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Abstract

Given an integer ` ≥ 1, a (1,≤ `)-identifying code in a digraph is a dominating
subset C of vertices such that all distinct subsets of vertices of cardinality at most `
have distinct closed in-neighborhoods within C. In this paper, we prove that every line
digraph of minimum in-degree one does not admit a (1,≤ `)-identifying code for ` ≥ 3.
Then we give a characterization so that a line digraph of a digraph different from a
directed cycle of length 4 and minimum in-degree one admits a (1,≤ 2)-identifying
code. The identifying number of a digraph D, −→γ ID(D), is the minimum size of all the
identifying codes of D. We establish for digraphs without digons with both vertices
of in-degree one that −→γ ID(LD) is lower bounded by the number of arcs of D minus
the number of vertices with out-degree at least one. Then we show that −→γ ID(LD)
attains the equality for a digraph having a 1-factor with minimum in-degree two and
without digons with both vertices of in-degree two. We finish by giving an algorithm
to construct identifying codes in oriented digraphs with minimum in-degree at least
two and minimum out-degree at least one.
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1 Introduction

In this paper, we consider simple digraphs without loops or multiple edges. Unless oth-
erwise stated, we follow the book by Bang-Jensen and Gutin [3] for terminology and
definitions.

Let D be a digraph with vertex set V (D) and arc set A(D). A vertex u is adjacent to
a vertex v if (u, v) ∈ A(D). If both arcs (u, v), (v, u) ∈ A(D), then we say that they form a
digon. A digraph is symmetric if (u, v) ∈ A(D) implies (v, u) ∈ A(D), so it can be studied
as a graph. A digon is often referred to as a symmetric arc of D. An oriented graph
is a digraph without digons. The out-neighborhood of a vertex u is N+(u) = {v ∈ V :
(u, v) ∈ A(D)} and the in-neighborhood of u is N−(u) = {v ∈ V (D) : (v, u) ∈ A(D)}. The
closed in-neighborhood of u is N−[u] = {u} ∪ N−(u). Given a vertex subset U ⊂ V (D),
let N−[U ] =

⋃
u∈U N

−[u] and N+[U ] =
⋃

u∈U N
+[u]. A dominating set is a subset of

vertices S ⊆ V such that N+[S] = V . The out-degree of u is d+(u) = |N+(u)|, and
its in-degree d−(u) = |N−(u)|. We denote by δ+ = δ+(D) the minimum out-degree of
the vertices in D, and by δ− = δ−(D) the minimum in-degree. The minimum degree is
δ = δ(D) = min{δ+, δ−}. A digraph D is said to be d-in-regular if |N−(v)| = d for all
v ∈ V (D), and d-regular if |N+(v)| = |N−(v)| = d for all v ∈ V (D). For each vertex
v ∈ V (D), we denote Ω−(v) = {(u, v) ∈ A(D)} and Ω+(v) = {(v, u) ∈ A(D)}.

In this paper, we study the concept of (1,≤ `)-identifying codes, where ` ≥ 1 is an
integer. For a given integer ` ≥ 1, a vertex subset C ⊂ V (D) is a (1,≤ `)-identifying code in
D if it is a dominating set and for all distinct subsets X,Y ⊂ V (D), with 1 ≤ |X|, |Y | ≤ `,
we have

N−[X] ∩ C 6= N−[Y ] ∩ C. (1)

The definition of a (1,≤ `)-identifying code for graphs was introduced by Karpovsky,
Chakrabarty and Levitin [12], and their definition can be obtained from (1) by omitting
the superscript signs minus. Thus, the definition for digraphs is a natural extension
of the concept of (1,≤ `)-identifying codes in graphs. A (1,≤ 1)-identifying code is
known as an identifying code. Therefore, an identifying code of a graph is a dominating
set such that any two vertices of the graph have distinct closed neighborhoods within
this set. Identifying codes model fault-diagnosis in multiprocessor systems, and these
are used in other applications, such as the design of emergency sensor networks. For
more information on these applications, see Karpovsky, Chakrabarty, and Levitin [12] and
Laifenfeld, Trachtenberg, Cohen, and Starobinski [13].

Note that if C is a (1,≤ `)-identifying code in a digraph D, then the whole set of
vertices V (D) also is. Thus, a digraph D admits a (1,≤ `)-identifying code if and only if
for all distinct subsets X,Y ⊂ V (D) with |X|, |Y | ≤ `, we have

N−[X] 6= N−[Y ]. (2)

In [2], the authors studied the (1,≤ `)-identifying codes in digraphs and proved the
following results.
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Proposition 1.1 ([2]). Let D be a digraph admitting a (1,≤ `)-identifying code. Let u be
a vertex such that d+(u) ≥ 1. Then ` ≤ d−(u) + 1. Furthermore, if u belongs to a digon,
then ` ≤ d−(u).

Corollary 1.2 ([2]). Let D be a digraph admitting a (1,≤ ` + 1)-identifying code. Then
any vertex u with d−(u) = ` does not lie on a digon.

According to Corollary 1.2 if D is a digraph admitting a (1,≤ 2)-identifying code, then
there is no vertex of in-degree 1 lying on a digon.

Regarding line graphs, Foucaud, Gravier, Naserasr, Parreau, and Valicov [7] studied
(1,≤ 1)-identifying codes and Junnila and Laihonen [11] studied (1,≤ `)-identifying codes
for ` ≥ 2. Regarding identifying codes in digraphs, Foucaud, Naserasr, and Parreau [8]
characterized extremal digraphs for identifying codes; Charon, Gravier, Hudry, et. al., [5]
gave a linear algorithm to find a minimum (1,≤ 1)-identifying code in oriented trees; and,
Charon, Hudry, and Lobstein [6] gave some results about complexity. Other results were
given by Skaggs in his Ph.D. thesis [15].

