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In a recent experiment on the flow between two concentric cylinders with the inner
cylinder rotating and the fluid being stably stratified, Flór, Hirschberg, Oostenrijk & van
Heijst (2018) found helical wave structures confined to the inner cylinder in an annulus
with small inner-to-outer radius ratio (very large gap) in regimes where the Froude num-
ber (ratio of cylinder rotation frequency to buoyancy frequency) is less than one. These
helical waves were reported to originate at the corners where the inner cylinder meets
the top and bottom boundaries, and were found to be asymmetric with the lower helical
wave being more intense. These observations are in marked contrast with other strati-
fied Taylor–Couette experiments that employed much larger inner-to-outer radius ratios
and much larger annulus height-to-gap ratios. Here, we present direct numerical simula-
tions of the Navier–Stokes equations, with a Boussinesq approximation that accounts for
centrifugal buoyancy effects which are normally neglected. Fixing the stratification and
increasing the rotation rate of the inner cylinder (quantified by a Reynolds number), we
find a sequence of bifurcations, each one introducing a new frequency, from the steady
base state to a three-torus state. The instabilities are generated at the corners where the
inner cylinder meets the endwalls, and the first instability is localized at the lower corner
as a consequence of centrifugal buoyancy effects. We have also conducted simulations
without centrifugal buoyancy and find that centrifugal buoyancy plays a crucial role in
breaking the up-down reflection symmetry of the problem, capturing the most salient
features of the experimental observations.

1. Introduction

The instability of the flow between two differentially rotating cylinders with the fluid
being stably stratified is an idealized setting which may be of relevance to processes in the
atmosphere and oceans (Hart 1979; Plougonven & Zhang 2014) and accretion disks (Avila
2012). For the most part, stratified Taylor–Couette flow has been considered in regimes
where the annular gap between the two cylinders is relatively small, and theoretical
treatments usually assume periodicity in the axial direction. Molemaker, McWilliams &
Yavneh (2001) and Yavneh, McWilliams & Molemaker (2001) showed that even when the
hydrodynamics are centrifugally stable, stable stratification can lead to instability due
to a resonant interaction between non-axisymmetric inertia-gravity waves trapped near
each of the two cylinders. This instability has come to be known as the strato-rotational
instability (SRI), and it was first observed experimentally by Le Bars & Le Gal (2007).

Our present investigation is motivated by the recent experiments of Flór, Hirschberg,
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stratification generating internal waves [Fig. 2(d)]. For higher
Re-numbers, the instability is almost instantly present over the
entire cylinder height.

For Froude numbers of approximately Fr < 1, at the onset
time of instability, tc, a helicoidal structure in the dye was
observed to propagate upwards (downwards) from the bottom
(top) of the tank to the center (see Fig. 3). This motion was also
notable in shadowgraph visualisations from the asymmetry
between the left and right sides of the cylinder. The three-
dimensional aspects of this motion are only visible with the
precipitation method.

The recirculation patterns at larger distances from the
cylinder, starting after the passage of the wave front, are only
present near the bottom stem from the vertical motion near the
cylinder. Tin-oxide is heavier than the ambient salt water and
sinks along the cylinder before the experiment started, caus-
ing a dense blob of dyed fluid near the bottom [see Fig. 3(a)].
Scrutinising the dye intensity in the images shows that it is
moving upward [see Figs. 3(b) and 3(c)] as a consequence of
possible Bödewadt pumping induced by the rotational motion
above the bottom. Note that in this experiment the cylinder
ends are not shielded with aluminum foil. The Grashof num-
ber, Gr = N2ζ4/ν2 with ζ as the height (10 cm), indicates when
buoyant motion becomes turbulent (at ≈109, see, e.g., Ref. 25)
and reaches, for N = 1.57 rad/s, a value of 2× 108, whereas the
dense tin-oxide may result in an even higher Grashof number.
Though still far from the turbulent threshold of 109, the weak
recirculation motions observed here may well be expected in
this range of the Grashof number.

To constrain perturbations generated by the radial ejec-
tion of the fluid near the flat cylinder ends and perturbations
at the fluid surface, in some experiments, the cylinder was
covered over a certain height above the bottom and near the
surface with a thin aluminum foil that did not rotate. Thus the
fluid was only in contact with the rotating cylinder over a cer-
tain depth (typically 30 cm). The velocity discontinuity where
the rotating cylinder meets the non-rotating aluminum shield
resulted in a small perturbation [see Fig. 2(a)]. This perturba-
tion remained local and did not grow before the onset of the
instability.

FIG. 3. Typical sequence of the wave regime Fr < 1, visualised with the
precipitation method23 (a) before the onset of instability and with (b) t = 69.3 s
and (c) at 125 s, showing the up- and down-ward moving helicoidal structure
in the dye. In (c), light reflections on the tank walls of an additional lamp have
been retouched. Experimental parameters: Fr = 0.53 and Re = 521.

The onset time of the instability, tc, was marked by the
appearance of a second “intrusion” above (and near the surface
below) the initial perturbation shown in Fig. 2(a). For Fr < 1,
the evolution was slow and the instability was found to start
typically after tens to hundreds of seconds. For each stratifi-
cation, the measurement of the onset time was repeated two
to three times, and it was measured with a camera taking pic-
tures with a frequency of 10 Hz. Differences in onset time were
mainly determined by the clearness of the appearance of the
first moving perturbation along the cylinder. These were mea-
sured by eye from frame to frame and verified from space-time
diagrams of a line near the cylinder. Using the evolution of the
instability propagating along the cylinder, the initial start of
the instability was deduced. This error was 4%, corresponding
to ±4 images (±0.4 s) for onset times O(10) s and a maximum
of 40 images (±4 s) for very large onset times of O(100) s.

