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ABSTRACT

This paperpresents some techniques ffficient thiead foking
and joining in paallel execution envonments, taking into
consideation the physical sticture of NUMA machines and the
suppot for multi-level paallelization and prcessorgrouping.
Two work geneation schemes and one join mechanisre ar
designed, implemented, evaluated and coetpawith the ones
used in the RIX MP library, an efficient implementation which
suppots a single level of pafielism

Suppoting multiple levels of pallelism is a cuent eseach goal,
both in shaed and distbuted memoy machines. Ouproposals
include a fist wok geneation scheme (GWDor global wok

desciptor) which suppots multiple levels of pallelism, but not
processogrouping. The second wilogeneation scheme (LWDor

local wokk desciptor) has been designed to suppowultiple levels
of pamllelism and pocessorgrouping. FPocessorgrouping is
needed to disitbute pocesss among diffeent pats of the
computation and maintain the vkarg set of each pcessoacross
different paallel constucts

The mechanisms arevaluated using synthetic benchksartwo
SFEC95fp applications and one NAS application. The
performance evaluation concludes that: i) the bead of the
proposed mechanisms is similar the ovenead of the existing
ones when exploiting a single level of alglism, and ii) a

remakable imppvement in pedrmance is obtained for
applications that have multiple levels of gllism. The
compaison with the taditional single-level paitlelism

exploitation gives an impwvement in the ange of 30-65% for
these applications

1. INTRODUCTION

Seveal curent multipocessormachines @& based on building
blocks (modules) consisting of 2 to &pessos along with 128 to
512 Mb. of local memay. Forinstance, the SQDrigin 2000[1]
and the SUN Enterise 1000Q2] are built using this appach. B/
joining seveal blocks, curent machines can scale to agkr
numberof processos. Although in these machines the physical
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memoy is globally sheed, the accessdm a pocessoto a emote
memog location can be 2 to 3 times slowtban the access to a
local memoy location due to the non-unifor memoy access
(NUMA) architectue ormemoy contention

When the access toemote memor is slow, the pocessor
utilization is vey influenced by the amount of data stthamong
the pocessos. When data shiag increases, the actualquessor
utilization deceases due to the sehrfordata in emote memaor.
Even when ther ae no data sharg problems at application level,
the way the pallel tasks a& supplied to mrcessas and the way
the theads join at the end of diel regions ae the aspects that
have to be cafully tuned in oderto achieve good pfarmance.
These aspects become specially inguatr when supporfor both
fine-grain and multi-level pallelism ae required

Current multipocessor systems mmvide paallel execution
environments mostly tgeted to loop-level pafelism that ty to
obtain good prcessoutilization when unning paallel programs.
Current tends in the development of pHel execution
environments include the possibility of egssing and exploiting
multiple-levels of paallelism. The OpenlR [3] proposal for
Fortran and C/C++ is a good example, although by now, no
implementation of OpenMis able to exploit multiple levels of
parllelism

We ae woking in the design and implementation of agbet
execution envisnment (called nano-teads[4]) which allows the
exploitation of multiple levels of palielism, along with some
mechanisms to gup pocessos for the execution of patlel
regions. The execution enwimment is tageted to Fdran
applications containing both @dlel sections and loopsn Ithis
paper seveal techniques fosupplying wok to processcs and to
implement thead joining in NUMA machines & first compaed.
Our proposed techniques earawae of the cache behavido
minimize memoy conflicts, although they may incavetheads
higher than existing implementations that only sugparsingle
level of paallelism. We use the penfmance counterof the MPS
R10000 pocessof5] to keep tack of the cache behavioimr the
different implementations. Then, two applications (th&Sg5fp
Hydro2D and the NAS APBT) are used to validate the gposed
fork/join implementations. 8th applications benefit dm
exploiting multiple levels of patlelism, achieving highespeedup
than theircorresponding single-level vebns.