The main objective of this paper is to study (1,≤ `)-identifying codes in line digraphs.
In the line digraph LD of a digraph D, each vertex represents an arc of D. Thus, V (LD) =
{uv : (u, v) ∈ A(D)}; and a vertex uv is adjacent to a vertex wz if and only if v = w,
that is, when the arc (u, v) is adjacent to the arc (w, z) in D. For any integer k ≥ 1, the
k-iterated line digraph LkD is defined recursively by LkD = LLk−1D, where L0D = D.
From the definition, it is evident that the order of LD equals the size of D, that is,
|V (LD)| = |A(D)|. Due to the bijection between the set of arcs in the digraph D and the
set of vertices in the digraph LD, when it is clear from the context, we use uv to denote
both the arc in A(D) and the vertex in V (LD). Hence, for each vertex v ∈ V (D), the set of
arcs Ω+(v),Ω−(v) in D corresponds to a set of vertices in LD. Moreover, d+(v) = |Ω+(v)|
and d−(v) = |Ω−(v)|, so if D has minimum degree δ, then the iterated line digraph LkD
has minimum degree δ. Other properties of line digraph can be seen in Aigner [1], Fiol,
Yebra, and Alegre [9], and Reddy, Kuhl, Hosseini, and Lee [14].

This paper is organized as follows. In Section 2, we prove that a line digraph of
minimum in-degree one does not admit a (1,≤ `)-identifying code for ` ≥ 3. Then we
give a characterization so that a line digraph of a digraph different from a directed cycle
of length 4 and minimum in-degree one admits a (1,≤ 2)-identifying code. As a direct
consequence, we obtain that a Kautz digraph K(d, k) with d ≥ 3 admits a (1,≤ 2)-
identifying code. The identifying number of a digraph D, −→γ ID(D), is the minimum size
of all the identifying codes of D. In Section 3, we establish for digraphs without digons
with both vertices of in-degree one that −→γ ID(LD) ≥ |A(D)| − |V +

≥1(D)|, where V +
≥1(D) is

the set of vertices of D with out-degree at least one. Using this lower bound we get that
a digraph having a 1-factor with minimum in-degree two and without digons with both
vertices of in-degree two satisfies that −→γ ID(LD) = |A(D)| − |V (D)|. We finish by giving
an algorithm to construct identifying codes in oriented digraphs with minimum in-degree
at least two and minimum out-degree at least one. This algorithm allows us to prove
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that an oriented graph with minimum in-degree and out-degree at least two satisfies that
−→γ ID(LD) = |A(D)| − |V (D)|.

2 Identifying codes in line digraphs

Line digraphs were characterized by Heuchenne [10] with the following property.

Lemma 2.1 ([10]). A digraph D is a line digraph if and only if it has no multiple arcs,
and for any pair of vertices u and v, either N−(u)∩N−(v) = ∅ or N−(u) = N−(v). (The
similar result is obtained replacing N− by N+.)

Recall that a transitive tournament on 3 vertices is denoted by TT3, as it is shown
in Figure 1. Another useful characterization of line digraphs was given by Beineke and
Zamfirescu [4].

Figure 1: A transitive tournament on 3 vertices.

Theorem 2.2 ([4]). A (simple) digraph D is a line digraph if and only if D is TT3-free,
the paths of length two are unique, there are no two digons incident to the same vertex,
and if there are two vertices u, v such that N+(u) ∩N+(v) 6= ∅, then N+(u) = N+(v).

The following remark is very useful for our next results.

Remark 2.3. Let D be a TT3-free digraph. Then for every arc (x, y) of D, we have
N−(x) ∩N−(y) = ∅ and N+(x) ∩N+(y) = ∅.

Remark 2.4. Since there is a bijection between the digons of the original digraph and
the digons of its line digraph, it follows that a digraph contains a digon with both vertices
of in-degree 1 if and only if its line digraph also contains a digon with both vertices of
in-degree 1.

Proposition 2.5. Let D be a digraph. Then, its line digraph admits a (1,≤ 1)-identifying
code if and only if there is no digon with both vertices of in-degree 1 in D.

Proof. We know that a digraph G admits a (1,≤ 1)-identifying code if and only if for any
two different vertices x, y ∈ V (G) we have N−G [x] 6= N−G [y]. Let LD be the line digraph
of a digraph, and suppose that LD does not admit a (1,≤ 1)-identifying code. This is
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equivalent to have two different vertices x, y ∈ V (LD) such that N−[x] = N−[y] which
implies that x and y form a digon. By Theorem 2.2, LD is TT3-free, and by Remark 2.3,
N−(x) ∩N−(y) = ∅, yielding that d−(x) = d−(y) = 1. Hence, LD contains a digon with
both vertices of in-degree 1, and by Remark 2.4, D contains a digon with both vertices of
in-degree 1, which is a contradiction with the hypothesis. Conversely, suppose that there
is a digon uv, vu ∈ A(D) with d−(u) = d−(v) = 1, then uv, vu ∈ V (LD) form a digon in
LD, and these vertices are twins since N−LD[uv] = {uv, vu} = N−LD[vu], implying that LD
does not admit a (1,≤ 1)-identifying code, a contradiction.

Corollary 2.6. Let D be a digraph with minimum in-degree δ− ≥ 2. Then its line digraph
admits a (1,≤ 1)-identifying code.

Next, we establish that if a line digraph admits a (1,≤ `)-identifying code, then ` ≤ 2.
To this end, we need to prove some preliminary results.

Lemma 2.7. Let D be a digraph admitting a (1,≤ `)-identifying code. If there are two
different vertices x, y ∈ V (D) such that d+(y) ≥ 1, then ` < d−(y)−|N−(x)∩N−(y)|+ 3.
Moreover, if x ∈ N+(y), then ` < d−(y)− |N−(x) ∩N−(y)|+ 2.

Proof. Let x, y be two distinct vertices satisfying the hypothesis of the lemma, and let
w ∈ N+(y). First, assume that w 6= x. Consider the set X = (N−(y)\N−(x))∪{w, x, y}.
Since y ∈ N−(w) and w ∈ X − y, we can check that N−[y] ⊂ N−[X − y], which implies
that N−[X] = N−[X−y]. Then, ` < |X| ≤ d−(y)−|N−(x)∩N−(y)|+3. Finally, if w = x
repeating the same reasoning, we obtain that ` < |X| ≤ d−(y) − |N−(x) ∩ N−(y)| + 2.
This completes the proof.