Surface waves were not found to interact with the flow. In
a study on a large-gap Taylor-Couette flow filled with a homo-
geneous fluid by Martı́nez-Mercado et al.,26 it was shown for
an accelerating cylinder that surface gravity waves interacted
with the inertial waves in the spun-up fluid layer, and for a
specific ratio between inertia wave speed and gravity wave
speed, gave rise to a wave interaction and instability. In some
experiments where the rotating cylinder was not covered by
the aluminum shield, the radial ejection at the cylinder ends
led to a more important perturbation as well as some weak
surface perturbations but neither modified the onset time nor
the wavelength of the instability.

The wavelength of the instability was calculated from the
mean wavelength of the wavelengths over the entire cylinder
[see Fig. 2(b)], and the standard deviation in the measurements
was generally small (typically 3%).

V. RESULTS

For lower Reynolds numbers (see Ref. 5), the perturba-
tions grow from the center of the cylinder. The dimensionless
onset time τc = νtc/R2 for the start of the instability was mea-
sured from series of experiments in which the rotation of the
cylinder was varied for the same stratification (see Table I).
The critical time τc for the onset of the instability is plot-
ted against the Reynolds number in Fig. 4. A first estimation
for a power law can be obtained from the definition of the
Taylor-Görtler number given earlier. When we suppose a lin-
ear velocity profile in the boundary of the cylinder, one obtains
with a boundary layer thickness δ =

√
πνt for the momentum

thickness θ =
√
πνt/6. With (1), the critical time as a function

of the Reynolds number is then

τc =
36
π

Re−4/3
c Ta4/3

c . (8)

The Taylor-Görtler number Tac is used as a fitting parameter.
The value of Tac = 5 is of the same order as the value Tac = 7,
obtained for Görtler vortices.3 This value is dependent on the
way the momentum thickness is defined. The fit of Kim and
Choi7 [their Fig. 7(a)] shows that, for large Reynolds number,
their value is very close to our value of 5. The tendency of
increasing onset time near the critical Reynolds number of
order O(10) is well represented by the theory of Kim and Choi7

(see Fig. 4).
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Figure 1. (a) Dye visualization of two helical waves travelling along the rotating inner cylin-
der from the top and bottom, reproduced from Flór et al. (2018). The flow conditions cor-
respond to salt-stratified Taylor–Couette flow in the very wide gap regime with radius ratio
η = Ri/Ro = 1/15, Froude number Fr = 0.53 and inner cylinder Reynolds number Rei = 521.
The dimensions of their annulus are inner radius Ri = 2.5 cm, outer radius Ro = 37.5 cm, and
working depth H = 40 cm. (b) Schematic of the fluid domain, including the initial temperature
stratification Tin(z).

Oostenrijk & van Heijst (2018) who found spiral structures confined to the inner rotating
cylinder in a regime where the ratio of the inner to outer cylinder radii is quite small,
Ri/Ro = 1/15; see figure 1(a) for a visualization of the flow from their experiments. This
is a very different regime to that typically studied for SRI. The spiral structures they
observed are reminiscent of the radiative instability (RI) reported by Riedinger, Le Dizès
& Meunier (2011), who considered a rotating cylinder in a large rectangular tank of
stratified fluid. Using a large axial wavenumber approximation, Le Dizès & Riedinger
(2010) showed how RI and SRI are related, with SRI being transformed into RI as the gap
between the two cylinders becomes large. As well as conducting experiments, Riedinger
et al. (2011) considered the linear stability analysis of the potential flow around an
isolated rotating cylinder of infinite axial length in a linearly stratified medium (i.e. the
velocity of their base flow had azimuthal component v ∝ 1/r, zero meridional components
u = w = 0, and extended radially out to r → ∞). They mostly considered inviscid
flow, and presented some comments on viscous effects. The main mode of instability
was found to result in helical waves with azimuthal wavenumbers that depend on the
Froude number Fr = Ω/N and a Reynolds number Rei = ΩR2

i /ν, where N is the
Brunt–Väisälä buoyancy frequency, Ω the rotation rate of the cylinder of radius Ri,
and ν is the kinematic viscosity. Their experiments were conducted in a salt-stratified
tank of horizontal cross section 240 cm × 74 cm and depth 48 cm, which was filled to
a height of 45 cm. Their experiments used three different cylinders of radii Ri = 12.5,
15 and 20 cm. They typically observed instabilities consisting of helical waves travelling
up (down) from the bottom (top). They expected the flow to have up-down reflection
symmetry, but noted: “Nevertheless, in a few cases, we observe that one of the two
waves can be dominant”, and “There is a difference between the frequencies of the two
waves . . . slow drift toward the top.” They also noted that the stratification N was not
uniform across the depth, with departures in the top and bottom 10 cm of the depth,



Impact of centrifugal buoyancy on strato-rotational instability 3

which they ascribed to salt diffusivity, turbulent mixing and evaporation effects. They
did not consider centrifugal buoyancy effects as a potential contributor.

For the most part, centrifugal buoyancy effects in stratified Taylor-Couette flows have
been ignored. Barcilon & Pedlosky (1967) suggested that centrifugal buoyancy effects
may not be negligible, and Shalybkov & Rüdiger (2005) raised the cautionary point that
the use of the usual Boussinesq approximation (which does not account for centrifugal
buoyancy) for small Froude numbers seems to still be an open question. Rüdiger et al.
(2017) considered the centrifugal buoyancy for parameter regimes corresponding to their
experiments, and concluded that since RiΩ

2/g is small (where g is gravitational acceler-
ation), that they could neglect centrifugal buoyancy effects. They also studied the linear
stability of stratified Taylor-Couette flow assuming a unidirectional base flow and peri-
odicity in the axial direction, and found discrepancies between model and experimental
results which they suggested may stem from the model ignoring endwall effects, but
exploring these was “beyond the scope” of their study.