The rst of the papers stuctured as follows: Section 2
summaizes the functionalitieetated to thead foking and joining
suppoted by curent paallelization envionments. Section 3
descibes the poposed fok/join techniques, enlightening the
differences with the existing one%ection4 presents an evaluation



of the overhead introduced by the proposed techniques. Sedion 5
shows the structure of the gplications used to validate our
proposals and Sedion 6 presents their evaluation. Finaly, Sedion
7 concludes the paper and presents future work.

2. CURRENT PARALLELIZATION
ENVIRONMENTS

Current parall €i zation environments are based on highly tuned and
customized thread packages. Each padkage provides mechanisms
to spawn and join pardlelism. The implementation of such
medhanisms gredly influences the type of parallelism which can
be exploited at application level. Current implementations do not
allow the eploitation of more than one level of parallelism,
because the runtime exeaution environment forbids sawning
parall elism when already running in aparallel region.

For instance in the SGI MP library, when the master thread
spawns pardlelism in a parallel construct, it sets the starting
program counter and the aguments for the dave threals and
asdgns a sequence number to the parallel construct. It coll ects all
this information in a common and fixed memory areg known as
the work descriptor. Then, the slave threads pick up their work
from this descriptor. They al participate in the parallel construct
identified by the arrent sequence number, executing the same
function with the same arguments. This mechanism supports all
the work-sharing constructs defined in OpenMP-like extensions to
sequential languages such as Fortran or C/C++. However, it
restricts the parallelism that can be exploited by the gplication to
a single level becaise the descriptor cannot be reused till the
previous parall elism has been joined.

The SGI MP library provides two dfferent implementations for
thread joining. The first one, used by default, is a globa join
structure in shared memory (SHM). The dave threads use the
globa sequence number assgned to the arrent paralel construct
to mark in the global join structure, located in the work descriptor,
that the paralel work has been finished. Meawwhile, the master
thread, after participating in the spawned work, waits for al the
segquence numbers in the join structure to read the aurrent one.
Usually, the join structure is distributed along severa cade lines
in order to minimize false sharing when the slave threads accessit.
The second implementation replaces the join structure by a wunter
on urcached atomic memory (FOP's [6]) based on spedalized
hardware present in the memory modules of the Origin2000
system. The use of a shared courter or a single joining structure
and a global sequence number to implement threal joining o
barrier synchronization aso dsables multi-level parallelism
exploitation because only one thread may ad as the master thread
for managing the joining process.

The parall eli zation environment based on the SUIF compiler [7] is
also hesed in a run-time padkage which restricts the parall elism to
asingle level. The limitation of the SUIF runttime library is aso
motivated by the use of a shared work descriptor to supply work to
the slave processors and only one join structure with a global
seguence number to identify which parallel construct is active.

The lllinois-Intel Multithreading Library (IML [8]) is also targeted
to shared memory multi processors. This one does support multiple
levels of general, unstructured paralelism. Applicaion tasks are
inserted in task queues before execution, alowing severa task

descriptions to be ative & the same time. IML focuses on the
design alternatives for implementing such task queues (centrali zed
and/or distributed). The library is dso in charge of mapping the
tasks to the available processors and of load balancing issues.

There ae other reseach projects targeting at the exploitation of
multiple levels of parall elism. They focus on providing some kind
of coordination support to all ow the interaction of a set of program
modules in the framework of data parallel programs for distributed
memory architedures. For instance, [9] propose a library-based
approach that provides a set of functions for coupling multiple
HPF tasks to form task-parallel computations. The Fx [10] and
PARADIGM [11] projects propose extensions to integrate task and
data pardlelism in an HPF environment. The use of task
parallelism is proposed to improve the performance when data
parallelism is not enough.

Our thread package implementation (NthLib[12]) is built based on
the Nano-Threads Programming Model [13][14]. It is targeted to
shared memory and supports multiple levels of parallelism. The
user expresses the multiple levels of parallelism through nested
OpenMP directives. The NANOS compiler [4] (based on
Parafrase-2 [15]) analyses the directives and generates a
hierarchicd task graph structure which represents the goplication.
Each level of the hierarchy represents one possble level of
parallelism. Each nested parall el construct makesthe hierarchy one
level deeper. The compiler generates code based on this interna
representation. At run-time, tasks are mapped to nano-threads and
these ones are dynamicdly mapped one-to-one to the aurrently
available processors. The words thread and processor are used
indistinctly along the paper.

