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Abstract: The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in
humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-
resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to
a mortality rate reaching up to 100 %. Although specific mutations in CYP51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with
wild-type CYP51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining
popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest
for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement
to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper
comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Key words: Aspergillus fumigatus, Azole-resistance, Drug-resistance mechanism, Invasive aspergillosis.
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INTRODUCTION

Species within the genus Aspergillus have been long exploited
as an invaluable biotechnological resource to produce pharma-
ceuticals, food and food ingredients, and enzymes (reviewed in
Meyer et al. 2011). Among species within this genus, Aspergillus
fumigatus is the most ubiquitous fungal species in the environ-
ment (reviewed in Kwon-Chung & Sugui 2013). Aspergillus
fumigatus can withstand and survive in a wide range of pH and
temperature and its hydrophobic cell wall allows this species to
be efficiently dispersed by even slight air currents. Similarly, a
number of features allow this species to be the most predominant
mould species causing infections in humans (Kwon-Chung &
Sugui 2013). Small conidia size allows penetration to the lower
respiratory tract system and escaping clearance by mucociliary
forces, presence of melanin in the cell wall enables withstanding
reactive oxygen species and phagocytosis, and abundance of
Peer review under responsibility of Westerdijk Fungal Biodiversity Institute.
© 2021 Westerdijk Fungal Biodiversity Institute. Production and hosting by ELSEVIER B.V. This is an
nc-nd/4.0/).
negatively charged sialic acid on the surface permits A. fumi-
gatus to effectively bind to the basal lamina proteins once inside
the host lung (reviewed in Kwon-Chung & Sugui 2013). Although
conidia can be easily cleared by counteracting host mechanisms
in the lung, A. fumigatus can cause a wide range of infections in
both immunocompromised and immunocompetent individuals
(Denning & Chakrabarti 2017), including an estimated annual
number of 16 million pulmonary-infections (Denning et al. 2013,
2016) with fatal outcomes in many hundred thousand patients
annually (Brown et al. 2012, Lowes et al. 2017).

Triazoles are the first-line antifungals used to treat patients
suffering from aspergillosis and have brought downmortality rates
to 30 % or lower in invasive aspergillosis, which is almost always
fatal if untreated (Neofytos et al. 2009). Extensive use of azoles in
various sectors ranging from agriculture and industry to clinics,
however, promotes selective pressure allowing emergence of
azole-resistant A. fumigatus (ARAF) isolates in numerous niches
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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(Verweij et al. 2015). Subsequently, deposition of such ARAF
spores in the lung of immunocompromised patients may cause
azole-resistant invasive aspergillosis (IA), often in patients that
have never been prescribed any azoles, resulting in treatment
guidelines favouring initial treatment with liposomal amphotericin
B in settings with high prevalence of azole resistance (i.e. > 10 %)
(Thom&Church 1926). Therefore, the highmortality rate and wide
range of infections together with the emergence of ARAF isolates
severely complicates the management of patients suffering from
aspergillosis. In this review, we discuss the current paradigm and
challenges of aspergillosis, and subsequently provide sugges-
tions to more effectively tackle these challenges utilising world-
wide initiatives across multiple disciplines.
TAXONOMY AND PREVALENCE OF CLINICALLY
IMPORTANT ASPERGILLUS SPECIES

History

The genus Aspergillus has a long history which dates back to
Micheli’s “Nova Plantarum Genera” of 1729. Micheli, being a
priest, noted that the fungus he described resembled the shape
of an aspergillum (sprinkler of holy water), hence the name
Aspergillus. The genus gained more attention from 1850 on-
wards, because it was recognised as a causal agent of spoilage,
human disease and producer of useful metabolites. Due to its
economic significance, the taxonomy of the genus was studied
various times in history. In 1926, Thom and Church brought all
available material on Aspergillus together and published the first
major monograph on the genus (Thom & Church 1926). This
monograph was revised in 1945 (Thom & Raper 1945) and
subsequently in 1965 (Raper & Fennell 1965). Their taxonomic
schemes were based on macroscopic (e.g., conidial colour and
growth rates) and microscopic characters (vesicle shape, pres-
ence/absence of metulae). These monographs were the stan-
dard until the introduction of the molecular techniques in the
1990’s. Due to DNA sequence analysis, and to a lesser extent
extrolite analysis, morphologically well-defined species turn out
to consist of multiple species. Nowadays, a polyphasic approach,
integrating different kinds of data and information (phenotypic,
genotypic and phylogenetic), is the standard for describing new
species in Aspergillus. To date, an updated Aspergillus mono-
graph is lacking; however, there are some more recent taxo-
nomic overviews on various Aspergillus sections, e.g., sect.
Aenei (Varga et al. 2010), Aspergillus (Chen et al. 2017), Cervini
(Chen et al. 2016a, 2016c), Circumdati (Visagie et al. 2014),
Clavati (Varga et al. 2007), Flavi (Frisvad et al. 2019), Flavipedes
(Hubka et al. 2015), Fumigati (Samson et al. 2007a), Nidulantes
(Chen et al. 2016a, 2016c), Nigri (Samson et al. 2007b, Varga
et al. 2011), Polypaecilum (Tanney et al. 2017), Restricti
(Sklen�a�r et al. 2017), Terrei (Samson et al. 2011) and Usti
(Houbraken et al. 2007).
Nomenclature and Aspergillus

The International Code of Nomenclature for Algae, Fungi and
Plants (ICN) governs the naming of fungi (McNeill et al. 2012).
For a long time, dual nomenclature was used and asexually
reproducing fungi got separate names from their sexual states.
2

When strictly following these old rules, the name of the sexual
morph had priority over the asexual morph name. For example,
Neosartorya fumigata and Petromyces flavus should be used
instead of the more well-known names A. fumigatus and
A. flavus. The separate naming of these morphs was debated for
many years and the principle “One fungus, One name” was
introduced on January 1, 2013. In practice this means after that
date, a fungus can only have one name. Nowadays, the name
Aspergillus is used in a broad sense. Species producing
(different) sexual morphs and previously described in teleomorph
genera (e.g., Emericella, Eurotium, Neosartorya, Petromyces)
are treated as synonyms (Kocsub�e et al. 2016). The single name
nomenclature led to various name changes. Many of the clini-
cally relevant species were already known under its current
Aspergillus name and therefore these changes did not have a big
impact in the field of medical mycology. For example, in medical
mycology Aspergillus nidulans was already a well-known name,
while Emericella nidulans was more commonly used in food and
indoor mycology. In some cases, the species epithet already
indicates the connection between the old and current name (e.g.,
A. chevalieri/Eurotium chevalieri, A. fischeri/Neosartorya fischeri,
A. udagawae/Neosartorya udagawae), but in other cases this is
less obvious (e.g., A. glaucus/Eurotium herbariorum, A. mon-
tevidensis/Eurotium amstelodami and A. thermomutatus/Neo-
sartorya pseudofischeri). In order to help the users with these
changes in nomenclature, a list of all accepted species was
prepared for Aspergillus (and related genera) (Houbraken et al.
2020).
Classification of Aspergillus

The genus Aspergillus is classified in the family Aspergillaceae,
order Eurotiales (Houbraken & Samson 2011). There is a long
tradition of using an infrageneric classification in Aspergillus;
these are names of taxa between the ranks of genus and species
(e.g., subgenera, sections, series). Using morphological char-
acters, Raper & Fennell divided Aspergillus in 18 groups; how-
ever, these groups do not have any standing nomenclature and
should not be used anymore (Raper & Fennell 1965). To avoid
confusion and to promote taxonomic stability, a formal infrage-
neric classification system was introduced by Gams et al. (1985)
and they replaced the “group” structure by a subgeneric and
sectional structure. Nowadays, the genus is subdivided in six
subgenera, 27 sections and 87 series (Houbraken et al. 2020).
These formal infrageneric ranks are not commonly used in
medical mycology. Articles often refer to various other informal
ranks, for example “species complexes” (e.g., “A. fumigatus
species complex”) (Sals�e et al. 2019, Dos Santos et al. 2020),
“cryptic species”, “cryptic A. fumigatus” (Wiederhold et al. 2018,
Rivero-Menendez et al. 2019a) “species clades” (e.g., A. fumi-
gatus-clade) (Balajee et al. 2005, 2007a), “sensu lato” (e.g., A.
fumigatus sensu lato) (Li et al. 2014, Hagiwara et al. 2019) and
“sensu stricto” (e.g., A. fumigatus sensu stricto) (Li et al. 2014,
Monteiro et al. 2019)). The main disadvantage of using these
informal ranks is lack of consensus. For example, it is not clear
whether “A. fumigatus sensu lato”, “A. fumigatus species com-
plex”, “cryptic A. fumigatus” and the “A. fumigatus-clade” are
actually representing the same (group of) species. It is therefore
recommended to use, when possible, a formal classification
system of subgenera, sections and series. In the case of A.
fumigatus, it is recommended to refer to A. fumigatus (the



Fig. 1. Cladogram of the genus Aspergillus and the relationship between sections and subgenera. A selection of the species mentioned in the text are given in brackets in bold
font after the section name. Adopted from Houbraken et al. (2020) with permission.
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species), series Fumigati (for A. fumigatus and the related
species Aspergillus fischeri, A. fumigatiaffinis, A. fumigatus, A.
fumisynnematus, A. laciniosus, A. lentulus, A. novofumigatus, A.
oerlinghausensis, A. spinosus, A. takakii) or section Fumigati (59
species) (Houbraken et al. 2020).
Identification of Aspergillus species from pure
culture

In the last decade, there is steep increase of the number of
accepted Aspergillus species (Houbraken et al. 2020). The
driving forces behind this steep increase are twofold: firstly, there
is a large diversity and high interest in this genus and secondly,
phenotypically well-known species are turn out to be species
complexes that are genetically and evolutionary distinct (Chen
et al. 2016a, 2016c, 2017, Houbraken et al. 2016a, Sklen�a�r
et al. 2017). Morphology was for a long time the mainstay in
Aspergillus identification (Raper & Fennell 1965). As morpho-
logically well-defined species turned out to be species com-
plexes, accurate phenotype-based identification became more
difficult and unreliable. There are often only small differences
between species within a complex and sometimes they need to
be grown on special agar media to observe those differences.
Identification based on phenotypic characters is therefore chal-
lenging, even for experienced mycologists and (well-trained) staff
of routine labs. These phenotypically similar species are also
referred to as “cryptic species”; however, they can be identified
using a molecular based approach. These phenotypically closely
related (cryptic) species can have strikingly different patterns of
antifungal susceptibility patterns against the most important an-
tifungals, including triazoles and amphotericin B (AMB), and
some of these species are intrinsically resistant or have acquired
resistance against these antifungals (Alastruey-Izquierdo et al.
2013, 2014, Escribano et al. 2013, Negri et al. 2014, Iatta
et al. 2016, Heo et al. 2017, Talbot & Barrs 2018, Zoran et al.
2018, Salah et al. 2019, Mendoza et al. 2020, Glampedakis
et al. 2021). For correct identification of Aspergillus species,
calmodulin gene sequencing is recommended (Samson et al.
2019), and partial β-tubulin gene sequencing can be used as
an alternative. ITS sequencing lacks resolution and is therefore
not suitable. The public databases are well-stocked with
calmodulin gene sequences and 96.9 % of the 446 accepted
Aspergillus taxa are represented with a calmodulin gene
sequence in GenBank (Houbraken et al. 2020). Actually, the
taxonomic position of the species lacking a calmodulin sequence
needs to be determined (Houbraken et al. 2020) and are unlikely
to be relevant in medical mycology. Besides an overview of the
accepted species, also calmodulin and β-tubulin references se-
quences are given.

Since its introduction into clinical microbiology diagnostics,
MALDI-TOF MS has become the standard workhorse system for
the identification of bacteria and yeasts (Kostrzewa 2018).
Because of their rigid cell wall and the phenotypic variability by
sporulation, the identification of moulds has been shown to be
more challenging. Different approaches for sample preparation
have been developed to overcome these hurdles, e.g., tube
extraction of proteins before spotting on the MALDI-TOF MS
target or liquid culturing to avoid sporulation. A prerequisite of
successful identification of moulds are extensive libraries con-
taining high-quality reference spectra of well characterised
strains. This has led to a number of dedicated, user-specific
4

databases and database supplements besides the libraries
supplied by manufacturers (Sanguinetti & Posteraro 2017, Patel
2019). A study of US academic centres using a database
established at the NIH, a solid media extraction method and a
challenge set of 80 clinical mould isolates demonstrated the
requirement of instrument optimisation and high standardisation
for mould identification across different laboratories (Lau et al.
2019). MALDI-TOF MS has been successfully applied to
Aspergillus spp. identification in several studies. Thereby, it could
be demonstrated that many but not all rare and cryptic species
can be correctly identified if they are represented well in the
according database (Vidal-Acu~na et al. 2018, Imbert et al. 2019,
Am�erico et al. 2020). Closely related Aspergillus species are
sometimes difficult to differentiate by MALDI-TOF MS because of
their similar spectral pattern, today, but this can be improved by
further extension of databases and utilisation of alternative
identification algorithms.
Taxonomic notes on A. fumigatus and other
clinically relevant Aspergilli

Aspergillus section Fumigati
The species in this section produce uniseriate, columnar conidial
heads in shades of green and flask shaped vesicles (Raper &
Fennell 1965). Traditionally, the identification of these related
species is performed using the colony patterns and the
morphology of the conidiogenous structures, conidia, ascomata
and ascsopores (Raper & Fennell 1965). However, clinical iso-
lates can be markedly abnormal being more floccose with fewer
conidia and more recent taxonomic studies showed that section
Fumigati species can have a highly similar morphology. For
accurate identification, a sequence-based approach is therefore
recommended (Samson et al. 2007a). Aspergillus section
Fumigati includes 63 species and the species of the section are
thermotolerant. Aspergillus fischeri, A. fumigatus and A. oer-
linghausenensis are able to grow at 50 °C (Houbraken et al.
2016b), while other species of the section have lower
maximum growth temperatures (e.g., 45 °C: A. fumigatiaffinis, A.
fumisynnematus, A. lentulus, A. novofumigatus; 42 °C: A. felis)
(Balajee et al. 2007a). The sexual morph is of the neosartorya-
type (Samson et al. 2007a). The most well-known member of this
section is A. fumigatus, though other species in the section are
also clinically relevant: A. felis, A. fischeri, A. fumigatiaffinis, A.
fumisynnematus, A. hiratsukae, A. laciniosus, A. lentulus, A.
novofumigatus, A. pseudoviridinutans, A. spinosus, A. thermo-
mutatus, A. udagawae and A. viridinutans (Sugui et al. 2014,
Frisvad & Larsen 2016). Taxonomic evaluation of A. pseudofelis
and A. parafelis (also known as A. felis) showed that these
species are included in the genetically diverse A. felis (Hubka
et al. 2018) (Fig. 1).

Aspergillus fumigatus is reported as the most prevalent
species from this section in different countries (Binder & Lass-
Flörl 2013). Other species of section Fumigati, the so-called
cryptic A. fumigatus, have been increasingly identified in the
clinical setting in the last two decades, which is because of the
increasing use of the polyphasic approach for the discrimination
and identification of Aspergillus species in clinical samples.
Based on multilocus comparative sequence analysis, other
species from this section are recovered from 3 to 6 % of patients
with IA. Among cryptic species, A. felis, A. lentulus, A. thermo-
mutatus and series Viridinutantes members (= A. viridinutans
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complex) are the most common isolates from clinical disease in
human (Balajee et al. 2009, Alastruey-Izquierdo et al. 2013,
2014, Escribano et al. 2013, Negri et al. 2014, Sabino et al. 2014,
Frisvad & Larsen 2016, Talbot et al. 2018, Paccoud et al. 2019,
Yagi et al. 2019).

Aspergillus fumigatus biosynthesizes a variety of secondary
metabolites such as fumagillin, fumitoxins, fumigaclavines A & C,
fumitremorgins, gliotoxin, trypacidin, pseurotins, helvolic acid,
pyripyropens, methyl-sulochrin, verruculogen, fumiquinazolines.
Several of these metabolites may cause serious health hazard
(Frisvad & Samson 1990, Fujimoto et al. 1993, Larsen et al.
2007, Frisvad & Larsen 2016), though none of them are actu-
ally regulated mycotoxins. Some of these metabolites are
involved in impairing the host immune system (Steenwyk et al.
2020) e.g., gliotoxin has been shown to inhibit the host im-
mune response (Sugui et al. 2007, Spikes et al. 2008).

Other Aspergillus sections with clinically relevant
species
Besides the section Fumigati species, a wide variety of other
Aspergilli are clinically relevant. Most of them belong to the
species-rich sections Flavi, Nidulantes, Nigri, Terrei and Usti. The
taxonomy of these sections is well-studied and correct identifi-
cation using sequence data should therefore not be problematic
(Houbraken et al. 2020).

The taxonomy of section Flavi was recently updated and
contains 35 species (Visagie et al. 2014, Frisvad et al. 2019,
Houbraken et al. 2020), of which nine species are known to
cause infection in humans (Hedayati et al. 2007, Frisvad et al.
2019, Rudramurthy et al. 2019, Alshehri & Palanisamy 2020).
Aspergillus flavus is the main and most commonly occurring
species of the section. Most of the reports of A. oryzae in clinical
settings are likely to be erroneous. Aspergillus oryzae is the
domesticated form of A. flavus and they can be regarded as
conspecific. It is impossible to reliably differentiate A. oryzae and
A. flavus using morphology and calmodulin or β-tubulin gene
sequencing. The differentiation between both species is mainly
driven by an applied aspect: A. oryzae is extensively used in food
fermentations (e.g., soy sauce, sake) and for the production of
enzymes, and these industries do not want to use the name A.
flavus, which has a strong association with aflatoxin production.
As a consensus, strains that do not produce aflatoxin and have a
food fermentation or biotechnological background can be iden-
tified as A. oryzae; wild-type strains are A. flavus.

The clinically most important species of section Terrei is A.
terreus, which is the second or third most common cause of IA in
immunocompromised patients (Lass-Flörl et al. 2005, Blum et al.
2008). Of the 17 accepted species in section Terrei (Houbraken
et al. 2020), five are human pathogens (A. alabamensis, A. cit-
rinoterreus, A. floccosus, A. hortae (= A. hortai) and A. neo-
africanus) (Zoran et al. 2018, Lackner et al. 2019). According to a
recent report, infections caused by the A. terreus species com-
plex were identified in 21 countries and 38 centres, and account
for 5.2 % of all mould infections (Risslegger et al. 2017). How-
ever, a high incidence of A. terreus infections was reported in
Innsbruck (Austria) and Houston (USA) (Lass-Flörl et al. 2007).

Species belonging to section Nigri (“the black Aspergilli”) are
phenotypically very similar. Eight (A. brasiliensis, A. carbonarius,
A. japonicus, A. luchuensis (= A. acidus), A. niger (= A. foetidus),
A. tubingensis, A. uvarum, A. welwitschiae (= A. awamori) of the
30 accepted species in section Nigri are reported to cause
www.studiesinmycology.org
infections in humans. The identified pathogenic species from this
section are generally reported as the third leading causative
agents of IA (Samson et al. 2014, Huang et al. 2017). Within this
section, A. niger sensu stricto is the most prevalent clinical
isolate (68.4 % cases vs. A. tubingensis, 31.6 % cases) (Balajee
et al. 2009). However, recent analyses based on β-tubulin and
calmodulin gene sequencing revealed a shift toward other cryptic
species, including A. tubingensis, and A. welwitschiae, in
different countries (Iatta et al. 2016, Hedayati et al. 2019,
Alshehri & Palanisamy 2020, Carrara et al. 2020, Takeda et al.
2020).

The majority of the 74 accepted species in section Nidulantes
are isolated from the soil, plant material, or the indoor environ-
ment (Sklen�a�r et al. 2020). Eleven species have been isolated
from patients with Aspergillus infections, of which A. nidulans
was reported as the main agent of IA in different countries
(Gabrielli et al. 2014, Chrenkova et al. 2018, Seyedmousavi et al.
2018, Tavakoli et al. 2020). Aspergillus nidulans was also re-
ported as the second most frequently encountered mould in
patients with chronic granulomatous disease characterised by
sudden invasive features (Blumental et al. 2011, King et al.
2016b, Khalid & Ali 2018). Section Versicolores is a synonym
of section Nidulantes, and series Versicolores is nowadays used.
The clinically relevant species A. sydowii and A. creber belong to
series Versicolores (Borgohain et al. 2019, Alshehri &
Palanisamy 2020); of all 25 members in the section Usti, A.
calidoustus is most often reported as the causal agent of invasive
infections. Prior to the description of A. calidoustus, clinical
strains were attributed to A. ustus and A. calidoustus are easy to
differentiate, since the latter grows rapidly at 37 °C, while the
former does not (Balajee et al. 2007a, Varga et al. 2008). Other
members of the section isolated from proven/probable IA cases
include A. granulosus, A. pseudodeflectus and A. ustus; A.
insuetus, A. keveii, A. puniceus, A. pseudodeflectus and A. ustus
were reported from respiratory samples (Fakih et al. 1995,
Glampedakis et al. 2021).

In addition to the species mentioned above, other taxa can
also cause infections in humans. Others include A. chevalieri, A.
costiformis, A. glaucus, A. montevidensis, A. proliferans and A.
pseudoglaucus (sect. Aspergillus) (Aznar et al. 1989, Naidu &
Singh 1994, Traboulsi et al. 2007, Hubka et al. 2012, Alshehri
& Palanisamy 2020); A. insulicola, A. melleus, A. ochraceope-
taliformis, A. ochraceus, A. persii, A. sclerotiorum, A. sub-
ramanianii and A. westerdijkiae (sect. Circumdati) (Novey &
Wells 1978, García-Martos et al. 2001, Harima et al. 2004,
Brasch et al. 2009, Zotti et al. 2010, 2015, Hubka et al. 2012,
Babamahmoodi et al. 2015, Bongomin et al. 2018,
Seyedmousavi et al. 2018, Amri et al. 2020); A. flavipes (sect.
Flavipides) (Seyedmousavi et al. 2018); A. tanneri (sect. Tan-
nerorum) (Seyedmousavi et al. 2018); A. candidus (sect. Can-
didi) (Bongomin et al. 2018); and A. penicillioides and A. conicus
(sect. Restricti) (Sklen�a�r et al. 2017).
VIRULENCE, IMMUNOLOGY AND
PATHOGENESIS OF ASPERGILLUS

In its natural environment, Aspergillus behaves as a saprobe that
survives under different stress conditions. Likewise, during hu-
man infection, it has evolved adaptive mechanisms that allow it
to withstand the unfavourable conditions in the lungs and to
5
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counter environmental changes in temperature, pH, water and
nutrient balance, oxidative stress, and host molecules with
antifungal properties.

