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Abstract Compressible mixtures in supersonic flows are subject to significant temperature changes via
shock-waves and expansions, which affect several properties of the flow. Besides the widely-studied vari-
able transport effects such as temperature-dependent viscosity and conductivity, vibrational and rotational
molecular energy storage is also modified through the variation of the heat capacity cp and heat capacity
ratio γ, specially in hypersonic flows. Changes in the composition of the mixture may also modify its value
through the species mass fraction Yα, thereby affecting the compression capacity of the flow. Canonical
configurations are studied here to explore their sharply-conditioned mechanical equilibrium under variations
of these thermal models. In particular, effects of cp(T, Yα) and γ(T, Yα) on the stability of shock-impinged
supersonic shear and mixing layers is addressed, on condition that a shock wave is refracted. It is found
that the limits defining regular structures are affected (usually broadened out) by the dependence of heat
capacities with temperature. Theoretical and high-fidelity numerical simulations exhibit a good agreement
in the prediction of regular shock reflections and their post-shock aerothermal properties.
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1 Introduction

Diverse technological applications involve high-speed flows, such as supersonic and hypersonic vehicles, bal-
listic and reentry devices, fusion by inertial confinement or detonation phenomena amongst others. Besides
operating under extreme velocity conditions, large temperature variations are also characteristic of these
flows, which enrich and complicate the physics and dynamics. Details on the interaction of physical pro-
cesses are key to the prediction and, most important, to the understanding of these uncommon problems.
In particular, high-speed propulsion devices have been studied and developed in the last decades to provide
aircraft with the high requisites of thrust and endurance that characterize the aerospace sector [1–3]. To this
end, various configurations are being considered to design a stable and efficient combustion chamber that
can operate at a wide collection of regimes. A special distinction is given to well established concepts, such
as oblique detonation wave engines (ODWE) and supersonic combustion ram jets (SCRAMJETS), where
chemical reaction is promoted via compression of the fuel-air mixture. Inside these combustion devices, an
intricate interplay between shocks and streams of reactants yields a stable power output. A great number of
scientific studies has been performed to clarify many relevant details of this kind of compressible problems,
including shock interactions with canonical turbulence [4–8], planar interactions with gaseous interfaces
[9–11], shock-shock interactions [12,13], shock reflections on solid walls [14–17] and boundary-layer effects
[18–22] that may include separation processes [23,24], or transmission of flow discontinuities across tangential
layers [25–27], to name a few.
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The mechanical disquisitions over the equilibrium and dynamics of high-speed flows have long benefited
from theoretical approximations of ideal flow [28,29] and small-perturbation methods [30,31]. In addition,
further efforts to include real-flow effects have shed light on viscous processes in the related mechanics
[32–36,24] as well as thermal and thermochemical non-equilibrium [37]. However, besides few studies on
one-dimensional [38–40] and two dimensional waves [41], ideal-gas and calorically-perfect assumptions have
been adopted in the vast majority of the analyses of compressible continuum-model fluids. These studies
[38–41] focus on the effect of non-calorically-perfect gases on the structure and thickness of shock waves.
Specifically, the heat capacity of the gaseous mixture is not constant and depends on the concentration of
species Yα and its temperature T . This is an interesting feature to explore not only in the formation of the
shock wave structure, but also on the dynamic effects of hypersonic flows [2], considered above the value of
Mach number M > 5, where a great increase of temperature and pressure is expected upon the formation
of these waves. In particular, cp(T, Yα) and γ(T, Yα) will be explored in this theoretical and numerical study
to produce deeper insight in terms of their role to store energy and affect the compressions and expansions
of the flow, thus modifying the dynamics of hypersonic streams and the impact produced on the postshock
region. To the best of the authors’ knowledge, the lack of literature on this aspect motivates the present
study to emphasize the mechanical first-order variations that can arise in highly-energetic compressible flows
upon consideration of variable specific heat capacities.

Although we recognize the valuable information that can be extracted from one-dimensional cases and
shock structure studies, large corrections to the calorically-perfect scenario must be included in higher-
dimension flows as noted by the experimental works on shock refractions for ideal monatomic (argon) and
real diatomic (air) cases of [42], [43] and [44]. There, variations on the compressibility potential of thermally-
perfect gases involve not only a dilation of the wave thickness, but also a change in the relative outcome
to the tangential direction, namely the stream deflection. These post-shock pressure, temperature and de-
flection conditions are intimately connected and can produce real scenarios that differ from the classical,
i.e., calorically perfect, flow field predictions. In order to assess their importance, a canonical configuration
of compressible coflowing supersonic streams traversed by an oblique shock wave is chosen, on condition
that a shock is reflected, as shown in Fig. 1. The specific problem addressed in this work aims to reduce
the parametric dependence of possible multi-species supersonic flow configurations and avoid the subsonic
boundary layer region in wall flows. Two parallel streams may form a shear layer if different velocity condi-
tions are specified at the inflow, and produce a mixing layer if different thermal conditions of composition
and temperature are chosen. Therefore, this enables an instructive study of thermally-perfect gas effects on
the dynamics of compressible flows in a simplified configuration. This unsophisticated structure allows to
introduce and conduct theoretical analyses on the modified flow conditions and, furthermore, to perform
accurate numerical simulations in the absence of elaborate boundary conditions that could influence the
outcomes of the analysis. The analytical formulation of the Rankine-Hugoniot equations governing the flow
changes across the shocks, either incident, transmitted or reflected, allows the use of different models for the
total enthalpy and is presented in terms of general parameters. The proposed model is used here to address
the interaction of oblique shocks with thermally and calorically-perfect mixing layers and compare it with
high-fidelity simulations. Additionally, the proposed numerical setup provides a simple benchmark to be used
in compressible-flow codes that aim to reproduce shock refractions in hypersonic conditions.

For the reader’s convenience, the outline of the paper is stated in the following. First, the formulation
of the problem is presented in section 2, where theoretical predictions are detailed on a general basis. The
implementation of accurate constitutive models of specific heat dependence with temperature and compo-
sition are also discussed in this section. The results provided by the analytical and numerical methods are
presented in section 3, where regular and irregular refractions are analyzed. Later, a comprehensive discus-
sion is presented in section 4 based on the limits of validity and the post-interaction flow. Finally, section 5
provides the main conclusions of this work. Details of the high-fidelity numerical simulations are given in
section A.