The NthLib padkage interface is designed in such a way that it
provides different primitives to spawn parallelism, depending on
the hierarchy level in which the gplicaion is working. The
deepest level is generated wsing the most efficient thread credion
primiti ves, based on work descriptors and the techniques presented
in Section 3. Thislevel isthe one which contains the finest grained
parallelism. Higher (less degper) levels are generated using nano-
threads, a different (more costly) interface which provides threads
with a stack. Local variables residing in the thread stadk can be
maintained (as in alocal address pace) to be used by the threads
executing inner levels of paralelism. In addition, the latter
interface dso provides support for the general unstructured
paralelism found in the hierarchicd task graph. A detailed
description of this interface and its implementation can be found
elsewhere[12].

3. THREAD FORK/JOIN TECHNIQUES

The main goa of our proposals for implementing efficient thread
fork/join in the nano-threads environment is the support for
multiple levels of parallelism and processor grouping. In this
sedion, two different techniques for supplying work to procesors
and an improved thread joining scheme ae presented.

3.1. Forking Threads

Forking threads efficiently at the inner-most level of paralelismis
based on supplying a work descriptor to the participating
procesrs. The work descriptor consists of a pointer to the
function encapsulating the work that has to be exeauted and its



arguments. When the same work descriptor is supplied to a group
of processors, each one deddes the portion of work that has to
execute, based on the aguments, the number of processors
working in the group and its own identifier inside the group.

3.1.1 Functionality

The forking techniques are GWD (Global Work Descriptors) and
LWD (Loca Work Descriptors), WD for short. The GWD can be
used in spawning the inner-most level in a multilevel paralel
application. It supports multiple levels of parallelism because it
allows the wexistence of multiple opened parallel constructs,
solving the limitation of asingle work descriptor found in previous
implementations. All processors dare asinge GWD structure,
they all can simultaneously supply work to the GWD and they
execute the same work. GWD is expeded to perform comparable
to existing highly tuned implementations when exploiting a single
level of parallelism. Figure 1A shows the execution of a parallel
construct consisting o a parallel 1oop, four independent sedions
(also containing parallel loops) and another parallel loop. In this
case, the master thread executing each section spawns the
parall elism asciated to the parall el loops inside the section to all
the procesors. Since the same descriptor is supplied to al the
processors for each parall el loop, each procesor in the system will
execute achunck of iterations of all the loops (probably alwaysthe
same, if the compiler exploits loop affinity).

A | All-to-all (using GWD) y Grouping (using LWD)

20
0
{

)

=

3
0
Uy

Loopis executed
b on P processors

Figure 1: Two alternativesfor the exploitation of multiple
levels of parallelism
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LWD is a more advanced technique that inherits most of the
characteristics of the GWD and aso alows processor grouping.
Using processor grouping, the gplicéion is able to drive severa
procesors to work on a independent task or set of tasks. Each
group has a master and (possibly) several slave procesrs. The
master processor starts the task and it is in charge of spawning the
paral elism encountered inside it. After that, the ave processors
cooperate with the master to execute the paralelism. At the end,
the master procesoor waits for the slaves to complete the work.
This exeaution model requires that any processor can supply work

to any other processor. There exists one LWD structure for each
procesor, allowing different work to be supplied to different
procesrs from different parts of the parallel application. In
Figure 1B, the master thread exeauting each sedion spawns the
parallelism associated to the parallel |oops inside the section to just
a subset of al the procesors (in this case, each group o four
procesrsis aupplied with a different work descriptor). Due to the
definition of these groups, now ead processor executes a chunk of
iterations for a subset of al the loops inside the parallel sections.
However, for loops outside them, all processors cooperate in the
execution of the parallel loops. Care should be taken into account
about how this change in the structure of the parallelism can
influence datalocdity.

As a result, the LWD overheal can be higher than that of GWD
due to the individual supply of work descriptors, but it is expeded
that limiting the number of processors participating in an inner
parallel construct makes worthwhile the exploitation of multiple
levels of parall elism.