Among the many virulence traits exhibited by Aspergillus, its
plasticity in nutrient acquisition and metabolism confers a major
advantage for growth during fungal infection under conditions of
limited nutrient availability (Brock 2009, Blatzer & Latg�e 2017). In
addition, in experimental models of A. fumigatus infection, sites
of hypoxia are commonly observed in the lungs, highlighting a
remarkable ability to survive and thrive in conditions of low ox-
ygen (Grahl et al. 2011, Kowalski et al. 2019). Besides these and
several other relevant traits elicited in the context of infection
(reviewed in Latg�e & Chamilos 2019), the cell wall is a unique
virulence factor, since it protects A. fumigatus from external
aggression, while at the same time, it plays an active role in
infection by influencing and modulating the immune response of
the host (Latg�e et al. 2017, van de Veerdonk et al. 2017). Owing
to its dynamic structural properties according to morphotype,
growth stage, and environmental conditions, the fungal cell wall
is the main source of fungal ligands that activate the immune
system (Latg�e 2010). The physical barrier of the respiratory tract
affords the first line of defence against inhaled conidia of
Aspergillus, after which the respiratory epithelium is the initial
point of contact with inhaled conidia (Filler & Sheppard 2006).
Indeed, an increasing body of evidence has revealed a critical
role of the airway’s epithelium in fungal clearance (Amich et al.
2020, Seidel et al. 2020) and production of cytokines and anti-
microbial peptides (Bellanger et al. 2009, Sharon et al. 2011,
Richard et al. 2018). Under certain conditions conidia escape the
respiratory epithelium and are then challenged by cells of the
innate immune system, including resident alveolar macrophages
and dendritic cells (van de Veerdonk et al. 2017). Germinating
conidia that escape macrophages are eliminated by recruited
neutrophils and monocytes. Neutrophil extracellular traps (NETs)
contribute to the innate host defence in vivo and neutrophils exert
a considerable variety of antifungal effector functions, which
include recognition, phagocytosis, intracellular clearance medi-
ated by both oxidative and non-oxidative mechanisms, secretion
of antimicrobial molecules and the release of neutrophil extra-
cellular traps (NETs) (Urban & Backman 2020). Failure to pre-
vent conidial germination results in hyphal growth, tissue
invasion, and marks the initiation of fungal disease. Innate im-
mune cells express a vast repertoire of pattern recognition re-
ceptors (PRRs) that recognise pathogen-associated molecular
patterns in the fungus and activate effector functions, including
phagocytosis and the production of proinflammatory cytokines
and chemokines that orchestrate innate and adaptive immune
responses (Patin et al. 2019). IL-8, also known as neutrophil
chemotactic factor, is produced by macrophages and epithelial
cells as an important chemoattractant for neutrophils, also during
early phases of IA, where conidia are killed by local alveolar
macrophages, and has been extensively used as biomarker for
invasive aspergillosis (Winn et al. 2003, Camargo & Husain
2014, Gonçalves et al. 2017, Heldt et al. 2017, 2018, Jenks
et al. 2019d). Up-regulation of gene transcription by A. fumiga-
tus proteases has been suggested as cause of increased release
of IL-8 by A549 pulmonary epithelial cells and primary epithelial
cells (Borger et al. 1999). Other studies have shown that in vitro
opsonization of A. fumigatus conidia with H-ficolin, L-ficolin and
M-ficolin, which play essential roles in pathogen recognition and
complement activation through the lectin pathway, potentiate IL-8
6

secretion of A549 lung epithelial cells (Houser et al. 2013, Bidula
et al. 2015, Ghufran et al. 2017).

The family of C-type lectin receptors (CLRs) is the best-
studied with regard to antifungal immunity (Brown et al. 2018).
For example, the importance of dectin-1 in the recognition of
β-1,3-glucan and activation of downstream immune responses
has been confirmed in patients with recurrent fungal infections
carrying an early stop codon polymorphism (Ferwerda et al.
2009). This polymorphism results in a truncated form of dectin-
1 lacking several amino acids, with a detrimental effect on
recognition of β-1,3-glucan and cytokine production after fungal
stimulation (Ferwerda et al. 2009, Cunha et al. 2010). As a result,
this polymorphism was found to predispose hematopoietic stem-
cell transplant (HSCT) recipients to the development of IA in
different patient cohorts (Cunha et al. 2010, Chai et al. 2011,
Fisher et al. 2017). More recently, another CLR named MelLec
was identified as the receptor for fungal melanin (Stappers et al.
2018). Macrophages from carriers of a polymorphism in the
cytoplasmic tail of MelLec displayed a generalised defect in the
production of cytokines after fungal stimulation. Likely owing to
this defect, HSCT recipients receiving grafts from affected donors
displayed a markedly increased risk for invasive pulmonary
aspergillosis (IPA) after transplantation (Bassetti et al. 2020,
Donnelly et al. 2020).

The efficiency of fungal recognition also relies largely on the
opsonization by different soluble pattern recognition molecules,
including collectins, pentraxins, ficolins and components of the
complement pathway (Bidula & Schelenz 2016). One molecule
that has received a great deal of recent attention in the field of
aspergillosis is the long pentraxin-3 (PTX3) (Foo et al. 2015).
This molecule binds microbial moieties from a wide range of
microorganisms, including A. fumigatus (Garlanda et al. 2002).
Accordingly, genetic variation in PTX3 was identified as a major
risk factor for IPA after HSCT (Cunha et al. 2014), an association
that was validated in independent cohorts of recipients of HSCT
(Fisher et al. 2017) and solid organ transplant (Cunha et al. 2015,
Wojtowicz et al. 2015), as well as in patients with chronic
obstructive pulmonary disease (Cunha & Carvalho 2018, He
et al. 2018). Mechanistically, genetic variants in PTX3 compro-
mised the normal expression of the protein in the lungs and, at a
cellular level, the antifungal effector mechanisms of neutrophils
(Cunha et al. 2014). The impact of PTX3 deficiency on neutrophil
function was confirmed in a recent study describing a similar
association in patients with acute myeloid leukemia undergoing
chemotherapy courses without pre-existing neutropenia (White
et al. 2018).

The interaction of Aspergillus with the immune system is
being harnessed to propose novel and improved fungal di-
agnostics, but also the implementation of clinical models aimed
at the effective prediction of infection in high-risk patients. A
recent study evaluating the combination of multiple genetic and
clinical factors into a predictive model has demonstrated that
such information could be used to successfully guide pre-
emptive therapy in haematological patients (White et al. 2018).
Besides improved diagnostics, functional analyses of genetic
variation influencing susceptibility to aspergillosis may assist in
the design of innovative and personalised immunotherapeutic
approaches. This is illustrated by the preclinical evidence
showing that genetic PTX3 deficiency can be rescued by the
administration of the recombinant protein, a finding that supports
its personalised use in specific patients at high-risk of infection.
In conclusion, the success of novel diagnostic and
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immunotherapeutic approaches for aspergillosis may benefit
from personalisation based on the interindividual variability in
antifungal immune function.
CLINICAL SIGNIFICANCE OF ASPERGILLUS

Infection in humans

Aspergillus is the most common cause of mould infections in
humans and can cause a variety of serious diseases in both
immunocompetent and immunocompromised patients (Lass-
Flörl 2019). The most clinically relevant Aspergillus species is
A. fumigatus, followed by A. flavus, A. terreus and A. niger. Non-
invasive infections in immunocompetent patients (e.g. with cystic
fibrosis or post-tuberculosis) are allergic sinusitis or allergic
bronchopulmonary aspergillosis (ABPA), fungal balls in the sinus
or lung, chronic pulmonary aspergillosis, otitis externa or ony-
chomycosis (Denning et al. 2018). For invasive infections, the
respiratory tract is the most common primary site of IA –due to
inhalation of conidia– but any organ might be involved as a
single organ infection or as part of dissemination. Sino-nasal and
cerebral aspergillosis may occur particularly in immunocompro-
mised patients (Reischies & Hoenigl 2014). Aspergillus endo-
carditis is rare and risk factors include prior valve replacement,
indwelling central venous catheters or broad-spectrum antibiotic
treatment (Aldosari et al. 2020). Hematogenous spread to the
spleen leads to either infarction or abscesses (Smolovic et al.
2018). Aspergillosis of the kidney is rare and derives from he-
matogenous dissemination or ascending from pan-urothelial
aspergillosis or secondary to obstructive uropathy. Gastrointes-
tinal tract IA may occur when the mucosal barrier is impaired
(Chasan et al. 2013). Other rare manifestations of IA are
(vertebral) osteomyelitis, arthritis, or subacute thyroiditis.
Endophthalmitis may be consequent to intraocular surgery or
trauma of the eye or after hematogenous spread and is asso-
ciated with poor ocular prognosis (Dave et al. 2020).

Cutaneous aspergillosis may be caused by inoculation into
disrupted skin or secondary to hematogenous dissemination
(Lass-Flörl 2019). Primary extrapulmonary invasive aspergillosis
often requires surgery in addition to systemic antifungal therapy
(Reischies & Hoenigl 2014, Dave et al. 2020). Depending on the
type of immunosuppression of the host, invasive pulmonary
aspergillosis may present primarily angio-invasive in those with
neutropenia, or primarily airway-invasive in those with cortico-
steroid associated immunosuppression, resulting in distinct
radiological and clinical manifestations (Bergeron et al. 2012,
Jenks et al. 2019b). The most common site of hematogenic
spread is the central nervous system leading to brain abscess,
stroke or less frequent to meningitis, and associated with
devastating mortality rates (Hoenigl & Krause 2013).
Emergent susceptible population to acquire
pulmonary aspergillosis

Mould-active prophylaxis has shown some success in reducing
IA in patients with traditional risk factors for IA, such as those with
underlying hematologic malignancy and prolonged neutropenia
(Cornillet et al. 2006, Duarte et al. 2014). However, the preva-
lence of IA continues to increase in non-neutropenic patients with
www.studiesinmycology.org
severe underlying diseases, including those in intensive care
units (Pappas et al. 2010, Eigl et al. 2015, Bassetti et al. 2018,
Schauwvlieghe et al. 2018b), solid organ transplant recipients
(Lewis & Kontoyiannis 2009), those receiving systemic gluco-
corticoids (Chamilos et al. 2018), those with underlying structural
lung damage (Prattes et al. 2014), those with advanced liver
cirrhosis and liver failure (Prattes et al. 2017), those receiving
tyrosine kinase inhibitors such as ibrutinib (Lenczuk et al. 2018),
those with solid cancers (Yan et al. 2009, Bassetti et al. 2018),
and others (Guinea et al. 2010, Prattes et al. 2014, Bassetti et al.
2018, Ghez et al. 2018).

Aspergillus species, especially A. fumigatus, can cause co-
infection with viruses, including cytomegalovirus, and – impor-
tantly– influenza virus leading to complication of management of
patients inflicted (Schauwvlieghe et al. 2018b). In one multicentre
study from the Netherlands and Belgium, invasive pulmonary
aspergillosis was diagnosed in 83 (19 %) of 432 patients
admitted with influenza to the ICU, a median of 3 days after
admission to the ICU (Schauwvlieghe et al. 2018b), and inde-
pendently associated with mortality. In another study from
Canada, IA complicated only 7.2 % of influenza associated
respiratory failure ICU admissions, although the rate varied be-
tween 0 and 23 % between influenza seasons (Schwartz et al.
2020).

In November 2019, a novel virus termed severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) was first iden-
tified as the causative agent of pneumonia from a cluster of
individuals with pneumonia in Wuhan City, Hubei province, China
(WHO 2020). Since the first reported case, SARS-CoV-2, which
causes the disease now called coronavirus disease 2019
(COVID-19), has spread throughout China and to almost every
country in the world as of May 2020. Although the vast majority of
COVID-19 cases are mild to moderate, up to 20 % of patients
with symptomatic COVID-19 may develop acute respiratory
distress syndrome (ARDS) (Wang et al. 2020, Wu & McGoogan
2020, Xu et al. 2020). There is increasing evidence that COVID-
19 patients are at risk of developing COVID-19 associated
invasive pulmonary aspergillosis (CAPA) co-infection, with more
than 100 cases reported to date (Blaize et al. 2020, Dupont et al.
2020, Gangneux et al. 2020, Hoenigl 2021, Koehler et al. 2020b,
Lescure et al. 2020, Mitaka et al. 2020, van Arkel et al. 2020,
Verweij et al. 2020, Bartoletti et al. 2021, Prattes et al. 2021,
White et al. 2021). The pathophysiology of COVID-19 is not well
understood, but leukopenia, lymphopenia and T-cell perturba-
tions, including immune dysregulation impacting Th2 as well as
Th1 responses in severe COVID19, are frequently observed
among symptomatic patients (Chen et al. 2020a, 2020b, Huang
et al. 2020, Zheng et al. 2020), and may predispose patients to
fungal diseases. Furthermore, the utilisation of – often high dose
– systemic and inhaled glucocorticoids, which may further pre-
dispose to opportunistic infections such as CAPA, has been
described in close to 50 % of patients with COVID-19-associated
ARDS (Wang et al. 2020). This immune dysregulation together
with epithelial lung damage stemming from COVID-19 immu-
nopathology may facilitate Aspergillus superinfection.

From Wuhan, epidemiological studies indicate that invasive
fungal infections may occur in 4–5 % of COVID-19 episodes
requiring ICU admission (Baxter et al. 2011, Yang et al. 2020). In
a cohort from China, fungal infections were diagnosed in seven
(3 %) out of 221 COVID-19 patients, all of whom were admitted
to the ICU (Zhang et al. 2020). Given that in Wuhan,
7
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galactomannan (GM) testing is rarely available and fungal di-
agnostics are sparse (Chindamporn et al. 2018), this is likely an
underestimate of the true burden of IA in patients with SARS-
CoV-2 requiring ICU admission. A study from the United
Kingdom reported a 14.1 % incidence of pulmonary aspergillosis
among 135 ICU patients (White et al. 2021). Higher rates of
CAPA were recently reported in a single centre study from the
Netherlands, where a high incidence (19.4 %) of putative
aspergillosis was observed in a cohort of 31 mechanically
ventilated ICU patients with COVID-19 (van Arkel et al. 2020). In
another study from Germany, five of 19 (26 %) consecutive
critically ill COVID-19 patients with ARDS were diagnosed with
putative CAPA, highlighting that rates may be comparable to
those observed in association with severe influenza (Koehler
et al. 2020b). In a study from Italy, probable CAPA was diag-
nosed in 30 (27.7 %) patients after a median of 4 (2–8) days
from intensive care unit (ICU) admission (Bartoletti et al. 2021).
In a study from France, putative CAPA was reported in 33 % of
27 critically ill COVID-19 patients in an enriched population un-
dergoing bronchoscopy (Alanio et al. 2020). Finally, the highest
rate of CAPA has been noted in Belgium reaching 35 % (7/20) of
the COVID-19 patients presented with ARDS (Rutsaert et al.
2020). The vast majority of reported CAPA cases lacked
EORTC/MSGERC host factors, highlighting the need for
improved criteria for defining IPA in non-neutropenic patients, as
reported elsewhere (Jenks et al. 2019b). Additional cases of fatal
CAPA were reported from Argentina, Australia, Austria, Brazil,
France, Ireland, Italy, Pakistan, Switzerland, United States and
many other countries (Blaize et al. 2020, Mitaka et al. 2020,
Prattes et al. 2021). Importantly, three cases of azole resistance
have been reported, indicating that ARAF is emerging also
among the ICU population at risk for IPA (Meijer et al. 2020,
Ghelfenstein-Ferreira et al. 2021, Mohamed et al. 2021).

As clinical presentation and imaging findings of COVID-19
and IPA may overlap (fever, shortness of breath, cough, un-
specific infiltrates and consolidations, halo sign), biomarker and
culture based diagnostic work-up is essential. Serum GM may
have imperfect sensitivity of 20 % and below (Alanio et al. 2020,
Koehler et al. 2020b). While reasons for the lower sensitivity in
CAPA versus influenza associated pulmonary aspergillosis are
unknown, treatment with chloroquine, which exhibits in vitro
activity against A. fumigatus (Henriet et al. 2013), may have
explained the lower sensitivity in some of the earlier studies,
given that exposure to antifungals is a well-known factor that
decreases the sensitivity of GM-testing and may explain the
lower sensitivity compared to influenza associated IPA (Eigl et al.
2015).

Future studies are needed to evaluate other blood tests for
CAPA, including Aspergillus PCR (Egger et al. 2020), β-D-glucan
(Heldt et al. 2018), and the two newly CE-marked point of care
tests, the Aspergillus GM lateral flow assay (LFA) and the
Aspergillus-specific lateral flow device test (Eigl et al. 2015,
Jenks et al. 2019c, 2019e, Mercier et al. 2020, Wahidi et al.
2020). Further complicating diagnosis of CAPA is the
extremely limited role of bronchoscopy in COVID-19 as this
aerosol generating procedure increases the risk of exposure for
patients and personnel (Jenks et al. 2020), although detailed
instructions on how to safely perform bronchoscopy have been
published (Koehler et al. 2020c). In some centres, however,
collection of tracheal aspirates remains the preferred method for
diagnosis. Although Aspergillus can be detected in sputum and
tracheal aspirates in CAPA-patients, its presence might reflect
8

oral pharyngeal colonisation as Aspergillus is considered a core
component of the basal oral mycobiome (Krüger et al. 2019).
Importantly, GM-testing, presented in detail below, which is an
important tool for IPA diagnosis in BALF specimens and repre-
sents active growth (Eigl et al. 2017), is not validated for upper
respiratory tract specimens.

These early findings suggest IA may be an important and
underrecognised complication of SARS-CoV-2 infection, due to
the absence of typical host factors. Since bacterial and fungal
superinfections are difficult to distinguish from severe COVID-19
based on clinical or imaging findings, histopathology has a
central role in determining prevalence and also outcomes of
CAPA (reviewed in Arastehfar et al. 2020a). However, autopsies
of COVID-19 patients are rarely performed due to the risk of
aerosol transmission. Criteria for defining COVID-19 associated
aspergillosis have been developed and will help classifying this
important disease (Koehler et al. 2020a). The frequency of post-
COVID-19 aspergillosis is likely to differ significantly between
hospitals and geographic sites, and environmental factors may
also play a large role in increasing exposure beyond what would
normally be encountered within hospitals and ICUs. The rapid
spread of COVID-19 to a non-immune population has been seen
in temporary facilities/hospitals rapidly assembled that do not
adhere to the rigorous ventilation requirements that are present
within permanent hospitals. These temporary sites are essential
to increase healthcare capacity; however, dust and construction-
related increases in ambient air spore counts will very likely in-
crease patient colonisation with Aspergillus and other fungal
species predisposing to infection. Finally, drug-drug interactions
may limit the use of voriconazole (Jenks et al. 2019a), the gold-
standard treatment for IA in the ICU. Future studies need to
evaluate effectiveness of isavuconazole (Jenks et al. 2018), and
new antifungals currently under development like fosmanogepix
or olorofim (Kupferschmidt 2019), which may have comparable
efficacy without the same burden of drug-drug interactions, while
other drugs such as rezafungin or ibrexafungerp may offer op-
tions for combination therapy or even prophylaxis.
DIAGNOSIS OF ASPERGILLOSIS IN CLINIC –

SEROLOGY TO PCR

For the diagnosis of IA, culture and microscopy are essential, but
show limited sensitivity. Detection of the fungal cell wall
component galactomannan (GM) has therefore become the
imperfect gold standard (Hoenigl et al. 2012, 2013b, Duettmann
et al. 2014, Eigl et al. 2017, Rawlings et al. 2019) as it is more
sensitive than culture. Galactomannan is a polysaccharide that
exists primarily in the cell walls of Aspergillus species (Zhou et al.
2017) and a commercially-available double sandwich enzyme
immunoassay (EIA) utilises the monoclonal antibody EB-A2
(Platelia™, Bio-Rad, Marnes-la-Coquette, France) to detect the
GM antigen. It is approved by the U.S. Food and Drug Admin-
istration (FDA) for testing of GM from serum and bronchoalveolar
fluid (BALF). This antibody detects multiple epitopes on gal-
actofuranose side chains that link to the mannan backbone
(Kudoh et al. 2015), although galactofuranose is not specific to
Aspergillus and is present in other fungi such as Fusarium
species (Tortorano et al. 2012), Penicillium species (Huang et al.
2007), and Histoplasma species (Wheat et al. 2007). The current
sensitivity and specificity of BALF GM is 82 % and 81 %,
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respectively (Rawlings et al. 2019). The optimal optical density
index (ODI) threshold is debatable, although the FDA considers
an ODI of � 0.5 to be positive for GM in both serum and BALF.

Galactomannan from BALF has shown better diagnostic
performance for IA than GM from blood, particularly in patients
on mould-active antifungal prophylaxis (Heldt et al. 2018). In a
systematic review investigating the accuracy of GM from BALF
for the diagnosis of IA in immunocompromised patients, the
sensitivity and specificity of GM was 0.88 and 0.81, respectively,
at an ODI of 0.5; at an ODI of 1.0 the sensitivity was 0.78 and
specificity 0.93 (de Heer et al. 2019). Particularly in non-
neutropenic patients a higher cut-off of 1.0 ODI in BALF may
be preferable (Prattes et al. 2014) as false-positive results may
occur with the lower cut-off (Martinelli et al. 2019). Given the
airway-invasive growth, BALF GM is always the preferable op-
tion for IA diagnosis in non-neutropenic patients, and GM from
BALF has found to be superior to GM from serum (Bassetti et al.
2020).

Molecular tests such as PCR (Heldt et al. 2018, Prattes et al.
2018, Jenks et al. 2019f, Rawlings et al. 2019) have emerged as
alternative options to diagnose IA and are widely used (Hoenigl
et al. 2014b, Buchheidt et al. 2017), although there is a lack of
standardisation (White et al. 2010) and a large variation in
diagnostic performance across studies and settings (White et al.
2015b, Springer et al. 2016). PCR is most useful in high-risk
groups such as neutropenic patients who are not receiving
mould-active prophylaxis, where a negative result is reassuring
in ruling out IA. In other settings including non-neutropenic pa-
tients and patients at low risk for IA, like GM the utility of PCR
testing is limited, particularly from blood (Egger et al. 2020), and
overall it suffers from poor precision, with a specificity of 76 %
(Arvanitis et al. 2014). Performance of blood PCR is particularly
poor in patients on mould-active prophylaxis (Egger et al. 2020).

Two point-of-care tests are now available for the diagnosis of
IA. The Aspergillus-specific Lateral Flow Device (LFD) test (OLM
Diagnostics, Newcastle Upon Tyne, United Kingdom) detects an
extracellular mannoprotein antigen secreted exclusively during
active growth of Aspergillus species via the JF5 monoclonal
antibody (Hoenigl et al. 2014b, 2018, Prattes et al. 2015, Orasch
et al. 2017). Another new test, the so

̄
na Aspergillus GM-LFA

(IMMY, Norman, OK, United States) detects GM but has a
shorter turnaround time compared to the conventional GM ELISA
test. In patients with hematologic malignancy, both the LFD and
LFA have a comparable sensitivity and specificity to GM from
BALF for diagnosing IA (Heldt et al. 2018, de Heer et al. 2019,
Jenks et al. 2019c, 2021, Mercier et al. 2020), and sensitivity
increased further when combined with inflammatory markers,
triacetylfusarinine C, or PCR (Hoenigl et al. 2019, Jenks et al.
2019d, 2019e, Rawlings et al. 2019). In non-neutropenic pa-
tients, the LFA and LFD have demonstrated a sensitivity and
specificity between 60–70 % when used alone and up to 80 %
when used in combination (Jenks et al. 2019b), with tendencies
towards better performance of the LFA (Jenks et al. 2020).
Particularly the LFA, but also the LFD have also shown promise
for diagnosing IA in serum samples from patients with haema-
tological malignancies (Jenks & Hoenigl 2020). Unmet needs for
the diagnosis of IA include a true point-of-care test that can be
done at the bedside or in the clinic in the matter of minutes. In
addition, improved diagnostic algorithms to diagnose IA in non-
neutropenic patients are needed as well.