So far, the theoretical studies of stratified Taylor–Coutte flow (e.g. Hua, Le Gentil &
Orlandi 1997; Shalybkov & Rüdiger 2005; Gellert & Rüdiger 2009; Park & Billant 2013;
Leclereq, Nguyen & Kerswell 2016; Rüdiger, Seelig, Schultz, Gellert, Egbers & Harlander
2017; Park, Billant, Baik & Seo 2018) have considered the axial direction to be periodic
and the base state to be the unidirectional flow of Taylor (1923)

v = Ar +B/r, (1.1)

where v is the azimuthal component of velocity and the constants A and B depend on the
radii and rotation rates of the inner and outer cylinders, together with a linear vertical
stratification. All physical experiments have finite axial length, and differential rotation
between the bottom endwall and one or both cylinders (the top is sometimes open). This
leads to vortex line bending near one or both corners where the rotating inner cylinder
meets the stationary bottom and top endwalls, driving a secondary meridional flow. As
such, the base flow is not unidirectional. This meridional flow will be shown here to be
critical in determining the helical instability reported in the experiments of Flór et al.
(2018).

The outline of the paper is as follows. In §2, the governing equations are described
for the fully enclosed finite annulus with rotating inner cylinder, as is the numerical
technique used to solve them. Section 2.1 describes the symmetries of the system, and
how neglecting or accounting for centrifugal buoyancy affects them. Details of the basic
state are given in §3. These are contrasted with the idealized potential flow and circular
Couette states. The influence of centrifugal buoyancy on the basic state is also described.
Section 4 explores the primary instabilities when centrifugal buoyancy is ignored, showing
that the extra symmetry that comes from ignoring centrifugal buoyancy results in some
peculiar dynamics. These peculiarities are removed in §5 by accounting for centrifugal
buoyancy, whose main impact is found to be that the helical wave instability occurs at
the bottom corner (where the rotating cylinder meets the stationary bottom endwall) at
a Reynolds number Re that is lower than the critical Re when centrifugal buoyancy is
ignored. For slightly larger Re, the top corner becomes unstable to another helical wave
mode, and the two helical waves have slightly different frequencies leading to modula-
tion dynamics. They have much in common with what is observed experimentally, and
comparisons with those observations are presented in §6.
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2. Governing equations

Consider a completely fluid-filled annulus of height H, inner radius Ri, and outer ra-
dius Ro. The outer cylinder, top and bottom walls are stationary and the inner cylinder
rotates at constant angular velocity Ω. The top and the bottom walls are maintained
at fixed temperatures, T ∗0 + ∆T ∗/2 for the top endwall and T ∗0 − ∆T ∗/2 for the bot-
tom endwall, while both cylinders are insulated. T ∗0 is a reference temperature, and the
temperature difference between the top and bottom ∆T ∗ is positive, so that the vertical
temperature gradient is stabilizing. Gravity g points downwards. The kinematic viscos-
ity of the Newtonian fluid is ν, its thermal diffusivity is κ , and its coefficient of volume
expansion is α. A schematic of the set up is shown in figure 1(b).

Using the annular gap D = Ro − Ri as the length scale, the viscous diffusion time
across the gap D2/ν as the time scale, ∆T ∗ as the temperature scale, and employing the
Boussinesq approximation accounting for centrifugal buoyancy (Lopez, Marques & Avila
2013), the non-dimensional governing equations are:

(∂t + u · ∇)u = −∇p+∇2u + Gr T ẑ + εT (u · ∇)u, (2.1)

(∂t + u · ∇)T = σ−1∇2T, ∇ · u = 0, (2.2)

where u = (u, v, w) is the non-dimensional velocity field in the cylindrical polar coordi-
nate system (r, θ, z), p is the dynamic pressure, and ẑ is the unit vector in the vertical
direction z. The term εT (u · ∇)u accounts for centrifugal buoyancy effects. The fluid
domain is r ∈ [ri, ro] = [η/(1 − η), 1/(1 − η)], θ ∈ [0, 2π), and z ∈ [−γ/2, γ/2], where
η = Ri/Ro is the radius ratio and γ = H/D is the aspect ratio. We shall fix the annular
geometry to η = 0.07 and γ = 1, very close to those of the experimental apparatus used
in Flór et al. (2018).

The boundary conditions for temperature and velocity are:

r = ri : ∂T/∂r = 0, u = w = 0, v = Re, (2.3a)

r = ro : ∂T/∂r = 0, u = w = v = 0, (2.3b)

z = −γ/2 : T = −1/2, u = w = 0, v = Re q(r), (2.3c)

z = γ/2 : T = 1/2, u = w = 0, v = Re q(r), (2.3d)

where the azimuthal velocity at the corners where the rotating cylinder meets the sta-
tionary top and bottom endwalls has been regularized by using

q(r) = exp [−c(r − ri)] , with c = 100 . (2.4)

The radial function q(r) is almost zero everywhere except in a narrow interval (controlled
by c) close to the rotating inner cylinder. In this way the boundary condition on v is
continuous, avoiding Gibbs phenomena associated with discontinuities in the numerical
simulations, and mimics the gap that exists in any real device with the inner cylinder
rotating and stationary endwalls. The value of c is chosen such that q decreases from 1
to 0.05 over 3 % of the annular gap.