2 Ideal flow formulation

The interactions of oblique shock waves with shear and mixing layers formed by two gaseous streams may
result in a diverse set of configurations. The case considered in this work lies on the simplest regimes, provided
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Fig. 1 Sketch of the interaction of an oblique shock impinging on two supersonic streams, where a reflected shock is produced.

that both streams are supersonic and thus rendering a transmitted oblique shock and a reflected wave. The
latter may take expansive (expansion fan) or compressive (shock) character depending on the equilibrium
conditions to be met downstream [25,45–48].

Under this configuration, the steady flow field is divided into well-defined regions of homogeneous proper-
ties separated either by tangential discontinuities or waves, as sketched in Fig. 1 for a shock refraction case. In
particular, ideal-flow analysis renders infinitely thin discontinuities for shocks and shear-mixing layers that
separate these homogeneous regions. The emerging composition requires downstream balance of pressure
p4 = p5 and deflection λ4 = λ5, for a given set of upstream Mach numbers M1, M2 and incident shock angle
σi, provided that the pressure of the incoming streams equals on both sides of the contact surface, p1 = p2.

However, mechanical equilibrium may not always be achieved throughout the complete parametric space
(M1, M2, σi), then impeding the possibility of an steady flow for certain combinations of their values.
Specifically, the maximum pressure and deflection provided by the incident and transmitted shocks may
not be sufficiently close to be matched between them through a third reflected wave. In that case, the flow
evolves instead into a self-similar irregular structure that grows with time [27]. Another possibility arises
when considering a subsonic flow in the lower gaseous stream, which makes the analytical treatment even
more complicated. In that situation, the lower-stream region is non-uniform and, since it is subsonic, it can
affect the incident shock properties upstream, see [31] for steady weak-shock interactions.

Since this work focuses on the effect of considering a non-constant specific heat cp(T, Yα), a situation
that typically arises in hypersonic mixture scenarios, the aforementioned complications that may obstruct
this particular analysis are avoided. Besides, to direct the study in the case where this effect is most relevant,
we restrict ourselves to the reflected shock configuration, where the temperature can only increase along
the streamlines. Furthermore, as the specific heat ratio variations control the jump of fluid variables across
the shock wave, the parametric space of the problem must hereafter include γ, subject to the absolute
temperature of the injected streams T1, T2, and their composition Yα1, Yα2, together with the values of M1,
M2 and σi.

2.1 Rankine-Hugoniot relations

While the fluid particles in the upper stream undergo two sudden transformations across the incident and
reflected shocks, the corresponding flow in the lower stream is only affected by the transmitted shock. Either
case, for each shock passage, the corresponding conservation of mass, momentum and energy that govern
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the flow variables change, namely
ρuuun = ρdudn , (1)

pu + ρuu
2
un

= pd + ρdu
2
dn
, (2)

hu +
1

2
u2un

= hd +
1

2
u2dn

, (3)

along with the tangential velocity conservation uut
= udt

. The velocity is decomposed into the normal (n)
and tangential (t) contributions relative to the shock front and the subscripts u and d are, respectively, the
upstream and downstream (i.e. post-shock) values of the specified variable. The function h is the enthalpy
of the gas.

When high temperature changes are expected in the flow field, the dependence of the specific heat cp with
temperature must be taken into account. This condition impedes the use of γ(T, Yα) = cp/cv to define the
enthalpy of the flow as γ/(γ−1) p/ρ. As a direct consequence, stagnation temperature is no longer conserved
across the shock. Besides, the classical Rankine-Hugoniot equations, which typically reduce to functions of
the normal component of flow Mach number and the ratio of specific heats (Mun

, γu, γd), can no longer be
employed to predict the jump conditions. There exists, however, a simple form to circumvent this hurdle by
the use of the auxiliary functions [49]

g =
h

h− p/ρ and m =
un√
gp/ρ

, (4)

which are the reduced dimensionless enthalpy and the normal component of the velocity ahead of the shock,
respectively. It is straightforward to see that g = γ = γs in the approximation of calorically-perfect gases,
cp = const., where the function γs is associated to the dimensionless slope of the isentrope relative to the
isothermal speed of sound, namely the speed of sound a, needed to define the Mach number, and which can
be calculated by assuming known the equation of state p = p(ρ, T ) and the internal energy ε = ε(cv(T ), T ).
The isentropic condition renders
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that equals γs = γ upon thermal equilibrium. The auxiliary function mu relates to the upstream Mach
number through Mun

= Mu sinσ = mu

√
γu/gu. Therefore, Rankine-Hugoniot conservation conditions across

a shock jump for a gas that is not calorically perfect can be rewritten with use made of the above-mentioned
coefficients. The mass-compression ratio reads

R =
ρd
ρu

=
gd(gu − 1)(1 + gum

2
u)

gu(gd − 1) [2 + (gu − 1)m2
u]

+

+

√
gu − 1

√
g2um

2
u [2 + (gu − 1)m2

u]− g2d [2gum2
u − gu + 1]

gu(gd − 1) [2 + (gu − 1)m2
u]

, (6)

from which it follows that the pressure and temperature increase across the shock is

P =
pd
pu

= 1 + gum
2
u sin2 σ(1−R−1) and T =

Td
Tu

=
P
R . (7)

The compressed gas leaves the oblique shock following a deflected angle λ with respect to the upstream flow
direction and a Mach number Mdn

= Md sin(σ − λ) = md

√
γd/gd, given respectively by the functions

λ = σ − tan−1
(

tanσ

R

)
and md =

√
gu

gdPR
mu. (8)

The jump conditions above are employed to write the system of equations that describe the three-shock
structure. For given values of m1, g1 and σi, direct evaluation of these expressions provides

λ3 = λ(m1, σi, g1, g3) and p3 = p1P(m1, σi, g1, g3) = p1Pi, (9)
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m3 = md(m1, σi, g1, g3) and T3 = T1T (m1, σi, g1, g3) = T1Ti. (10)

Flow properties behind the incident shock can be obtained by providing the constitutive expression of the
specific heat cp(T, Yα), which depends on the upper-stream fluid species Y1 and the absolute temperature T3.
For thermally-perfect gases, the specific heat ratio and the enthalpy coefficient can be written as functions
of the upper-stream specific heat capacity cp1(T3) and the specific gas constant Rg1 , namely

g3 =
h(T3)

h(T3)− p3/ρ3
=

h1f + h1ref +
∫ T3

Tref
cp1(T )dT

h1f + h1ref +
∫ T3

Tref
cp1(T )dT −Rg1T3

, (11)

where the subindex f indicates the formation enthalpy of the species in the upper stream and ref is used
for standard reference conditions at Tref = 298.15 K. This expression, along with (10), renders an implicit
relation for T3 that finally provides g3 and the rest of the flow properties. Likewise, the value of the flow
Mach number can be easily deduced with M3 sin(σi − λ3) = m3