3.1.2 Implementation

The two WD proposals are implemented as arrays of pointers to
work descriptors, behaving ascircular lists (seeFigure2, A and B).
There is a shared GWD structure and one per-procesor LWD
structure. Each processor searches for work first in its own LWD
and then in the GWD. The size of the WD structures is a multiple
of the semndary cade line size ad they are aligned to cache line
boundaries to avoid false sharing. Both implementations use one-
way communicaion from the master processor to the slave
processors. This means that the master processor writes pointers
and the dlaves real them. After the master processor writes a
pointer to a WD location, it takes advantage of having exclusive
aacessto the cahe line to aso clea a previously used location.
This one-way communicaion mechanism saves ®vera cade
misses and invali dations whil e generating work, thus speeding up
part of the criticd path of the run-time library. Each processor has
its own local index to the WD structures to extrad work from
them. It knows that there is no work in a WD structure when the
location pdnted byitsindex isNULL . The master processor uses a
globa index (WDP) to store anew pointer in the next available
location of the WD structures. The global index is necessary to
allow several processors to add work at the same time. Mutual
exclusion through load-linked and store conditional instruction
sequencesis used to update this global index.

For example, in Figure 2A, four work descriptor pointers (shaded
areg are adrrently stored in the GWD, possibly from different
parts of the goplication. Not all procesors have exeated the same
number of descriptors and some of them are extrading work from
different locdions. Each procesor has a locd index for work
extraction.

Figure 2B presents the implementation o the LWD. It shows four
LWD structures for four different processors. In the example, two
groups of two procesors are dready spawned. Each master
procesr (0 and 2) uses an index associated to each LWD to insert
new work. This index is accessed in mutual exclusion to allow
several procesors to add work to a LWD at the same time. Again,
cleaing an aready used location during work insertion improves
the cache behaviour. Each processor waits for work in its LWD



using alocal index. Processors working in a group are consecutive
and areidentified 0 (the master), 1, 2, and so on.

3.2. Thread Joining

Like many implementations, our proposal for threal joining is
based on a distributed structure, to minimize false sharing.
However, we add alocd sequence number for each processor and
a per-procesor join values array (PJV) to support multiple levels
of pardlelism. The per-procesor sequence number alows that
each individual procesoor participates in a different number of
parallel regions before mllaborating again in the same group due
to a change in the structure of the paralelism. This is different
from the previous implementations, where the sequence number
was identifying the aurrently executing parall el construct.

i) Master processr generates work and clears some previous A
location. It usesthe global insertion index

NULL WDP
Global Work Descriptors

‘ ii) Slaves take some new work
Each one uses its own index
* \‘ All processors get all work

i) Several master processors generate work for their group \i
--— Firstgroup - -=— Second group ——

WDPO WDP1 WDP2 WDP3
o - N ™) Locd
=il =il &l & Desc.
Y Y Y Y

ii) Slave processors take work from their locd WD

i) Slave threadsin a processor group (6-11) indicate termination. \E
Each thread stores its own join sequence number in DJS

“ W# Distributed Join Struct,

3

0-3 4-7 \ 8-11

ii) The master waits for
vaues greater than the
current join value

iii) and copies them
to record the last
join value for each
processor in PV

Per-procesor (current) Join|\Values

0 6 1112

Figure2: Thread fork /join data structures

Figure 2C shows the proposed implementation. When a save
procesor in agroup terminates its work, it writes its per-processor
join sequence number in the Distributed Join Structure (DJS). One
cache line stores the sequence numbers of four processors. The
master processor has a mpy of each thread sequence value in its
PJV. It waits for completion of the parall el work by looking at bath
ends of the DJS. When it detects that the value stored in DJS for
one of the two current locdions is greater than its local copy, it

records the new value in PV and proceels to the next processor.
Both the DJS and the PJV are dlocated in the stack of the master
procesr in order to dlow the existence of several master
procesors at the sametime.