Corollary 2.8. Let D be a digraph admitting a (1,≤ `)-identifying code. If there are two
different vertices x, y ∈ V (D) such that d+(y) ≥ 1 and N−(y) ⊆ N−(x), then ` ≤ 2.

Lemma 2.9. Let D be a digraph with minimum in-degree δ− ≥ 2. Then, there exists
a vertex u ∈ V (D) with d+(u) ≥ 2 and such that there is at least two out-neighbours
x, y ∈ N+(u) such that d+(x), d+(y) ≥ 1.

Proof. Let D be a digraph with minimum in-degree δ− ≥ 2, and consider the subdigraph
D′ = D − {w ∈ V (D) | d+(w) = 0}. Then, δ−(D′) ≥ 2. If d+D′(u) < 2 for all u ∈ V (D′),
then we would reach the contradiction:

2|V (D′)| ≤
∑

v∈V (D′)

d−D′(v) =
∑

v∈V (D′)

d+D′(v) ≤ |V (D′)|.

Hence, there is u ∈ V (D′) such that d+D′(u) ≥ 2 and therefore, d+(u) ≥ 2. Since for any
v ∈ N+

D′(u) ⊆ N+(u) we have d+(v) ≥ 1, the proof is completed.

Proposition 2.10. Let LD be a line digraph of a digraph D with minimum in-degree
δ− ≥ 1, then LD does not admit a (1,≤ `)-identifying code for ` ≥ 3.
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Figure 2: The forbidden subdigraphs of Theorem 2.12 and Corollary 2.13, where the
vertices of in-degree one are indicated in black color and the vertices of in-degree two in
gray color.

Proof. Note that δ−(LD) = δ−(D) = δ−. If δ− ≥ 2, by Lemma 2.9, there exists a vertex
v in LD with d+(v) ≥ 2 and two vertices x, y ∈ N+(v) such that d+(x), d+(y) ≥ 1. By
Lemma 2.1, we have N−(x) = N−(y). Hence, by Corollary 2.8, if LD admits a (1,≤ `)-
identifying code, then ` ≤ 2, and the result is valid. Suppose that δ− = 1. Take a
vertex u with d−(u) = 1. If d+(u) ≥ 1, then by Proposition 1.1, we get that ` ≤ 2
and we obtain the result. Therefore we assume that every vertex with in-degree one has
out-degree zero. Let F be the digraph obtained from LD by removing all the vertices of
in-degree one. Observe that δ−(F ) ≥ 2, then reasoning as in the first part of the proof, F
does not admit a (1,≤ 3)-identifying code. This means that there are two different sets
X,Y ⊆ F ⊂ V (LD) such that 1 ≤ |X| ≤ |Y | ≤ 3 and N−F [X] = N−F [Y ]. Since for any
vertex u ∈ V (F ), N−F [u] = N−LD[u], it follows that N−LD[X] = N−LD[Y ]. Hence, LD does
not admit a (1,≤ 3)-identifying code.

Remember that according to Corollary 1.2, if D is a digraph admitting a (1,≤ 2)-
identifying code, then there is no vertex of in-degree 1 belonging to a digon. In the
following result, we give sufficient and necessary conditions for a line digraph to admit a
(1,≤ 2)-identifying code. To do that, we use the following result which follows from the
fact that in a line digraph the paths of length two are unique by Theorem 2.2.

Corollary 2.11. Let LD be a line digraph. If u, v ∈ V (LD) are two different vertices
such that N+(u) ∩N+(v) 6= ∅, then N−(u) ∩N−(v) = ∅.

Theorem 2.12. Let LD be a line digraph with minimum in-degree δ− ≥ 1, different from
a directed 4-cycle and such that the vertices of in-degree 1 (if any) do not lie on a digon.
Then, LD admits a (1,≤ 2)-identifying code if and only if LD satisfies the following
conditions:

(i) There are no directed 3-cycles with at least 2 vertices of in-degree 1 (see Figure 2
(a)).

(ii) There do not exist four vertices x, x′, y and y′ such that N−(x) = {y, y′}, N−(y′) =
{x′} and x ∈ N−(x′) ∩N−(y) (see Figure 2 (b)).
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(iii) There do not exist four vertices x, x′, y and y′ in V (LD) such that N−(x) = {y, y′},
N−(y) = {x, x′} and N−(x′) ∩N−(y′) 6= ∅ (see Figure 2 (c)).

(iv) There is no directed 4-cycle with the four vertices of in-degree 1.

Proof. First, suppose that LD admits a (1,≤ 2)-identifying code and let us show that LD
satisfies all the conditions (i)-(iv).

(i) Suppose that LD does not satisfy (i). Hence, let (z, y, x, z) be a directed 3-cycle
in LD such that d−(x) = 1 = d−(y) (see Figure 2 (a)). Then, N−[{x, z}] = {x, z} ∪ {y} ∪
N−(z) = {y}∪N−[z], and N−[{y, z}] = {y, z}∪N−(z) = {y}∪N−[z], implying that LD
does not admit a (1,≤ 2)-identifying code which is a contradiction.

(ii) Suppose that LD does not satisfy (ii). Let X = {x, x′} and Y = {y, y′}, where
x, x′, y, y′ are four different vertices of LD such that N−(x) = {y, y′}, N−(y′) = {x′}, and
x ∈ N−(x′) ∩N−(y) (see Figure 2 (b)). Hence, by Lemma 2.1, we get N−(x′) = N−(y),
and it follows that

N−[X] = N−(x) ∪N−(x′) ∪ {x, x′}
= {y, y′} ∪N−(y) ∪ {x, x′}
= {y, y′} ∪N−(y) ∪ {x′}
= {y, y′} ∪N−(y) ∪N−(y′)

= N−[Y ].

Therefore, LD does not admit a (1,≤ 2)-identifying code which is a contradiction.

(iii) Suppose that LD does not satisfy (iii). Let X = {x, x′} and Y = {y, y′}, where
N−(x) = {y, y′}, N−(y) = {x, x′}, and N−(x′) ∩N−(y′) 6= ∅ (see Figure 2 (c)). Since, by
Lemma 2.1, N−(x′) = N−(y′), it follows that

N−[X] = N−(x) ∪N−(x′) ∪ {x, x′}
= {y, y′} ∪N−(y′) ∪N−(y)

= N−[Y ].