√
γ3/g3. In an analogous manner, equations

λ5 = λ(m2, σt, g2, g5) and p5 = p1P(m2, σt, g2, g5) = p1Pr, (12)

m5 = md(m2, σt, g2, g5) and T5 = T2T (m2, σt, g2, g5) = T2Tt, (13)

yield the downstream flow properties below the transmitted shock, involving the unknown values of the
transmitted-shock angle σt and the enthalpy coefficient g5. Assuming also a thermally perfect gas, the
specific heat ratio and enthalpy coefficient will be given by the lower-stream component Y2 properties,

g5 =
h(T5)

h(T5)− p5/ρ5
=

h2f + h2ref +
∫ T5

Tref
cp2(T )dT

h2f + h2ref +
∫ T5

Tref
cp2(T )dT −Rg2T5

. (14)

On the other hand, expressions providing the jump conditions between region-3 and region-4 can be
directly presented with the expressions

λ4 = λ(m3, σ4, g3, g4) and p4 = p3P(m3, σ4, g3, g4) = p3Pr, (15)

m4 = md(m3, σ4, g3, g4) and T4 = T3T (m3, σ4, g3, g4) = T3Tr, (16)

which must apply to the upper-stream flow properties above the contact surface, where

g4 =
h(T4)

h(T4)− p4/ρ4
=

h1f + h1ref +
∫ T4

Tref
cp1(T )dT

h1f + h1ref +
∫ T4

Tref
cp1(T )dT −Rg1T4

. (17)

Finally, the two additional mechanical equilibrium conditions to be imposed at the downstream contact-
surface read,

p5 = p4 and λ5 = λ3 − λ4, (18)

i.e., all streamlines are parallel again with equal deflection angle and pressure. Equations (9)-(18) provide a
set of seventeen algebraic equations that determine m3, m4, m5, σr, σt, λ3, λ4, λ5, p3/p1, p4/p1, p5/p1, T3,
T4, T5, g3, g4 and g5. The Mach numbers of the downstream flow are given by M4 sin(σr− λ4) = m4

√
γ4/g4

and M5 sin(σt − λ5) = m5

√
γ5/g5 for the upper and lower streams, respectively. Considering the latter as

playing the role of an additional specific heat ratio gi ' γi, in the form g(T, Yα), calls for six more equations
than the calorically-perfect case, where direct identification yields exact equivalence between the specific
heat ratio and enthalpy coefficient g = γ =constant.

Although the non-linear system described above must be solved numerically, due to the trigonometric and
implicit relationships involved, a qualitative description of the variable specific heat ratio can be withdrawn
with use made of the well-known polar Henderson-Neumann diagrams [25,27]. First, each curve shown in
Fig. 2 (a) is the combination of possible outcomes in terms of deflection λ and pressure jump pd/pu, namely
the hodograph plane, of a shock wave for a given upstream Mach number and specific heat ratio. The curve
is the collection of points for all the possible shock angles σ ranging from 0 to 180 degrees. In particular,
the incident-shock polar is drawn in blue for fixed values of M1, γ1(= g1), and a specific shock angle σi is
marked with a blue circle, providing post-shock deflection and pressure. In addition, departing from these
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conditions one can represent the reflected-shock polar in green for a Mach number M3, which must render
conditions compatible with the lower-stream polar. The latter is drawn in orange for upstream conditions
M2 = M1, and γ2 > γ1. The intersection between the two provides implicitly the angles of the lower-stream
transmitted shock σt and upper-stream reflected shock σr, and explicitly equilibrium downstream conditions
λ4 = λ5, p4 = p5. Therefore, a coflow of two streams with equal Mach number and different specific heat
ratio traversed by an oblique shock produces a refraction easily described by the angles obtained in the polar
diagram.

A particular behavior is expected for different combinations of M1, M2 and σi, such that the intersecting
point in the hodograph plane σt becomes tangential. The latter will be here considered as the critical case
for regular refractions and further variations would readily provide a mismatch that lacks analytical solution
with a combination of three straight shocks. The actual structure arising in such a case involves a complex
set of irregular discontinuities that has already been shown to grow self-similarly over time [27]. In that way,
for a given upstream condition M1 and σi, there is an upper M+

2c and a lower critical value M−2c that produce
pseudo-steady irregular refractions.

Moreover, thermally-perfect conditions have been shown to modify the shock relations. Anticipating that
g(T ) decreases monotonically with temperature, the polar diagrams evolve as shown in Fig. 2 (b) with γ(T )
and g(T ). For the same Mach number M and shock angle σ (thus same intensity of the shock Mn = M sinσ),
both the flow deflection and the pressure jump increase with respect to the calorically-perfect case, thus
modifying the critical values M±2c expected under constant γ analyses. It should be noted that each point
of the polar, be different shock angle, provides a different post-shock temperature and, thus, γ(T ) and g(T )
values. In addition, a decrease of the latter directly involves a greater capability of deflecting the flow and
generating overpressure as denoted by the enlarged polar shapes. This effect of variable specific heat ratio is
readily seen from the energy conservation equation, conveniently written as

gu
gu − 1

+
1

2
gum

2
u = T

[
gu

gu − 1
+

1

2
gdm

2
d

]
+ T (gu − gd)

(gu − 1) (gd − 1)
, (19)

which shows that an enthalpy-coefficient variation is equivalent to a temperature-dependent endothermic
contribution when gu > gd (exothermic when gu < gd). As the term on the right hand side is proportional
to T , even bounded variations in the specific heat ratio makes the contribution more noticeable as the shock
intensity increases. For the case considered here, where the dissociation degree of the molecules is expected
to be low and the corresponding dissociation energy is neglected in (19), the function γ(T ) can be taken
as a monotonically decreasing function of temperature. Consequently, for some given values of Mu and σ,
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the mass compression ratio of the fluid particles across the shock will be enhanced, along with the pressure
jump and deflection angles that increase, as commented before. Keeping that in mind, when the shock is
imposed by a wedge-like boundary condition (λ determined), the corresponding shock angle σ will be larger
for gu > gd, provided that the weak (attached) solution is the valid one.

