement
of 30% in 32 processors with respect the single level version.

Processor grouping promotes scalabili ty in this application because
the parallel loops in the inner parallel level are distributed among
less processors when executed in parallel. This causes each
processor to keep a larger working set belonging to each matrix
used in the loop body, thus reducing the amount of cache conflicts
among the processors. 

6.2. NAS APPBT Benchmark
Figure 10 shows the execution time and speed-up of the NAS
APPBT benchmark. We have selected a small version (class W) of
the APPBT application in order to better appreciate the influence
of the parallelization overhead. All versions of the APPBT
application have been compiled with -O3 compilation option
instead of -Ofast=ip27 because this is the option used in the
standard compilation of the NAS benchmarks in SGI machines.
Due to the parallelization scheme and the application class, the
application can be executed on as much as 24 processors.

Figure 10: Execution time and speedup of the NAS APPTBT 
benchmark

In Figure 10, MP-SHM stands for the one-level version executed
on the SGI MP Library. This result is provided as a reference. Two
NNTH versions have been developed, one for single dimension
parallelization (NNTH-1LVL) and another for multidimensional
parallelization (NNTH-MLV), achieved through two-levels of
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parallelism (as shown in Figure 8).

Again, comparing the results in the nano-threads environment, the
results on a small number of processors show that the multi-level
version is worse than the one level version. This is due to the extra
overhead introduced by the multi -level version. However, when
using more than 8 processors, the multiple-level version achieves
higher speedup, reaching 14.5 on 24 processors. The gain in the
speedup reaches 65% with respect to the one dimensional
parallelization. 

7. CONCLUSIONS
Current parallelization environments for shared memory
multiprocessor systems are based on highly tuned and customized
thread packages offering the mechanisms required for thread
creation (fork) and joining, thread identification and so forth. Such
environments (either commercial or experimental) do not allow the
exploitation of more than one level of parallelism.

This paper presents techniques for efficient thread forking and
joining in parallel execution environments, taking into
consideration the physical structure of NUMA machines and the
support for multi -level parallelization and processor grouping.
Two work generation schemes and one join mechanism are
designed, implemented in the NthLib package, evaluated and
compared with the ones used in the IRIX MP library, an efficient
implementation which supports a single level of parallelism.

For a single level of parallelism, the MP library uses single data
structures located at fixed memory locations that do not enable
several processors to coordinate (spawn and join) parallel
activities, thus restricting the parallelism that can be exploited at
the application level. In order to overcome this lack of
functionality, we provide per-thread data structures that enable the
coordination of some slave threads with a master thread, set when
spawning an outer level of parallelism. Per-thread data structures
also allow multiple threads to coordinate parallel activities coming
from different parts of the application at a time.

Both mechanisms are evaluated and validated using a synthetic
benchmark for measuring their overhead, two SPEC95fp
applications (Swim and Hydro2D), and one NAS benchmark
(APPBT). The overhead benchmark and Swim (with a single level
of parallelism around loops) allow us to conclude that the
additional functionaliti es in our fork/join mechanisms do not result
in a noticeable reduction of the thread package efficiency. The
other two benchmarks expose multiple levels of parallelism and
benefit from its exploitation. The comparison with the traditional
one-level parallelism exploitation for these programs gives an
improvement of 30% and 65% in the speedup of Hydro2d (on 32
processors) and APPBT (on 24 processors), respectively. These
results validate the exploitation of multiple levels of parallelism
based on the thread fork/join techniques described in this paper.
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