4. EVALUATION OF THE FORK/JOIN

TECHNIQUES

The goa of this ®dion is to evaluate the proposed fork/join
techniques and compare them with the ones currently implemented
in the SGI MP library. Later in this paper we show the usefulness
of the multiple levels of parallelism exploitation and processor
grouping. Thiswill validate the fork/join techniques and justify the
additional overhead they introduce.

All the experimental evaluation in this paper has been done on a
dedicated SGI Origin2000 machine [16] containing 64 R10000
procesrs (250 Mhz., chip revision 34) and 8 Gb. of main
memory. Each processor uses sparate primary caches for
instructions (32 Kb.) and data (32 Kb.) and a unified 4 Mb.
seoondary cadhe. The operating systemisIRIX release 6.5. Unless
noted otherwise, all benchmarks have been compiled with the
MIPSro FORTRAN 77 release 7.2.1.1m, using the following
compil er flags: -Ofast=ip27 -
LNO:prefetch_ahead=1:auto_dist=ON. These are the options used
to compil e the base versions of the SPEC95fp benchmarks.

A synthetic benchmark (called “overhead”) is used to evaluate the
overhead introduced by the techniques presented in Sedion 3when
executing fine-grain paraléeism. “Overhead” consists of 1,000
iterations spawning and joining parallelism. Severa experiments
have been caried out in the Origin2000 machine with a work size
ranging from 1,000 to 1,000,000 iterations. From them, we have
selected the most relevant ones: Experiment #2 executes 4,000
iterations, taking around 100 us.; Experiment #6 does 50,000
iterations, taking 1.2 ms.; And experiment #9 is 400,000 iterations,
taking 10 ms. The benchmark is run on both the SGI MP library
and NthLib.
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Figure 3: Evaluation of the fork/join mechanisms

Figure 3 compares the four techniques for work generation with
resped to the execution time and cache behaviour. MP-FOP and
MP-SHM stand for the two different joining mechanisms inside
the MP library. NNTH-GWD and NNTH-LWD stand for the two



different forking mechanisms with distributed joining in NthLib.
Each bar represents the execution time of the benchmark on 32
procesors, running the experiment indicaed by the sswciated
label. For instance, NNTH-LWD2 corresponds to the experiment
#2 wsing the LWD tedhnique. Along with the execution times of
the benchmark, the plot presents the normalized numbers of
primary and semndary data cade misses and the normalized
number of store operations requiring exclusive acessto a shared
cache line. These events have been colleded using the R10000
hardware event counters, through the perfex analysistool, provided
by SGI.

Exeaution times in Figure 3 show that all techniques are
comparable with respect performance Differences arise when
comparing the behaviour of the cahe. Observe that for the FOP,
SHM and GWD techniques, the amount of cace events are
similar. In LWD, the number of stores that reclam exclusive
accessto a cache line increases. Thisis due to the way the work is
supplied to processors, one to one. The store event is caused each
time the master processor generates work, getting exclusive access
to the cahe line where it stores the pointer to the work descriptor.
The cade line is, then, read by the destination slave processor,
which requests sared accessto the line. Thus, one cade line per
procesor exchanges twice its status each time work is generated.
This movement between cate memories is nat affecting the
performance of the overhead benchmark, but it can affed the
performance of parallel applications.

Figure 4 shows the execution times obtained when running the
overhead benchmark (4096 iterations, from 1 to 64 processors).
The results confirm that the GWD and LWD implementations are
comparable to the MP library implementation. In addition, the
figure also presents results for amultilevel version of the overhead
benchmark. This version spawns a first level of paralelism
consisting o four sedions and an inner level of loop parallelism
executing 1,024 iterations (using LWD), so the total amount of
work is the same. This is represented by the bar labeled NNTH-
2L2. It shows that the overhead of the multilevel version is
comparable to the overhead of the single level one.
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8 NNTH-LWD2
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Figure 4: Fork/join evaluation (over head)

Figure 5 shows the exeaution times for a parallel version of the
SPEC95fp Swim application (with one level of parallelism and
using the GWD technique) using from 1 to 64 pocessors. The

execution times of the Swim applicaion show that the GWD
approach is comparable to the SGI implementation also when
running complete gplications.
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Figure5: Fork/join evaluation (SPEC95fp Swim)