2.2 Thermally-perfect mixtures

The outlook of the compressible problem under study calls for an adequate description of the medium
constitution. Consideration of thermally-perfect (also called semi-perfect) or calorically-perfect (constant
heat capacity) gases, for which an ideal gas equation of state holds, is the pivotal point of the study. In order
to provide an accurate behavior of the thermodynamic processes, fifth-order JANAF polynominals [50] are
employed for the specific heat at constant pressure of a given species α, namely

cpα(T ) =
R

Wα

(
a1α + a2αT + a3αT

2 + a4αT
3 + a5αT

4
)
, (20)

in J/(kg K) units, where R = 8.31451 J/mol K is the universal gas constant and Wα is the molar mass of
the corresponding species. The enthalpy of each species can be calculated upon integration in temperature

hα(T ) =
R

Wα

(
a6α + a1αT +

a2α
2
T 2 +

a3α
3
T 3 +

a4α
4
T 4 +

a5α
5
T 5
)
, (21)

where the coefficients aiα can be found in JANAF tables. Additionally, the mixture-related specific heat and
enthalpy are simply derived from weighted summation

cp(T, Yα) =

N∑
α=1

cpαYα and h(T, Yα) =

N∑
α=1

hαYα. (22)

Finally, the expression for the ratio of specific heats of the mixture including composition and temperature
variation effects, is given by

γ(T, Yα) =

(
1− R

cpW

)−1
, (23)

where

W =

N∑
α=1

XαWα =

(
N∑
α=1

Yα
Wα

)−1
(24)

is the molar mass of the mixture, which is derived from the corresponding molar or mass fractions, Xα or Yα
respectively. As an example, Fig. 3 shows the values of the specific heat ratio γ and reduced dimensionless
enthalpy g for pure streams of air, ethane (C2H6) and propane (C3H8) as a function of temperature. The
sample species have been selected to explore the effects in the range of γ ∈ (1, 1.4). Figure 3 also shows
the initial conditions that will be later employed in the theoretical and numerical analyses (solid circles).
Different pos-tshock values are selected to get an easy picture of the range of expected values, where the
contraction of the temperature domain can be identified as γ approaches unity (hot C3H8), since temperature
grows as T ∼ (γ−1)M2

un
for Mun

� 1. The g function associated to each substance is also calculated within
the same temperature range. As expected, the crossing point between this function and the ratio of specific
heats occurs at g(Tref) = γ(Tref).

Additionally, particular cases of calorically-perfect gases can be included to evaluate the divergence of
results. Multi-species gaseous mixtures featuring constant thermodynamic coefficients, and thus a constant
specific heat ratio γ, can be easily reproduced by evaluating (20) at a desired temperature to retrieve a
constant value of cpα. The corresponding enthalpy is simply evaluated via hα = ∆h0fα + cpα(T − Tref) where
∆h0fα = hα(Tref), cpα and Tref appear as constant parameters. Finally, mixture-averaged values of these
quantities are obtained by simple weighted summation as described in eq. (22).
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Fig. 3 Calculated values of functions γ(T ) and g(T ) for different species studied in this work. Circles indicate the pre-shock
initial conditions used in the computations, whilst triangles and squares indicate the post-shock values of γ at different shock
intensities.

3 Results for thermally-perfect and calorically-perfect flows

In this section, theoretical results accompanied by numerical simulations are shown for a variety of coflows
that are the result of the coupling of flow dynamics with thermodynamics. The particular benchmark that
permits the assessment of the specific heat ratio influence, representative of Fig. 1, is composed of an upper
stream at Mach number M1 = 5 before the incident oblique shock, which traverses the domain with an angle
σi = 60◦, and a lower stream at higher Mach number value M2 > M1. The composition and temperature is
kept constant in the lower stream such that γ2 = γair and varied on the upper stream with ratios of specific
heats γ1 ≤ γ2. This election guarantees the reflected wave to always be an oblique shock, and therefore,
larger temperature variations than those expected for the reciprocal expansion-wave reflections, which are
not treated here. Consequently, the effect of cp(T, Yα), and thus γ(T, Yα), is expected to have a greater
impact under the selected combination of parameters. The solutions to the analytical problem formulated in
Sec. 2 are here reproduced via numerical simulations with good agreement. These computations have been
conducted including variable and constant γ, in absence of momentum, thermal or mass diffusivities (i.e.,
Euler equations) thus providing a direct comparison with previous results.

3.1 Numerical simulations

The problem described above is addressed with the computational fluid dynamics code CREAMS [51], which
solves the compressible Navier-Stokes equations with species transport using a spatial seventh-order accurate
WENO scheme and a third-order total variation diminishing Runge-Kutta scheme. These computations
assist the theoretical analysis in the hodograph plane providing the otherwise unfeasible description of time-
dependent responses, characterization of lengths of the generated Mach stems, and determination of the final
flow-field structures in irregular scenarios. Additional details of the modelling and numerical approaches
proposed for this study are given in appendix A.

3.2 Regular refractions

Three different cases associated to the specific heat ratio properties of the upper stream γ1 are chosen to
represent a variety of conditions. In particular, ambient air γair(T1 = 288.15K) = 1.4, cold ethane γC2H6

(T1 =
233.15K) = 1.225, and hot propane γC3H8

(T1 = 1000K) = 1.05 for M2 ∈ (5, 10). The resolution of the 17
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non-linear algebraic equations must consider that the lowest-energy solution is the one actually occurring,
while the others are discarded. The calculations have been conducted including variable and constant γ.

Fig. 4 Values of the problem-defining angles for M1 = 5 and varying M2 > M1, for three different cases regarding composition
of the upper stream. Solid lines refer to γ(T ) and dashed lines to γ = const. Empty and filled circles refer to numerical results
for γ(T ) and γ = const., respectively.