The detection of Aspergillus serum precipitin antibodies (i.e.,
subsets of IgG and IgM antibodies) is useful for the diagnosis of
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ABPA (Agarwal et al. 2013). The detection of Aspergillus IgG
antibodies via commercial ELISAs or POC tests (Richardson &
Page 2018) is the mainstay diagnostic test for aspergilloma
(Hope et al. 2005) and chronic pulmonary aspergillosis (CPA)
(Denning et al. 2016), when used in conjunction with pulmonary
imaging, but Aspergillus IgG lacks the specificity in the diagnosis
of IA (Richardson & Page 2017), and GM and also the LFD have
limited sensitivity in those with CPA (Salzer et al. 2018).
Aspergillus IgG are also present in Aspergillus bronchitis,
Aspergillus nodule and chronic rhinosinusitis, and can be used
for treatment stratification in CPA (Denning et al. 2018).
CLINICAL TREATMENT OF ASPERGILLOSIS

Triazoles, particularly voriconazole, isavuconazole and pos-
aconazole for invasive infections, and voriconazole or itracona-
zole for chronic infections, are the first line antifungal agents
used to treat aspergillosis (Denning et al. 2016, Cornely et al.
2019a, Jenks et al. 2019a). Voriconazole and isavuconazole
exert fungicidal activity by inhibiting ergosterol biosynthesis.
Ergosterol is one of the main structural components of the fungal
cell membrane, allowing membrane fluidity, proper positioning
and function of membrane-integrated proteins, and the cell cycle.
Azoles bind and inhibit at the active site of the cytochrome P450
enzyme lanosterol 14-α-demethylase, which contains a heme
cofactor and is encoded by two homologous genes, CYP51A and
the CYP51B (a third homolog CYP51C has been found in A.
flavus) (Dudakova et al. 2017). This induces the accumulation of
14-methyl sterols, such as lanosterol, which alters functions of
cell membrane leading to fungal growth arrest. Furthermore,
inhibition of ergosterol biosynthesis results in both accumulation
of toxic sterol intermediates and creation of cell wall carbohy-
drate patches that extend to the plasma membrane (Geiβel et al.
2018). Drug-drug interactions may limit the use of voriconazole
and other triazoles not only in the ICU setting, but also in patients
with haematological malignancies where some newer drugs,
including ibrutinib, venetoclax, and midostaurin, may complicate
the use of triazoles (Groll et al. 2017, Tapaninen et al. 2020).

The therapeutic approach of IA has been changed with the
development of the second-generation mould-active triazoles,
voriconazole, posaconazole and isavuconazole in addition to the
first-generation azole itraconazole. The chemical structure of
voriconazole closely resembles fluconazole and shares a simi-
larity with isavuconazole, while posaconazole more closely re-
sembles itraconazole. Voriconazole was derived from
fluconazole by replacing one triazole moiety in fluconazole with a
4-fluoropyrimidine group and adding an α-methyl group
(Bellmann & Smuszkiewicz 2017). Posaconazole derives from
itraconazole through the replacement of the chlorine substituents
with flourine in the phenyl ring, as well as hydroxylation of the
triazolone side chain (https://pubchem.ncbi.nlm.nih.gov/). Unlike
the other second-generation triazoles, isavuconazole is admin-
istered as a prodrug; the isavuconazoilum sulfate ester which is
hydrolysed rapidly by serum esterases, is highly water soluble
and does not require the addition of a beta-cyclodextrin to
facilitate solubility (Jenks et al. 2018).

The availability of both intravenous and different oral formu-
lations of triazoles increases the therapeutic options and im-
proves their pharmacokinetics (Table 1) (Cornely et al. 2019b).
The variable pharmacokinetics (80–100 %) of voriconazole (oral
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Table 1. Pharmacokinetic and pharmacodynamic properties of anti-Aspergillus azoles.

Parameters Voriconazole Posaconazole Isavuconazole Itraconazole

Chemical structure

Molecular weight 349.3 700.8 717.77 705.64

Water solubility (mg/mL) 0.0978 0.012 0.0162 0.00964

Log D (pH 7.4) 1.8 2.15 4.14 > 5

Formulations Oral solution, tablet, iv Oral solution, tablet, iv Capsules, iv Oral solution, tablet,
capsules, iv

Standard dose LD: 6 mg/kg q12h, MD:
4 mg/kg q12h or 200 mg PO

Oral = 200 mg q6h/q8h or
400 mg q12h
Tablet / iv = 300 mg q24h

LD: 200 mg q6h for 2 d; MD:
200 mg q24h

Oral = LD: 800 mg q12h/
g24h for 2 d, MD: 200 mg
q12h IV = LD: 200 mg q12h
for 2d, MD: 200 mg q24h

Dose adjustment < 40 kg = 50 % MD dose,
RI = avoid iv1, HI = 50 %
MD, IR = 300mg q12h

RI = avoid iv1 No RI = avoid iv1

Tmax 1.43–1.81 Oral = 3, tablet = 2.2, iv =
1.5

Oral = 2–3, iv = 0.75–1 Oral = 5, Iv = 1

Bioavailability 90 % (healthy) / 83 %
(patients)

Oral = 8–47 % 98 % Capsules = 22 %; oral
solution = 55–92 %

Effect of food 22 % reduction Oral = [ with high fat meal/
low pH, tablet = Y
mucositis, [ with high fat
meal

No Capsules = [ with high fat
meal/low pH, oral solution =
[ empty stomach

Protein binding 42–58 % 98–99 % 99 % 99.8 %

Vd (Lt/kg) 2–4.6 Oral = 3.7, tablet = 5, iv = 20 6.42 11

Tissue penetration Brain, ELF Alveolar cells, liver kidney,
lung, myocardium

Muscle, fat, liver, brain Skin, fat, liver, lung, kidney,
spleen, bone, muscle

CL (mL/min/kg) 3–8.3 9.39–16.4 L/h 1.9–5 5.1

Hepatic/Urinary
(metabolites and
drug) excretion %

20 (M)+< 1(D) / 80 (M)+<
2(D)

77 (M)+< 5(D) / 14 (M)+<
5(D)

46 (M) / 46 (M)+0.38(D) 54 (M)+< 0.03(D) / 35
(M)+3–18(D)

Metabolizing enzymes CYP2C19 >
CYP2C9,CYP3A4

UGT1A4 CYP3A4, CYP3A5, UGT CYP3A4, CYP2C9,
CYP2C19

T1/2 (h) 6–12 27–35 110–130 24

Cmax (mg/L) 4.84 (300 mg), 5.27
(400 mg)

Oral = 0.851, tablet = 1.96,
iv = 3.28

2.6 0.5–2.3

AUC0–24 (mg*h/mL) 13.21–16.38 Oral = 17.24, tablet / iv =
34.3

98–121 29.2

Variation in AUC0–24 82 % Oral = 82 %, tablet / iv =
35–40 %

10–43 % 30–60 %

Pharmacokinetics Non-linear (saturable
metabolism)

Oral = non-linear (saturable
absorption), tablet / iv =
linear

Linear Non-linear (saturable
absorption and metabolism)

tAUC/MIC (50 %
survival in animals)

17.61–21.96 167–178 25 NA

TDM targets (mg/L) Prophylaxis: Cmin > 0.5;
therapy: Cmin > 1–2;
toxicity: Cmin < 4–6

prophylaxis: Cmin > 0.5–0.7;
therapy: Cmin > 1–1.25

NA Prophylaxis: Cmin > 0.5;
therapy: Cmin > 0.5–1;
toxicity: Cavg < 17
(bioassay), < 3.5 (HPLC)

NA, not applicable.
1 Unless an assessment of the benefit/risk to the patient justifies the use of intravenous formulations.

ARASTEHFAR ET AL.
solution, tablet and intravenous [IV] formulation) and the oral
solution of posaconazole due to erratic hepatic metabolism and
absorption, respectively, have been improved with the new for-
mulations of posaconazole i.v./tablet and isavuconazole i.v./
capsules (~50 % variation) (Jovi�c et al. 2019). The bioavailability
of oral formulations ranges from poor with the “old” posaconazole
10
oral solution to high with isavuconazole, and intake with fatty food
is most important for the posaconazole oral solution (Hoenigl
et al. 2014a). All four azoles exhibit non-linear pharmacoki-
netics because of saturable absorption or metabolism except
isavuconazole (Bellmann & Smuszkiewicz 2017). They are
highly protein bound (> 98 %) except voriconazole (58 %). All
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azoles are characterised by a large volume of distributions (3–11
lt/kg) and they are extensively metabolised with minimal amounts
of parent drug excreted renally or hepatobiliarily. Their half-lives
and total drug exposure area under curve (AUC) varies from
short with voriconazole (6–12 h and 13–16 mg*h/l) to long with
isavuconazole (110–130 h and 98–121 mg*h/l, respectively)
(Table 1). As will be discussed in detail later in this review, the
emergence of ARAF isolates threatens the efficacy of azoles,
and lipid formulations of amphotericin B, as well as echino-
candins (which should be used in combination with another
antifungal drug) are alternative treatment options for IA
(Patterson et al. 2016). Surgery in addition to systemic antifungal
therapy plays an important role in the treatment of primary
extrapulmonary invasive aspergillosis (Aldosari et al. 2020).

Antifungal combination therapy with voriconazole or ampho-
tericin B and an echinocandin is often employed as primary or
salvage therapy for management particularly of refractory
aspergillosis (Elefanti et al. 2013). Resistance to first line triazole
antifungal agents among Aspergillus species has resulted in the
increased use of second-line monotherapy with echinocandin
drugs (caspofungin, micafungin or anidulafungin) (Aruanno et al.
2019). Echinocandin class drugs inhibit the cell wall biosynthetic
enzyme β-(1,3)-d-glucan synthase (Perlin 2015), and were
initially approved by the FDA for the treatment of invasive
aspergillosis refractory to conventional therapy (Johnson &
Perfect 2003). Given a strong 20-year history of safety and ef-
ficacy, it is being used increasingly in patients being treated for
chronic pulmonary aspergillosis. A recent meta-analysis of 12
studies covering 380 patients who received IV antifungals, either
amphotericin B (n = 143) or an echinocandin (n = 237) reported a
response of 58 % for amphotericin B and 62 % for echinocandins
(micafungin). Echinocandins, especially micafungin are well-
tolerated and effective prophylactic antifungal agents used in
patients with hematologic diseases at high risk for invasive
mould infections (Ziakas et al. 2014, Park et al. 2019).
WORLDWIDE EMERGENCE OF AZOLE-
RESISTANT A. FUMIGATUS: ENVIRONMENTAL
AND CLINICAL ROUTES

Azole drugs play a major role in prevention and treatment of
infections caused by Aspergillus species. Azole drugs belong to
a wider group of compounds called demethylation inhibitors
(DMIs) whose common target is the 14-α sterol demethylase.
Demethylation inhibitors are widely used in the clinical setting,
both as treatment and prophylaxis, but also in the agriculture
setting due to their high-efficiency and broad-spectrum activity
(Price et al. 2015, Hollomon 2017).

Several azole-based fungicides used in agriculture to protect
cereals and wine from phytopathogenic moulds have a similar
chemical structure to medical triazoles and the development of
cross-resistance between them has been proved (Snelders et al.
2012, Zhang et al. 2017). A large number of demethylation in-
hibitor fungicides have been used intensively in agriculture and
medicine (human and veterinary) since 1970 (Rochette et al.
2003). Though azole fungicides are not used to target A. fumi-
gatus, it transpires that many of these fungicides are active
www.studiesinmycology.org
against A. fumigatus, a condition that led to the emergence of
resistance. More than 30 azole fungicides have been studied for
their in vitro activity against A. fumigatus, including propicona-
zole, bromuconazole, epoxiconazole, difenconazole, and tebu-
conazole. In this context, one of the presumed routes for triazole-
resistance emergence is through selection pressure from the
DMIs used as fungicides in the environment (Verweij et al. 2007,
2009). The resulting azole resistant isolates are associated with
a particular resistance mechanism constituted by a variable
number of tandem repeat (TR) integrations in the CYP51A
promoter followed or not by point mutations in the coding gene
(Snelders et al. 2008). There is a lot of evidence that supports
the idea of an environmental driven mechanism, such as the fact
that these TR azole resistant strains (TR34/L98H, TR34/L98H/
S297T/F495I, TR46/Y121F/T289A, and TR53) have been detec-
ted throughout the world (Garcia-Rubio et al. 2017) but showed
shorter genetic distances among them than with other azole-
susceptible and non TR-resistant isolates, which suggests that
they could have developed from a reduced set of clonally related
strains (Snelders et al. 2008, Camps et al. 2012b, Garcia-Rubio
et al. 2018b). Besides, the fact that TR azole resistant strains
have been isolated from azole-naïve patients with IA also en-
dorses the existence of this environmental resistance route,
indicating that infections would have been caused by the inha-
lation of already ARAF spores harbouring aforementioned mu-
tations in CYP51A (Snelders et al. 2009, Verweij et al. 2009).
However, other single mutations occurring in CYP51A arise
during the course of azole therapy (Howard et al. 2006, 2009,
Albarrag et al. 2011, Camps et al. 2012c, Wiederhold et al.
2016).

Nevertheless, there are also some findings that support that
TR azole-resistance mechanisms do not seem to be restricted to
the environment. A clinical case of fatal aspergillosis caused by
an A. fumigatus strain that developed a TR120 insertion in the
CYP51A promoter during long-term azole treatment has been
recently reported using both STRAf typing and whole-genome
sequencing (Hare et al. 2019). This challenges the existence
of a link between resistance mechanisms and specific routes of
resistance selection and may fade the presumed boundaries
between the environmental and clinical routes of resistance. In
line with these facts, strains carrying G432S and G432A muta-
tions have been isolated from azole-naïve patients (Howard et al.
2006, 2009, Alanio et al. 2011, Albarrag et al. 2011), while strains
carrying TR53 (and also TR120) mutations have been isolated
from patients exposed to azole antifungals in prior treatments
(Hodiamont et al. 2009, Hare et al. 2019). Furthermore, studies
about how these supposedly environmental resistance mecha-
nisms originated are still scarce, although it has been hypoth-
esised that environmental conditions or even a more complex
reproductive method, such as sexual reproduction, could play a
role. In addition, the dispersion of A. fumigatus spores from the
human lung into the environment has been suggested lately as a
possible transmission path in cystic fibrosis patients as an
alternative transmission route from patient to environment (Engel
et al. 2019). Although azole resistance may predominantly
originate from environmental sources, further research is war-
ranted in order to gain a deeper knowledge about how azole
resistance emerges and is transmitted, which has implications for
patient management.
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Table 2. Diversity and prevalence of CYP51A mutations causing azole resistance in clinical A. fumigatus isolates.

MIC values (μg/mL) Azole exposure
prior resistance

Azole therapeutic
failure

Country (year; number
of isolates)

Amino acid
substitutions (total
number) (references)

VRZ PSZ ITZ Present Naïve VRZ PSZ ITZ

the Netherlands (1994–2013;
186), Germany (2002–2018;
111), Italy (1995–2006,
2013–2015; 28), China
(2008–2016; 19), Belgium
(2011–2016; 18), Taiwan
(2011–2018; 16), Denmark
(2010–2014; 12), India
(2008–2014; 11), UK
(1992–2017; 11), USA
(2001–2017; 7), Iran
(2003–2016; 5), Tanzania
(2016; 5), France (2012; 3),
Spain (2014–2018; 3), Brazil
(2014–2018; 3), Pakistan
(2016; 3), Japan
(2016–2018; 3), Switzerland
(2016; 2), Portugal
(2010–2016; 2), Kuwait
(2015; 2), Mexico
(2014–2017; 2), Australia
(2015–2017; 1)

TR34 / L98H (T297S / F495I)
(453) (Mellado et al. 2007,
Verweij et al. 2007, Snelders
et al. 2008, Howard et al. 2009,
Lockhart et al. 2011, van der
Linden et al. 2011, 2013, Rath
et al. 2012, Seyedmousavi et al.
2013b, Ahmad et al. 2015,
Chowdhary et al. 2015, Liu et al.
2015, Vermeulen et al. 2015,
Wu et al. 2015, 2020, Chen
et al. 2016b, Jensen et al. 2016,
Lazzarini et al. 2016, Mushi
et al. 2016, Nabili et al. 2016,
Perveen et al. 2016, Wiederhold
et al. 2016, Koehler et al. 2017,
Montesinos et al. 2017,
Prigitano et al. 2017,
Abdolrasouli et al. 2018b,
Berkow et al. 2018, Denardi
et al. 2018, Pinto et al. 2018,
Riat et al. 2018, Seufert et al.
2018, Talbot et al. 2018,
Gonzalez-Lara et al. 2019,
Rivero-Menendez et al. 2019b,
Tsuchido et al. 2019, Pontes
et al. 2020)

0.5–>16 0.125–>8 >4–32 Yes
FLZ
VRZ
ITZ
PSZ

Yes Yes Yes Yes

the Netherlands (2009–2013;
29), Belgium (2011–2016;
11), Denmark (2010–2014;
6), Germany (2015–2018; 3),
USA (2001–2016; 3), China
(2010–2016; 3), France
(2014; 2), Spain (2014–2018;
2), UK (2016; 1), Portugal
(2010–2016; 1), Argentina
(2009; 1), Japan (2013; 1),
Taiwan (2011–2018; 1)

TR46 / Y121F / T289A (64)
(Verweij et al. 1998, Kuipers
et al. 2011, Lockhart et al. 2011,
Vermeulen et al. 2012, 2015,
Montesinos et al. 2013, van der
Linden et al. 2011, 2013,
Astvad et al. 2014, Chen et al.
2015, 2016b, Pel�aez et al.
2015, Steinmann et al. 2015,
Jensen et al. 2016, Vazquez &
Manavathu 2016, Wiederhold
et al. 2016, Lavergne et al.
2017, Moore et al. 2017, Isla
et al. 2018, Pinto et al. 2018,
Seufert et al. 2018, Rivero-
Menendez et al. 2019b, Li et al.
2020, Wu et al. 2020)

>8–>32 0.125–2 1–>16 ITZ, VRZ
PSZ
FLZ

Yes Yes Yes Yes

The Netherlands (2009; 1) TR53 (1) (Hodiamont et al. 2009) 16 0.5 16 ITZ Yes/No No Yes

Denmark (2016; 1) TR120 (1) (Hare et al. 2019) 4 0.5 16–>16 Yes
VRZ
PSZ

Yes Yes ND

Germany (2018; 8), Japan
(2012; 8), Italy (1995–2006;
7), UK (1992–2009; 6), USA
(2001–2014; 5), China
(2001; 3), Australia
(2015–2017; 2), the
Netherlands (2007–2009; 2),
India (2011–2014; 2), Spain
(2014–2018; 2), Denmark
(2010–2014; 1)

G54R/E/W (46) (Chen et al.
2005, Bueid et al. 2010, van der
Linden et al. 2011, Camps et al.
2012c, Tashiro et al. 2012,
Chowdhary et al. 2015,
Wiederhold et al. 2015, 2016,
Jensen et al. 2016, Lazzarini
et al. 2016, Talbot et al. 2018,
Rivero-Menendez et al. 2019b)

0.125–4 1–>16 1–>16 Yes
ITZ
PSZ
VRZ

ND Yes ND Yes

UK (1992–2007; 16), USA
(2001–2014; 2)

G138C/S (18) (Howard et al.
2006, 2009, Albarrag et al.
2011, Wiederhold et al. 2016)

16–8 1–4 >8–16 Yes ITZ
VRZ

ND Yes ND Yes

ARASTEHFAR ET AL.
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Table 2. (Continued).

MIC values (μg/mL) Azole exposure
prior resistance

Azole therapeutic
failure

Country (year; number
of isolates)

Amino acid
substitutions (total
number) (references)

VRZ PSZ ITZ Present Naïve VRZ PSZ ITZ

The Netherlands (2007–2009;
3), India (2012–2016; 3),
Denmark (2010–2014; 2),
UK (1992–2009; 2), USA
(2015–2017; 1), Japan
(2009–2011; 1)

P216L (12) (Howard et al. 2009,
Bueid et al. 2010, Camps et al.
2012c, Hagiwara et al. 2014,
Ahmad et al. 2015, Jensen et al.
2016, Berkow et al. 2018,
Dabas et al. 2018)

0.25–2 0.06–2 2–>16 ND ND ND ND ND

The Netherlands (2007–2009;
8), USA (2001–2014; 1), Italy
(2013–2015; 1)

F219I/S/L (10) (van der Linden
et al. 2011, Wiederhold et al.
2016, Prigitano et al. 2017)

0.25–8 0.25–>16 >16 Yes
ITZ

ND Yes Yes Yes

UK (1992–2009; 10), USA
(2001–2014; 4), the
Netherlands (1994–2007; 1),
Denmark (2010–2014; 1),
Sweden (1997–1998; 1),
Japan (2017–2018; 1), China
(2001; 1)

M220V/K/I/R/W (19) (Chen et al.
2005, Snelders et al. 2008,
Howard et al. 2009, Bueid et al.
2010, Jensen et al. 2016,
Wiederhold et al. 2016, Dabas
et al. 2018, Tsuchido et al.
2019)

0.5–4 0.5–>4 >4–>16 Yes
ITZ

ITZ

Japan (2000; 1) F332K (Asano et al. 2011) 0.25 0.5 32 ND ND ND ND ND

USA (2001–2014; 4), UK
(1992–2009; 3), Belgium
(2015–2016; 2), Spain (2011;
1), Japan (2017–2018; 1),
France (2006; 1)

G448S (12) (Howard et al. 2009,
Bellete et al. 2010, Bueid et al.
2010, Pel�aez et al. 2012,
Wiederhold et al. 2016,
Montesinos et al. 2017)

0.5–>16 0.25–4 0.5–>16 Yes
ITZ
VRZ

ND Yes ND Yes

UK (1992–2007; 2), India
(2012–2016; 2)

Y431C (4) (Howard et al. 2006,
2009, Albarrag et al. 2011,
Dabas et al. 2018)

0.5–4 0.06–2 >8–16 ND ND ND ND ND

China (2011–2014; 1), France
(2006–2009; 1)

G432A/S (2) (Alanio et al. 2011,
Liu et al. 2015)

0.25–2 0.25–0.5 4–16 ND ND ND ND ND

UK (1992–2007; 2) G434C (2) (Howard et al. 2006,
2009, Albarrag et al. 2011)

4 1 >8 No Yes ND ND ND

UK (1992–2017; 70),# China
(2008–2009; 16), Spain
(2014–2018; 17), Japan
(2009–2018; 8), Denmark
(2010–2014;7), USA
(2015–2017; 7), Italy
(1995–2006, 2013–2015; 6),
Taiwan (2011–2018; 6), the
Netherlands (1994–2013; 4),
Belgium (2011–2016; 4),
Portugal (2008–2016; 4),
Sweden (1997–1998; 2),
South Korea (2012–2013; 2),
Iran (2003–2016; 2), Brazil
(2008–2009; 1), Czech
Republic (2008–2009; 1),
Germany (2015; 1)

WT (158) (Chryssanthou 1997,
Snelders et al. 2008, Bueid
et al. 2010, Lockhart et al. 2011,
Tashiro et al. 2012, Hagiwara
et al. 2014, Fuhren et al. 2015,
Steinmann et al. 2015,
Vermeulen et al. 2015,
Wiederhold et al. 2015, 2016,
Jensen et al. 2016, Lazzarini
et al. 2016, Nabili et al. 2016,
Lavergne et al. 2017,
Montesinos et al. 2017,
Prigitano et al. 2017,
Abdolrasouli et al. 2018b,
Berkow et al. 2018, Isla et al.
2018, Pinto et al. 2018, Seufert
et al. 2018, Tsuchido et al.
2019, Won et al. 2020)

0.25–16 0.06–16 0.5–>16 ITZ ND ND ND Yes

MIC, minimum inhibitory concentration; FLZ, fluconazole; ITZ, itraconazole; PSZ, posaconazole; VRZ, voriconazole.