5. MULTI-LEVEL PARALLELISM
EXPLOITATION

In the rest of the paper, we use two different applicdions to
validate the implementation of the fork/join techniques presented
in Section 3. First, we show that their efficiency is good enough to
support multiple-levels of parallelism. A second result which is
obtained is that multiple-levels of parallelism can he effedively
exploited inside applications. The applications slected are the
SPEC95fp Hydro2D and the NAS APFPBT benchmarks. The
structure of the gpplications is described in the following
subsedions.

5.1. SPEC95fp Hydro2D Benchmark

The Hydro2D applicaion solves the hydrodynamicd Navier
Stokes equations to compute galacticd jets. The referenceinput for
Hydro2D executes 200 iterations of atime-step loop.

Figure 6 shows the structure of one of the two computational steps
in the main time-consuming routine (advnce) exeauted inside the
time-step loop. Up to amaximum of threelevels of parall elism can
be deteded in this application. In the advnce subroutine, a set of
functions can be exeauted in parallel since they access different
data (nodes 2, 3 and 4); these functions contain two levels of
parallelism as own in the right part of Figure 6. Nodes 5 and 6
corresponds to the invocation o functions transl and trans2,
respedively; both functions also contain two-levels of parallelism
as diown in the left part of Figure 6. Nodes 7 to 10 contain a cdl to
the fct subroutine. This subroutine has parallel loops.

Two different parallelization strategies have been tested. The first
one ploitsasingle level of loop parallelism. The second oneisa
two-level version which exploits all the parallelism inside corif/
stagfl/stagf2, transl/trans?2 and the parallelism of the parallel
invocdions to fct subroutine including parallel loops. Although
nodes 2, 3 and 4 can be also executed in parallel (so three levels of
parallelism could be exploited), we decided to exeaute them
sequentially in order to improve data locdity. Spawning at the
outer level distributes work to the master processors for each



group. For instance, in the 16 procesor execution, procesors
numbered 0, 4, 8 and 12 are the group master processors. At the
inner level, each group master processor entering a new work-
sharing construct spawns parallelism on its group. For example,
procesor 4 is going to spawn parall elism on processors 4 (itself),
5,6and 7.

As the applicaion structure is regular, Hydro2D is useful to
demonstrate how a well balanced alocaion of the work at the
different levels of parallelism to processors can result in a better
proces9or utili zaion.

subroutines
stagfl/stagf2

subroutine
advnce

subroutines
transl/trans2

nested loops: s
subroutine clls:

k,l,m,n,o,p,q,r
(with perallel
loopsinside)

subroutine cdls: f, g, h, i

(with perallel loopsinside) nested loops: 1
subroutine alls: 7, 8, 9, 10

(with peraléel loopsinside)

Figure 6: Multiple levels of paralldism inside the SPEC95fp
Hydro2D benchmark

5.2. NASAPPBT Benchmark

The NAS APPBT benchmark [17][18] solves three sets of
uncoupled block tridiagonal systems of equations, first in the x,
then in they and finally in the z direction. Each block contains 5x5
elements. These systems arise in many CFD applications.

The structure of the gplication is as follows: An iterative loop
sequentialy calls to routines compute_rhs, x_solve, y_solve and
z_solve. The dependences in these routines determine which loops
can be parallelized. For instance, x_solve caries the dependencein
the first dimension being the loops that traverse the second and
third dmension completely parallel; similarly, y_solve caries the
dependence in the second dimension and z solve in the third
dimension. A possible strategy would be to parall €li ze the loop that
traverses the third dimension in routines X_solve and y_solve and
paral elize the loop that traverses the seand dimension in routine
z solve. Although this parall€dlizaion strategy implies totally
parale loops, it suffers from the data movement overhead
(transpositi on) that occurs when going fromy_solve to z_solve and
bad again to x_solve.