The non-dimensional groups appearing in the governing equations and boundary con-
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ditions are

Prandtl number σ = ν/κ, (2.5a)

Reynolds number Re = ΩRiD/ν, (2.5b)

Grashof number Gr = αg∆T ∗D3/ν2, (2.5c)

relative density variation ε = α∆T ∗, (2.5d)

radius ratio η = Ri/Ro, (2.5e)

aspect ratio γ = H/D, (2.5f )

where D = Ro − Ri. The Prandtl number is a ratio of fluid properties and is constant
in a given experiment. The Grashof number Gr and the relative density variation ε are
proportional to the imposed temperature gradient, and their ratio is the Archimedes
number

Ar = Gr/ε = gD3/ν2. (2.6)

Since Ar is constant in any real experiment, ε = Gr/Ar is enslaved to Gr , and so
there are only two independent dynamical parameters in the problem, Re and Gr . Other
nondimensional numbers used in this and related studies are the ratio of buoyancy and
rotation time scales, known as the Froude number Fr = Ω/N , where N =

√
αg∆T ∗/H is

the Brunt–Väisälä frequency, and Rn = ND2/ν, the nondimensional buoyancy frequency,
which is the ratio of the viscous and buoyancy time scales. These are related to Re and
Gr :

Fr =
Re

Rn

D

R i
=

Re

Rn

(1− η)

η
, Rn =

√
Gr

γ
. (2.7)

The experiments of Flór et al. (2018) used water with salt as the stratifying agent. In-
stead, we shall use temperature and fix the Prandtl number σ = 6, nominally correspond-
ing to water at approximately 25 ◦C. Flór et al. (2018) used Rei = Re η/(1− η) and Fr
to describe the parameter regimes of their experiments. With the non-dimensionalization
we have used, Re and Gr are the non-dimensional groups that naturally appear. Note
that neglecting centrifugal buoyancy corresponds to taking the limit ε → 0 in (2.1).
The Archimedes number corresponding to the experiments of Flór et al. (2018) is large,
Ar = 6.272× 1011, and so ε is small (less than 0.1), even for the largest Gr used in the ex-
periments. The helical instability that they reported, for example in their figure 3 (repro-
duced here in figure 1a), had Fr = 0.53 and Rei = 521, corresponding to Gr ≈ 4.24× 1010

and Re = 7294. In the simulations we report on here, we fix Gr = 4× 1010 and ε = 0.064,
and consider variations in Re. Those results are also compared to simulations ignoring
centrifugal buoyancy, obtained by setting ε = 0.

The governing equations are solved using a second-order time-splitting method with
consistent boundary conditions for the pressure, as in Lopez & Marques (2014). Spatial
discretization is via a Galerkin–Fourier expansion in θ and Chebyshev collocation in r
and z. The spatial and temporal resolution used was nr × nz × nθ = 150 × 300 × 26
and δt = 4× 10−7 for Re < 6300 and δt = 2× 10−7 for Re ≥ 6300. All numerical
simulations have been performed with a linear temperature stratification Tin = z/γ as
the initial condition for temperature, or from the continuation of solutions obtained with
this initial condition, in order to mimic the experimental setup.

Other variables used in the present problem are the vorticity, ω = ∇×u = (ωr, ωθ, ωz),
and the helicity density He = u ·ω. The kinetic energies of the azimuthal Fourier modes
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of the velocity field,

Em =
1

2

∫ γ/2

−γ/2

∫ ro

ri

um · u∗m r dr dz , (2.8)

where um is the mth Fourier mode of the velocity field and u∗m is its complex conjugate,
provide a convenient way to characterize the non-axisymmetric states.

2.1. Symmetries

The domain and boundary conditions have a symmetry group generated by arbitrary
rotations Rβ around the annulus axis, and a reflection K about the mid-height plane.
Their actions on the velocity and temperature are

Rβ :[u, v, w, T ](r, θ, z, t) 7→ [u, v, w, T ](r, θ − β, z, t), (2.9a)

K :[u, v, w, T ](r, θ, z, t) 7→ [u, v,−w,−T ](r, θ,−z, t), (2.9b)

where β is an arbitrary angle. The rotations Rβ generate the group SO(2), and the
reflection K generates the group Z2 since K2 is the identity. Rβ and K commute (KRβ =
Rβ K), and together they generate the group G = SO(2)× Z2.

The temperature and incompressibility equations (2.2) are equivariant with respect
to G. However, in the Navier–Stokes equations (2.1), the last term is not equivariant; it
changes sign when reflected (applying K). This centrifugal buoyancy term renders the
full system to not be reflection symmetric. The denser fluid at the bottom endwall is
centrifuged outwards, while the lighter fluid near the top endwall is centrifuged inwards,
generating a large scale circulation that breaks K. In summary, if ε = 0 then G is the
symmetry group of the problem, but when ε 6= 0 the symmetry group is only SO(2).

3. Basic states

In the limit of the annulus height-to-gap aspect ratio γ →∞, and ignoring centrifugal
buoyancy (setting ε = 0), the basic state is described by the unidirectional circular
Couette flow (1.1). For a stationary outer cylinder this unidirectional basic state has
azimuthal velocity

v(r) = Re
η

1− η2
(ro
r
− r

ro

)
. (3.1)

The −r/ro contribution is due to the presence of the stationary outer cylinder. If the
outer cylinder were not there, i.e. taking the limit ro → ∞, the basic state would be a
potential flow with v(r) = riRe/r. The −r/ro contribution is largest at the outer cylinder,
and only contributes an η = ri/ro fraction of the maximum potential velocity. This
amounted to less than 7% in the experiments of Flór et al. (2018), for which η = 1/15.
Such considerations led Riedinger et al. (2011) to consider the linear stability of the
potential flow driven by a rotating cylinder in a radially unbounded vertically stratified
fluid. However, the experiments of both Riedinger et al. (2011) and Flór et al. (2018) had
finite depth with a stationary floor, so that the azimuthal velocity, being zero at the floor,
had vertical gradients driving a secondary meridional flow. As such, the experimental
basic state is not unidirectional.