ASPERGILLUS FUMIGATUS AND ASPERGILLOSIS
THE WORLDWIDE CLINICAL BURDEN OF ARAF

The increasing burden of azole resistance on a global scale
notoriously limits the therapeutic options to treat aspergillosis
(Denning & Perlin 2011). Over the last two decades, a rapid local
and global emergence of triazole resistance has been observed.
The first ARAF isolates were obtained from two patients treated
with itraconazole, one of whom died early 1990, in California, in a
case that dates back to the late 1980s (Denning et al. 1997b). A
Dutch study later reported three ARAF isolates recovered after
www.studiesinmycology.org
long-term itraconazole treatment from a lung transplant recipient
in 1997 (Verweij et al. 2002). Moreover, a study in France found
four itraconazole-resistant isolates with high itraconazole mini-
mum inhibitory concentrations (MICs) values, > 16 mg/L, in 1999
(Dannaoui et al. 1999b). Later, in 2007, a comprehensive study
of nine cases of azole-resistant IA found that four out of nine
patients had never previously been treated with azole antifungals
(Hussain et al. 2007).

Studies have investigated the distribution of ARAF in relation
to the TR34/L98H mutation, which was first found in the
13
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Table 3. Diversity and prevalence of CYP51A mutations causing azole resistance in environmental A. fumigatus isolates.

MIC1 values (mg/L) Azole exposure prior resistance Source of isolate

Country (year of isolation;
number of isolation)

Amino acid substitutions
(total number) (references)

VRZ PSZ ITZ Present Naive

The Netherlands (2002–2019; 203);
Denmark (2009; 4); India
(2011–2014; 56); Iran (2013; 5);
China (200–2015; 4); Thailand
(2014–2015; 8); Italy (2011–2018;
61); Romania (2013–2014; 16);UK
(2009–2018; 43); France
(2010–2017; 62); Taiwan
(2014–2018; 33); Tanzania
(2013–2014; 11); Australia
(2013–2017; 1); Kuwait (2013–2015;
9); USA (2015; 38); Germany
(2012–2013; 45); Colombia (2015; 2)

TR34/L98H (S297T/F495I/Q141H/S52T)
(601) (Verweij et al. 2009, Mortensen
et al. 2010, Chowdhary et al. 2012b,
2014a, 2014b, Badali et al. 2013,
Ahmad et al. 2014, 2015, Bromley et al.
2014, Prigitano et al. 2014, Wang et al.
2014, Bader et al. 2015, Sharma et al.
2015, Chen et al. 2016b, 2019b, Nabili
et al. 2016, van der Linden et al. 2016,
�Alvarez-Moreno et al. 2017, 2019, Hurst
et al. 2017, Jeanvoine et al. 2017,
Lavergne et al. 2017,
Tangwattanachuleeporn et al. 2017,
Rocchi et al. 2018, Talbot et al. 2018,
Trovato et al. 2018, Tsitsopoulou et al.
2018, Sewell et al. 2019, Ahangarkani
et al. 2020)

0.5–>32 0.25–3 >4–>16 Yes
Bromuconazole,
cyproconazole,
difenoconazole,
epoxiconazole,
hexaconazole,
metconazole, penconazole,
propiconazole,
tebuconazole, tricyclazole,
triticonazole

No/Yes Air, patient room, water
filter, soil, corps, seeds,
rose pot compost, compost.
Hospital garden, cucurbit
fields

Iran (2017–2018; 3); The Netherlands
(2009–2011; 14); UK (2018; 6);
Tanzania (2013–2014; 4); France
(2014–2017; 31); Colombia
(2015–2018; 38); India (2012–2013;
6); Germany (2012–2013; 6); Taiwan
(2016–2018; 3); Greece
(2016–2017; 1)

TR46 / Y121F / T289A (112) (van der
Linden et al. 2013, 2016, Chowdhary
et al. 2014a, 2014b, Bader et al. 2015,
Sharma et al. 2015, �Alvarez-Moreno
et al. 2017, 2019, Lavergne et al. 2017,
Rocchi et al. 2018, Chen et al. 2019b,
Sewell et al. 2019, Siopi et al. 2020)

>2–�16 0.25–2 >8–>16 Yes No/Yes Air, patient room, water
filter, soil, corps, seeds,
rose pot compost, compost,
raisins, grapes.
Hospital garden, cucurbit
fields, farmland

India (2013–2014; 1); Romania
(2013–2014; 7); Tanzania
(2013–2014; 13); Australia
(2013–2017; 2); Germany
(2012–2013; 1); Thailand
(2014–2015; 2)

G54R/E/W/A (26) (Bader et al. 2015,
Sharma et al. 2015,
Tangwattanachuleeporn et al. 2017,
Talbot et al. 2018)

0.25–>32 0.25–2 16–>32 Yes
Bromuconazole,
cyproconazole,
difenoconazole,
epoxiconazole,
hexaconazole,
metconazole, penconazole,
tebuconazole, tricyclazole,
triticonazole

ND Hospital soil, woody debris
of trunk hollows, garden soil

Australia (2013–2017; 41); Germany
(2012–2013; 1); Taiwan
(2014–2016; 5); Colombia
(2015–2018; 5)

WT(52) (Bader et al. 2015, �Alvarez-
Moreno et al. 2017, 2019, Talbot et al.
2018, Wang et al. 2018b)

1–>32 0.125–1 0.25–>32 Yes No/Yes Azole-naïve and azole
exposed soil, air

Italy (2011-2012; 1) Australia (2013-
2017; 1); Germany (2012–2013; 1)

1–>32 0.5–2 >16–>32 Yes ND Cucurbit fields
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Netherlands in 1998 (Snelders et al. 2008). Indeed, surveillance
studies and case series recently reported the global presence of
ARAF harbouring TR34/L98H, with reports from Europe, the
Middle East, including Australia, Tanzania, Kuwait and Iran,
North and South Asia, including China and Japan, Australia and
Tanzania; Africa, and North and South America, including Brazil
and Columbia (Mellado et al. 2007, Verweij et al. 2007, Snelders
et al. 2008, Howard et al. 2009, Lockhart et al. 2011, van der
Linden et al. 2011, 2013, Chowdhary et al. 2012a, 2015, Rath
et al. 2012, Seyedmousavi et al. 2013b, Astvad et al. 2014,
Ahmad et al. 2015, Choukri et al. 2015, Fuhren et al. 2015, Liu
et al. 2015, Steinmann et al. 2015, Vermeulen et al. 2015, Wu
et al. 2015, 2020, Chen et al. 2016b, Jensen et al. 2016,
Lazzarini et al. 2016, Mushi et al. 2016, Nabili et al. 2016,
Perveen et al. 2016, Wiederhold et al. 2016, Koehler et al. 2017,
Montesinos et al. 2017, Prigitano et al. 2017, Toyotome et al.
2017, Abdolrasouli et al. 2018a, 2018b, Berkow et al. 2018,
Denardi et al. 2018, Pinto et al. 2018, Riat et al. 2018, Seufert
et al. 2018, Talbot et al. 2018, Gonzalez-Lara et al. 2019,
Rivero-Menendez et al. 2019b, Tsuchido et al. 2019, Li et al.
2020, Pontes et al. 2020) (Table 2). These studies describe
the most recent discoveries of the TR46/Y121F/T289A resistance
mechanism involving environmental mutations, which the
Netherlands first reported in 2009 (van der Linden et al. 2013);
another report revealed that a US patient was recovering from
TR46/Y121F/T289A A. fumigatus infection in 2008 (Wiederhold
et al. 2015).

In the following years, many more studies have been re-
ported, from Argentina, China, Europe (Portugal, Spain, UK),
Japan, Taiwan and US (Table 2) (Lockhart et al. 2011, van der
Linden et al. 2013, Astvad et al. 2014, Steinmann et al. 2015,
Vermeulen et al. 2015, Chen et al. 2016b, Jensen et al. 2016,
Wiederhold et al. 2016, Lavergne et al. 2017, Montesinos et al.
2017, Isla et al. 2018, Pinto et al. 2018, Seufert et al. 2018, Li
et al. 2020, Wu et al. 2020). Wild-type isolates have devel-
oped resistance to itraconazole in many countries and conti-
nents, such as the UK and the USA and in Europe and South
Asia (Chryssanthou 1997, Snelders et al. 2008, Bueid et al.
2010, Lockhart et al. 2011, Tashiro et al. 2012, van der Linden
et al. 2013, Hagiwara et al. 2014, Fuhren et al. 2015,
Steinmann et al. 2015, Vermeulen et al. 2015, Jensen et al.
2016, Lazzarini et al. 2016, Nabili et al. 2016, Wiederhold
et al. 2016, Prigitano et al. 2017, Abdolrasouli et al. 2018b,
Berkow et al. 2018, Seufert et al. 2018). Other single nucleotide
polymorphisms, in gene positions G54, M220, and G448 of the
CYP51A gene, have been reported to be frequently observed in
patients with chronic pulmonary aspergillosis, Invasive asper-
gillosis bronchitis, aspergilloma, and chronic cavitary pulmonary
aspergillosis (CCPA) treated long term with azole antifungals, as
well as several clinical treatment failures (Chryssanthou 1997,
Chen et al. 2005, 2016b, Snelders et al. 2008, Howard et al.
2009, Bellete et al. 2010, van der Linden et al. 2011, Camps
et al. 2012c, Tashiro et al. 2012, Chowdhary et al. 2015,
Wiederhold et al. 2016, Montesinos et al. 2017, Dabas et al.
2018, Denardi et al. 2018, Riat et al. 2018, Seufert et al. 2018,
Talbot et al. 2018, Tsuchido et al. 2019). Moreover, other single
point mutations associated with resistance to azole antifungals
have also been reported: G138C, F219I, P216L, G432S, and
G432A (Howard et al. 2006, 2009, Bueid et al. 2010, Albarrag
et al. 2011, van der Linden et al. 2011, Camps et al. 2012c,
Hagiwara et al. 2014, Jensen et al. 2016, Wiederhold et al. 2016,
Berkow et al. 2018, Dabas et al. 2018) (Table 2).
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Fig. 2. The ergosterol pathway involves multiple enzymes and is tightly regulated by the key rate-limiting enzyme Hmg1 producing mevalonate. Lanosterol produced by ERG6
is the substrate catalysed by CYP51A and CYP51B, while azoles competitively occupy the catalytic site and hence reduce the ergosterol synthesis. Adopted from Moreno-
Vel�asquez et al. (2017), with permission.
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While matched control studies involving patients infected with
azole-resistant and/or azole-susceptible isolates have not been
conducted, patients with azole-resistant Aspergillus infections
are at high risk for therapeutic failure. In the Netherlands sur-
veillance study, a high mortality rate was reported among culture-
16
positive ICU patients with ARAF; 14 patients, 10 of whom died,
were identified with azole-resistant IA and several underlying
conditions, such as autoimmune hepatitis, allogeneic stem cell
transplant, hematologic malignancy non-small cell lung cancer,
and chronic obstructive pulmonary diseases (COPD) (van
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Fig. 3. Molecular mechanisms contributing to triazole resistance observed in A. fumigatus. The scheme represents an A. fumigatus cell - with particular focus on the nucleus
(N), the endoplasmic reticulum (ER), and the plasma membrane (PM), which depicts the most relevant mechanisms of triazole resistance in this fungus. In A. fumigatus, a major
role in ergosterol biosynthesis is played by the sterol demethylase CYP51A (a1). The CYP51A gene is regulated positively by the SrbA protein, which activates its expression by
binding to two Sterol Regulatory Elements (SRE) in the promoter region. When ergosterol biosynthesis is repressed, the access of SrbA to SREs is prevented by both the CBC
complex and the HapX transcription factor binding to regulatory elements located downstream of SREs, resulting in negative regulation of CYP51A expression. The sterol
demethylase CYP51A, whose native substrate is eburicol, an intermediate of ergosterol biosynthesis, is the target of azole drugs (a2). As a result, changes in CYP51A
sequence or expression are associated with increased MIC to triazoles. Amino acid substitutions in either the ligand binding site or the catalytic site (b1) modulates triazole
binding affinity to CYP51A (b2). A different mutation that can be found in combination with SNPs in the CYP51A gene is the presence of tandem repeats (TRs) in the promoter
region, resulting in an expansion of the SREs, unimpeded SrbA binding, and ultimately hyper-activation of CYP51A expression (c1). The same outcome was observed in the
case of the P88L mutation in the HapE subunit of the CCAAT-binding complex (CBC) complex, which diminishes CBC binding affinity and its negative regulation of CYP51A
expression, although this genotype had only been observed in the clinical isolates in which it was first described (d1). In both cases, the increased amount of the CYP51A
enzyme prevents saturation by triazoles and sustains ergosterol biosynthesis (c2 and d2). As for other pathogenic fungi, overexpression of either ATP-binding cassettes (ABC)
or Major Facilitator Superfamily (MFS) type drug efflux pumps had been observed among triazole-resistant clinical isolates, which prevents the accumulation of active con-
centration of drug in the cell. In particular, the transcription factor AtrR positively regulates the expression of the ABC transporter CDR1B (d1 and d2). Notably, AtrR is also
involved in the positive regulation of CYP51A. A clinically relevant mutation of a different kind is the one affecting the Hmg-CoA reductase encoded by hmg1, which takes part in
ergosterol biosynthesis by converting Hmg-CoA into Mevalonate. Hmg1 has a conserved Sterol Sensing Domain (SSD) involved in regulation of sterol biosynthesis. Mutations in
the SSD result in a dysregulation of the sterol pathway that eventually translates to an increased cellular ergosterol production and triazole resistance (f1 and f2).
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Paassen et al. 2016). Two patients died in Belgium of IA that
progressed to cerebrospinal aspergillosis (Vermeulen et al.
2012). Other cases support these findings, including a recent
German study in which seven of eight azole-resistant IA patients
experienced failed therapeutic treatment and died (Sals�e et al.
2019). It has also been shown that CPA patients have failed
azole treatment due to azole resistance (Howard et al. 2009,
Steinmann et al. 2015), while several other case series reported
mortality rates of 50–100 % in patients with triazole-resistant IA.
Resistance rates as high as 29 % have been observed in specific
patient populations, such as critically ill patients (van Paassen
et al. 2016, Verweij et al. 2016a).
www.studiesinmycology.org
WORLDWIDE BURDEN OF ARAF IN THE
ENVIRONMENT

In recent years, an increasing proportion of A. fumigatus isolates
has been observed to be resistant in patients (Table 2) and
environments (Table 3) due to the presence of mutations in the
CYP51A gene (Snelders et al. 2008). Numerous fungicides were
able to inhibit wild-type strains, and some azole fungicides were
active against wild-type strains but ineffective against isolates
with the TR34/L98H mutations, which have high MICs. In the
Netherlands, these fungicides were introduced between 1990
and 1996, just before the first clinical TR34/L98H strain was found
17
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in 1998 (Snelders et al. 2008). Indeed, evidence of an ARAF
environmental route of acquisition was first found in the
Netherlands (Zhang et al. 2017). As a result, it has become
evident that azole resistance has a potentially global distribution
and is therefore a global problem (Mortensen et al. 2010, Verweij
et al. 2016a).

Such environmental route-related mutations are present in
many geographically diverse countries and continents (Table 3).
Many countries have reported environmental ARAF isolates
harbouring TR34/L98H, including Australia, China, Colombia,
Denmark, France, Germany, India, Iran, Italy, Kuwait, the
Netherlands, Romania, Taiwan, Tanzania, Thailand, UK and the
US (Verweij et al. 2009, Mortensen et al. 2010, Chowdhary et al.
2012b, 2014a, Badali et al. 2013, van der Linden et al. 2013,
Ahmad et al. 2014, 2015, Bromley et al. 2014, Prigitano et al.
2014, Wang et al. 2014, Bader et al. 2015, Sharma et al.
2015, Chen et al. 2016b, Nabili et al. 2016, van der Linden
et al. 2016, �Alvarez-Moreno et al. 2017, Hurst et al. 2017,
Jeanvoine et al. 2017, Tangwattanachuleeporn et al. 2017,
Rocchi et al. 2018, Talbot et al. 2018, Trovato et al. 2018,
Tsitsopoulou et al. 2018, Chen et al. 2019b, Sewell et al. 2019,
Ahangarkani et al. 2020) (Table 3). Additionally, several studies
have reported ARAF isolates harbouring TR46/Y121F/T289A in
Iran, the Netherlands, the UK, Tanzania, France, Colombia, In-
dia, Germany, and Taiwan (Chowdhary et al. 2014a, 2014b,
Bader et al. 2015, Sharma et al. 2015, Nabili et al. 2016, van der
Linden et al. 2016, �Alvarez-Moreno et al. 2017, Lavergne et al.
2017, Rocchi et al. 2018, Chen et al. 2019b, Sewell et al.
2019). Moreover, wild-type strains have been reported in
several countries, including Australia, Taiwan, Germany, and
Colombia, for which the MICs values of itraconazole, vor-
iconazole, and posaconazole ranged from 0.125 to > 32 (Bader
et al. 2015, �Alvarez-Moreno et al. 2017, 2019, Wang et al.
2018b).

Increasingly, other point mutations in azole-resistant strains
have been reported in studies in Europe, North America, and
Asia (Prigitano et al. 2014, Bader et al. 2015, Sharma et al. 2015,
van der Linden et al. 2016, �Alvarez-Moreno et al. 2017, 2019,
Jeanvoine et al. 2017, Tangwattanachuleeporn et al. 2017, Talbot
et al. 2018). Therefore, it is crucial to change processing prac-
tices to reduce the use and spread of azole fungicides in the
environment that result in cross-resistance with medical azoles.
Nonetheless, while TR34/L98H and TR46/Y121F/T289A muta-
tions are currently the most prevalent mutations associated with
the environmental route, ARAF strains without the CYP51A gene
mutations may also emerge from the environment (Table 3).
Indeed, the evidence demonstrates that environmental azole-
resistance is increasing due to azole fungicide drugs in the
environment; further study is needed.
ANTIFUNGAL TOLERANCE IN A. FUMIGATUS

Antifungal tolerance is different from antifungal resistance and a
relatively new concept for medical mycology. Among the human
pathogenic fungi, antifungal tolerance has been mainly studied in
Candida albicans and Candida glabrata. Tolerance is defined as
the ability of a subpopulation of cells (> 1 %) in a drug-
susceptible strain to persist or grow in presence of drug con-
centrations above the minimal inhibitory concentration (MIC),
often resulting in “trailing growth” in MIC assays. This is in
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contrast to heteroresistance or persistence, where very rare cells
(< 1 %) grow above the MIC (Delarze & Sanglard 2015, Berman
& Krysan 2020). Candida albicans tolerance is most commonly
seen with azole antifungals and is quantified by disk diffusion or
broth microdilution assays; in C. glabrata tolerance occurs
readily with echinocandins. Tolerance is affected by strain ge-
netics, especially chromosomal rearrangements or mutations in
genes that participate in core stress pathways; it is also influ-
enced by differences in growth conditions such as pH, temper-
ature and nutrient availability and in physiological differences
between genetically identical cells (Berman & Krysan 2020). The
clinical relevance of antifungal tolerance in Candida species is
still unresolved, with some studies failing to find a connection
(Rueda et al. 2017), whereas others show a positive correlation
between tolerance and disease persistence (Astvad et al. 2018,
Healey & Perlin 2018, Rosenberg et al. 2018).

In A. fumigatus, tolerance has been best characterised for the
echinocandin antifungals: micafungin, anidulafungin and espe-
cially caspofungin, which inhibit fungal β-1,3-d-glucan synthase
activity, thereby disrupting cell wall integrity (Patil & Majumdar
2017). Echinocandin tolerance is defined by partial growth inhi-
bition or trailing, under increasing drug concentrations, followed
by an unusual phenomenon called the “paradoxical effect”,
during which hyphal growth intensifies despite increasing drug
concentration (Wagener & Loiko 2017) until complete inhibition
(MIC) at very high drug levels. Growth inhibition is characterised
by the formation of stubby, highly budded compact colonies in
which the growing hyphae undergo tip lysis followed by regen-
erative intrahyphal growth initiating from viable internal com-
partments (Moreno-Vel�asquez et al. 2017), with the minimal
effective concentration (MEC) defined as the lowest drug con-
centration that induces compact colony formation. The mecha-
nism(s) underlying A. fumigatus tolerance and paradoxical
growth are not fully understood. A factor in overcoming echi-
nocandin stress is the upregulation of chitin synthesis and a large
increase in cell wall chitin levels (Walker et al. 2015). Three
signalling pathways, the high osmolarity glycerol (HOG), HSP90/
calcineurin and cell wall integrity pathway, upregulate chitin
synthesis in response to echinocandin treatment (Wagener &
Loiko 2017). Genetic or pharmacological targeting of these
pathways blocked the upregulation of chitin synthesis and
abolished A. fumigatus tolerance and paradoxical growth.
Another important event that occurs after sustained echino-
candin exposure is the relocalisation of glucan synthase from the
vacuoles to the hyphal tips (Moreno-Vel�asquez et al. 2017). This
is accompanied by increased cell wall β-1,3-d-glucan, and a
reduction in chitin (Loiko & Wagener 2017). In animal models,
increased drug levels elevate fungal burden but have no effect
on overall survival (Wagener & Loiko 2017). Compact frag-
mented colonies are seen by histology, which may increase CFU
counts while decreasing tissue penetration, organ injury and
mortality (Petraitiene et al. 2002). Thus, the clinical relevance of
echinocandin tolerance and the paradoxical effect is not yet
clear.

In contrast to the literature on Candida spp., very few reports
describe azole tolerance in aspergilli. Trailing reported for some
clinical isolates of A. flavus and A. niger was dependent on
inoculum size and growth medium, respectively (Mosquera et al.
2001, Wang et al. 2018a). Trailing also was described for A.
fumigatus exposed to the allylamine antifungal terbinafine
(Moore et al. 2001). No trailing growth has been reported with
amphotericin B exposure. Recently, an important new
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mechanism for tolerance and clinical resistance to echinocandins
emerged in A. fumigatus in which it was reported that caspo-
fungin induces a change in the membrane sphingolipid content
rendering glucan synthase insensitive to the drug (Satish et al.
2019).