The datamovement overhead of the transposition can be avoided if
the third dmension is aso paralelized in z_solve; this requires the
use of the OpenMP ORDERED clause and diredive that forcesthe
sequential exeaution of the distributed loop iterations. In order to
allow a pipelined exeaition of the ORDERED dimension, loop
blocking is applied. In thisway, a chunk of iterations in processor

p+1 is exeauted when the same cunk of iterations finish its
execution in procesor p. Figure 7 shows the data distribution
among procesors and the resulting exeaution model for the one-
dimensiona parallelization in the z_solve routine. Although this
introduces the overhead of blocking and synchronization, the
overlap of different chunksin dfferent procesors can result in an
improved performance

When the number of iterations is snall to fed a large number of
processors, two dmensions are worth to be paral elized. In order to
avoid data movement, our strategy paralelizes the second and
third dimension in al the routines. This implies that two
dimensions are exeauted in parallel in x_solve, but one of the two
dimensions parall €li zed are exeauted in an ORDERED way in both
the y solve and z solve routines. Figure 8 shows the data
distribution performed among processors and the resulting
execution model for the multidimensional paraléelizaion in the
z solveroutine.

'

Figure 7: One-dimensional data distribution and pipelined
ORDERED execution in the APPBT application

I

Figure 8: Two-dimensional data distribution and pipelined
ORDERED execution in the APPBT application

6. MULTI-LEVEL PARALLELISM
EVALUATION

6.1. SPEC95fp Hydro2D Benchmark

Four different versions of the Hydro2D benchmark have been
executed using the reference input file, as provided in the SPEC



benchmarks. Figure 9 shows the speedup dbtained. Sequential
execution time is 154.71 seconds, which agrees with the 154
semnds reported in the SPEC benchmark CFP95 summaries[19].

Bar labeled MP-SHM correspond to the speedup obtained when
the gplication isrun on top of the SGI MP library. In this case, the
application has been manualy parallelized wing OpenMP
diredivesto exploit loop parall €lism and compil ed with the native
SGI compiler. Results are better than those reported in the SPEC
summaries because of the manua paraléizaion. For instance,
reported results using automatic paralelization through PFA
(Parallel Fortran Analyzer) are 39.1 seconds on 8 processors and
35.9 seonds on 16 processors. Results obtained through manual
paral elizaion are 32.7 semnds on 8 processors and 23.1 sends
on 16 procesors. These results vali date the parall lization we have
manually performed on this appli cation.

Bars labelled NNTH-1LVL have been obtained by executing the
same loop level paral€lizaion on top o the NthLib threads
padkage using GWD. In this case, the application has been first
pardlelized using the NANOS compiler. The resulting parallel
Fortran code, containing calls to the NthLib threads package is
then compiled wsing the MIPSoro Fortran 77 compiler with the
usual compilation options. As can be observed in Figure 9, the
execution time of this version is worse than the SGI MP library
version. The main reason for this poor performance is that the
quality of the cde generated by the SGI OpenMP compiler is
better than the quality of the ade generated for the NthLib. Thisis
because the MIPSoro Fortran 77 compiler applies sme code
optimizations before and after the parallelization takes effect. This
behaviour is inhibited in ou approach because the task of
paralelism extraction is done by the NANOS compiler, which is
not applying any optimizaion before paral €lizing. This difference
in the quality of the generated code has a greaer influence when
the number of processors is gsnal. However, up to a cetan
number of processors (32), the speedup dbtained by the two one-
level implementationsis gmilar.

103
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@ NNTH-1LVL
= NNTH-MLV
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o
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Figure 9: Execution time and speedup of the SPEC95fp
Hydro2D benchmark

The last bar (labelled NNTH-MLV) is the result of the multi-level
execution. The gplication exploits two levels of parallelism as
explained in Section 5. Results show that the overhea introduced

by the two-level parall€elization is noticeable when running on a
small number of processors. A fair comparison can be establi shed
with the NNTH-1LVL version, in which the quality of the cde
generated is the same. As a result, for up to 8 processors, the
overhead of the two-level parallelization motivates an increment in
the execution time below 10%. In this application, four different
procesor groups are established at the outer parallelization level,
S0 at least 8 processors are required to effedively exploit multiple
levels of parallelism. Four groups of 2 processors give an speedup
of 4.0 compared to the 4.5 achieved by the onelevel version
running in 8 procesors. When 16 processors (four groups of 4
procesrs) are used, nealy the same speedup is achieved by both
NNTH versions. When using more than 16 procesrs, the one-
level version is unableto scale, while the multi-level version scales
till a speedup of 9.3 on 48 processors and giving an improvement
of 30% in 3 procesors with respect the single level version.