Figure 2 shows the numerically computed profiles (solid blue curve) of v(r)/Re at the
cylinder mid-height (z = 0) of the steady axisymmetric basic state for twelve values of
the Reynolds number in the range Re ∈ [1, 6000], all with η = 0.07, γ = 1, σ = 6,
Gr = 4× 1010, and ε = 0.064. The differences in the profiles for different Re only
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Figure 2. Radial profiles of the azimuthal velocity at z = 0 (mid-height) for: the finite cylinder
flow at η = 0.07, γ = 1, σ = 6, Gr = 4× 1010, ε = 0.064 and Re ∈ [1, 6000] (profiles scaled with
Re all collapse onto the one curve), the circular Couette flow profile (3.1), and the potential flow
profile v(r)/Re = ri/r.
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Figure 3. Variation of the maximum in the axial and azimuthal vorticity components with
Re, for η = 0.07, γ = 1, σ = 6, Gr = 4× 1010 and ε = 0.064.

modify the velocity by one part in 105, and so the profiles collapse onto the same (blue)
curve. Also included in the figure for comparison are the profiles corresponding to the
idealized infinite-cylinder circular Couette profile (3.1) and the potential vortex profile
v(r)/Re = ri/r. The circular Couette flow and the potential flow have no meridional
flow, i.e. u = w = ωr = ωθ = 0, while v and ωz are linear in Re; ωz = −2ηRe/(1 + η) is
constant for the circular Couette flow, and ωz = 0 for the potential flow. The numerical
simulations of the finite cylinder problem agree qualitatively with the experimental results
reported in figure 6(b) of Riedinger et al. (2011), even though they had a rectangular
container instead of a circular outer cylinder. In summary, for all basic states (potential
flow, circular Couette and finite length cylinder), the primary flow (azimuthal velocity
and axial vorticity) scales linearly with Reynolds number: v ∝ Re and ωz ∝ Re.

The primary flow consists of the azimuthal velocity v (the only non-zero component in
the potential flow and circular Couette flow) and the axial component of vorticity ωz (the
only non-zero component in circular Couette flow). With a finite cylinder, a secondary
meridional flow is driven by vortex line bending due to the nonlinear advection term and
the no-slip velocity boundary conditions at the top and bottom endwalls. As a result, u,
w, ωr and ωθ are non-zero. Figure 3 shows how the primary and meridional components
of the finite cylinder flow scale with Re, where we have used the global maxima of ωz
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Figure 4. Vortex lines rv, streamlines ψ, and the three components of vorticity ωr, ωθ and
ωz for the basic state at Re as indicated. Eight contours are shown, equispaced between the
minimum and maximum values of the variables. Parameter values: η = 0.07, γ = 1, σ = 6,
Gr = 4× 1010 and ε = 0.064.
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Figure 5. (a) Vertical profiles of the radial velocity near the rotating inner cylinder at
r = ri + 0.011, for the basic state with centrifugal buoyancy (ε = 0.064, blue) and without
(ε = 0, red), and (b, c) close ups of the profiles near the top and bottom endwalls. Parameter
values: η = 0.07, γ = 1, σ = 6, Gr = 4× 1010 and Re = 6000.

and ωθ to characterize the primary and meridional components, respectively. For very
small Re, ωθ is orders of magnitude smaller than ωz, but ωz only grows linearly with
Re whereas ωθ grows quadratically with Re. By Re ≈ 6000, the meridional flow is about
17% of the primary flow, and as will be shown in the following sections, this is the
level which leads to instability of the basic state. Note that for small Re, the velocity
and vorticity tend to become orthogonal; they are exactly orthogonal for the circular
Couette flow. Also, the helicity density increases with increasing Re. Ignoring centrifugal
buoyancy (ε = 0), the helicity (volume integral of the helicity density) vanishes due to
the K reflection invariance of the flow, but with ε 6= 0 the helicity does not vanish.

Figure 4 show contours of angular momentum rv, streamfunction ψ (where [∂2/∂z2 +
∂2/∂r2 − 1/r ∂/∂r]ψ = −rωθ), and the three components of vorticity at Re = 100 and
Re = 6000. The differences in the spatial structures at the two Re values are minimal,
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(except for the scalings in Re, linear for the primary flow components and quadratic for
the meridional components), and localized at the inner wall and endwalls. The vorticity
is concentrated in a thin boundary layer at the inner cylinder wall. The thickness of this
boundary layer is independent of Re, but its intensity scales linearly with Re (dominated
by the contribution from ωz). The large-scale circulation induced by the secondary flow is
localized in thin endwall boundary layers, as illustrated by the streamfunction contours
in figure 4. This is due to the strong stable vertical temperature gradient inhibiting the
vertical motion of the fluid outside of boundary layers. There is also a weak breaking of the
reflection symmetry K due to the centrifugal buoyancy (ε = 0.064). In order to quantify
the intensity of the secondary flow and the symmetry breaking, we have plotted in figure 5
vertical profiles of the radial velocity near the inner cylinder (at r = ri+0.011, where u(r)
is maximal), for the basic states with and without the centrifugal term, at Re = 6000.
The secondary flow is confined near the top and bottom endwalls, in agreement with the
ψ contours shown in figure 4, and the maximum of u is about 0.9% of the maximum
of the primary flow (which is vmax = Re). The solution without centrifugal buoyancy
(ε = 0, blue curve), is K reflection symmetric, while the solution including centrifugal
buoyancy (ε = 0.064, red curve), is not. The secondary circulation is more intense near
the bottom when ε 6= 0, due to centrifugal buoyancy, with the maximum value of u in the
bottom boundary layer approximately 10% larger than the maximum value of u in the
top boundary layer. This is a measure of the symmetry breaking due to the centrifugal
effect on the secondary flow, for the basic state at Re = 6000.

4. Helical rotating wave instabilities ignoring centrifugal buoyancy

The basic state, either with or without centrifugal buoyancy effects being considered,
loses stability as Re is increased beyond approximately 6000 for the radius ratio η =
0.07, aspect ratio γ = 1, Prandtl number σ = 6 and Grashof number Gr = 4× 1010

considered in this study. Although the basic states with (ε = 0.064) and without (ε = 0)
buoyancy effects only differ slightly, as described in the previous section, the differences
in their instabilities are significant. We begin by describing the instabilities ignoring
buoyancy effects in this section, and then in the next section we explore the consequences
of including them.