In summary, for A. fumigatus, antifungal tolerance to echi-
nocandins is associated with physiological changes in cell wall
and membrane composition; tolerance to antifungal azoles re-
mains to be investigated.
AZOLE RESISTANCE MECHANISMS

Azole resistance in A. fumigatus is mainly associated with the
acquisition of mutations in and overexpression of CYP51A, and
overexpression of efflux pumps, as discussed in detail below.
Adaptation to a new environment before acquisition of stable
mutations in the azole drug target, e.g., CYP51A, requires
orchestration of a rapid, robust, and coordinated response that
allows the cell to thrive despite the presence of drugs. It has
been shown that mounting an appropriate physiological
response and phenotypic plasticity to itraconazole may take
60 min (Hokken et al. 2019). Among the most highly expressed
genes 30 and 60 min after itraconazole exposure are efflux pump
genes mdr1 and mdr4; hmg1, encoding a 3-hydroxyl-3-
methylglutaryl-CoA 1 reductase from the mevalonate pathway;
and ERG6, the most upregulated gene at all time points studied,
involved in ergosterol biosynthesis (Hokken et al. 2019) (Fig. 2).
Further, increased expression of hmg1 may lead to an increased
production of mevalonate, a precursor in sterol biosynthesis,
which can positively regulate the overexpression of ERG6,
resulting in increased eburicol levels (Yasmin et al. 2012, Hokken
et al. 2019). The higher activity of ERG6 also results in the higher
quantity of eburicol, the substrate for CYP51A, which also results
in higher expression of CYP51A to keep up with the substrate
elevation. The detailed mechanisms of azole resistance are
discussed below (Fig. 2).
Role of CYP51A and CYP51B in azole resistance

In Candida species, azole drugs target ERG11 catalyses
demethylation of 14-α-lanosterol. In A. fumigatus, ERG6 catal-
yses this reaction and acts upstream of the triazole drug target
cytochrome P450 51 (Fig. 2). Cytochrome P450 51 is encoded
by two isoforms, CYP51A and CYP51B (Alcazar-Fuoli et al.
2008, Hokken et al. 2019), which share 59–63 % similarity
(Warrilow et al. 2010, Hargrove et al. 2015). A gene essentiality
study in A. fumigatus based on the gene expression levels
revealed that CYP51A encodes the major enzyme required for
mycelial growth; the biological function of CYP51B remains
elusive (Hu et al. 2007). Further, deletion of CYP51A abrogates
fluconazole resistance, but this effect is not observed when
CYP51B is deleted (Mellado et al. 2005). In addition, CYP51A
weakly binds to triazoles, which is in contrast with tighter binding
observed for CYP51B (Warrilow et al. 2010). Collectively, these
observations indicate that CYP51A is the major enzyme in the
ergosterol biosynthesis pathway and azole resistance. The
presence of both CYP51A and CYP51B is vital to cell survival,
and deletion of either isoform is compensated by the presence of
other, without major apparent abnormalities in cell morphology
(Hu et al. 2007). Further, the intrinsic resistance of Aspergillus to
www.studiesinmycology.org
fluconazole is thought to be mediated by I301T substitution in
CYP51A and a higher expression of CYP51A than CYP51B
upon fluconazole exposure (Blosser & Cramer 2012, Leonardelli
et al. 2016).
Mutations in CYP51A and CYP51B

Mutations in the CYP51A gene identified in clinical and envi-
ronmental ARAF isolates are listed in Tables 2 and 3. Most of
these mutations within the CYP51A coding sequence are
accompanied by tandem repeats (TRs) in the promoter region,
such as TR34/L98H or TR46/Y121F/T289A (TR-mediated azole
resistance mechanism is detailed in the following section)
(Fig. 3). The effect of the mutations on MIC values and CYP51A
structure requires high-resolution structure and/or simulation
analysis. Although the crystal structure of CYP51B has been
determined, that of CYP51A has not yet been defined (Hargrove
et al. 2015). Therefore, the association of such mutations with
azole resistance is mainly derived from heterologous expression
experiments and simulation studies, in which CYP51A from
human, Mycobacterium tuberculosis, and Saccharomyces cer-
evisiae, and CYP51B from A. fumigatus are used as models to
evaluate the effect of specific amino acid substitutions on protein
structure (Liu et al. 2016, Nash & Rhodes 2018). According to in
silico modelling, the impact of an amino acid substitution on
CYP51A structure depends on the position and the substituted
residue (Liu et al. 2016). For instance, substitutions of G54, L98,
M220, and Y431 decrease the binding affinity of CYP51A to
azoles, while substitutions of G432 and also L98 reduce the
stability of CYP51A, which can lead to conformational changes in
the substrate and/or inhibitor binding pocket by causing dramatic
changes in specific loop structures close to these sites (Liu et al.
2016, Nash & Rhodes 2018). Furthermore, L98H substitution
reduces hydrogen bond formation between the residue at site 98
and polar side chains of adjacent residues, which could prevent
docking of triazoles in the binding pocket (Nash & Rhodes 2018).
Typically, L98 changes are accompanied by amino acid sub-
stitutions of S297 and F495, which are both adjacent to the
binding pocket and, hence, may synergistically confer azole
resistance (Liu et al. 2016). Conversely, G54, G138, and M220
are close to the opening channels 1 and 2, which are close to the
ligand access channel. Based on the same analysis, sub-
stitutions of amino acids located on the periphery of the protein,
such as E130D, L252L, S400I, F46Y, M172V, N248T, D255E,
L358L, E427K, and C454C, do not cause pronounced confor-
mational changes as they are far from the critical residues and,
therefore, do not play a role in azole resistance (Liu et al. 2016).
Resistance mechanisms that do not involve
CYP51A mutations

Upregulation of CYP51A
Upregulation of CYP51A expression is an important mechanism
of azole resistance. It is partly mediated by a steroid regulatory
element-binding protein (SREBP), SrbA. Apart from CYP51A,
SrbA also controls many other genes involved in sterol biosyn-
thesis, adaptation to hypoxic conditions, virulence, normal cell
polarity and hyphal morphogenesis, iron uptake, nitrate assimi-
lation, and heme biosynthesis (Willger et al. 2008, Chung et al.
2014, Dhingra & Cramer 2017). Following complex processing in
the endoplasmic reticulum and Golgi apparatus, the N-terminal
19
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DNA-binding domain of SrbA, a basic helix-loop-helix leucine
zipper transcription factor, is liberated and translocated to the
nucleus, where it binds to steroid regulatory elements (SRE) and
activates the transcription of target genes (Fig. 3) (Willger et al.
2008, Chung et al. 2014, Dhingra & Cramer 2017). SRE ele-
ments typically contain two SrbA recognition sites, SRE1 and
SRE2 (Willger et al. 2008, Gsaller et al. 2016). Hence, TRs
identified in ARAF isolates (TR34, TR48, TR53, and TR120) act as
additional SrbA-binding motifs, leading to the recruitment of
additional SrbA molecules, and increased expression of srbA
and CYP51A, and, to a lesser extent, CYP51B (Willger et al.
2008, Gsaller et al. 2016). Indeed, the activity of SrbA is
similar to that of Upc2 in C. albicans, which upregulates the
expression of ERG11 (Willger et al. 2008, Gsaller et al. 2016). It
should be noted that CYP51A is not exclusively regulated by
SrbA, since CYP51A expression is not completely inhibited in
mutants lacking srbA (Blosser & Cramer 2012). Of note, a 1822-
bp insertion (type II transposon Aft1) was identified upstream of
the start codon of CYP51A in an ARAF isolate overexpressing
CYP51A; however, its role in azole resistance remains to be
determined (Albarrag et al. 2011). Finally, although upregulation
of CYP51B in ARAF isolates appears to be rare, a baseline and/
or induced overexpression of CYP51B has been observed in a
limited number of clinical isolates lacking mutations in CYP51A
(Buied et al. 2013).

CCAAT-binding complex-mediated azole resistance
Whole-genome sequencing of an ARAF strain with wild-type
(WT) CYP51A isolated from a Dutch patient identified HapE, a
new factor involved in the regulation of sterol synthesis (Camps
et al. 2012a). HapE is a subunit of the CCAAT-binding complex
(CBC); it harboured the amino acid substitution P88L in the
clinical isolate (Camps et al. 2012a).

CBC is a trimeric transcription factor complex (HapB, HapC,
and HapE), which together with the monomeric transcription
factor HapX regulates sterol synthesis by binding at positions
–293 to –289 and –275 to –269 upstream of the CYP51A start
codon, respectively (Fig. 3) (Gsaller et al. 2016). Knock-out
analysis of CBC subunit genes and hapX, and heterologous
expression of HapEP88L result in increased triazole MIC values
and overexpression of CYP51A, HMG-CoA synthase (paralog of
erg13A and erg13B), and HMG-CoA reductase (paralog of
hmg1), indicating that these transcription factors act as re-
pressors of genes involved in sterol biosynthesis (Gsaller et al.
2016). Further studies revealed that the N-terminal DNA-
binding domains of CBC and HapX physically interact with one
another (Hortschansky et al. 2015). Further, experiments under
iron-limiting conditions demonstrated that the initial binding of
CBC to a CBC motif allows the recruitment of HapX to HapX
motif (50-GAT-30) located 11–12 bp downstream of the CBC
motif (Hortschansky et al. 2015). Interestingly, although both
SrbA and CBC competitively bind to the same SRE site, position
–293, the binding affinity of SrbA is 8-fold higher than that of
CBC (Gsaller et al. 2016). Further, SrbA shows a higher binding
affinity for the original motif located in position –293 than to the
additional motifs in isolates with TRs, located in position –327
(Gsaller et al. 2016). These studies implicated other de-
terminants involved in azole resistance, which negatively regu-
late the expression of azole drug target and other genes involved
in ergosterol biosynthesis.
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The role of efflux pumps
Identification of a relatively large number of clinical ARAF iso-
lates lacking CYP51A mutations and comparative genomics
studies in yeasts prompted the investigation of alternative
mechanisms of azole resistance. This led to the discovery of the
role of efflux pumps in azole resistance. Efflux pumps are cat-
egorised into two main classes, the major-facilitator superfamily
(MFS), encoded by 278 genes, and ATP-binding cassette (ABC)
proteins that require ATP for activity, encoded by 49 genes (Loiko
& Wagener 2017).

An initial comparative genomics analysis revealed that the
two paralogs CDR1A and CDR1B (also known as abcC) are
orthologous to C. albicans CDR1, and abcA the same as
Afumdr1 (Fraczek et al. 2013). The efflux pump genes atrI and
mdrA partially contribute to azole resistance in clinical isolates,
while atrF appeared to be upregulated in environmental ARAF
isolates (Meneau et al. 2016). Studies focused on generating
AFAR strains in vitro (UV-irradiated and itraconazole-treated
strains) and those exploring the response of A. fumigatus to
itraconazole and voriconazole revealed a pronounced over-
expression of several efflux genes, namely, Afumdr1, Afumdr3,
Afumdr4, and atrF (Nascimento et al. 2003, da Silva Ferreira
et al. 2004, 2006b, Hokken et al. 2019). Of note, the triazole
MIC values of isolates lacking Afumdr1 and mfs56 showed a
slight change, which raises the question whether these proteins
are the main efflux pumps involved in triazole resistance
(Fraczek et al. 2013). Several studies dissecting the molecular
mechanisms underpinning triazole resistance in clinical ARAF
isolates, however, showed that atrF, mfsC, and CDR1B (orthol-
ogous to CaCDR1), especially CDR1B and atrF, are greatly
upregulated in these isolates (Slaven et al. 2002, Fraczek et al.
2013, Meneau et al. 2016, Paul et al. 2017, Sharma et al. 2019,
Wu et al. 2020). This observation is further supported by the
observation that heterologous expression of CDR1B in S. cer-
evisiae isolate lacking Pdr5, or deleting this gene from an ARAF
isolate carrying TR34/L98H, TR34, or L98H, results in a profound
decrease of voriconazole MIC values (Paul & Moye-Rowley
2013, Paul et al. 2017). Furthermore, these efflux pumps have
different substrate specificity, i.e., a narrow or broad-spectrum
and functionality, with CDR1B showing the broadest substrate
specificity (Esquivel et al. 2020).

Attempts to identify the regulator of CDR1B expression
resulted in the identification of AtrR, (ABC transporter– regulating
transcription factor). AtrR is a Gal-4 type Zn2-Cys6 cluster-
containing transcription factor, which shares homology with
CgPdr1 (Fig. 3) (Hagiwara et al. 2017). Interestingly, AtrR is
responsible for the upregulation of CYP51A and also CYP51B,
as predicted by experiments that suggested that proteins other
than SrbA also control CYP51A expression (Blosser & Cramer
2012, Paul et al. 2019). Intriguingly, the AtrR response
element (ATRE) is located within the 34-bp repeat element and,
hence, both AtrR and SrbA share overlapping binding sites
(Fig. 3) (Paul et al. 2019). Therefore, it is plausible that both SrbA
and AtrR cooperatively mediate the upregulation of CYP51A
expression, as well as the expression of several genes that
control the ergosterol biosynthesis pathway (Hagiwara et al.
2017, Paul et al. 2019). Importantly, deletion of atrR resulted in
azole hypersensitivity of a strain with CYP51A with G54E sub-
stitution, which indicates that AtrR contributes to azole resistance
even in isolates with mutated CYP51A (Hagiwara et al. 2017).
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Strains lacking both atrR and srbA are viable (Hagiwara et al.
2017), which may indicate the presence of other transcription
factors that control the expression of other efflux pumps.

Although the regulator of atrF expression remains to be
identified in A. fumigatus, a recent study using whole genome
sequencing of a laboratory-derived voriconazole-resistant A.
flavus isolate revealed that yap1 controls the expression of atrF
(Ukai et al. 2018). Yap1 is a bZIP master-regulator transcription
factor involved in the oxidative stress response (Ukai et al. 2018).
Interestingly, the voriconazole-resistant A. flavus isolates har-
boured the mutation Yap1L558T, which resulted in atrF over-
expression, and reverting Yap1L558T to WT form and deletion of
atrF significantly decreased the voriconazole MIC values (8- to
16-fold) (Ukai et al. 2018). The gain-of-function mutation resulted
in changes in the C-terminus of Yap1, leading to a constitutive
localisation of this transcription factor in the nucleus, binding to a
putative Yap1 response element (YRE) at positions –462 to
–456 relative to the start codon of the target genes, and over-
expression of the target genes (Ukai et al. 2018). Of note, YRE is
also present upstream of CYP51A, but this gene was not greatly
upregulated in the respective azole-resistant isolate, which
suggests that Yap1 does not control the CYP51A. This finding
encourages evaluation of the yap1 sequence in ARAF isolates
overexpressing atrF.

Hmg1 and azole resistance
Losada et al. (2015) identified Hmg1 as another player in azole
resistance, in an experiment involving successive in vitro
exposure of A. fumigatus to various azole compounds. Hmg1 is
bound to the endoplasmic reticulum membrane via an N-terminal
anchor domain linked to the catalytic site via a linker (Fig. 3)
(Sever et al. 2003, Friesen & Rodwell 2004). In the experiment of
Losada et al. (2015), all voriconazole-resistant progenies had
specific amino acid substitutions in the sterol-sensing domain of
Hmg1. Sterol negatively regulates the activity of Hmg1, and in
the presence of high sterol levels, the membrane-bound domain
of Hmg1 is targeted to proteasome-mediated proteolysis (Sever
et al. 2003). Therefore, it is plausible to associate mutations in
the sterol-sensing domain with an increased enzyme stability,
which would lead to sterol overproduction and, potentially, azole
resistance (Sever et al. 2003, Friesen & Rodwell 2004, Losada
et al. 2015, Jiang et al. 2018). Indeed, this was the case with
ARAF clinical isolates from Japan and the US (Hagiwara et al.
2018, Rybak et al. 2019). These isolates, lacking CYP51A mu-
tations but harbouring mutations in hmg1, produced more
ergosterol and were more susceptible to polyenes, such as AMB,
than isolates without mutations in hmg1. Other studies con-
ducted in India and Taiwan identified similar mutations in hmg1 in
clinical ARAF isolates (Sharma et al. 2019, Wu et al. 2020).
Intriguingly, a study conducted in the US revealed that a high
proportion of isolates with WT CYP51A (11/21; 52 %) harbour
mutations in the hmg1 portion encoding the sterol-sensing
domain (Siopi et al. 2017). Although initial ectopic expression
experiments failed to associate the discovered hmg1 mutations
with azole resistance, a recent study using CRISPR-Cas9
methodology revealed that F262_del, S305P, and I412S
dramatically increase the triazole MIC values (Rybak et al. 2019).
Similarly, other genes involved in ergosterol biosynthesis,
including ERG6, are mutated and may potentially contribute to
triazole resistance, although these mutations are not as preva-
lent as those of hmg1 (Hagiwara et al. 2018).
www.studiesinmycology.org
Master regulators of azole resistance
It is still unclear how genes involving ergosterol biosynthesis and
SrbA, AtrR, CDR1B, and Hap complex genes are regulated on a
larger scale, and which master regulators control their expres-
sion. In a recent study, potential master regulators that could
simultaneously be involved in azole resistance and pathogenicity
were systematically analysed (Furukawa et al. 2020). The au-
thors showed that negative cofactor two (Nct2), consisting of the
NctA and NctB subunits, regulates ergosterol biosynthesis and
iron-responsive pathways by co-localising and interacting with
the TATA-box located upstream of the target genes (an estimated
nearly 30 % of coding genes in A. fumigatus). Interestingly, nctA
and nctB mutants are not only pan-azole and AMB resistant, but
they present no fitness cost as their pathogenicity is comparable
with that of the WT (Furukawa et al. 2020). The controversial
AMB resistance despite a modest increase of ergosterol content
could be explained by an upregulation of oxidative stress-
reducing enzymes and the notion that altered cell wall
morphology may act as a barrier to AMB penetration in these
mutants (Furukawa et al. 2020). These findings warrant future
studies to assess the role of loss-of-function mutations in Nct2
complex genes in clinical ARAF isolates.

Additional mechanisms of azole resistance
In addition to the already mentioned major mechanisms of azole
resistance, some other, relatively rare, mechanisms are also
implicated in azole resistance. Damage resistance protein 1
(Dap1) is a cytochrome b5-like heme-binding protein that regu-
lates the function of CYP51A and ERG5. It is located at the
endoplasmic reticulum membrane and is composed of three
subunits, DapA, DapB, and DapC. DapA stabilises CYP51A and
ERG5, allowing electron transfer, while DapB and DapC sup-
press electron transfer and prevent the activity of target proteins
through depletion of heme (Song et al. 2016). Of note, although
DAPA and DAPC co-localise at the endoplasmic reticulum
membrane, and form complexes with CYP51A and ERG5, DAPB
is located in the nucleus (Song et al. 2016, 2017). Gene deletion
analysis revealed that ΔdapA was susceptible and ΔdapC was
more resistant against itraconazole, while the itraconazole sus-
ceptibility of ΔdapB was indistinguishable from the parental strain
(Song et al. 2016). The observation that even upon azole stress
Dap1 family proteins remain at the endoplasmic reticulum
membrane indicate that other transcription factors that trans-
locate to the nucleus may regulate the expression of these genes
(Song et al. 2017). In keeping with this anticipation, it was
revealed that SrbA is required for the overexpression of dapA
and dapC, and Dap1 family proteins per se do not sense
ergosterol depletion, indicating that the expression of Dap1
protein genes is controlled by SRE (Song et al. 2017).

According to a recent study, mutation in a gene encoding
farnesyl transferase (Afcox10R243Q) and loss of algA, a compo-
nent of the calcium signalling pathway, leads to itraconazole
resistance (Wei et al. 2017). Interestingly, a collection of ARAF
clinical isolates with WT CYP51A harbour several amino acid
substitutions in Afcox10 but their effect on azole resistance was
not evaluated (Sharma et al. 2019). A mismatch repair gene
(MMR, also known as MSH2) plays an important role in facili-
tating the acquisition of drug resistance in C. glabrata (Healey
et al. 2016). Unlike C. glabrata, however, the clinical and envi-
ronmental Aspergillus isolates do not harbour many nonsense
mutations in MSH2. Nonetheless, deleting msh2 profoundly
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Table 4. Studies using in-house and commercial methodologies for the direct detection of azole resistance in A. fumigatus from clinical samples.

Method Type of assay CYP51A mutations detected Clinical samples (n) CYP51A
amplification
(false
positives)

Additional results References

Conventional
PCR + sequencing

In-house TR34, L98H, M220 BAL fluids (6); tissue (2) 100 % 75 % WT; 12.5 % TR34/L98H, 12.5 % L98H Spiess et al. 2012
In-house TR34, L98H, M220, TR46 Blood (25); BAL fluids (120);

CSF (19); tissue (17)
100 % (39.8 %) 58.6 % WT; 1.1 % TR34/L98H; 0.5 % L98H Spiess et al. 2014

In-house TR34, L98H, M220, TR46, Y121F, T289A BAL fluids (22) 74.2 % (65.1 %) 7.6 % not sequenced; 1.5 % TR34/L98H Postina et al. 2018
Tissue (15) 68.9 % (54.5 %) 7.8 % not sequenced; 1.1 % L98H; 3.3 % TR46/

Y121F/T289A; 2.2 % TR34/L98H
CSF (15) 39 % (28.7 %) 10.3 % not sequenced

Pyrosequencing In-house G54 Blood (56) 3.6 % 3.6 % WT Trama et al. 2005
In-house All of those described Respiratory samples van der Torre et al. 2020

Real-time PCR In-house TR34, L98H Sputum (1); tissue (4) 60 % 60 % TR34/L98H van der Linden et al. 2010
AsperGenius® TR34, L98H, Y121F, T289A BAL fluids (77) 18.2 % 15.6 % WT; 1.3 % TR34/L98H; 1.3 % TR46/Y121F/

T289A
Chong et al. 2015

AsperGenius® TR34, L98H, Y121F, T289A Serum (72) 16.7 % 6.9 % TR46/Y121F/T289A; 5.6 % L98H; 2.8 % TR34/
L98H; 1.4 % Y121F

White et al. 2015a

AsperGenius® TR34, L98H, Y121F, T289A BAL fluids (201) 33.8 % 28.3 % WT; 3.5 % TR34/L98H; 1.5 % TR34/
L98H+WT; 0.5 % TR46/Y121F/T289A

Chong et al. 2016

MycoGENIE® TR34, L98H Respiratory samples (88);
serum (69)

0 % TR34/L98H Dannaoui et al. 2017

AsperGenius® TR34, L98H, Y121F, T289A BAL fluids (100) 20 % 17 % WT; 3 % unspecified mutations Montesinos et al. 2017
AsperGenius® TR34, L98H, Y121F, T289A BAL fluids (91) 49.5 % 34.1 % WT; 8.8 % TR34/L98H; 3.3 % TR34/

L98H +WT; 3.3 % TR46/Y121F/T289A
Schauwvlieghe et al. 2017

AsperGenius® TR34, L98H, Y121F, T289A Plasma (86) 100 % WT White et al. 2017
AsperGenius® TR34, L98H, Y121F, T289A Serum (9); tissue (8) 76.5 % 76.5 % WT de Groot et al. 2018
MycoGENIE® TR34, L98H BAL fluids (31) 0 % TR34/L98H Denis et al. 2018
AsperGenius® TR34, L98H, Y121F, T289A Sputum (119) 47.9 % 47.9 % WT Guegan et al. 2018
MycoGENIE® TR34, L98H 0 % TR34/L98H Guegan et al. 2018
MycoGENIE® TR34, L98H Respiratory samples (147) 0 % TR34/L98H Burckhardt & Zimmermann 2018
AsperGenius® TR34, L98H, Y121F, T289A BAL fluids (22) 59.1 % 56.8 % WT; 2.3 % TR34/L98H Postina et al. 2018

Tissue (15) 46.7 % 43.4 % WT; 3.3 % TR46/Y121F/T289A
CSF (15) 41.7 % 41.7 % WT

MycoGENIE® TR34, L98H BAL fluids (123) 0.8 % TR34/L98H Mikulska et al. 2019
AsperGenius® TR34, L98H, Y121F, T289A BAL fluids (23) 65.2 % 52.2 % WT; 8.7 % TR34/L98H; 4.3 % TR46/Y121F/

T289A
Pelzer et al. 2020

Nested PCR +
real-time PCR

In-house TR34, L98H, G54, G138, M220 Sputum (29) 100 % 48.3 % TR34/L98H; 31 % L98H; 6.9 % TR34; 6.9 %
TR34/L98H+M220; 6.9 % M220

Denning et al. 2011

In-house TR34, L98H, G54, G138, M220, G448 BAL fluids (94) 64.9 % Zhao et al. 2013
In-house TR34, L98H, G54, G138, M220, G448 Respiratory samples (97) 39.2 % Zhao et al. 2016

LAMP In-house TR34 Clinical samples (11) 100 % TR34/L98H Yu et al. 2019

LAMP, loop-mediated isothermal amplification; BAL, bronchoalveolar lavage; CSF, cerebrospinal fluid; WT, wild-type.
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impacts genetic stability, antifungal resistance, and virulence in
A. fumigatus (Dos Reis et al. 2019). Finally, some studies have
implicated OrmA, the rate-limiting enzyme of the sphingolipid
biosynthesis pathway (Zhai et al. 2019), b5 CybE (Misslinger
et al. 2017), mitochondrial dynamics (Neubauer et al. 2015),
and oxidoreductase HorA (Kroll et al. 2016), in azole resistance.