In the ideal configuration proposed in this work, where the mixing-layer thickness is negligible, the
impinging oblique shock is completely straight, and upstream flows are uniform at each side of the mixing
layer. This problem lacks of spatial scales and the flow field can be fully characterized by the corresponding
angles. In particular, those associated to the fluid particles λ3 and λ4 = λ5, and those related to the shocks σi
(incident), σt (transmitted) and σr (reflected). They are plotted in Fig. 4 as a function of the Mach number
of the lower stream M2. Theoretical (solid lines) and numerical (empty circles) computations for thermally-
perfect gases are displayed together showing very good agreement. Additionally, theoretical (dashed lines)
and numerical simulation (filled circles) results of calorically-perfect cases are included for comparison.
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Figure 4 (a) shows the resulting angles for air-air shear layers and differences are easily recognized.
Firstly, the angles characterizing the upper stream (λ3 and σr) are significantly changed from constant to
variable specific heat ratio. The diminishing of the specific heat ratio increases the deflection capacity λ3
of the incident oblique shock, which places the solid-gray line always over the dashed-gray line. Clearly,
the values of λ3 are not affected by the lower stream Mach number since they are fully determined by the
incident shock angle, which is kept constant. On the other hand, the reflected shock angle, measured relative
to the already-deflected flow ahead, is reduced. As a result, the angles describing the equilibrium with the
lower stream (λ4 and σt) are barely affected. Furthermore, while M2 > M+

2c = 7.3 renders a pseudo-steady
irregular refraction [27] when γ1 = γ2 = 1.4 = const. (for M1 = 5 and σi = 60◦), the domain associated
to regular refractions is enlarged up to M2 > M+

2c = 7.9 when admitting variations in the specific heat.
It should be noted that M2 = M1 renders a unique stream of air where σt = σi, λ5 = λ3 and λ4 = 0,
such that the reflected shock becomes a Mach line and σr equals the angle of the characteristics defined by
sin−1(1/M3). Moreover, for iso-mixture streams, M2 < M1 configurations replace the reflected-shock for a
reflected expansion, a case omitted here for the sake of conciseness.

Fig. 5 Regular configurations obtained from numerical simulations of air-air, low-temperature ethane-air and hot propane-air.
Superimposed results are shown for γ(T, Yα) (red) and γ =const. (green).

The qualitative picture of the angles characterizing the upper stream does not change when modifying
its composition, thus the function γ1(T ). This is readily seen from panels (b) and (c), which display the
same functions for cold ethane-air (γ1 = γC2H6) and hot propane-air (γ1 = γC3H8), respectively. By way of
contrast, the angles describing the lower stream are affected differently, even if both cases satisfy γ1 < γ2.
For low-temperature ethane, the transmitted shock angle and the lower stream deflection are amplified
when considering γ(T ), while the opposite is true for preheated propane. Regarding the origin of irregular
reflections, the limit M+

2c on the right side is seen to increase for the two cases, in consonance with the
air-air upper panel. Likewise, for γ1 < γ2 there exists another limit on the left side of the figure M−2c ∼M1.
If the value of γ is assumed constant, theory predicts that M2 = M1 is stable for ethane and unstable for
hot propane (no regular solution, see Fig. 4 (c)). However, when the ratio of specific heats is adequately
modelled the irregular refraction transition occurs at lower values of the lower stream Mach number M−2c.
Unlike the air-air case, M2 < M1 does not necessarily produce a reflected expansion wave, since the deflection
of the transmitted shock in air (represented by orange polars in Fig. 2) is smaller than that produced by
the upper streams (blue polars), so that the only matching solution is provided by reflected shocks that rise
up the stream (green polars). An expansion emerging from the incident shock conditions would amplify the
deflection and lower the pressure, moving away from an intersecting solution.
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The results of the numerical simulations of the three cases selected above are shown in Fig. 5 for com-
parison. The cases are set with a tangential discontinuity between streams placed at y = 0. Streamlines
(marked in grey and corresponding to γ(T, Yα)) show their initial horizontal path and later deflection upon
passage through the shocks. The shock positions are obtained from the calculation of gradients of the flow
variables, mainly the flow Mach number, and are shown in red. Shocks arising from equivalent calorically
perfect simulations are superimposed in green for comparison. As described above, the lower-stream angles
remain nearly unaltered while larger deviations are found in the reflected shock and upper-stream deflection
angles. These variations call for caution when modelling compressibility effects in high-speed flows, as the
design of hypersonic devices require accurate prediction of shock positions and reflections to adapt the flow
and generate the desired thrust or drag.

3.3 Irregular refractions

The analytical results displayed in Fig. 4 for the flow angles show a well-limited domain for the regular
structures, which is different for thermally-perfect and calorically perfect cases. Outside that domain, the
result is a self-similar pseudo-steady structure of shocks that grows moving upstream at constant speed
[27]. In particular, the impingement of an oblique shock of σi = 60◦ on the air-air coflow when moving at
M1 = 5 and M2 = 9 > M+

2c yields an irregular shock refraction with no solution in the parametric space
of Fig. 4 (a). Nevertheless, downstream conditions of the upper and lower streams can be represented in
Fig. 6 (a), although no equilibrium can be met as the green and orange polars do not intersect.

 

a) b)

pd
pu

λ λλ

c)Air - Air C2H6 - Air C3H8 - Air

Fig. 6 Polar plots under irregular refraction conditions for M1 = 5 and σi = 60◦ for the following cases: (a) air-air with
M2 = 9 (b) C2H6-air with M2 = 4 and (c) C3H8-air with M2 = 5. Blue, orange and green loops correspond to M1, M2 and
M3, respectively. In light gray color is plotted the equivalent calorically-perfect solution.

Further consideration of irregular structures for M2 ≤ M1 is shown in Fig. 6 (b) and (c). For example,
when considering a variable heat capacity for the gas, a coflow comprising low temperature C2H6 (upper
stream) and air (lower stream) at M1 = 5, M2 = 4 < M−2c does not render a regular solution under an oblique
shock of σi = 60◦. Unlike the previous case, the blue loop does not intersect the orange one at any point,
as seen in Fig. 6 (b), thus impeding the formation of a single Mach-stem structure as in the precedent case.
Furthermore, when considering high-temperature C3H8 (upper stream) and air (lower stream) at M1 = 5,
M2 = 5 < M−2c, the lack of intersection between the green and orange curves also translates into the formation
of an irregular structure. Although M2 = M1, this case resembles the air-air coflow with M2 > M1, since
the orange loop does intersect the blue one. Nevertheless, this intersection of polars provides the conditions
produced behind the leading waves, which are unbalanced with the reflected-shock pressure and deflection.
This intersection in Fig. 6 (a) is produced in the lower part of the M2 polar (yielding supersonic postshock
conditions in the transmitted wave), while in Fig. 6 (c) the intersection is found in the upper part of the M2

polar (subsonic conditions).
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Fig. 7 Numerical schlieren of the irregular refractions with γ(T, Yα), described in the polars of Fig. 6.