Therefore, LD does not admit a (1,≤ 2)-identifying code which is a contradiction.

(iv) Suppose that LD does not satisfy (iv). Let (u1, u2, u3, u4, u1) be a 4-cycle of LD
such that d−(ui) = 1 for all i ∈ {1, 2, 3, 4}. Then, N−[{u1, u3}] = N−[{u2, u4}], implying
that LD does not admit a (1,≤ 2)-identifying code which is a contradiction.

For the converse, suppose that LD satisfies all the conditions (i)-(iv) and that does
not admit a (1,≤ 2)-identifying code. Let X,Y ⊆ V (LD) be two different subsets such
that 1 ≤ |X| ≤ |Y | ≤ 2 and N−[X] = N−[Y ]. Since the vertices of in-degree one
do not lie on a digon, by Proposition 2.5, |Y | = 2. If |X| = 1, say X = {x}, then
N−[Y ] = N−[X] = N−[x]. It follows that N−[y] ⊆ N−(x) for all y ∈ Y \ X, hence
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y ∈ N−(x). By Theorem 2.2, LD is TT3-free which allows us to apply Remark 2.3, so
N−(y) ∩N−(x) = ∅, then N−(y) = ∅ which contradicts that δ− ≥ 1.

Suppose |X| = 2 and consider two cases according to X ∩ Y 6= ∅ or if X ∩ Y = ∅.

(a) Suppose that X ∩ Y 6= ∅. Let X = {x, z} and Y = {y, z}. We will consider two
cases, when there is at least one arc between x and y, and the case when there is no arc
between x and y.

(a.1) If there is an arc between x and y, say yx ∈ A(LD), then by Remark 2.3,
N−(x) ∩ N−(y) = ∅. Then, N−(y) ⊆ N−[z] ∪ {x} and N−(x) ⊆ N−[z] ∪ {y}. First,
suppose that d−(x) ≥ 2 and let u ∈ N−(x) \ {y}. Hence, u ∈ N−[z]. If u = z, then
N−(x)∩N−(z) = ∅ by Remark 2.3, and N−(y)∩N−(z) = ∅. Hence, N−(x) = {y, z} and
N−(y) = {x} (since δ−(LD) ≥ 1). Then y is a vertex of in-degree 1 lying on a digon, a
contradiction to the hypothesis. Therefore, u 6= z, that is, u ∈ N−(z) ∩N−(x) implying,
by Lemma 2.1, that N−(z) = N−(x), hence y ∈ N−(z), implying that N−(y)∩N−(z) = ∅
by Remark 2.3. Then N−(y) ⊆ {x, z}. Since δ−(LD) ≥ 1, it follows that N−(y) = {x},
N−(y) = {z} or N−(y) = {x, z}. The first two cases are not possible because vertices of
degree one do not lie on digons, and the third case is not possible because by Theorem
2.2, LD does not contain two digons incident to the same vertex. Second, suppose that
d−(x) = 1, then N−(x) = {y}. Since x ∈ N−[Y ] and x does not lie on a digon, x ∈ N−(z).
Since, x /∈ N−(y), N−(y)∩N−(z) = ∅ by Lemma 2.1, implying that N−(y) = {z} because
N−(y) ⊆ N−[z]. Therefore, (x, z, y, x) is a directed 3-cycle of LD with two vertices of
in-degree 1, implying that LD does not satisfy (i).

(a.2) Now, suppose that there is no arc between x and y. Since x ∈ N−[Y ] and
y ∈ N−[X], it follows that x, y ∈ N−(z). Since LD is TT3-free, y 6∈ N−(x), by Remark
2.3, N−(x) ∩ N−(z) = ∅, and by Corollary 2.11, N−(x) ∩ N−(y) = ∅ implying that
N−(x) = {z} and x, z form a digon, a contradiction since there are no vertices of in-
degree 1 lying on a digon.

(b) Suppose X ∩ Y = ∅, with X = {x, x′} and Y = {y, y′}. Notice that we can assume
y ∈ N−(x), that is, yx ∈ A(LD). Then by Remark 2.3, N−(x)∩N−(y) = ∅ implying that
N−(y) ⊆ N−(x′) ∪ {x, x′}. Since x ∈ N−[Y ], there are two cases to be considered.

(b.1) Suppose that x ∈ N−(y). Then d−(x), d−(y) ≥ 2, since both vertices lie on a
digon. If there is u ∈ N−(y) \ (X ∪ Y ), then u ∈ N−(x′), and by Lemma 2.1, N−(y) =
N−(x′) implying that x ∈ N−(x′). Hence, since x′ ∈ N−[Y ] and N−(x′) = N−(y), it
follows that x′ ∈ N−(y′). Furthermore, y′ ∈ N−(x′) ∪ N−(x). If y′ ∈ N−(x′), then by
Remark 2.3, N−(x′) ∩N−(y′) = ∅, and by Corollary 2.11, N−(x) ∩N−(y′) = ∅, because
x′ ∈ N+(x) ∩ N+(y′). Moreover, by Theorem 2.2, x /∈ N−(y′) because LD is TT3-free,
and y /∈ N−(y′) because, otherwise LD would have two digons incident to the vertex y.
This implies that N−(y′) = {x′}, that is, d−(y′) = 1, a contradiction because y′ lies on a
digon. Then y′ ∈ N−(x) and by Remark 2.3, N−(y′)∩N−(x) = ∅. Moreover, x 6∈ N−(y′)
because otherwise LD would have two digons incident to vertex x. If N−(y′)∩N−(x′) 6= ∅
by Lemma 2.1, N−(y′) = N−(x′) implying that x ∈ N−(y′) which is a contradiction.
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Therefore, N−(y′) ∩ N−(x′) = ∅ and so N−(y′) = {x′} and N−(x) = {y, y′}. Therefore,
LD does not satisfy (ii). Thus, we have proved that N−(y) ⊆ X ∪Y . Reasoning similarly
for x as we did for y, this time considering the arc xy, we get that N−(x) ⊆ X ∪ Y .