It should be noted that triazole resistance is a multifactorial
phenomenon, involving alteration of the drug target, and upre-
gulation of the drug target and efflux pumps (Nascimento et al.
2003, Fraczek et al. 2013). In Candida species belonging to
the CTG clade, such as C. albicans, gain-of-function mutations in
UPC2, TAC1, and MRR1 result in upregulation of ERG11 and
efflux pump genes (Gsaller et al. 2016). Since genes with similar
function exist in A. fumigatus, e.g., srbA and atrR, it would be
interesting to explore the presence of such gain-of-function
mutations in ARAF isolates, and their association with
CYP51A and CDR1B overexpression. Further, gain-of-function
mutations in CgPDR1 lead to increased virulence and immune
evasion and, hence, their implications for A. fumigatus represent
an interesting area for future investigations (Vale-Silva et al.
2013). The most important factor that would facilitate gene
expression analysis in A. fumigatus is gene characterisation,
since most genes remain uncharacterised, which makes the
interpretation of transcriptomic studies challenging (Hokken et al.
2019). Nonetheless, the current understanding of azole resis-
tance in A. fumigatus offers a wide range of potential targets that
can inspire the development of novel and potent antifungal
drugs.
Azole resistance and in-host fitness cost of A.
fumigatus

Aspergillus fumigatus exhibits tremendous phenotypic, physio-
logic, and genomic plasticity, which allows it to adapt to and
survive azole exposure. However, bona fide azole resistance
requires the acquisition of permanent mutations in azole
resistance-conferring genes and/or rewiring of the transcriptomic
landscape to enable fungal persistence and survival in the
presence of antifungal drugs within the host. Occurrence of such
changes, in turn, results in therapeutic failure and dramatically
increases the mortality rates, to over 80 % and even up to 100 %
in real-life clinical settings (van der Linden et al. 2011, van
Paassen et al. 2016). However, since resistance-conferring
mutations negatively affect the catalytic activity of key en-
zymes, such as CYP51A, the mutated isolates may show fitness
defects in the absence of azoles compared with the WT popu-
lation. Indeed, the growth rate and conidia production by isolates
harbouring various mutations and with large chromosomal de-
letions are markedly lower than those of isogenic susceptible
isolates (Hagiwara et al. 2014). Further, as shown in in vivo
studies, ARAF isolates harbouring HapE with P88L are less
virulent than azole-susceptible isogenic ancestors and WT iso-
lates, and exhibit a 4-h growth delay relative to susceptible and
WT isolates (Arendrup et al. 2010). In keeping with these ob-
servations, ARAF isolates are not detected following discontin-
uation of the azole therapy, while resistant isolates reappear
following itraconazole treatment in the clinical setting (Chen et al.
2005). By contrast, ARAF isolates carrying mutations in
CYP51A, especially those with TRs, may harbour additional
mutations in the genome, acting as a compensatory mechanism,
which allow them to thrive within the host and/or the environment
www.studiesinmycology.org
(Verweij et al. 2016b). Indeed, no significant differences in the
sterol (and ergosterol) content of several of azole susceptible
and ARAF isolates were detected in one study (Alcazar-Fuoli
et al. 2008). These observations highlight the notion that while
mutations might affect the docking of an antifungal at the enzyme
active site, they might not affect the binding of the sterol sub-
strate, as also suggested in simulation studies (Nash & Rhodes
2018). Further, the presence of two copies of the CYP51 gene
might enable rapid ergosterol biosynthesis and increased azole
resistance (Hu et al. 2007). The presence of multiple paralogs
impacts the fitness cost, which is unexpected, based on what is
known about yeasts species, such as Candida. Consistent with
this notion, in one study, mutant ARAF isolates were persistently
isolated from clinical samples of a patient following discontinu-
ation of azoles (Tashiro et al. 2012), and isolates carrying TR46/
Y121F/T289A exhibit the same growth rate and conidia pro-
duction on PDA medium as WT isolates (Hagiwara et al. 2016).

There are multiple possible explanations for such contradic-
tory observations. First, since the fitness cost is an outcome of
accumulation of multiple mutations in the genome (Verweij et al.
2016b), assessment of the effect of various mutations requires a
study of isogenic isolates, which only differ with respect to the
presence of mutations of interest in a locus of interest. Accord-
ingly, WT status should not be assigned solely on the sequencing
of CYP51A or few genes. Indeed, to obtain reliable data, studies
focusing on fitness-cost evaluation should utilise a well-defined
WT isolate whose entire genome has been sequenced. Sec-
ond, the fitness cost may vary depending on the gene and
mutation studied, e.g., the virulence attenuation observed in
HapEP88L strains (Arendrup et al. 2010) vs. lack of pronounced
virulence attenuation in isolates lacking nct2 (Furukawa et al.
2020). Third, pronounced growth defects in vitro do not always
mirror isolate behaviour in vivo, since, as shown in some studies,
the in vivo virulence of mutant strains with a growth defect in vitro
does not significantly differ from that of WT isolates (Furukawa
et al. 2020), which reflects the complex nature of growth in the
host. Further complicating matters is simultaneous recovery of
both, azole-susceptible and -resistant isolates from clinical
samples, which undermines the notion of predominance of a
single genotype in a specific ecological niche. Indeed, a
remarkable 20 % rate of isolation of mixed susceptible-resistant
colonies from clinical samples was reported in one study (Fuhren
et al. 2015), which reinforced the analysis of multiple isolates per
clinical sample to verify the concomitant presence of isolates with
different susceptibility profiles (Camps et al. 2012c).
Resistance to other classes of antifungals

As explained above, the continuous increase in the prevalence of
triazole-resistant A. fumigatus in the clinic promote physicians to
use other antifungal drugs, most notably AMB and echino-
candins. Although the degree of resistance may vary depending
on the fungicidal and fungistatic nature of these antifungals, as is
the case with azoles, it is rational to assume that the selective
pressure exerted by these antifungals will allow the selection of
drug-resistant A. fumigatus isolates. Overall, the AMB resistance
is a rare phenomenon among patients with IPA and although not
generalising the case, some studies have shown that AMB MIC
did not differ among IPA patients with/ without AMB exposure
(Moosa et al. 2002). The AMB resistance rarity also may explain
the lack of knowledge on underlying resistance mechanisms
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Table 5. Advantages and disadvantages of technologies used for typing clinical and environmental A. fumigatus isolates.

Assay Methodology D* R** References

RAPD Random amplified polymorphic DNA Low Low Bertout et al. 2001

SSDP PCR typing method combining RAPD and specific DNA primers Low Low Mondon et al. 1997

MLEE Multilocus enzyme electrophoresis Low Low Rodriguez et al. 1996, Bertout et al. 2000

AFLP Amplified fragment length polymorphism analysis Moderate Low Warris et al. 2003

RFLP Restriction fragment length polymorphism analysis Low Low Neuveglise et al. 1996

MLP Microsatellite length polymorphism High Moderate Bart-Delabesse et al. 1998, Bertout et al. 2001

RISC Retrotransposon insertion-site PCR amplification Moderate Moderate de Ruiter et al. 2007

MLST Multilocus sequence typing Moderate High Bain et al. 2007

STRAf Short coding tandem repeats High Moderate de Valk et al. 2005, Guinea et al. 2011,
Escribano et al. 2015, Fan et al. 2020

CSP Cell-surface protein sequencing Moderate High Balajee et al. 2007b, Levdansky et al. 2007

TRESPERG Sequencing of tandem repeats surface protein coding genes High High Garcia-Rubio et al. 2018a, Fan et al. 2020

WGS Whole Genome Sequencing High High Hagiwara et al. 2014, Garcia-Rubio et al. 2018b,
Pu�ertolas-Balint et al. 2019

D*, discriminatory power; R** reproducibility considering stability and availability.
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involved in A. fumigatus, which appears to be associated with
less drug uptake and a higher catalase activity in A. terreus
(Blum et al. 2013). Although counterintuitive, the ergosterol level
does not seem to differ among AMB-resistant and AMB-
susceptible A. terreus isolates (Blum et al. 2013). To close this
knowledge gap, developing in vitro AMB-resistant A. fumigatus
isolates followed by unravelling the subcellular mechanism may
provide some insights on this context.

Similar to AMB, echinocandin resistance is rarely reported
among clinical isolates of A. fumigatus (Arastehfar et al. 2020b)
and few studies conducted in this regard have shown that
acquisition of mutations in a hotspot of the FKS gene, which
encodes the catalytic subunit of β-1,3-D-glucan synthase
(Jim�enez-Ortigosa et al. 2017), along with the changes in the
lipid profile surrounding β-1,3-D-glucan synthase (Satish et al.
2019) may serve as the possible cellular factors underlying
echinocandin resistance.
ANTIFUNGAL DRUG RESISTANCE DETECTION
IN A. FUMIGATUS: FROM PHENOTYPIC ASSAYS
TO MALDI-TOF MS

As discussed, mortality rates are notably high in patients infected
with A. fumigatus azole resistant strains (van der Linden et al.
2011, Lestrade et al. 2019), evincing the importance of making
an early resistance detection in order to start an appropriate
therapy. Antifungal susceptibility testing has the ultimate goal of
helping clinicians to anticipate the chance of treatment success
or failure. This generally follows the “90/60” rule in which
approximately 90 % of the infections caused by susceptible
isolates and 60 % of those due to resistant isolates respond to
therapy (Rex & Pfaller 2002). Antifungal resistance can be
in vitro detected by performing broth microdilution assays such
as those developed and standardised by the Clinical and Lab-
oratory Standard Institute (CLSI) (CLSI 2008) and the European
Committee on Antimicrobial Susceptibility Testing (EUCAST)
(Arendrup et al. 2017a), considered as the reference for yeasts
and moulds. These methods determined the MIC, defined as the
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lowest drug concentration required to inhibit fungal growth.
However, some antifungals are only able to partially inhibit
certain species, causing changes in their hyphal growth. Such is
the case of echinocandins on moulds, for which the two meth-
odologies propose the determination of the minimum effective
concentration (MEC), the lowest concentration of antifungal
resulting in hyphal morphological changes (Kurtz et al. 1994).
MEC assessment has the difficulty of being subjective and
requiring expertise in microscopic observation in order to
determine what is considered as aberrant growth. Even though
there are some methodological differences between CLSI and
EUCAST procedures, their results have been proved to be
comparable (Espinel-Ingroff et al. 2013) and allow the catego-
risation of the strains as susceptible or resistant by applying the
established clinical breakpoints (CBPs). Although EUCAST has
defined drug-related and species-related CBPs for A. flavus, A.
fumigatus, A. nidulans, A. niger and A. terreus (EUCAST 2020),
CLSI has recently adopted CBPs for voriconazole only for A.
fumigatus species and uses epidemiological cut-offs (ECVs) to
discriminate between wild-type susceptible strains and others
with acquired resistance to other antifungal drugs (https://clsi.org/
media/3682/m61ed2_sample.pdf, Espinel-Ingroff & Turnidge
2016).

In addition, several complementary methods have been
commercialised and are easily carried out in the daily routine of a
clinical microbiology laboratory, which include colorimetric
endpoint methodologies such as Sensititre YeastOne, Micronaut-
AM and the XTT assay, or agar-based methods using strips with
a gradient of antifungal concentrations (Etest or MIC Test Strips)
or four-well plates for azole (VIPCheck) and/or echinocandin
susceptibility testing. The performance of these methods has
been compared with the reference standard with generally
positive results. Sensititre YeastOne yielded high essential
agreement rates with CLSI for itraconazole, voriconazole, pos-
aconazole and amphotericin B (Castro et al. 2004, Guinea et al.
2006, Mello et al. 2017), although its concordance for echino-
candins was lower so its use is not recommended in this case
(Siopi et al. 2017). Micronaut-AM showed good categorical
agreements (�96 %) with CLSI for anidulafungin, amphotericin
B, voriconazole and itraconazole, being able to detect azole



Table 6. Comparison of the main features of the three most widely used high-throughput sequencing platforms. Data has been
compiled from vendors information and the literature mentioned in the text.

Platform Advantages Disadvantages Comments

Illumina – Ultra-high throughput
– Low cost per sequencing coverage
– Low error rate (<0.1 %)
– Benchtop versions available (i.e.

MiSeq, NextSeq).

– Short read length (< 300 bp) – The high throughput and low error
rate makes it ideal for re-sequencing
projects when a reference is
available.

– Optimal for epidemiological studies
where focus is on sequence variation
of many samples.

– Not suitable to analyze highly repet-
itive regions

Oxford Nanopore – Ultra-long reads (median 20–50 kb,
reaching up to 100 kb or more).

– Simple and small instrumentation,
portable.

– Medium throughput
– High error rates in raw sequences

(5–40 %)

– Read length enables easy assembly
and taxonomic assignment of single
reads.

– Needs correction (updated versions
are more accurate), often in combi-
nation with Illumina.

– Cheap and portable equipment
opens possibilities for clinical use.

PacBio – Ultra-long reads (median (8–10 kb,
up to 60 kb or more)

– Medium throughput
– High error rates in raw sequences

(10–15 %)
– Large equipment

– Similar as above, but less amenable
for in site operation, given the size
and complexity of the equipment.
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resistance in A. fumigatus (Nuh et al. 2020). As echinocandin
susceptibility testing for Aspergillus spp. using reference
methods is not easy, the XTT-based assay proved to be a
feasible alternative and showed promising results when
compared with EUCAST MEC values (Meletiadis et al. 2020).
Etest and MIC Test strips have been confirmed to be reliable
alternatives for antifungal susceptibility testing for Aspergillus
species, as well as for detecting A. fumigatus azole resistance,
after obtaining categorical and essential agreements of �90 %
when correlating their results with those yielded by CLSI (Guinea
et al. 2008, Martos et al. 2010, Lamoth & Alexander 2015) and
EUCAST (Arendrup et al. 2017b, Idelevich et al. 2018). Azole
and echinocandin resistance in A. fumigatus is successfully
detected using four-well agar plates, showing comparable results
to those obtained with the reference methodologies (Arendrup
et al. 2017c, Buil et al. 2017b, Tsitsopoulou et al. 2018,
Meletiadis et al. 2019). EUCAST has proposed several recom-
mendations for their use as a screening procedure for the
detection of azole resistance (Guinea et al. 2019).

Nevertheless, these methodologies have important limita-
tions, especially for moulds: while EUCAST and CLSI are time-
consuming and laborious, colorimetric and agar-based
methods are easier to perform. Besides, all of them require a
fungal pure culture. This can be a critical issue due to the usual
low recovery rate of Aspergillus species in culture from clinical
samples, which also leads to the underestimation of azole
resistance rates (van der Linden et al. 2016). Although the po-
tential of culturing high volume sputum samples yielded positive
results for patients with chronic and pulmonary aspergillosis
(Vergidis et al. 2020), the development of alternative non-culture-
based techniques is essential.

In this context, molecular tools detecting resistance muta-
tions directly from clinical samples are proving to be comple-
mentary to phenotypic assays by reducing turnaround times for
the initiation of an effective therapy (Jenks et al. 2019f).
Several in-house and commercial PCR-based methodologies
www.studiesinmycology.org
to directly detect mutations in the A. fumigatus azole-resistance
related gene CYP51A and its promoter, including the most
frequent point mutations (G54, G138, M220, G448, L98H,
Y121F, T289A) and tandem repeat insertions (TR34 and TR46),
have been developed (Table 4). While some consist in con-
ventional PCR assays (Spiess et al. 2012, 2014, Postina et al.
2018), the vast majority are real-time PCR based methods that
avoid the delay associated with sequencing, something also
successfully achieved with loop-mediated isothermal amplifi-
cation (LAMP) assays (van der Linden et al. 2010, Denning
et al. 2011, Zhao et al. 2013, 2016, Chong et al. 2015,
2016, White et al. 2015a, 2017, Dannaoui et al. 2017,
Montesinos et al. 2017, Schauwvlieghe et al. 2017, de Groot
et al. 2018, Denis et al. 2018, Guegan et al. 2018, Morio
et al. 2018, Mikulska et al. 2019, Yu et al. 2019, Pelzer
et al. 2020). Pyrosequencing also shows promising results,
as it has the advantage of being adaptable to other genes of
interest (Trama et al. 2005, van der Torre et al. 2020). How-
ever, one of their main limitations is that they need to be very
sensitive and specific to detect the low concentration of
Aspergillus DNA and prevent cross-reactivity with human DNA.
Besides, CYP51A is a single-copy gene, which impairs its
amplification, although this can be improved by the use of a
nested PCR assay in order to achieve a higher sensitivity
(Denning et al. 2011, Zhao et al. 2013, 2016). Although other
in-house and commercial molecular methods for detecting
CYP51A mutations in A. fumigatus have been successfully
developed, they have not been evaluated in clinical samples
yet (García-Effron et al. 2008, Klaassen et al. 2010, Bernal-
Martínez et al. 2017, Wang et al. 2019, Fungiplex® 2020).
The emergence of CYP51A-WT strains increasingly being
identified in clinical settings in addition to a diverse range of
mutations occurring in the CYP51A challenge the applicability
of such tools. Despite the limited nature of resistance-
associated mutations, there may be a role for whole-genome
sequencing as an alternative strategy (see section 13).
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Fig. 4. CRISPR-Cas9 technology in A. fumigatus. The vignettes illustrate representative methods for CRISPR–Cas9 genetic manipulation of A. fumigatus. (a) MMEJ can be
used to integrate an HPH cassette into a desired locus by using short homology arms. The strain is first transformed with a plasmid expressing Cas9 and containing a PYR4
marker and then with an in vitro transcribed sgRNA and the HPH cassette. (b) The need to set up a suitable system to express the CRISPR elements can be circumnavigated
by using CRISPR RNPs, in which two different crRNAs and tracrRNA are assembled in vitro with Cas9 and then transformed into the cells to target the upstream and
downstream regions of YFG. MMEJ results in the integration of a HPH cassette into the targeted gene. (c) Ballard and colleagues tweaked the systems developed by into a two-
plasmid system for introducing SNPs into a clinical isolate without marker integration. The AMA1 sequence supports the replication of the plasmid harbouring CAS9 in
A. fumigatus, which confers resistance to hygromycin. A different plasmid carries a cassette for the expression of a ribozyme-flanked sgRNA from a A. nidulans RNA pol II
promoter; after expression in A. fumigatus, the self-splicing activity of the rybozymes releases the mature sgRNA. This plasmid contains a PTRA split marker, interrupted by the
same protospacer sequence that is being targeted on the gene of interest. After transformation of both plasmids and a RT containing the SNP to introduce in YFG, Cas9 targets
both the protospacer on the desired locus in the genome and the twin protospacer interrupting the split marker. HDR then simultaneously mediates the insertion of the SNP into
YFG and the reconstitution of the PTRA marker, thus allowing for selection of the transformants on pyrithiamine without marker integration. (d) The RNP system can also be
exploited to affect gene expression, and it was recently used to replace a native promoter with a constitutive hspA promoter by transforming the cells with the RNP particle and a
repair template carrying HPH, hspA, and homology arms flanking the insertion site. Af, A. fumigatus; CRISPR, clustered regularly interspaced short palindromic repeats; crRNA,
CRISPR-RNA; HDR, homology-directed repair; HDV, human hepatitis delta virus; HH, hammerhead; MMEJ, microhomology-mediated end joining; RNA–Cas9 protein complex;
sgRNA, single- guide RNA; tracrRNA, trans-activating RNA; YFG, your favourite gene. HA, Homology Arms; RT, Repair Template. Panels a and b were adopted from Morio
et al. (2020) with permission.
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Taking all of these into account, new molecular assays should
intend to cover a broader range of azole resistance-related
mutations and mechanisms, as not all of the CYP51A reported
alterations are detected by the available methodologies, while
increasing their sensitivity in order to become a feasible option to
detect azole resistance in more clinical settings. Besides, there
are no molecular options for the direct detection of azole resis-
tance in Aspergillus species other than A. fumigatus, which
should be further studied and developed.

Since MALDI-TOF MS has been introduced as a routine
identification tool, laboratories are interested to explore this rapid
technology as an alternative methodology potentially acceler-
ating antifungal susceptibility testing (Burckhardt & Zimmermann
2018). A simple approach using specific marker peaks in mass
spectra of resistant microorganisms could be applied to a
number of specific resistances in certain bacteria, but this
approach was yet not successful for fungi. Several functional
assays have been proposed for antibiotic susceptibility testing in
bacteria, e.g., a test for the hydrolytic degradation of β-lactam
antibiotics, the observation of incorporation of stable isotope-
labelled metabolites, or the utilisation of MALDI-TOF MS as
semi-quantitative read out for microbial growth in the presence of
an antibiotic drug. Less work has been performed until today to
apply such MALDI-TOF MS based assays to antifungal resis-
tance. Most of the studies in this regard have focused on the
detection of resistance in yeasts by MALDI-TOF MS. Detection
of peak pattern changes after incubation of cells in presence of
an antifungal has been demonstrated to determine antifungal
resistance in Candida species (Delavy et al. 2019). In two
studies, this method was also applied to test susceptibility in
Aspergillus species. One study described the detection of cas-
pofungin resistance in A. fumigatus and A. flavus strains (De
Carolis et al. 2012). The same approach was applied to
strains of Aspergillus species and voriconazole (Gitman et al.
2017). Although the results were in good agreement with refer-
ence methods, there was no obvious advantage over traditional
methods, in particular because of the similar time to result. A
promising method which has been shown to detect antifungal
resistance in Candida by semi-quantitative detection of fungal
growth in the presence of the drug after only several hours of
incubation (Vatanshenassan et al. 2018, 2019) has not yet been
applied to Aspergillus yet, according studies should be
performed.
APPLICATION OF TYPING TECHNIQUES TO
IDENTIFY INFECTION AND RESISTANCE
ROUTES

Strain genotyping is considered one of the most basic tools in the
clinical setting since it fulfils many needs, among which the
establishment of epidemiological relationships between isolates
stands out. As in many other settings, typing methodologies have
had an important impact in the aspergillosis field, since they have
been used, among many others, for outbreak analysis (Menotti
et al. 2005, Doll et al. 2017), environmental monitoring of the
isolates that constitute a specific population (Deng et al. 2017,
Fan et al. 2020), also for patient monitoring in order to study how
www.studiesinmycology.org
clinical strains evolve under drug pressure within the antifungal
therapy (Escribano et al. 2017) or to assess local and global
Aspergillus spp. epidemiology (Garcia-Rubio et al. 2018a, 2018c,
Choi et al. 2019). Thus, the molecular analysis of the genetic and
epidemiological relationship between environmental and clinical
strains could potentially assess strain origin and route of trans-
mission. Besides all these applications at the subspecies level,
molecular typing methods have also been used at the genus
level for discriminating between species and also for the defi-
nition and recognition of new fungal species (Klaassen &
Osherov 2007).

Different methodologies have been developed to genotype
Aspergillus species strains (Table 5). However, due to its clinical
significance, most of them have been implemented for A. fumi-
gatus strains (Latg�e & Chamilos 2019). Classically, genotyping
techniques can be grouped in two different categories; methods
either based on PCR amplification and sequencing, which are
described in detail below, or based on non-coding repetitive
sequences paired with restriction fragment length poly-
morphisms, such as random amplified polymorphic DNA (RAPD)
(Loudon et al. 1993) amplified fragment length polymorphism
analysis (AFLP) (Warris et al. 2003), and restriction fragment
length polymorphism analysis (RFLP) (Neuveglise et al. 1996).
The latter ones show a poor inter-laboratory reproducibility which
is the reason why they have been replaced by other techniques.
Thus, the selection of the most appropriate method in each
context will highly depend on the technical resources of a
particular setting (Klaassen & Osherov 2007).