The corresponding flow fields associated to these irregular structures can be visualized by means of
high-fidelity numerical simulations. The pressure and deflection mismatch provided by three straight shocks
forces the evolution into an irregular configuration as shown in Fig. 7, where some snapshots of the unsteady
simulations are presented. This category falls into the so-called slow-fast single Mach reflection, where the
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slip line emerging from the impinging shock at y = 0 is accompanied by a new one that translates with the
triple point and generates a vorticity layer. The only length scale available in this problem is the length of the
Mach stem, which connects the triple point with the shear layer. The former grows with time while preserving
its shape, as shown for consecutive time steps, and exhibiting a self-similar pseudo-steady structure. The
velocity at which the triple point propagates, or the Mach stem grows, depends on the convective Mach
number, as shown in [27]. The angles at the lower and upper limits of the Mach stem are given by the
intersection of the blue loop with the orange and green loops, respectively. The reflected shock displays two
marked angles, the self-similar segment that grows, and the original inclination that is swept away. Self-
similarity is in fact a intermediate stage between the origin of the Mach stem, where it size compares to the
mixing-layer thickness, and the boundary domain influences, which may enter into play by anchoring the
complex-shock structure at a fixed position.

The irregular refraction of a C2H6-air shear layer is shown at three consecutive times in Fig. 7 (middle
panel). In contrast to the previous case, and as anticipated by the polar-plot in Fig. 6(b), there is no possibility
for a single Mach stem connecting the contact point at the gas interface with the backwards-moving triple
point. The resulting structure comprises an incident-transmitted shock at the interface with opposite slope
and a curved Mach stem that goes from the new triple point right above the contact surface to the triple
point where the reflected shock emerges. The distinguished irregular refraction of a C3H8-air shear layer is
displayed at different consecutive times in Fig. 7 (low panel). The particularly wrinkled front outcome differs
from that of the air-air case, due to the completely-subsonic character of the postshock flow. The slip line
produced at the triple point sheds a vortex layer which casts information that reaches the transmitted shock
and, thus, produces a strong perturbation that builds up in time.

Although the above-mentioned interactions cannot be predicted with the regular analysis presented in
this work, the critical limits of regular refractions in hypersonic flows can be better determined via proper
consideration of the thermally-perfect modelization. To this matter, the propagation velocity of the irregular
structures is directly affected by the latter, such that the further the conditions sit from the critical M2c

the more severe the unbalance and, therefore, the more intense the unstable evolution. Unsteadiness, which
may come from expecting non-uniform conditions upstream, may also alter the limits associated to regular
structures as shown in Ref. [13]. The combination of both unsteadiness and real-gas effect —representative
conditions of the hypersonic regime in the upstream flow— is still to be addressed.

4 Discussion

The effects described above are usually found in high-speed flows in the presence of intense shock waves.
Supersonic streams in the nearly-transonic regime may not suffer from strong variations upon consideration
of constitutive relations for non-calorically perfect gases. However, the impact of these differences depends
on the composition of the flow constituents in each case, where significant variations can be found for certain
gases at moderate Mach numbers. The possible requisites on design geometries or conditions prescribed by
flow deflection and reflected shock reach-impingement are shown here to be sharply influenced by the proper
choice of modelling. Most important, regularity limits displayed in Fig. 4, either on the left or right sides,
depend on the specific heat model. Narrower parametric space of regular refractions can be expected upon
consideration of inaccurate calorically perfect mixtures on high-temperature or high-velocity flows. Thus,
slight variations of cp may render completely different and even unstable scenarios.

In addition, the formulation presented in Sec.2 is applicable to other configurations, as might be the case
of oblique detonations, upon consideration that inner profile effects play a negligible role in the downstream
base flow, i.e., the detonation front is stable. Moreover, the problem calls for external information on the
chemical kinetics to predict the gas composition when thermodynamic equilibrium is achieved. The total
enthalpy should be computed for the corresponding multi-species gas, but the formulation for the Rankine-
Hugoniot equations remain the same. However, considering exothermic reactions may involve drastic changes
in the function g with respect to the adiabatic index and the regular solution structure can be altered.
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4.1 Idealized internal energy with molecular dissociation

Further physical effects should be accounted for in the limit of very strong compression, where molecular
dissociation or ionization (that typically goes later) processes may utterly transform the behavior of the fluid
[52–54]. The inclusion of these effects in the analysis affects the corresponding value of the heat capacity and
the internal energy of the gas. Incorporation of these effects can be performed by using higher order JANAF
polynomials (or more sets of the piece-wise functions) that may describe higher temperature conditions.
Isolation of effects allows to write the energy equation in terms of fundamental variables. For example, let’s
consider the dissociation of a single-species diatomic gas. Then, the specific internal reads εu = (fu/2)RgTu),
where fu refers to its degrees of freedom of the diatomic molecule upstream (fu = 5) and Rg to the upstream
gas constant. Likewise, the internal internal downstream is εd = (1 − ξd)(f ′u/2)RgTd) + ξdfdRgTd, where
fd = 3 upon dissociation, but f ′u might be higher than fu (up to 7 when the molecule behaves as pure
oscillator) if vibrational modes are excited. The gas constant Rg is the one associated to the upstream
diatomic stream. For example, when considering a single-species stream that undergoes partial dissociation
across the shock, the corresponding energy equation reads

pu
ρu

+ εu +
1

2
u2un

=
pd
ρd

+ εd +
1

2
u2dn

+ ξdφdRgTd, (25)

where φd = Id/Td is the dimensionless dissociation energy of the molecule. It is readily seen that Rankine-
Hugoniot equations must be calculated with the aid of gu = γu = 7/5 and

gd =

1 + ξd + ξdφd +
1− ξd
γ′u − 1

+
2ξd
γd − 1

ξdφd +
1− ξd
γ′u − 1

+
2ξd
γd − 1

=
35− 3ξd + 10ξdφd
25− 13ξd + 10ξdφd

, (26)

when γ′u = 7/5 and γd = 5/3. It is observed that gd = γ′u when ξd = 0, as expected, while gd = γd + 1 for
ξd = 1 and φd = 0. The reason why gd 6= γd when dissociation is accomplished with no energy substraction
stems from the fact that pressure changes by the increase of number of particles pd = (1 + ξd)RgρdTd. This
condition must be consistently taken into account across the reflected shock. Except for very strong-shock
conditions, effectively unreachable in the context chosen here, dissociation is partially accomplished and the
value of ξd < 1 should be defined with the complementary Saha-Boltzmann equation for ξd(Td, ρd). For
example, O2 is dissociated at temperatures of 4, 000–5, 000 K at ambient pressures, while N2 may take twice
this temperature [55] so weak dissociation of molecular oxygen is expected.