If x′ ∈ N−(x), then x′ ∈ N−(y′). Since LD is TT3-free, x′ 6∈ N−(y) and by Corollary
2.11, N+(x) ∩N+(y′) = ∅ implying y 6∈ N+(y′), therefore |N−(y) ∩ {x′, y′}| = 0 implying
that d−(y) = 1, a contradiction. Therefore, x′ ∈ N−(y) and y′ ∈ N−(x). Since x ∈
N+(y) ∩N+(y′), by Corollary 2.11, N−(y) ∩N−(y′) = ∅, that is, x′ 6∈ N−(y′). Moreover,
since LD is TT3-free, y 6∈ N−(y′). And since there are no two digons incident to the
same vertex x 6∈ N−(y′). Therefore there is a vertex u ∈ N−(y′) \ (X ∪ Y ) and since
N−(y′) ∩N−(x) = ∅, u ∈ N−(x′). Hence, LD does not satisfy (iii).

(b.2) Suppose that x ∈ N−(y′) \ N−(y). Then N−(x) ∩ (N−(y) ∪ N−(y′)) = ∅ by
Remark 2.3, implying that N−(x) ⊆ {y, y′}.

(b.2.1) If N−(x) = {y}, then y′ ∈ N−(x′), implying that N−(y′)∩ (N−(x′)∪N−(x)) =
∅, and consequently N−(y′) ⊆ {x, x′}. If x′ ∈ N−(y), then N−(x′) ∩ (N−(y) ∪N−(y′)) =
∅, implying that N−(x′) ⊆ {y, y′}. Observe that if y ∈ N−(x′), then by Lemma 2.1,
N−(x) = N−(x′) = {y, y′}, a contradiction with the assumption that N−(x) = {y}.
Hence, N−(x′) = {y′}. Moreover, N−(y′) ⊆ {x, x′} and N−(y′) = {x} because otherwise
the vertices x′, y′ form a digon with vertex x′ of degree one contradicting the hypothesis.
Also, N−(y) ⊆ {x′, y′} and since N−(x′)∩N−(y) = ∅, y′ 6∈ N−(y), we have N−(y) = {x′}.
Therefore, (x, y′, x′, y, x) is a directed 4-cycle in LD with four vertices of in-degree one,
and LD does not satisfy (iv).

(b.2.2) If N−(x) = {y, y′}, we have a digon formed by vertices x and y′, also N−(x) ∩
(N−(y) ∪ N−(y′)) = ∅, and consequently N−(y) ⊆ {x′} ∪ N−(x′) (recall that we are
assuming that x ∈ N−(y′) \ N−(y)). First, suppose that x′ ∈ N−(y). Then N−(y) ∩
N−(x′) = ∅ and so N−(y) = {x′}, and therefore y 6∈ N−(x′) because LD has no digons
consisting of vertices of in-degree one. Hence, by Lemma 2.1, we have N−(x)∩N−(x′) = ∅.
Also x 6∈ N−(x′) because otherwise LD does not satisfy (ii), a contradiction, and then
N−(x′) ∩ N−(y′) = ∅, concluding that N−(x′) = ∅ which is a contradiction. Therefore,
suppose that x′ ∈ N−(y′) \N−(y). By Theorem 2.2, x, y′ /∈ N−(x′), implying by Lemma
2.1 that N−(x′) ∩ N−(x) = ∅, N−(x′) ∩ N−(y′) = ∅. Hence, N−(y′) = {x, x′} and
N−(x′) ⊆ N−(y) and, since δ−(LD) ≥ 1, there is u ∈ N−(x′) \ (X ∪ Y ). Therefore, LD
does not satisfy (iii), a contradiction. This completes the proof.

Notice that, according to the above theorem, if a line digraph with minimum in-degree
δ−LD ≥ 2 does not admit a (1,≤ 2)-identifying code, then δ−LD = 2. In the following
corollary we give some sufficient conditions for a line digraph with minimum in-degree at
least two, to admit a (1,≤ 2)-identifying code.

Corollary 2.13. Let D be a digraph with minimum in-degree δ−(D) ≥ 2. Then the
following assertions hold.

(i) The line digraph LD admits a (1,≤ 2)-identifying code if and only if LD does not
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contain the subdigraph of Figure 2 (c).

(ii) If δ− ≥ 3, then LD admits a (1,≤ 2)-identifying code.

(iii) If k ≥ 2, then LkD admits a (1,≤ 2)-identifying code.

Proof. Let D be a digraph with minimum in-degree δ−(D) ≥ 2. Items (i) and (ii) follow
directly from Theorem 2.12. To prove (iii) observe that if k ≥ 2, then LkD does not contain
the subdigraph of Figure 2 (c), otherwise Lk−1D would contain a TT3, a contradiction
to Theorem 2.2. More precisely, suppose that u, x, x′, y, y′ ∈ V (LkD) are five different
vertices such that LkD[{u, x, x′, y, y′}] is isomorphic to Figure 2 (c). Let u = (u1, u2) with
u1, u2 ∈ V (Lk−1D). Then x′ = (u2, x

′
2) and y′ = (u2, y

′
2) for some two different vertices

x′2, y
′
2 ∈ V (Lk−1D), x = (y′2, x

′
2) and y = (x′2, y

′
2). Therefore, Lk−1D[{u2, x′2, y′2}] ∼=

TT3.

A large known family of digraphs obtained with the line digraph technique is the family
of Kautz digraphs. The Kautz digraph of degree d and diameter k is defined as the (k−1)-
iterated line digraph of the symmetric complete digraph of d + 1 vertices Kd+1, that is,
K(d, k) ∼= Lk−1Kd+1. For instance, the Kautz digraph K(2, 2) shown in Figure 3, is the
line digraph of the symmetric complete digraph on three vertices.

L

K3 K(2,2)=LK3

u

v w

uv

vu

vw

wv

wu

uw

Figure 3: The Kautz digraphK(2, 2) as the line digraph of the symmetric complete digraph
K3.

Corollary 2.14. For each d ≥ 3, the Kautz digraph K(d, 2) ∼= LKd+1 admits a (1,≤ 2)-
identifying code.