Although not a bona fide gold standard technique, the mi-
crosatellite analysis assay called STRAf is the most popular and
widely used technique used to type A. fumigatus, which stands
for short tandem repeats of A. fumigatus (de Valk et al. 2005).
This assay, developed more than a decade ago, is based on a
panel of microsatellites divided into three multicolour multiplex
PCRs. Each multiplex reaction amplifies three di-, tri-, or tetra-
nucleotide repeats, respectively. One of the biggest advan-
tages of this technique is the multicolour multiplex approach
which allows large numbers of markers to be tested in a short
period of time, which is why this assay is a very suitable tool for
large-scale epidemiological studies. Moreover, it can even be
used to genotype A. fumigatus isolates directly from clinical
samples, such as formalin-fixed paraffin-embedded tissues or
serum samples (de Groot et al. 2018). The Simpson’s diversity
index of this assay (Hunter & Gaston 1988), which shows the
discriminatory power of the methodology, is really high –0.9994
(de Valk et al. 2005), 0.988–0.995 (Escribano et al. 2015), 0.984
(Guinea et al. 2011) and 0.9993 (Garcia-Rubio et al. 2018a,
2018c). From a methodological point of view, the STRAf assay
presents some major difficulties associated with sizing of the
obtained PCR products; high-resolution equipment such as
capillary-based or acrylamide-based electrophoresis platforms is
required to translate the fragment electrophoretic mobility to their
repeat number. However, this mobility is dependent on many
critical factors such as the presence, or not, of denaturing
compounds, the matrix, the run temperature, the sequence of the
fragment, the fluorescent labels, the sizing marker, etc.
(Klaassen & Osherov 2007). In order to get exchangeable typing
results between laboratories, it is necessary to run allelic ladders
for calibrating every platform (de Valk et al. 2009). Also, the low-
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level instability of two of the markers (de Groot & Meis 2019),
together with the availability of the required laboratory technol-
ogy, dedicated software and personnel specifically trained for its
performance comprise some of the main disadvantages of this
assay (Klaassen & Osherov 2007, Garcia-Rubio et al. 2016).

As a result, the development of novel and more accessible
typing methods has been encouraged. One simple and rapid
single-locus typing method was developed based on sequencing
the coding tandem repeats present on the cell surface protein
(CSP) gene (Balajee et al. 2007b, Levdansky et al. 2007). This
method has a lower discriminatory power than microsatellite-
based typing – 0.78 (Klaassen et al. 2009), 0.83 (Gao et al.
2013) – and that is why a new typing method, called TRES-
PERG assay, was described combining four coding tandem
repeat markers (Garcia-Rubio et al. 2018a, 2018c). This assay
has a sufficiently high discriminatory power to compete with
STRAf, and its main advantage is that it does not require trained
personnel, specific equipment, or software for analysis, as it only
consists of conventional PCR amplification and Sanger
sequencing (Garcia-Rubio et al. 2018a, 2018c). Moreover,
TRESPERG assay clustered tandem-repeat (TR) azole resistant
strains in a better manner than STRAf assay did compared to
whole genome sequencing (WGS) studies. Many authors have
described these TR azole resistant strains as genetically more
closely related than other A. fumigatus isolates (Camps et al.
2012b, Abdolrasouli et al. 2015, Garcia-Rubio et al. 2018b,
Wang et al. 2018b). This fact is supported by TRESPERG results
in which every A. fumigatus TR isolate tested grouped in only
one cluster, endorsing their genetic closeness (Garcia-Rubio
et al. 2018a, 2018c).

Finally, whole genome sequencing (WGS) has recently
emerged as an invaluable tool for the analysis of genetic dif-
ferences between A. fumigatus strains and has turned into the
typing technique with the highest resolution, becoming increas-
ingly affordable and widely available (Hagiwara et al. 2014,
Garcia-Rubio et al. 2018b, Pu�ertolas-Balint et al. 2019). The
details of this technology is presented below.
WHOLE-GENOME SEQUENCING
APPLICATIONS IN THE CLINIC

The phenotypic traits of an Aspergillus strain, including its
virulence potential and its ability to survive drug exposure, are
ultimately encoded in its genome. Reference genome se-
quences for A. fumigatus, and A. nidulans are available since
2005 (Galagan et al. 2005, Nierman et al. 2005), and have
undoubtedly served to sustain major advances in the field.
However, as many other fungi, Aspergillus have very plastic
genomes and phenotypes, with clinically relevant traits varying
widely across isolates. The lowering costs and continuing de-
velopments in high-throughput sequencing have recently
allowed zooming into the specific genomes of particular strains,
revealing how genomic and phenotypic plasticity are connected.
In addition, our ability to access full genomic sequences in a
timely and cost-effective manner are opening new avenues for
clinical applications such as species identification and diagnosis
of resistance potential (Consortium & Gabald�on 2019).
Currently, three major sequencing platforms exist that differ in
their functionalities and suitability for different purposes
(Table 6). Their combined use has enabled deciphering genome
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variation in the Aspergillus genus with increasing level of res-
olution. For instance, reference genomes for virtually all major
species in the genus have been produced in the last few years
(Kjærbølling et al. 2018, 2020, Vesth et al. 2018). More recently,
re-sequencing of evolved isolates has served to estimate mu-
tation rates in the three major species (�Alvarez-Escribano et al.
2019) – A. flavus (4.2 × 10-11 mutations per site and mitotic
division), A. fumigatus (1.1. × 10-11) and A. nidulans (4.1 × 10-
11), which can be used, for instance, to more precisely date the
divergence between two strains or the origin of clinical out-
breaks. Other sequencing studies have shown that relationships
between genome and phenotypic plasticity can be mapped by
comparing genomes and phenotypes from different isolates
(Bastos et al. 2020, Drott et al. 2020). The sequencing of serially
collected isolates from the same patients with aspergillosis can
reveal mutations acquired during the infection process
(Hagiwara et al. 2014) and whole genome sequencing can
identify mutations leading to azole resistance, particularly in
resistant isolates not bearing mutations in CYP51A (Ukai et al.
2018, Sharma et al. 2019). Finally, another promising applica-
tion of high-throughput sequencing is the direct detection of
pathogenic species through targeted barcode sequencing or
whole genome shotgun sequencing of complex samples,
without the need of isolation, allowed by the high sensitivity of
high-throughput sequencing approaches coupled to the
increasing resolution power of comparisons with sequence da-
tabases (McTaggart et al. 2019).

Although these developments are very promising, the
implementation of whole genome sequencing in the clinic faces
important challenges which limits its implementation (Greninger
2018, Consortium & Gabald�on 2019, Kidd et al. 2019). Three
major clinical applications of genome sequencing are consid-
ered: (i) genome-wide profiling of resistance conferring muta-
tions, (ii) genome-wide molecular epidemiology for the study of
outbreaks and, (iii) detection and identification of pathogens from
complex, patient samples. For the three applications, analytical
methodologies are ready, as we have seen in the examples
above. However, the translation of these methodologies from an
academic study to a clinical context faces many issues, of which
we will discuss the more relevant. The first issue is cost.
Although the prices of high-throughput sequencing equipment
continue to drop, they are still far away from those of other
routine analyses in the clinical mycology lab, particularly when
one considers the combined costs of reagents, equipment pur-
chase and maintenance, computational infrastructure, and
necessary personnel (Greninger 2018). Another important
aspect is time, particularly for diagnostic purposes, less so for
epidemiological studies. Most sequencing approaches require
multiple steps before sequencing can be run (isolation, culture,
DNA extraction, library preparation, etc.). These factors coupled
with the required bioinformatics analyses that are often not fully
automatised, require high-level expertise, which delay results
over the limits that are reasonable in the context of clinical needs.
This problem can be aggravated if the sequencing and bioin-
formatics resources are not on site, which still is currently the
case for most hospitals. Finally, despite many developments in
computational tools and databases, they are still not mature for
routine infection control and outbreak investigations. For
instance, many public genome repositories are not curated,
leading to wrong annotations that can lead to errors in species
identification (Stavrou et al. 2018). In our view, full integration of
such methodologies into the clinics requires the following



Table 7. Examples of mammalian models for different types of disease caused by Aspergillus.

Type of disease Host
species

Route of infection or
exposure

Immunosuppression References1

Invasive aspergillosis,
pulmonary

Mouse Intranasal Cortisone acetate; cyclophosphamide;
cyclophosphamide and cortisone acetate

Sarfati et al. 2002,
Ibrahim-Granet et al. 2010,
Wong et al. 2017,
Morio et al. 2020

Oropharyngeal Triamcinolone acetate Shepardson et al. 2014
Intratracheal Anti-Ly-6G / anti-Ly6C antibody Shibata et al. 2014,

Rolle et al. 2016
Inhalation chamber Cyclophosphamide and cortisone acetate Sheppard et al. 2004,

Steinbach et al. 2004
Rabbit Intratracheal Hydrocortisone and cyclophosphamide;

cyclosporin
A and methylprednisolone

Chilvers et al. 1989,
Berenguer et al. 1995

Rat Intratracheal Cyclophosphamide and cortisone acetate Schmitt et al. 1988,
Chandenier et al. 2009

Intrabronchial Cyclophosphamide Leenders et al. 1996
Intrapulmonal Cyclophosphamide Habicht et al. 2002,

Becker et al. 2006

Invasive aspergillosis,
systemic

Guinea pig Intravenous Cyclophosphamide and triamcinolone
acetate

Kirkpatrick et al. 2000

Mouse Intravenous None; cyclophosphamide Johnson et al. 2000,
Sarfati et al. 2002

Rabbit Intravenous Cyclophosphamide; cyclophosphamide
and triamcinolone acetate

Patterson et al. 1988, 1991

Invasive aspergillosis,
cerebral

Mouse Intracranial, Intracerebral Cyclophosphamide Chiller et al. 2002,
Clemons et al. 2012

Rat Intracisternal None Zimmerli et al. 2007

ABPA Mouse Intranasal, intratracheal or inhalation None Hogaboam et al. 2000,
Kurup et al. 2001,
Ramaprakash et al. 2009,
Hoselton et al. 2010,
Fei et al. 2011, Moretti et al.
2014

Aspergilloma Rabbit Intrapulmonal None, but surgically induced artificial
stenosis of the bronchus and the
ligature of pulmonary artery

Sawasaki et al. 1967

Keratitis Mouse Intracorneal None Clark et al. 2016
Rabbit Intrastromal Triamcinolone acetate (locally) Komadina et al. 1985

Endocarditis Guinea pig Intravenous None Martin et al. 1997
1 Selected references with detailed description of materials and methods.
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developments: (i) equipment should evolve into smaller, more
robust and easier to handle devices minimising expert dedication
and maintenance cost; (ii) these should be coupled to a com-
puter storage and artificial intelligence-driven computation sys-
tem that will automatically process data into clinically meaningful
results, this system could be on-site or securely accessed
remotely; (iii) curated databases and pipelines should be
developed that are directed to specific needs in the clinics; and
(iv) expert personnel with bioinformatics and microbial genomics
expertise should be incorporated into the clinical system. Some
of these developments, particularly (i) and (ii), are progressing
significantly thanks to the push of personalised medicine appli-
cations based on the human genome. However, (iii) and (iv), only
partially overlap with other medical applications of genomics, and
require a specific microbial genomics focus, and expertise. We
envision that joint international efforts with the participation of
regulatory authorities, researchers, and clinicians will help to
make progress through pilot proof of concept studies and the
standardisation of methodologies.
www.studiesinmycology.org
GENETIC TOOLBOX USED TO IDENTIFY
ANTIFUNGAL RESISTANCE AND VIRULENCE
DETERMINANTS

Inducing mating in A. fumigatus under laboratory conditions is a
time-consuming process (O’Gorman et al. 2009), and studies of
gene function have therefore heavily relied on site-directed
mutagenesis (O’Gorman et al. 2009). However, the effect of
the cell wall on the uptake of exogenous DNA and the low rate of
homology driven repair (HDR) which ranges from 1–10 % in
different strains makes gene manipulation of A. fumigatus an
uphill road (Krappmann et al. 2006). Different techniques have
been used in the attempt to find a balance between increasing
transformation efficiency and limiting ectopic genome integration
(S�anchez & Aguirre 1996, Sugui et al. 2005, Szewczyk et al.
2006); usually, polyethylene glycol-mediated transformation of
protoplasts is preferred for site-directed mutagenesis (Brakhage
& Langfelder 2002). Deleting essential players of the non-
homology end-joining (NHEJ) pathway such as Ku70
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Table 8. Consequences of antifungal resistance of Aspergillus species in murine models and Galleria.

Species/mutation Antifungal Main finding References

Murine models

A. fumigatus CYP51A (M220K, G54W) Itraconazole, posaconazole Systemic infection: resistance did not impact
fitness and might increase virulence

Lackner et al. 2018

A. fumigatus CYP51A (M220K, G54W) Itraconazole, posaconazole IPA: resistance did not impact fitness Valsecchi et al. 2015

A. fumigatus CYP51A (G448S) Voriconazole IPA: resistance was associated with reduced
treatment efficacy

Krishnan-Natesan et al. 2012

A. fumigatus CYP51A
(M220I, G54W, TR34/L98H)

Isavuconazole Systemic infection: resistance was associated
with reduced treatment efficacy in a dose-
dependent manner

Seyedmousavi et al. 2015a

A. fumigatus CYP51A (M220K)
and unknown

Caspofungin, posaconazole Systemic infection: resistance was associated
with reduced treatment efficacy in a dose-
dependent manner

Arendrup et al. 2008

A. fumigatus Posaconazole IPA: resistance was associated with reduced
prophylaxis efficacy

Seyedmousavi et al. 2015b

A. fumigatus Itraconazole Systemic infection: resistance was associated
with reduced treatment efficacy

Denning et al. 1997a, 1997b,
Dannaoui et al. 1999a, 2001

A. fumigatus CYP51A and Fks1 Posaconazole IPA: resistance was associated with reduced
treatment efficacy in a dose-dependent manner

Mavridou et al. 2010,
Lepak et al. 2013

A. fumigatus Anidulafungin, voriconazole Systemic infection: resistance was associated
with reduced treatment efficacy in a dose-
dependent manner

Seyedmousavi et al. 2013a

A. fumigatus sequential isolates
from CGD patient

anidulafungin, Posaconazole Systemic infection: resistance was associated
with reduced treatment efficacy

Arendrup et al. 2010

A. terreus Voriconazole Systemic infection: resistance was associated
with reduced treatment efficacy

Salas et al. 2013

A. terreus Amphotericin B, Itraconazole Systemic infection: only itraconazole was
effective

Dannaoui et al. 2000

A. flavus CYP51C Voriconazole Systemic infection: efficacy of voriconazole
depended on drug exposure but correlated
inversely with MIC

Rudramurthy et al. 2017

Insect models

A. fumigatus CYP51A (M220K,
G54E, G54W, TR/L98H)

Posaconazole, voriconazole In vitro resistance associated with reduced
treatment efficacy

Forastiero et al. 2015

A. fumigatus CYP51A (M172V,
N248T, D255E, E427K, F46Y)

Voriconazole Resistance did not impact virulence but was
associated with reduced treatment efficacy

Garcia-Rubio et al. 2018a

A. fumigatus CYP51A (N248K/V436A,
Y433N substitution)

Itraconazole, posaconazole,
8voriconazole

Resistance did not impact virulence but was
associated with reduced treatment efficacy

Chen et al. 2019a

A. fumigatus CYP51A (G54,
M220, TR/L98)

N/A Resistance did not impact virulence Gomez-Lopez et al. 2014

A. fumigatus sequential
isolates from CGD patient

N/A No association between virulence and
resistance profile

Ballard et al. 2018

A. lentulus vs A. fumigatus Voriconazole Aspergillus lentulus could not be eradicated by
voriconazole treatment in single and mixed
infections

Alcazar-Fuoli et al. 2015

A. terreus; resistance
mechanism not defined

Amphotericin B In vitro susceptibility to L-AMB correlated with
in vivo outcome

Maurer et al. 2015
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(Krappmann et al. 2006) and Ku80 (da Silva Ferreira et al.
2006a) dramatically increases HDR frequency, so that
0.5–1 kb homology arms can efficiently mediate gene deletion
(Krappmann et al. 2006). Although metabolic markers are
available (Weidner et al. 1998, Xue et al. 2004) dominant se-
lection markers are preferred, especially when using animal
models, because position effects due to the marker integration
site may ultimately affect fungal survival within the host
(Liebmann et al. 2004, Greenstein et al. 2006). Commonly used
markers (resistance towards hygromycin, phleomycin, or pyr-
ithiamine) have been combined with site-specific recombinase
30
systems to allow for marker recycling and targeting of multiple
genes in the same background (Punt & van den Hondel 1992,
Kubodera et al. 2002, Krappmann et al. 2005, Hartmann et al.
2010). Using a split-marker approach and a cloning-free fusion
PCR strategy to assemble the transformation cassette further
streamlined the process (Gravelat et al. 2012, Furukawa et al.
2020). Recently, the generation of a library of 484 transcription
factor null mutants in a Δku80 A. fumigatus strain offered insights
into the complex transcriptional regulation of azole response in
this species (Szewczyk et al. 2006). Comprehensive libraries like
this are a powerful resource to dissect pathways involved in
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antifungal resistance, virulence, and nutritional versatility, which
all contribute to the multifaceted pathogenicity of A. fumigatus
(Ries et al. 2018, P�erez-Cantero et al. 2020). Nonetheless, using
NHEJ-deficient strains in animal models calls for caution due to
possible genome instability/sensitivity to abiotic stress, and
reconstitution of a functional ku80 gene is not feasible in large-
scale efforts (Cairns et al. 2016). Moreover, dissecting the -
still largely unclear - molecular basis of azole resistance in
clinical isolates requires the ability to manipulate wild-type strains
(van der Linden et al. 2015). Functional redundancy further
muddies the water, and the sequential deletion of gene family
members, albeit possible, is a painstaking process. These
drawbacks can be overcome with the implementation of
CRISPR-Cas9 editing technology (Fig. 4) (Morio et al. 2020). In
2016, microhomology-mediated end joining (MMEJ) was
exploited to efficiently replace a Cas9-targeted gene with an hph
cassette flanked by 28-bp homology arms in a NHEJ competent
strain (Zhang et al. 2016). The same year, the expression of a
ribozyme-flanked sgRNA from a RNA pol II promoter was
combined with a split-marker approach to induce a single-
nucleotide deletion in a Δku80 strain containing an integrated
tetracycline-inducible CAS9 (Weber et al. 2017). Alternatively,
Cas9-sgRNA ribonucleoproteins (RNP) can be used in
conjunction with MMEJ to induce gene replacement with a hph
marker in NHEJ competent strains (Al Abdallah et al. 2017).
Multiplexing and protein-tagging have also been accomplished
(Zhang et al. 2016). Recently, two gene-free intergenic safe
haven regions were discovered in A. fumigatus, to which CAS9/
sgRNA expressing constructs or selection markers may be
directed, thus resolving potential position effects resulting from
random ectopic integration (Pham et al. 2020). Notably, CRISPR-
Cas9 finally allows high efficiency site-directed mutagenesis of
wild-type strains. However, marker integration in the genome
was originally required, either for replacing the target gene
(Zhang et al. 2016, Al Abdallah et al. 2017) or for selecting the
CRISPR elements (Weber et al. 2017). Last year, Ballard and
colleagues (2019) tweaked the systems developed by Nødvig
et al. (2015) and Weber et al. (2017) into a two-plasmid sys-
tem for introducing SNPs into a clinical isolate without marker
integration. Single-base CRISPR-Cas9 editing streamlined the
association of amino acid substitutions with azole resistance in A.
fumigatus, and opens up the way to the discovery of new clini-
cally relevant and CYP51A-independent resistance mechanisms
(Umeyama et al. 2018, Ballard et al. 2019).

Recently, the versatility of the CRISPR-Cas9 technology was
exploited to dissect the molecular players of triazole resistance in
a collection of A. fumigatus clinical isolates (Rybak et al. 2019).
Cas9-sgRNA complexes were used to induce site directed
mutagenesis and promoter replacement and to show that –
surprisingly – mutations in CYP51A and overexpression of either
CYP51A/CYP51B or the efflux pump abcC could not recapitulate
the triazole MIC observed. Instead, the combination of CRISPR-
Cas9 technology with a split hygromycin B marker approach
confirmed that clinically occurring mutations in the sterol-sensing
domain of the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-
CoA) – observed in more than half of the clinical isolates
examined – were indeed responsible for the triazole resistance
observed (Rybak et al. 2019).

Non-editing applications developed in other fungi may also be
adapted in the future to A. fumigatus, including the use of a
www.studiesinmycology.org
catalytically dead Cas9 fused to transcriptional regulators to
either activate (CRISPRa) or repress (CRISPRi) gene expres-
sion, which could address some of the shortcomings of RNA
interference in this species (Cairns et al. 2016, Schultz et al.
2018). Disease outcome in patients at high risk of IA also de-
pends on a timely diagnosis (Latg�e & Chamilos 2019). The
CRISPR technology may revolutionise the field of diagnostics
with regards to nucleic acid detection and antimicrobial resis-
tance profiling directly from clinical samples (Myhrvold et al.
2018, Quan et al. 2019). Overall, we may be at a turning point
in the study of virulence and antifungal resistance, as the full
potential of CRISPR-Cas9 removes long-standing roadblocks
and re-shapes the A. fumigatus genetic toolbox.
APPLICATION OF MURINE AND INSECT
MODELS TO IDENTIFY VIRULENCE
DETERMINANTS AND ANTIFUNGAL
RESISTANCE

In vivo infection models are essential for understanding patho-
genesis, dissecting host-pathogen interactions, and identification
of pathogen and host traits that contribute to susceptibility and
disease development. For Aspergillus species, and A. fumigatus
in particular, infection models for a variety of mammalian spe-
cies, especially mice, rats, and rabbits have been used to model
different types of disease caused by Aspergillus (Table 7).
Technical aspects and the need for standardisation have been
extensively reviewed recently by several authors (Paulussen
et al. 2014, Desoubeaux & Cray 2017, 2018, Banfalvi 2018,
Mirkov et al. 2019). Therefore, we will focus here on (i) differ-
ences between leukopenic and non-leukopenic mouse models of
IA, as well as murine models of systemic aspergillosis, regarding
the contribution of distinct fungal factors to virulence, (ii) the use
of in vivo models, including insect models, to determine the
impact of antifungal resistance, and (iii) the role of comorbidities.

Respiratory infection of leukopenic mice or mice receiving
high-dose corticosteroids represent the most commonly used
models to study IA (Desoubeaux & Cray 2017). These two
models represent the two main groups of human patients at risk
for IA, oncological patients undergoing stem cell transplantation
or aggressive chemotherapy and patients after solid organ
transplantation, respectively. Both models differ fundamentally in
the role of the host response in pathogenesis: Leukopenia pre-
vents substantial influx of immune cells into the lung and results
in fungal growth unrestricted by the host responses, but driven by
the fungal ability to germinate and acquire nutrients from the host
tissue for growth (Stephens-Romero et al. 2005, Ibrahim-Granet
et al. 2010, Kalleda et al. 2016). In contrast, large numbers of
immune cells are recruited to the lungs of corticosteroid-treated
mice, and while partially restricting fungal growth, immune cell
recruitment contributes to pathogenesis in this model (Ibrahim-
Granet et al. 2010, Kalleda et al. 2016). Thus, fungal factors
required for growth in the lung generally impact virulence in both
models, whereas determinants involved in the interaction with
immune cells might only affect virulence in corticosteroid models.
An example for this dichotomy is the secondary metabolite
gliotoxin; while reduced gliotoxin production attenuates virulence
in corticosteroid-treated mice, no significant effect was observed
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in the leukopenic model (Kupfahl et al. 2006, Sugui et al. 2007,
Spikes et al. 2008). Another example is the transcription factor
DvrA that negatively regulates virulence in cell culture and the
corticosteroid model but not in leukopenic mice (Ejzykowicz et al.
2010). IA furthermore differs from intravenous, systemic infection
of mice that targets the liver, spleen and kidney (Jouvion et al.
2012, Paulussen et al. 2014). Organ-specific differences in
nutrient supply are the likely reason why deletion of hcsA,
involved in lysine biosynthesis, renders the mutant attenuated in
IA but not systemic infection models (Schobel et al. 2010). These
examples demonstrate the relevance of using different models
for aspergillosis to fully dissect the contribution of fungal factors
to host-pathogen-interaction.