Neglecting buoyancy effects (ε = 0) endows the system with the additional symmetry
K, the invariance to reflection about the annular mid-height. As described in §2.1, the
ε = 0 system and its basic state have SO(2)×Z2 symmetry. Bifurcations from the basic
state may either preserve or break parts or all of the symmetries. As in the experiments of
Riedinger et al. (2011) and Flór et al. (2018), the basic state becomes unstable via a Hopf
bifurcation that breaks the SO(2) axisymmetry. Generically, SO(2) symmetry is broken
via a Hopf bifurcation and the resulting limit cycle is a rotating wave with azimuthal
wavenumber m (Marques & Lopez 2006). Also in agreement with the experiments, we
find that m = 1. The limit cycle consists of two helical waves, one directed downward
and the other upward, which combine to form a standing helical wave, with the property
of being a rotating wave RW:

R−βRW(t) = RW(t+ τβ/2π), (4.1)

where τ is the period of the rotating wave. Note that for an m = 1 rotating wave,
advancing half a period is equivalent to a π rotation: Rπ RW(t) = RW(t + τ/2). The
reflection symmetry K may either be preserved or broken at the Hopf bifurcation. If it
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(a) (b)

Figure 6. Isosurfaces of helicity density at levels He = ±106 for rotating helical wave states
(a) RWC at Re = 6150 and (b) RWK at Re = 6250, both with ε = 0 (no centrifugal buoyancy),
Gr = 4× 1010, σ = 6, η = 0.07 and γ = 1. The gray disks drawn at the top and bottom
endwalls have radii ri + 0.2, i.e. they extend out to 20% of the radial gap. The online movie
movie-01.avi animates both.

is preserved, the rotating wave is pointwise invariant and we shall denote it RWK. It has
the property that applying K at any point in time leaves it invariant:

KRWK(t) = RWK(t). (4.2)

If the K reflection is broken at the Hopf bifurcation, the rotating wave is setwise invariant
and we shall denote it RWC . At any instant in time, reflecting RWC results in RWC half
a period later:

KRWC(t) = RWC(t+ τ/2). (4.3)

However, as noted above, for an m = 1 rotating wave, advancing half a period is the
same as applying a rotation of angle π, Rπ. Therefore RWC is also pointwise invariant,
but with respect to the centrosymmetry C, whose action is:

C(u, v, w, T )(r, θ, z, t) = (u, v,−w,−T )(r, θ − π,−z, t), (4.4)

so that

C RWC(t) = Rπ KRWC(t) = Rπ RWC(t+ τ/2) = RWC(t). (4.5)

The centrosymmetry C consists of a rotation of π around the cylinder axis composed
with the K reflection: C = Rπ K. It can also be thought of as a reflection through the
origin, and since C2 is the identity, like K it also generates a Z2 group.

As with RWK, RWC also consists of two helical waves, one directed down and the
other up, which combine to form a standing helical wave, with the property of being a
rotating wave. RWK and RWC look quite similar, but a clear distinction is that RWK and
RWC have opposite parities in z. Figure 6 shows an example of each, using isocontours
of the helicity density. The accompanying online movie movie-01.avi animates them,
illustrating their rotating wave spatio-temporal structure.

Figure 7(a) is a bifurcation diagram showing the variation of the modal energy E1

with Re. At Re ≈ 6090, the kinetic energy in azimuthal wavenumber m = 1 begins to
grow linearly with increasing Re, indicative of a supercritical Hopf bifurcation that has
broken axisymmetry and spawns a rotating wave. Figure 7(b) shows how the frequency
of the bifurcating rotating wave varies with Re. Note that we present the frequency
as ω/Re so that it is in the inertial time scale (ω is the frequency in the viscous time
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Figure 7. Variation with Re of (a) the modal energy E1 and (b) angular frequency (scaled by
Re) of the rotating waves RWC and RWK for η = 0.07, γ = 1, σ = 6, Gr = 4× 1010 and ε = 0.

scale used to compute the flow). In the inertial time scale, the frequency ω/Re ≈ 1.8
with very little variation with Re. The two possible types of bifurcating rotating waves,
RWK and RWC , are stable in different Re ranges, and change from one to the other.
This is likely due to the fact that these rotating waves are the result of the interaction
of two helical waves originating at the corners where the rotating inner cylinder meets
the top and bottom endwalls, and grow axially inward with increasing Re and interact
at the cylinder mid-height (z = 0), where the helical waves have the smallest intensity.
Therefore the resulting rotating waves and their stability are very sensitive to small
changes, and in particular to the variation with Re. The energy E1 and the frequency
ω/Re change continuously with Re, regardless of the solution type. In the parameter
regime considered, RWC bifurcates first, and after a relative change in Re of about 1.7%,
RWK becomes stable, suggesting that the system is close to a double-Hopf bifurcation
where the two states with different symmetries, RWC and RWK, bifurcate simultaneously.
Nevertheless, these symmetry-related peculiarities are a direct consequence of ignoring
the centrifugal buoyancy.

5. Centrifugal buoyancy effects on the instabilities

When the centrifugal buoyancy is included in the governing equations (2.1), i.e. taking
ε 6= 0, the system is no longer reflection symmetric, and the symmetry group reduces to
SO(2). Figure 8 shows the variation of E1 and the frequencies of the bifurcated states
with increasing Re when centrifugal buoyancy effects (ε = 0.064) are taken into account.
The basic state undergoes a supercritical Hopf bifurcation to a rotating wave RW with
m = 1 and frequency ω1. This happens at Re ≈ 5970, which is smaller (approximately
2%) than the critical Re when ε = 0. The bifurcated state, shown in figure 9(a) at
Re = 6100, clearly has no symmetry in z. The centrifugal buoyancy term drives the
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Figure 8. Variation with Re of (a) the modal energy E1 and (b) frequencies (scaled by Re) of
RW, MRW and MRW2 (time-averaged E1 is shown for MRW and MRW2), for η = 0.07, γ = 1,
σ = 6, Gr = 4× 1010 and ε = 0.064.