By Corollary 2.13 (iii), the Kautz digraph K(2, 2) = LK3 (see Figure 3) does not
admit a (1,≤ 2)-identifying code. Then the condition k ≥ 2 in Corollary 2.13 (iii) is
necessary.

3 Arc-identifying codes

As mentioned in the Introduction a (1,≤ 1)-identifying code is known as an identifying
code. The identifying number of a digraph D, −→γ ID(D), is the minimum size of all the
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identifying codes of D. Foucaud, Naserasr, et al. [7] characterized the digraphs that only
admit as identifying code the whole set of vertices. Let us introduce the terminology used
for this characterization.

Given two digraphs D1 and D2 on disjoint sets of vertices, we denote D1 ⊕ D2 the
disjoint union of D1 and D2, that is, the digraph whose vertex set is V (D1) ∪ V (D2) and
whose arc set is A(D1) ∪ A(D2). Given a digraph D and a vertex x /∈ V (D), x

−→C(D) is
the digraph with vertex set V (D) ∪ {x}, and whose arcs are the arcs of D together with
each arc (x, v) for every v ∈ V (D).

Definition 3.1. We define (K1,⊕,
−→C) as the closure of the one-vertex graph K1 with

respect to the operations ⊕ and
−→C . That is, the class of all digraphs that can be built from

K1 by repeated applications of ⊕ and
−→C .

Foucaud, Naserasr, et al. [8] proved that for any digraph D, −→γ ID(D) = |V (D)| if and
only if D ∈ (K1,⊕,

−→C).

Since, as they pointed out, every D ∈ (K1,⊕,
−→C) is the transitive closure of a rooted

oriented forest, if LD is a line digraph with minimum in-degree δ− ≥ 2, then LD /∈
(K1,⊕,

−→C). Hence, −→γ ID(LD) ≤ |V (LD)|−1. Next, we give a lower bound on −→γ ID(LD).

With this goal, we define the relation ∼ over the set of vertices V (LD) as follows. For
all u, v ∈ V (LD), u ∼ v if and only if N−(u) = N−(v). Clearly, ∼ is an equivalence
relation. For any u ∈ V (LD), let [u]∼ = {v ∈ V (LD) : v ∼ u}.

Lemma 3.2. Let C be an identifying code of a line digraph LD. Then, for any vertex
w ∈ V (LD),

|[w]∼ \ C| ≤ 1.

Proof. Let w ∈ V (LD) and u, v ∈ [w]∼ \C. Then, N−(u) = N−(v) and, since u, v /∈ C, it
follows that N−[u] ∩C = N−(u) ∩C = N−(v) ∩C = N−[v] ∩C, which is a contradiction
if u 6= v.

Definition 3.3. Given a digraph D, a subset C̃ of A(D) is an arc-identifying code of D
if C̃ is both:

• an arc-dominating set of D, that is, for each arc uv ∈ A(D), ({uv}∪Ω−(u))∩C̃ 6= ∅,
and

• an arc-separating set of D, that is, for each pair uv,wz ∈ A(D) (with uv 6= wz),
({uv} ∪ Ω−(u)) ∩ C̃ 6= ({wz} ∪ Ω−(w)) ∩ C̃.

Hence, an arc-identifying code of D is an identifying code of its line digraph LD. As
a consequence, given a digraph D, the minimum size of an identifying code of its line
digraph, −→γ ID(LD), is equivalent to the minimum size of an arc-identifying code of D.

With the following result, we characterize the arc-identifying codes.
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Theorem 3.4. Let D be a digraph and C̃ ⊆ A(D). Then, C̃ is an arc-identifying code of
D if and only if C̃ satisfies the following two conditions:

(i) For all v ∈ V (D), |Ω+(v) \ C̃| ≤ 1, and if |Ω+(v) \ C̃| = 1, then Ω−(v) ∩ C̃ 6= ∅;

(ii) for all uv ∈ C̃, if vu ∈ C̃ or |Ω+(v)\C̃| = 1, then ((Ω−(u)∪Ω−(v))\{uv, vu})∩C̃ 6= ∅.

Proof. Suppose that C̃ is an arc-identifying code of D. Hence, C̃ is an identifying code
of LD, and by Lemma 3.2, we have for all vw ∈ V (LD), |[vw]∼ \ C̃| ≤ 1. Observe that
rs ∈ [vw]∼ if and only if N−LD(rs) = N−LD(vw), which only can occur if and only if r = v.

Therefore, we get that for all v ∈ V (D), |Ω+(v)\ C̃| ≤ 1 holds. Moreover, let v ∈ V (D) be
such that |Ω+(v)\ C̃| = 1 and let vx ∈ Ω+(v)\ C̃. Hence, ({vx}∪Ω−(v))∩ C̃ = Ω−(v)∩ C̃.
Since C̃ is an arc-identifying code, ({vx} ∪ Ω−(v)) ∩ C̃ 6= ∅, hence C̃ satisfies (i). To
prove (ii), let uv ∈ C̃ be such that ((Ω−(u) ∪ Ω−(v)) \ {vu, uv}) ∩ C̃ = ∅. If vu ∈ C̃,
then ({uv} ∪ Ω−(u)) ∩ C̃ = {uv, vu} = ({vu} ∪ Ω−(v)) ∩ C̃, contradicting that C̃ is an
arc-identifying code. Hence, vu /∈ C̃. If |Ω+(v) \ C̃| = 1, say Ω+(v) \ C̃ = {vx}, then
({uv} ∪Ω−(u)) ∩ C̃ = {uv} = ({vx} ∪Ω−(v)) ∩ C̃, a contradiction. Therefore, C̃ satisfies
(ii).