While animal models have been and continue to be essential
for studying pathogenesis of aspergillosis and identification of
fungal virulence determinants, ethical concerns and practical
considerations have led to the development and increasing use
of invertebrate models, especially insects like adult Drosophila
melanogaster and Galleria mellonella larvae (reviewed in
Lionakis & Kontoyiannis (2012), Binder et al. (2016)). Important
aspects of the innate immune response are conserved between
insects and mammals (Medzhitov 2001, Müller et al. 2008,
Sheehan et al. 2018), but insects lack lymphocytes and an
adaptive immune system. While different levels of immunosup-
pression can be achieved by genetic manipulation in Drosophila
(Neyen et al. 2014) or application of drugs (Chamilos et al. 2008),
Galleria mutants are not yet available and non-treated insect
hosts are commonly used. Furthermore, insect anatomy is
dramatically different from mammals, and while both Drosophila
and Galleria can be infected via different routes (Lionakis &
Kontoyiannis 2012, Kavanagh & Sheehan 2018), it is not
possible to mimic pulmonary infection. Thus, taking into account
that the mode of immunosuppression and the route of infection
determine the relevance of some fungal factors in mammalian
aspergillosis models, results obtained in insect models cannot be
directly translated to humans without confirmation in mammalian
hosts. In fact, it yet remains to be determined which murine
aspergillosis model the insect hosts resemble best, although
infection of insects, which share several aspects with systemic
infection of mice (Kavanagh & Sheehan 2018). Other limitations
include the difficulties of infecting Drosophila with an accurate
dose, and the necessity to maintain Drosophila at temperatures
below 30 °C. Despite this, insect models have not only been
used successfully to identify fungal virulence traits, but also in
testing antifungal therapy.

Due to the lack of ethical restrictions, the short generation
time, and limited space needed for insect models, they are
ideally suited for comparison of a large number of fungal strains,
semi-high throughput screening of novel antifungal compounds,
and evaluation of combination therapies (reviewed in Kavanagh
& Sheehan 2018 and Jemel et al. 2020). One limitation in many
studies is however the lack of information on compound con-
centration at the site of infection. Although this has been
addressed for Galleria in several studies (Forastiero et al. 2015,
Maurer et al. 2015, 2019, Astvad et al. 2017, Kloezen et al.
2018), systematic analyses of pharmacokinetics in infected
larvae (Jemel et al. 2020) and a comparison of larvae from
different vendors are lacking. In addition, it remains unclear to
which extent the metabolisation of antifungal compounds is
comparable in insects and mammals. This is important for
azoles, which target fungal cytochrome P450 oxidase and are
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also metabolised by the host (Sugar & Liu 2000, MacCallum &
Odds 2002, Mavridou et al. 2010).

Animal models are essential for the development of therapies
for aspergillosis, and especially murine models have been widely
applied (reviewed in Paulussen et al. (2014), Lewis & Verweij
(2017)). Both murine (reviewed in Lewis & Verweij (2017)) and
insects (reviewed in Jemel et al. (2020)) models have more
recently also been used to address consequences of antifungal
resistance for treatment outcome (Table 8). Important de-
velopments are the use of coinfection with susceptible and
resistant strains or species (Alcazar-Fuoli et al. 2015), the
analysis of the consequences of resistance on fungal fitness
in vivo (Lackner et al. 2018), and characterisation of strains
evolved during chronic infection (Ballard et al. 2018).

One aspect that has not been extensively addressed in ani-
mal models for aspergillosis is the presence of comorbidities.
Due to differences in anatomy and physiology, insect models are
innately limited regarding options to model underlying diseases
that affect humans at risk for aspergillosis. However, although
murine models for various oncological and metabolic disorders,
and infections that might occur in association with aspergillosis
exist, they have not been applied to aspergillosis research. One
example is aspergillosis in COVID-19 patients, discussed above.
Murine models of influenza infection have been described
(Thangavel & Bouvier 2014), as well as Mycobacterium tuber-
culosis, but a combination with aspergillosis has not yet been
published. In fact, healthy young mice that are rendered immu-
nocompromised shortly before infection might not adequately
represent elderly patients with complex comorbidities receiving a
variety of medications that might possibly interfere with antifungal
therapy. They furthermore do not reflect the group of “non-
immunocompromised” patients that develop IA (Stevens &
Melikian 2011). The challenge in addressing comorbidities in
animal models is that it makes the models significantly more
complex and likely more difficult to standardise. Addressing this
requires a combination of expertise for aspergillosis models and
animal models for the respective comorbidity. This can likely be
only realised by collaboration of groups across disciplines and
might require a shift from the predominant use of murine models
to other mammalian species like rabbits, which more closely
reflect human immune response. Although laboratory mice are
convenient to use and their genetic tractability allowed identifi-
cation of distinct genetic polymorphisms associated with an
increased risk for aspergillosis (Garlanda et al. 2002, Gresnigt
et al. 2018), their small size limits repeated sampling and the
course of the standard models for IA in mice is acute. For chronic
types of aspergillosis, several models for ABPA have been
developed (summarised in Takazono & Sheppard (2017)). In
contrast, only a single model for chronic airway colonisation of
immunocompetent mice has been described (Nawada et al.
1996, Urb et al. 2015, Wang et al. 2017) that has not yet been
widely applied to study the chronic forms of aspergillosis. This
model could be useful to address the possible role of Aspergillus
in chronic pulmonary diseases such as cystic fibrosis (King et al.
2016a) and chronic pulmonary obstructive disease (COPD)
(Gago et al. 2019). As mouse models for COPD and cystic
fibrosis exist (Vlahos & Bozinovski 2014, Semaniakou et al.
2018), these could be combined with models of aspergillosis
to gain more insight into pathogenesis.

In summary, a variety of in vivo models for aspergillosis using
different host species have been described. Insect models are
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valuable tools for questions that require a large number of strains
or compounds to be screened and can be used to generate
hypotheses later to be tested in mammalian models. Mice are the
most widely used mammal to study aspergillosis, with practical
advantages, but also some limitations. A variety of murine
models have been established, that allow addressing different
types of aspergillosis. For some aspects of aspergillosis, espe-
cially in the context of different comorbidities and also co-
infections, it will however be necessary to refine existing
models or to develop new high order models to adequately mimic
human disease physiology and pathogenesis.
THERAPEUTIC DRUG MONITORING AND ITS
ROLE IN ADJUSTING OPTIMAL AZOLE DRUG
DOSAGE IN THE CLINICS

The pharmacokinetic/pharmacodynamic index that describes
azoles activity against Aspergillus is the time/AUC (Lepak &
Andes 2014) with an fAUC/MIC 0.33–25 corresponding to
50 % survival in mice or net stasis in fungal burden in lung
(Lepak & Andes 2014). Preclinical and clinical studies have
demonstrated exposure-effect and -toxicity relationships for
voriconazole, posaconazole and itraconazole and targets for
therapeutic drug monitoring (TDM) for treatment, prophylaxis and
toxicity have been determined (Table 1), although most of them
were based on low quality evidence (Ashbee et al. 2014).
However, the benefit of TDM in treatment response as well as in
adverse events of voriconazole have been demonstrated in a
randomised controlled clinical trial (Park et al. 2012). Further-
more, TDM could prevent the development of resistance which
usually occurs after 4 m (range 3 to 23 mo) of azole therapy with
itraconazole, posaconazole (oral solution) and voriconazole
(Arendrup et al. 2010, Camps et al. 2012c) as subtherapeutic
levels may be associated with emergence of azole resistance
(Howard et al. 2010, Moazam et al. 2020).

Given the large number of patients (40–60 %) having un-
predictably subtherapeutic/undetectable levels of voriconazole,
itraconazole and posaconazole (oral solution) (Park et al. 2012,
Hoenigl et al. 2013a, 2014a, Prattes et al. 2016, Yi et al. 2017),
TDM is recommended for most patients even for susceptible
isolates (Arendrup et al. 2020). Patients for whom TDM is
particularly recommended are those with erratic absorption (e.g.,
due to non-compliance, mucositis, diarrhoea), distribution and
elimination (e.g., due to altered pathophysiology, genetic pre-
disposition, insufficiencies, extracorporeal devices), potential
drug interactions, poor response, difficult-to-treat infections
(difficult sites of infection, resistant isolates) and those belonging
to special patient population (e.g., neonates, obese, elderly)
(Hoenigl et al. 2014a, Lenczuk et al. 2018). Although the tablet/iv
formulation of posaconazole provides sufficient exposure in most
patients, the steady state with the current dosing regimens is
reached after 7 d of therapy (Dekkers et al. 2016), although
posaconazole levels (solution) obtained on day 3 to 5 showed
high correlation with day 7 levels (Prattes et al. 2016). Consid-
ering the extra delay for TDM and dose adjustment, it may take >
2 wk until the new steady states are reached and verify that
target levels are attained particularly for drugs with long half-lives
like isavuconazole (Cornely et al. 2019b). Such a delay may be
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detrimental for invasive infections particularly in neutropenic
patients since mortality increases from 41 to 90 % if effective
antifungal therapy is delayed by 10 d (von Eiff et al. 1995).
Population pharmacokinetic models (Hennig et al. 2006, van
Iersel et al. 2018, Shi et al. 2019) and algorithms for early
TDM (after 48 h) can be used to identify patients with subther-
apeutic levels and speed up the dose adjustment process
(Dekkers et al. 2016, Prattes et al. 2016). TDM can be coupled
with monitoring fungal biomarkers like galactomannan (von Eiff
et al. 1995) and PCR (Moazam et al. 2020) in order to opti-
mise efficacy of azole therapy.

Azoles’ efficacy is reduced by resistance which is often
associated with high therapeutic failure rates (~90 %) (Howard
et al. 2009, van der Linden et al. 2011). Most resistance
strains have mutations in the CYP51A gene either tandem re-
peats in the promoter region (TR34, TR46, and TR53) and/or
single point mutations (mainly in codons 54, 98, 138, 220 and
448) whereas several other non-CYP51A gene mutations have
been described (CYP51B overexpression, overexpression/
modification of efflux pumps, mutations in other genes)
(Dudakova et al. 2017). TDM could be used to optimise azole
exposure against azole-resistant isolates. An exposure-MIC
relationship has been demonstrated in experimental pharmaco-
dynamic models (Siopi et al. 2014) and in a retrospective study
(Troke et al. 2011) with a recommended TDM target for vor-
iconazole of Cmin/MIC 2 for CLSI and 1 for EUCAST. The
probability of a standard voriconazole dosing regimen to attain
the pharmacokinetic/pharmacodynamic (PK/PD) target for an
isolate with EUCAST MIC 2 mg/L is ~40 % requiring trough
levels > 2 mg/L, which are feasible, whereas for isolates an MIC
of 4 mg/L the probability drops to < 5 % requiring trough levels >
4 mg/L, which are usually associated with increased toxicity
(Siopi et al. 2014). Similarly, the probability attaining the corre-
sponding PK/PD targets of posaconazole and isavuconazole is
very low for isolates with MICs > 0.5 mg/L (Seyedmousavi et al.
2014) > 2 mg/L (Espinel-Ingroff & Turnidge 2016), respectively.
However, even if a clinically relevant PK/PD target has been
determined, MIC-guided TDM approaches should consider the
variation in MIC and in the PK/PD target. Isolates with vor-
iconazole MIC 2 mg/L may harbour either the TR34/L98H or the
M220K/R/V CYP51A mutations with MICs 2–16 mg/L and
1–4 mg/L, respectively (Seyedmousavi et al. 2014, Arendrup
et al. 2017c). Thus, an isolate with MIC of 2 mg/L may have a
real MIC of 4 mg/L or higher depending on the underlying
resistance mechanism and the corresponding MIC distribution of
mutants leaving no space of optimisation via TDM. Given that
resistant isolates have usually high modal MICs to itraconazole
(> 16 mg/L), voriconazole (4 mg/L for TR34/L98H and other
mechanisms, > 16 mg/L for TR46/Y121F/T289A) and isavuco-
nazole (8 mg/L for TR34/L98H, > 16 mg/L for TR46/Y121F/T289A
and other mechanisms though with wide variation) but lower to
posaconazole (0.5 mg/L) (Meletiadis et al. 2012, Buil et al.
2018a, 2018b), posaconazole could be a good candidate for
dose optimisation against azole-resistant aspergillosis. High
dose posaconazole has been used to treat IA by azole-resistant
isolates with posaconazole MIC 0.25–2 mg/L in patients (4/7
patients survived and 3/7 died from underlying diseases)
(Mouton et al. 2018) and in dolphin after TDM (Bunskoek et al.
2017). A high dose regimen of isavuconazole (400 mg o.d.) has
also been proposed for wildtype isolates with MIC 2 mg/L
3
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(Espinel-Ingroff & Turnidge 2016) previously considered resistant
but now belonging to the new category of area of technical un-
certainty as isolates with posaconazole MICs 0.25 mg/L previ-
ously considered intermediate susceptible (Arendrup et al.
2020). An MIC-guided TDM has been proposed using the
epidemiological cut-off value for the wild-type isolates and 4 ×
MIC for the non-wild type isolates (Mouton et al. 2018) limiting
thus the role of TDM for azole dose optimisation against even the
low-level azole-resistant isolates.

In addition to reduced efficacy, subtherapeutic levels may
also be associated with emergence of azole resistance particu-
larly in the setting of chronic aspergillosis or HSCT prophylaxis
where long azole therapy is required (Steinmann et al. 2015,
Moazam et al. 2020). Azole induced resistance has been
described in vitro for isolates with non-CYP51A mutants and it
has been associated with the overexpression of CYP51B gene
and CDR1B efflux pump after exposure to itraconazole (Buied
et al. 2013, Fraczek et al. 2013). Thus, it was hypothesised
that azole-induced resistance which increases slightly the azole’s
MICs allows fungal survival until the development of stable
resistance via mutation in target genes. Slight increases in MICs
of posaconazole and itraconazole with ultimately development of
resistance due to CYP51A overexpression has been reported in
isogenic isolates recovered from patients after prolonged azole
therapy (Arendrup et al. 2010). Those isogenic resistant isolates
are unusually, harbour single point mutations (Camps et al.
2012c) or other non-CYP51A mutations (Howard et al. 2010).
Subtherapeutic levels have been associated with the emergence
of isogenic resistant isolates with non-CYP51A mutations and of
non-isogenic resistant isolates harbouring the TR34/L98H mu-
tation (Howard et al. 2010). The PK/PD relationships and the
clinical relevance of these phenomena should be further
explored in order to estimate the potential role of TDM in pre-
venting in situ development and de novo emergence of
resistance.

Several methods have been used for TDM of azoles.
Although chromatographic techniques (HPLC, LC-MS) are sen-
sitive and specific, they are expensive, they have slow runtimes,
they are not widely available and usually performed in central
laboratories (Ashbee et al. 2014). Bioassays are cheap and
simple to perform by each laboratory and can be adapted in
different clinical settings including combination therapy (Siopi
et al. 2016) but they lack specificity and measure total drug
activity including any active metabolites. An immunoassay for
quantitative measurement of voriconazole levels in serum
samples has been developed and can be used in non-
specialised centres (van der Elst et al. 2013). A dry spot blood
technique has been developed for TDM of posaconazole, vor-
iconazole and fluconazole (van der Elst et al. 2013). The DBS
technique is simple, can be performed at home with finger prick
blood, requires small sampling volumes, is less invasive and
samples can be shipped at room temperature to the laboratory
for analysis. A more innovative technique for TDM is the
biosensor technology which provides real-time monitoring and
dose adjustment of antimicrobials in a minimally invasive fashion
(Rawson et al. 2018). An aptamer for sensing azole antifungal
drugs has been developed moving forward this technology
(Wiedman et al. 2017).

In conclusion, TDM of azoles is important in order to identify
and optimise drug exposure in patients with subtherapeutic
levels which are often observed in a large subset of patients
treated particularly with voriconazole, itraconazole and the oral
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solution of posaconazole. Optimising azole exposure against
low-level azole-resistant isolates in clinical settings is challenged
by the precise and rapid determination of pathogen’s MIC and
the underlying resistance mechanism, the turnaround time of
drug levels and the dose optimisation techniques for attaining
steady target levels. Azole-induced resistance is an area that
requires further research to understand the PK/PD relationships
and define target levels. The development of bedside point-of-
care tests for measuring drug levels is crucial for efficient TDM
strategies. Because of azoles’ complex pharmacology and non-
linear pharmacokinetics, dose adjustment should be coupled
with TDM early on therapy and frequent monitoring of drug levels
depending on the disease and patient status.
TREATING AZOLE-RESISTANT ASPERGILLOSIS
IN THE CLINIC

As discussed, the triazoles including voriconazole, pos-
aconazole, and isavuconazole are recommended first-line anti-
fungal therapy for IA, with itraconazole an option for the
treatment of chronic pulmonary aspergillosis. Unfortunately,
azole resistance has been an emerging problem over the last two
decades, and treatment relies on either monotherapy with lipid
formulations of amphotericin B or an echinocandin or combina-
tion therapy with an echinocandin or triazole plus lipid formula-
tions of amphotericin B. Recent recommendations from the
Netherlands (Schauwvlieghe et al. 2018a) outline the importance
of primary treatment with lipid formulations of amphotericin B in
settings where azole resistance is above 10 %, with a later switch
to an azole if the isolate turns out to be susceptible to azoles.
Several promising new antifungal agents are on the horizon that
may serve an important role in the treatment of azole-resistant
aspergillosis.

Amphotericin B appears inferior to the triazoles in the treat-
ment of aspergillosis. In a large randomised trial comparing
amphotericin B deoxycholate to voriconazole in patients with
hematologic malignancy, the group receiving amphotericin B had
lower rates of treatment response and survival at 12 wk
compared to those who received voriconazole (Herbrecht et al.
2002). When treating azole-resistant aspergillosis with ampho-
tericin B, lipid formulations are preferable to amphotericin B
deoxycholate due to a decreased risk of toxicity and fewer
infusion-related side effects (Hiemenz & Walsh 1996). In addi-
tion, a dose of 3 mg/kg of liposomal amphotericin B daily is
preferable to 10 mg/kg daily given that no benefit has been seen
and higher rates of nephrotoxicity associated with higher doses
(Cornely et al. 2007). While the Infectious Diseases Society of
America (IDSA) and European Conference on Infections in
Leukemia (ECIL-6) do not specifically give recommendations on
the treatment of azole-resistant aspergillosis, the European So-
ciety of Clinical Microbiology and Infectious Diseases (ESCMID)
gives liposomal amphotericin B a strong recommendation for the
treatment of voriconazole-resistant IA (MIC = 2 mg/mL), a
moderate recommendation for the treatment of chronic pulmo-
nary aspergillosis and a strong recommendation for the treat-
ment of aspergillosis with an MIC to voriconazole > 2 mg/mL
(Hiemenz & Walsh 1996, Ullmann et al. 2018).

The echinocandins are not preferable for first-line treatment of
IA, although they can be used in salvage therapy or combination
therapy as discussed in more detail below. While caspofungin is
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approved by the FDA for the treatment of IA, other echinocandins
such as micafungin and anidulafungin are not FDA approved,
although they have activity against Aspergillus species and
appear equally efficacious to caspofungin. In one study of pa-
tients with IA who were intolerant to or refractory to other pref-
erable agents, caspofungin showed utility as salvage therapy
(Maertens et al. 2004). The ESCMID gives monotherapy with
caspofungin or micafungin a marginal recommendation for the
treatment of voriconazole-resistant aspergillosis (MIC > 2 mg/
mL) (Ullmann et al. 2018) and a marginal recommendation
(caspofungin) and a moderate recommendation (micafungin) for
the treatment of progressive chronic pulmonary aspergillosis with
triazole resistance (Hiemenz & Walsh 1996).

Combination therapy with liposomal amphotericin B and
caspofungin has shown some benefit compared to monotherapy
with liposomal amphotericin B for the treatment of IA. In a small
prospective study of patients with hematologic malignancy, this
antifungal combination was associated with favourable overall
response and increased survival at 12 wk, although the survival
difference was not statistically significant (Caillot et al. 2007).
This combination has also shown promise in retrospective
studies as salvage therapy (Aliff et al. 2003, Marr et al. 2004),
although conclusions were limited due to the study design and
small sample sizes.

Combination therapy with voriconazole plus an echinocandin
has shown promise for the treatment of IA in some studies (Marr
et al. 2004, 2015, Viscoli 2004, Singh et al. 2006), although again
conclusions for this approach are limited based on study design
and small sample sizes. In addition, none of these studies
specifically looked at the treatment of azole-resistant aspergil-
losis. Still, the ESCMID gives combination therapy with vor-
iconazole plus an echinocandin strong recommendation for
voriconazole-resistant aspergillosis (MIC > 2 mg/mL) and vor-
iconazole plus anidulafungin a moderate recommendation and
posaconazole plus caspofungin a marginal recommendation for
voriconazole-resistant aspergillosis with an MIC > 2 mg/mL
(Ullmann et al. 2018).
NEW HORIZON

There are several new antifungal agents with promise for the
treatment of azole-resistant aspergillosis. Fosmanogepix targets
the highly conserved enzyme Gwt1 which catalyses an early step
in glycosylphosphatidylinositol anchor biosynthesis, compro-
mising cell wall integrity and fungal growth. This compound has
been evaluated in vivo (Zhao et al. 2019) and in the murine
model of IA (Gebremariam et al. 2019) and a phase II study is
underway (ClinicalTrials.gov 2020b). Olorofim (previously
F901318) is a novel member of the orotomide class that targets
dihydroorotate dehydrogenase (DHODH), an important enzyme
for pyrimidine biosynthesis. It has been evaluated in vitro (Buil
et al. 2017a, du Pr�e et al. 2018), in the murine model of IA
(Hope et al. 2017), and is currently being evaluated in a phase II
clinical trial (ClinicalTrials.gov 2020a). Ibrexafungerp and reza-
fungin are other novel antifungals that show synergy when used
in combination with azoles. Ibrexafungerp has shown to improve
azole susceptibility for azole-resistant strains of A. calidoustus
and A. terreus when used in combination. Rezafungin has shown
some activity against azole resistant Aspergillus in a mouse
model (Miesel et al. 2019). Further clinical data on these
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compounds is needed before determining their place in the
treatment of azole-resistant aspergillosis.
FUTURE PERSPECTIVES

In the near future, there is a need for antifungal susceptibility
testing of Aspergillus species to become the standard of care
around the world. To accomplish this goal, more rapid and
sensitive methods to detect ARAF need to be developed. Opti-
mally, these methods would be applied as rapid tests and detect
a broader spectrum of resistance markers directly in the clinical
sample. Knowledge about the epidemiology of Aspergillus sus-
ceptibility patterns will represent a cornerstone for guiding the
appropriate selection of antifungal prophylaxis and treatment.
Given that more areas may be burdened with high rates of
environmental triazole resistance, triazoles may not be univer-
sally recommended as primary antifungal treatment, but instead,
treatment choice may depend on local epidemiology of ARAF.
New antifungal agents, such as ibrexafungerp, that are currently
in clinical stage evaluation with novel mechanisms of action may
have central roles in treating these azole resistant infections, as
well as species like A. terreus which are often less-susceptible to
amphotericin B.
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