(a) (b)

Figure 9. Isosurfaces of helicity density for (a) RW at Re = 6100 and (b) MRW at Re = 6500,
both with ε = 0.064 (accounting for centrifugal buoyancy), Gr = 4× 1010, σ = 6, η = 0.07
and γ = 1. The isosurface levels are (a) He = ±106 and (b) He = ±3× 106. The online movie
movie-02.avi animates RW in the inertial frame, and movie movie-03.avi animates MRW both
in the inertial frame and in a frame rotating at angular frequency ω1.

denser (colder) fluid near the bottom endwall radially outward, enhancing the centrifugal
instability mechanisms near the bottom of the cylinder, while the lighter (hotter) fluid
near the top endwall is centrifuged inward, reducing the centrifugal instability. As seen
in figure 9(a), the helical wave is generated at the bottom of the cylinder and progresses
upwards, while there is no centrifugal instability at the top endwall. The online movie
movie-02.avi animates the RW shown in figure 9(a).

Increasing the Reynolds number to Re ≈ 6220, a helical wave appears at the top of
the cylinder. Both helical waves meet near the cylinder mid-plane, but a little closer



Impact of centrifugal buoyancy on strato-rotational instability 13

(a) RW: Re=6100

ω1

2ω1

3ω1

10−6

10−4

10−2

100

102

PS
D

(b) MRW: Re=6500
ω1

2ω1

3ω1
ω2

10−6

10−4

10−2

100

102

PS
D

(c) MRW2: Re=6510
ω1

2ω1

3ω1

ω3

ω2

ω1+ω3 2ω1+ω3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10−6

10−4

10−2

100

102

ω/Re

PS
D

Figure 10. Power spectral density (PSD) of the axial velocity at a point close to the rotating
inner cylinder, w(r = ri+0.05, θ = 0, z = −0.25), for RW, MRW and MRW2 at η = 0.07, γ = 1,
σ = 6, Gr = 4× 1010, ε = 0.064 and Re as indicated.

Figure 11. Snap-shots of MRW at Re = 6500 in the rotating frame that rotates with angular
frequency ω1. The time between each snap-shot is 9.2× 10−4 in viscous time units, corresponding
to 5.98 inertial time units, so that each set of eight snap-shots corresponds to approximately one
period of the ω2 oscillation (2π/ω2 ≈ 50.27). The online movie movie-03.avi animates MRW,
both in the inertial (laboratory) frame and in the rotating frame.

to the top endwall. In contrast to the two symmetric helical waves of RWK and RWC
described earlier with ε = 0, these two waves are different. The one on the lower half of
the cylinder is more intense, and their frequencies are slightly different. They both rotate
prograde with the inner cylinder, but the bottom helical wave rotates slightly faster
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Figure 12. Snap-shots of MRW2 at Re = 6510, in the rotating frame that rotates with an-
gular frequency ω1. The time between each snap-shot is 1.584× 10−4 in viscous time units,
corresponding to 1.03 inertial time units, so that each set of six snap-shots corresponds to ap-
proximately one period of the ω3 oscillation (2π/ω3 ≈ 6.16). The online movie movie-04.avi
animates MRW2, both in the inertial (laboratory) frame and in the rotating frame.

than the top helical wave. This results in a modulated rotating wave state MRW. The
difference in the two frequencies shows up as a small beat frequency, which is an order of
magnitude smaller than either of the two frequencies. We shall call this beat frequency
ω2. Figure 10(a) shows the power spectral density (PSD) of the time series obtained from
the axial velocity at a point (r, θ, z) = (ri + 0.05, 0,−0.25) of the rotating wave RW at
Re = 6100; it consists of ω1 and its harmonics. Figure 10(b) is the corresponding PSD
of MRW at Re = 6500. It consists of ω1 and its harmonics together with ω2 and its
harmonics. The two frequencies are very close to being commensurate, with ω1/ω2 ≈ 15;
the ‘split’ peaks near 0.5ω1 and 1.5ω1 result from their incommensurability. A snap-
shot of MRW at Re = 6500 is shown in figure 9(b). This state closely resembles the
experimental flow obtained by Flór et al. (2018), shown in figure 1(a). The online movie
movie-03.avi animates MRW, both in the inertial (laboratory) frame and in a frame

that rotates with angular frequency ω1. In this rotating frame, the helical wave from the
bottom is frozen and the helical wave from the top rotates in the retrograde direction
at the slow frequency ω2; it is a relative rotating wave. There is a torsion between the
two behaviors near the mid-height, and this results in a “snapping” between the two
helices. A sequence of snap-shots of this MRW in the rotating frame at times covering
two periods of the ω2 oscillation further illustrate this behavior.

By further increasing the Reynolds number, a more complicated state appears, labeled
MRW2 in figure 8. The PSD of MRW2 at Re = 6510 is presented in figure 10(c). A new
frequency ω3 emerges, which is close to 0.5ω1, suggestive of a period doubling, but in fact
the relationship 2ω3 − ω1 ≈ ω2 is apparent. The detuning in this relationship shows up
as a very low frequency beating, with 2ω3−ω1−ω2 ∼ 10−2Re. The online movie movie-
04.avi animates MRW2 in both the laboratory frame and the rotating frame associated
with ω1. As with MRW, in the rotating frame the upper part of MRW2 has a slow nearly
constant rotation, associated with the beat frequency ω2. The lower part is essentially
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not rotating, like the lower part of MRW, but it has a large scale “axisymmetric” pulsing
whose frequency is ω3. Figure 12 shows 12 snap-shots of MRW2 in the ω1 rotating frame,
covering approximately two ω3 periods. MRW2 has three incommensurate frequencies,
but in the rotating frame it is simply quasi-periodic, a relative 2-torus.