Now, suppose that C̃ is a set of arcs of D satisfying (i) and (ii), and let us show that
C̃ is an arc-identifying code. To see that C̃ is an arc-dominating set of D, let ab ∈ A(D).
By (i), Ω+(a) ⊆ C̃ or Ω−(a) ∩ C̃ 6= ∅, implying that ({ab} ∪ Ω−(a)) ∩ C̃ 6= ∅. Therefore,
C̃ is an arc-dominating set of D. Next, let us prove that C̃ is an arc-separating set
of D. On the contrary, suppose that there are two different arcs ab and cd, such that
({ab} ∪ Ω−(a)) ∩ C̃ = ({cd} ∪ Ω−(c)) ∩ C̃. First, let us assume that ab, cd /∈ C̃ and take
an arc uv ∈ ({ab} ∪ Ω−(a)) ∩ C̃ = ({cd} ∪ Ω−(c)) ∩ C̃. Then v = a = c, implying that
ab, cd ∈ Ω+(v) \ C̃, contradicting (i). Second, assume that ab ∈ C̃, hence, ab ∈ Ω−(c),
implying that c = b. If bd /∈ C̃, then |Ω+(b) \ C̃| = 1 and by (ii), ((Ω−(a) ∪ Ω−(b)) \
{ba, ab}) ∩ C̃ 6= ∅. Then ({ab} ∪ Ω−(a)) ∩ C̃ 6= ({bd} ∪ Ω−(b)) ∩ C̃, a contradiction with
our assumption. Therefore, bd ∈ C̃ implying that bd ∈ Ω−(a) and d = a. Again by (ii),
((Ω−(a)∪Ω−(b))\{ab, ba})∩C̃ 6= ∅, yielding that ({ab}∪Ω−(a))∩C̃ 6= ({ba}∪Ω−(b))∩C̃,
a contradiction. Therefore, C̃ is an arc-separating set. This completes the proof.

Let D be a digraph and i ≥ 1 be an integer. Then, denote V +
≥i(D) = {v ∈ V (D) :

d+(v) ≥ i}, and V +
i (D) = {v ∈ V (D) : d+(v) = i}.

Recall that by Proposition 2.5, a digraph D admits an arc-identifying code if and only
if there is no digon with both vertices of in-degree one.

Theorem 3.5. Let D be a digraph without digons with both vertices of in-degree 1. Then,

−→γ ID(LD) ≥ |A(D)| − |V +
≥1(D)|.

Proof. By Proposition 2.5, LD admits a (1,≤ 1)-identifying code. Let C̃ be an arc-
identifying code of D. Then, by Theorem 3.4,
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|C̃| ≥
∑

u∈V +
≥1(D)

(d+D(u)− 1)

=
∑

u∈V +
≥1(D)

d+D(u)− |V +
≥1(D)|

= |A(D)| − |V +
≥1(D)|.

Remark 3.6. Notice that by the proof of Theorem 3.5, we have γID(LD) = |A(D)| −
|V +
≥1(D)| if and only if |Ω+(v) \ C̃| = 1 for each vertex v ∈ V +

≥1(D). In particular, if

d+(v) = 1 and the lower bound is reached, then Ω+(v) ∩ C̃ = ∅.

A 1-factor in a digraph is a 1-regular spanning subdigraph. Next, we show that some
digraphs with a 1-factor have an identifying number that attains the equality in Theorem
3.5.

Theorem 3.7. Let D be a digraph having a 1-factor with minimum in-degree δ− ≥ 2 and
without digons with both vertices of in-degree two. Then, γID(LD) = |A(D)| − |V (D)|.

Proof. Let F denote a 1-factor in D. Let C̃ = A(D) \A(F ). Let us show that C̃ satisfies
the requirements of Theorem 3.4. By definition of C̃, |Ω+(v) \ C̃| = 1 and |Ω−(v) \ C̃| =
1 for each vertex v ∈ V (D). Hence, Theorem 3.4 (i) holds because |Ω+(v) \ C̃| = 1
and Ω−(v) ∩ C̃ 6= ∅, since δ− ≥ 2. Moreover, for any arc uv ∈ C̃ not in a digon we
have ((Ω−(v) ∪ Ω−(u)) \ {uv}) ∩ C̃ 6= ∅ because |Ω−(v) \ C̃| = 1 which implies that
|Ω−(v) ∩ C̃| = d−(v) − 1 ≥ 1. And if uv ∈ C̃ belongs to a digon, since one of the two
vertices, say v, must have d−(v) ≥ 3 we have ((Ω−(v)∪Ω−(u))\{uv, vu})∩ C̃ 6= ∅ because
|Ω−(v) ∩ C̃| = d−(v) − 1 ≥ 2. In either case Theorem 3.4 (ii) holds. Therefore, C̃ is an
arc-identifying code of D and γID(LD) ≤ |A(D)| − |V (D)|. Furthermore, by Theorem
3.5, γID(LD) = |A(D)| − |V (D)|.

Clearly, a Hamiltonian digraph has a 1-factor consisting of a directed cycle W such
that V (W ) = V (D). The following result is an immediate consequence of Theorem 3.7.

Corollary 3.8. Let D be a Hamiltonian digraph with minimum in-degree δ− ≥ 2 and
without digons with both vertices of in-degree two. Then, γID(LD) = |A(D)| − |V (D)|.

Corollary 3.9. The identifying number of a Kautz digraph K(d, k) is γID(K(d, k)) =
dk − dk−2 for d ≥ 3 and k ≥ 2.

Proof. Note that K(d, 2) = LKd+1. Since Kd+1 is Hamiltonian and d ≥ 3, by Corollary
3.8, γID(K(d, 2)) = γID(LKd+1) = |A(Kd+1)| − |V (Kd+1)| = d(d+ 1)− (d+ 1) = d2 − 1,
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and the result holds for k = 2. For any k ≥ 3, the Kautz digraph K(d, k) = Lk−1Kd+1 =
LLk−2Kd+1 = LK(d, k − 1). Since K(d, k − 1) is a Hamiltonian digraph and d ≥ 3, by
Corollary 3.8, γID(K(d, k)) = γID(LK(d, k−1)) = dk +dk−1− (dk−1 +dk−2) = dk−dk−2,
and the result holds.

To extend Corollary 3.9 to K(2, k), we use the 1-factorization of Kautz digraphs ob-
tained by Tvrd́ık [16]. This 1-factorization uses the following operation.

Definition 3.10. [16] If x = x1 . . . xk ∈ V (K(d, k)), then

• σ1(x) = x2 . . . xk−1xkx1 if x1 6= xk.

• σ1(x) = x2 . . . xk−1xkx2 if x1 = xk.