Equally important to note, either dissociation or combustion effects have a characteristic time that will
stretch the global shock structure to dimensions comparable to the mixing-layer thickness. Therefore, the
treatment of this work avoids extreme changes in the constituent matter, as expected in high-energy-density
physics. Hence, the range of validity is limited to hypersonic flows, typically in aerospace applications,
affected by shocks which yield temperature increases up to T ≈ 6, 000 K. However, it must be noted that the
main focus is set on the effects produced by the introduction of variable thermodynamic coefficients, while
simplifying the transport and production processes to an inviscid flow case. Local evaluation of the specific
heat ratio as a function of the gaseous mixture composition and temperature stands on adequate resolution
of heat and mass transfer processes.

4.2 Influences on the mixing layer

Although the problem formulation for the Rankine-Hugoniot equations can be applied to changes in the
molecular structure trough the variable g, such as those occurring in oblique detonations, the ignition of
reactive mixing layers calls for the solution of the inner interaction region. When the refracted wave is an
expansion wave, the most favorable conditions for ignition to occur are right behind the shock wave [56,57],
where the shock-induced heating triggers the reaction process in a locally expanding and cooling flow. If not
successful, the ignition must relay on the heat and mass transfer across the far-field mixing layer with the
modified conditions through the interaction, which are found to be more favorable than those ahead of the
shock [58]. The present study only considers shock refractions, so that ignition would not be restricted to the
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Fig. 8 Over-prediction temperature function Θ = Tγ=const./Tγ(T ) for M1 = 5 and varying M2 > M1, for three different cases
regarding composition of the upper stream. Green and orange lines refer to the zones behind the reflected and transmitted
shocks, respectively.

vicinity of the shock within the interaction region: fluid particles go through local compression waves along
its path. These compression waves collapse to form the refracted shock front outside the mixing layer. The
external model, however, can only offer information about the flow conditions outside the mixing layer. As
expected, since cp(T ) is a monotoni cally increasing function of temperature within the range of temperatures
considered, post-shock values of temperature are significantly lower with respect to the calorically-perfect
configuration, either in the upper and lower streams. The overprediction in the post-shock temperature when
employing a calorically-perfect gas is displayed in Fig. 8 for the cases analyzed in previous section. The factor
Θ = Tγ=const./Tγ(T ) is calculated for the zones behind the reflected and transmitted shocks, corresponding
to the upper and lower post-shock streams respectively. Although small, this variation can lead to much
longer ignition distances in the post-shock mixing layer.

Inviscid computations are obviously not representative of an accurate momentum evolution of shear layers
and their related instabilities, which would call for a three-dimensional setup in order to reproduce the real
turbulent dynamics that may arise. In addition, conduction and mass diffusion effects are also hypothesized to
be confined in an infinitely-thin tangential layer, which directly affects the local description of the temperature
and composition fields due to mixing. The mixing-layer thickness variations would imply non-ideal flow
modifications to the pictures described in the shock refraction problem, altering the local properties at
the tangential discontinuities and introducing a characteristic length scale. Moreover, a detailed study of
interfacial transport and mixing within the multi-species reacting shear layer that may be subject to multiple
shocks interactions, transport of species and radiation, calls for multi-scale modelization coupling kinetic to
meso- and macroscopic dynamics [59,60]. Nevertheless, the numerical analysis of complete turbulent, viscous
and diffusive flows is out of the scope of this work, which serves to a prior understanding of the thermally-
perfect considerations in shock refractions of high speed flows.

5 Conclusions

The subtle sensitivity of sudden compressions of gases to specific modeling of their enthalpy and heat
capacity is explored in this work. Strong shock waves have been first presented to show the intense increases
of temperature in the flow field, which are responsible for modifying the properties of the gaseous medium.
That dependence has been addressed via thermally-perfect considerations, use made of JANAF polynomials
in describing cp(T, Yα), and comparison with calorically-perfect gases. In order to asses the effects on the
flow dynamics, one-dimensional normal shock waves are spared only to propose a canonical planar flow
that may account for deflection details driven by compression effects. Particularly, the study focuses on a
canonical configuration of two coflowing streams with different thermal conditions based on composition and
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temperatures traversed by an oblique shock wave. This type of flow is representative of shock refractions and
generates a structure of waves that is composed by the incident shock in the upper stream, which impinges
in the tangential discontinuity, the transmitted shock that traverses the lower stream, and the reflected wave
that arises to provide the mechanical equilibrium of the coflow downstream. Particular cases in which the
reflected wave arises as a shock are selected because of the higher temperatures produced and, thus, larger
expected variations on cp(T, Yα) and γ(T, Yα).

Moreover, a modified Rankine-Hugoniot formulation is proposed by accounting for adequate jump con-
ditions via auxiliary functions that play the part of modified Mach numbers and ratio of specific heats.
This set of equations enables the theoretical calculation of post-shock conditions including thermally-perfect
properties and remains valid to extend this framework for the modelling of chemically reacting layers and
detonations. This feature, along with the lack of dominant scales, makes the formulation particularly useful
for hydro-code verification that may involve gas molecules transformations. In this work, the theoretical
predictions are demonstrated by the comparison with high-fidelity numerical simulations. It is found that
under specific combinations of the streams conditions, the lack of regular configurations involving the three
straight shocks mentioned above benefits from numerical simulations of the flow field to assist the theoretical
analysis. These irregular scenarios have been previously reported in literature and must be considered in
detail when developing technological applications of potentially unstable hypersonic flows. In this work, a
description of the influence of different enthalpy modeling approaches on the critical values appearing in
irregular refractions is presented.

Finally, a thorough investigation on the importance of the characterization of the thermophysical com-
position in high-temperature high-velocity flows evidences the failure of disregarding the variations of heat
capacity with temperature and composition. Over-predictions in the temperature field outside the postshock
mixing layer, which may reach up to 40%, are obtained when heat capacity is assumed to be constant. The
examples provided in this study are used to demonstrate the extreme variations in the flow that may be
expected upon incorporation of the selected thermal physics.
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A Numerical implementation

Further details on the implementation of the flow solver CREAMS are provided in this appendix. It consists
of a high-fidelity fluid dynamics code for fully compressible Navier-Stokes equations. The scheme is a spatial
seventh-order accurate WENO and a third-order total variation diminishing Runge-Kutta [51].