Processor grouping promotes scalabili ty in this applicaion because
the parallel loops in the inner paral el level are distributed among
less procesoors when executed in parallel. This causes each
procesor to keep a larger working set belonging to ead matrix
used in the loop body, thus reducing the amount of cache conflicts
among the processors.

6.2. NASAPPBT Benchmark

Figure 10 shows the exeaution time and speed-up o the NAS
APPBT benchmark. We have selected a small version (classW) of
the APPBT applicaion in order to better appredate the influence
of the paraldizaion overheal. All versions of the APPBT
application have been compiled with -O3 compilation opion
instead o -Ofast=ip27 because this is the option used in the
standard compilation of the NAS benchmarks in SGI madines.
Due to the paralelizaion scheme and the application class the
application can be executed on as much as 24 processors.
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Figure 10: Execution time and speedup of the NAS APPTBT
benchmark

In Figure 10, MP-SHM stands for the one-level version exeaited
on the SGI MP Library. This result is provided as areference Two
NNTH versions have been developed, one for single dimension
parallelization (NNTH-1LVL) and another for multi dimensional
parallelization (NNTH-MLV), achieved through two-levels of



paral elism (as sown in Figure 8).

Again, comparing the results in the nano-threads environment, the
results on a small number of processors $ow that the multi-level
version isworse than the one level version. Thisis due to the extra
overhead introduced by the multi-level version. However, when
using more than 8 processors, the multiple-level version achieves
higher speedup, reading 14.5 on 24 processors. The gain in the
speedup reaches 65% with resped to the one dimensional
paral elizaion.

7. CONCLUSIONS

Current paral€izaion environments for shared memory
multi procesor systems are based on highly tuned and customized
thread packages offering the mechanisms required for thread
credion (fork) and joining, thread identification and so forth. Such
environments (either commercial or experimental) do not allow the
exploitation of more than one level of parallelism.

This paper presents techniques for efficient thread forking and
joining in pardle exeattion environments, taking into
consideration the physicd structure of NUMA macines and the
support for multi-level parallelization and processor grouping.
Two work generation schemes and one join mechanism are
designed, implemented in the NthLib padage, evauated and
compared with the ones used in the IRIX MP library, an efficient
implementation which supports asingle level of parallelism.

For a single level of paralelism, the MP library uses sngle data
structures located at fixed memory locations that do not enable
severa procesors to coordinate (spawn and join) paralel
activities, thus restricting the paral elism that cen be exploited at
the eplication level. In oder to overcome this lak of
functionality, we provide per-thread data structures that enable the
coordination of some dave threads with a master thread, set when
spawning an outer level of parallelism. Per-threal data structures
also all ow multiple threads to coordinate parallel activities coming
from different parts of the gplicaion at atime.

Both mecdhanisms are evaluated and validated using a synthetic
benchmark for measuring their overhead, two SPEC95fp
applications (Swim and Hydro2D), and one NAS benchmark
(APPBT). The overheal benchmark and Swim (with asingle level
of paralelism around loops) adlow us to conclude that the
additional functionditi esin our fork/join mechanisms do not result
in a noticedle reduction of the thread package efficiency. The
other two benchmarks expose multiple levels of paralelism and
benefit from its exploitation. The comparison with the traditi onal
one-level parallelism exploitation for these programs gives an
improvement of 30% and 65% in the speedup of Hydro2d (on 3
procesors) and APPBT (on 24 processors), respedively. These
results validate the exploitation of multiple levels of parallelism
based on the thread fork/join techniques described in this paper.
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