6. Discussion and conclusions

The helical instability mode experimentally observed by Flór et al. (2018) when the
Froude number Fr < 1 in a stratified Taylor–Couette flow with a very wide gap annulus
of unit aspect ratio is very different to the instabilities reported in previous experimental
investigations of stratified Taylor–Couette flow (e.g. Boubnov et al. 1995, 1996; Caton
et al. 2000; Le Bars & Le Gal 2007; Ibanez et al. 2016; Rüdiger et al. 2017; Seelig et al.
2018; Park et al. 2018). Those other experiments were mostly conducted in the narrow
gap regime, with radius ratios in the range η ≈ 0.8–0.9, with a few considering η as
small as 0.3. These are all considerably larger than the radius ratio of Flór et al. (2018),
η ≈ 0.07. One consequence of η being relatively large is that the instability modes fill the
entire annular gap. In contrast, the instability in the experiments of Flór et al. (2018) is
a helical wave that is very localized to the rotating inner cylinder. The previous stratified
Taylor–Couette flow experiments were all conducted using annuli with large height-to-
gap aspect ratios, typically with γ between 10 and 50. They claim to be motivated to
consider large γ in order to minimize the effects of endwalls and to try to accommodate
the theoretical idealization of a base flow that is unidirectional with instability modes
that are axially periodic. The experiment of Flór et al. (2018) had γ ≈ 1. Endwall effects
were recognized by them, and they considered the instability to originate at the corners
where the rotating cylinder meets the top and bottom. Nevertheless, they concluded their
paper with the comment: “The dynamics of these waves and the underlying mechanism
of the instability remain to be explained.” This is precisely what we have set out to do
in this study.

In our simulations, we used parameters that are very close to those of the experiments
of Flór et al. (2018), except that we use temperature as the stratifying agent rather than
salt. Temperature diffuses about 100 times faster than salt, but these molecular processes
seem to not be important for the helical instability. That the Prandtl number does not
play a major role in the helical wave instability is borne out by the good agreement
between our numerical simulations with σ = 6 and the experiments with Schmidt number
of order 103, further reinforcing our conclusion that the instability is hydrodynamic rather
than buoyancy in nature: the vortex line bending at the corners drives a meridional flow
which at a critical Re becomes unstable to helical waves. Buoyancy of course is relevant;
the strong stratification impacts the flow, causing the meridional flow to be localized
in thin boundary layers, and then the centrifugal buoyancy results in the flow near the
lower corner to lose stability at a lower Re than that at the top corner.

For η = 0.07, γ = 1, σ = 6, Gr = 4× 1010 and ε = 0.064, we find the critical Re ≈
6× 103. These parameters are very close to those where Flór et al. (2018) experimentally
observed the helical instability, which is reproduced in figure 1(a). The helical waves in
both their experiment and in our simulations grow from the bottom corner where the
rotating cylinder meets the stationary endwall. The azimuthal wavenumber is m = 1 and
the axial wavenumber is 14. The axial wavenumber is estimated as in the experiments, by
counting the average number of waves over the depth of the annulus. The experimental
result reproduced in figure 1(a) is for Rei = Re η/(1 − η) ≈ 521 and Fr = Ω/N =
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(Re/Rn) (1 − η)/η ≈ 0.53. Our critical Re corresponds to Rei ≈ 451 and Fr ≈ 0.4. The
theoretical stability analysis of the potential flow by Riedinger et al. (2011) would suggest
that in this parameter regime (Rei ≈ 451 and Fr ≈ 0.4), the potential flow is stable,
whereas their experimental results, using a slender rotating cylinder in a large rectangular
tank with stably stratified fluid, report an m = 1 helical instability for Rei ≈ 450 and
Fr ≈ 0.6. Given the geometric differences between their experiment in a rectangular
container and the annular geometry used in Flór et al. (2018) and in the present study,
it is quite possible that the instabilities are related.

The frequency of the helical waves at onset is ω1/Re ≈ 1.8 in the inertial time scale,
but in the buoyancy time scale it is ω1/Rn ≈ 0.054, which is very small. The linear
dispersion relation gives that internal waves would propagate in the linearly stratified
medium at an angle inclined to the horizontal of only β = arcsin 0.54 ≈ 3◦. We have
not observed any significant propagation of internal waves in our simulations. If they
are present, they are very weak compared with other flow features and do not play any
significant dynamic role in the observed bifurcations.

In the experiments of Flór et al. (2018), since they have the top open, there is no K
reflection symmetry. However, even if the geometry were perfect with the annulus fully
enclosed and filled, there is still no K symmetry due to centrifugal buoyancy effects. The
parameter ε quantifying centrifugal buoyancy is small (about 6% compared to one). We
have used ε = 0.064 in the simulations; this value was estimated to correspond to the
experimental case of Flór et al. (2018), reproduced here in figure 1(a). This small number
is however not small compared to zero, and its effects are dynamically important not just
near onset, but beyond as well, eliminating much of the peculiar degeneracies associated
with K and C-conjugate states. Similar rationalization of degenerate dynamics resulting
from neglecting centrifugal buoyancy has been reported in rotating convection studies
(Marques, Mercader, Batiste & Lopez 2007; Rubio, Lopez & Marques 2010; Curbelo,
Lopez, Mancho & Marques 2014). In the present problem, centrifugal buoyancy is the
explanation for the experimentally observed flow asymmetry. Moreover, accounting for
endwall effects is also found to be critical. The instabilities are generated at the cor-
ners where the inner cylinder meets the endwalls, rather than uniformly along the inner
cylinder. Irrespective of how large the aspect ratio γ is made, the endwall effects appear
before other instabilities, and propagate toward the cylinder mid-height. As in many other
physical realizations of Taylor–Couette flows, even for large γ, endwall effects cannot be
neglected and they generate large-scale dynamics (?????????????).
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