The system of equations that describe a three-dimensional, unsteady, compressible and viscous gas mix-
ture composed of N reactive species, where external forces and radiation are neglected, is expressed as

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (27)

∂ρui
∂t

+
∂(ρuiuj + p)

∂xj
=
∂ρτij
∂xj

, i = 1, 2, 3, (28)
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∂xj

− ∂q

∂xj
, (29)

∂ρYα
∂t

+
∂ρYαuj
∂xj

= −∂ρYαVαj
∂xj

, α = 1, . . . , N. (30)

The pressure of the gas mixture is given by p, which is related to the density ρ and temperature T
of the mixture via the equation of state of a perfect gas, i.e., p = ρRT/W , where R = 8.314 J/molK is
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the universal constant for perfect gases. To close this system of equations in thermodynamics terms, both
constant and variable specific heat ratios are considered. What is more, non-reactive inviscid computations
without heat conduction and mass diffusion of species are performed with the intention of reproducing
ideal-flow theoretical conditions and isolating the thermally-perfect gas effects. Therefore, the r.h.s. terms in
(28)–(30) are set to zero for the simulations carried out.

The numerical setup used to compute a two-dimensional mixing layers follows previous works based on
temporally-developing [61,62] and spatially-developing [63–65,27] shear layers. The flow is initialized using
a hyperbolic tangent for the velocity profile

u1 =
U1 + U2

2
+
U1 − U2

2
tanh

(
2x2
δω,0

)
, (31)

where U1 and U2 are the mean streamwise velocities of the top and bottom streams, respectively, and δω,0
is the initial vorticity thickness of the shear layer

δω,0 =
U1 − U2

|∂〈u1〉f/∂x2|max,x1=0
, (32)

where brackets indicate Reynolds averaged quantities and the index “f” is utilized for Favre averaged quan-
tities. The initial vorticity thickness controls the amount of initial dissipation between the two streams and
has an associated Reynolds number

Reω,0 =
(ρ1 + ρ2)|U1 − U2|δω,0

µ1 + µ2
(33)

that is set to Reω,0 = 640 in this work following [61,64,65]. This condition provides δω,0 = 2.79 · 10−5 m
(air-air shear layer), 1.41 · 10−4 m (ethane-air mixing layer) and 1.74 · 10−5 m (propane-air mixing layer),
which are employed to define the grid size (∆x ≈ 0.168δω,0 for a typical DNS). Although the definition of
a vorticity thickness is not compatible with the idealization of the flow, for which the hyperbolic tangent
profile would asymptotically degenerate into a step function, δω,0 6= 0 is still employed for the following two
reasons. Firstly, it characterizes the numerical estimated grid size in the absence of diffusion terms in the
conservation equations. Secondly, it was previously shown that the choice of δω,0 6= 0 at the inlet boundary
does not fail to reproduce the theoretical inviscid flow field [27].

The computational domain is bounded by an area measuring roughly 800 δω,0 × 800 δω,0. The region of
interest is placed at the top left corner and covers a squared region of dimensions 300 δω,0 × 300 δω,0, which
provides large span for the information to reach the outflow boundaries. This primary area is discretized
with a constant grid size ∆x = 0.25 δω,0 whilst the rest of the computational domain is progressively
meshed with a linear stretch towards the exit with a constant factor of 5%. The boundary conditions that
reproduce the mixing or shear layer problem hold a supersonic inlet where Dirichlet conditions are imposed
for pressure, temperature and mixture composition at the left boundary, together with the velocity profile of
eq. (31). In addition, the top boundary includes Rankine-Hugoniot jump conditions for an ideal gas mixture.
Furthermore, non-reflecting conditions are applied at the far bottom and right boundaries. Finally, a constant
CFL number of 0.5 is selected for time integration.

As already mentioned, inviscid numerical simulations have been carried out in this work with the aim
of reproducing ideal-flow theoretical conditions. We expect that viscous effects will only play a significant
role in very specific areas (e.g. regions with high levels of turbulence that may appear ahead of the shock
impingement, but whose characteristic scales are smaller than that of the mixing-layer thickness [3]). Viscous
effects may be also important in determining the vortex roll-up pattern generated downstream, specially in
irregular configurations where additional evolutionary scales are present. Vibrational relaxation, on the other
hand, may exhibit large-scale effects related to the regular configuration limits [14]. To demonstrate that our
inviscid simulations do retain the same behaviour observed in real-flows of shear and mixing layers under
similar conditions, we have conducted the reciprocal viscous simulations. Figure 9 shows the evolution of the
transmitted shock angle with the Mach number of the lower stream for a shear layer of air impinged with a
shock wave at 50◦. The flow is assumed to be either inviscid or viscous using both a simplified and a detailed
description of the corresponding transport terms which are found at the r.h.s. of eqs. (27)-(30). Without
getting into too much detail, the simplified description relies upon a mixture-averaged formulation based
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Fig. 9 Numerical-simulation values for the transmitted shock angle σt as a function of the lower stream Mach number M2.
Computations made for air-air mixing layers with M1 = 2, σi = 50◦ and variable specific heat cp(T ). The gas mixture is treated
as an inviscid flow as well as a viscous flow using both simplified (ST) and detailed (DT) transport models. Relative differences
of transmitted shock angle under the two viscous simulations with respect to the inviscid case.

on the Hirschfelder & Curtiss approximation whilst the detailed description takes into account differential
diffusion, Soret, Dufour and bulk viscosity effects [51]. It can be readily seen from this figure that the three
simulations fall within the same curve as expected. A much closer inspection at the transmitted shock angle
relative differences between the two viscous cases with respect to the inviscid one, see Fig. 9, reveals that
these differences are well below ±0.5% and suddenly spike at M2 ≈ 7.5. After this, the relative errors
reduce to roughly 0.5% but, unfortunately, the lack of additional data beyond M2 = 8 does not allow us to
estimate the trend of the relative error. We believe that the relative error will continue to increase as the
value of the transmitted angle diminishes. Indeed, the algorithm used to compute this angle must identify
two sufficiently distant points along the transmitted shock: while the first point is always very close to the
triple point, the second one might fall outside the squared region of interest (featuring a small grid size) for
flattened transmitted shocks thus deteriorating the accuracy of the measurement.
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