Let Inc : V (K(d, k))× Zd → V (K(d, k)) denote a binary operation such that

Inc(x1 . . . xk−1xk, i) = x1 . . . xk−1x
′
k,

where

x′k =


xk + i mod (d+ 1) if xk−1 > xk and xk−1 > xk + i,

or xk−1 < xk and xk−1 + d+ 1 > xk + i;
xk + i+ 1 mod (d+ 1) otherwise.

Then, the generalized K-shift operation is defined as follows:

σ+i
1 (x) = Inc(σ1(x), i),

σ+i
k (x) = σ+i

1 (σ+i
k−1(x)).

Theorem 3.11. [16] The arc set of K(d, k) can be partitioned into d 1-factors F0, . . . ,Fd−1
such that the cycles of Fi are closed under the operation σ+i

1 .

Theorem 3.12. The identifying number of a Kautz digraph K(2, k) is γID(K(2, k)) =
2k − 2k−2 for k ≥ 2.

Proof. We can check in Figure 3 that C̃ = {uv, vw,wu} is an identifying code of K(2, 2),
then γID(K(2, 2)) = 3, and the theorem holds for k = 2. Suppose that k ≥ 3 and let us
consider the Kautz digraph K(2, k − 1). By Theorem 3.11, we can take a partition of the
arcs of K(2, k−1) into two 1-factors F0 and F1, such that the cycles of Fi are closed under
the operation called σ+i

1 , given in Definition 3.10. In particular the relation σ+0
1 preserves

digons, implying that all the digons of K(2, k − 1) belong to the family F0. Hence, since
F1 is a 1-factor of K(2, k − 1), the set of arcs in F1, say A1, satisfies the conditions of
Theorem 3.4. Therefore, A1 is an arc-identifying code of K(2, k−1), that is, an identifying
code of K(2, k) and, γID(K(2, k)) = |A1| = |V (K(2, k − 1)| = 3 · 2k−2 = 2k − 2k−2.
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3.1 Arc-identifying codes in oriented graphs

Now we present an algorithm for constructing an arc-identifying code C̃ of an oriented
graph D with minimum in-degree δ− ≥ 2 and minimum out-degree δ+ ≥ 1. The idea of
this algorithm is to add to C̃ all the arcs but one from Ω+(v), for each vertex v ∈ V (D)
trying to reach an arc-identifying code of order |A(D)|−|V (D)|. Notice that in particular,
for each vertex v ∈ V +

1 (D) we have Ω+(v) ∩ C̃ = ∅ or Ω+(v) ⊂ C̃, and in the latter case
the obtained arc-identifying code has order strictly greater than |A(D)| − |V (D)|.

Algorithm 1 Let D be an oriented graph D with minimum out-degree δ+ ≥ 1 and
minimum in-degree δ− ≥ 2.

1: let X := ∅, Y := ∅ and C̃ := ∅
2: while Y 6= V (D) do
3: take xy ∈ A(D) such that y ∈ V (D) \ Y
4: X := X ∪ {x}, Y := Y ∪ (N+(x) \ {y}) and C̃ := C̃ ∪ (Ω+(x) \ {xy})
5: if N−(y) \X 6= ∅ then
6: if there is t ∈ N−(y) \X such that t ∈ V +

≥2(D)
7: take tz ∈ A(D) such that z 6= y
8: let x := t and y := z
9: return to 4

10: else
11: take t ∈ N−(y) \X
12: X := X ∪ {t}, Y := Y ∪ {y} and C̃ := C̃ ∪ {ty}
13: return to 3
14: end if then
15: else
16: return to 3
17: end if
18: end while
19: if Y = V (D) then
20: while X 6= V (D) do
21: take uv ∈ A(D) such that u 6∈ X
22: X := X ∪ {u} and C̃ := C̃ ∪ (Ω+(u) \ {uv})
23: end while
24: if X = V (D) then
25: return C̃
26: end if
27: end if

To illustrate Algorithm 3.1, as an example we run the algorithm for the oriented graph
of Figure 4 with 7 vertices and 14 arcs.

Input: Oriented graph depicted in Figure 4.
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Steps 1-4: Start with the arc (1, 5), then X := {1}, Y := {2} and C̃ := {(1, 2)}.

Step 5: N−(5) \X = {6} ⊆ V +
1 (D), then we go to step 11.

Steps 11-13: X = {1, 6}, Y := {2, 5} and C̃ := {(1, 2), (6, 5)}, go to step 3.

Steps 3-4: Take the arc (4, 3), then X = {1, 6, 4}, Y := {2, 5, 1, 6, 7} and

C̃ := {(1, 2), (6, 5), (4, 1), (4, 7), (4, 6)}.

Step 5: N−(3) \X = {5} ⊆ V +
≥2(D).

Steps 6-9: Take the arc (5, 7), that is t = 5 and z = 7.

Step 4: X = {1, 4, 6, 5}, Y := {1, 2, 5, 6, 7, 3, 4} and

C̃ := {(1, 2), (6, 5), (4, 1), (4, 7), (4, 6), (5, 4), (5, 3)}.

Step 5: N−(7) \X = ∅, then go to step 3 but since Y = V (D), go to step 19.

Step 20: Since X 6= V (D), start steps 21 to 22 until X = V (D).

Steps 21-22: Take the arc (7, 6), then X = {1, 4, 6, 5, 7}, and

C̃ := {(1, 2), (4, 1), (4, 7), (4, 6), (5, 3), (5, 4), (6, 5), (7, 1)}.

Steps 20-22: Take the arc (3, 2), then X = {1, 4, 6, 5, 7, 3}, and C̃ := C̃.

Steps 20-22: Take the arc (2, 4), then X = {1, 2, 3, 4, 5, 6, 7}, and C̃ := C̃

Step 25: Output C̃ := {(1, 2), (4, 1), (4, 7), (4, 6), (5, 3), (5, 4), (6, 5), (7, 1)}.

Figure 4: A digraph to illustrate Algorithm 3.1.

Theorem 3.13. Let D be an oriented graph with minimum degree δ = min{δ+, δ−} ≥ 2.
Then, Algorithm 3.1 produces a subset C̃ ⊂ A(D) of size

|C̃| = |A(D)| − |V (D)|,

satisfying the requirements of Theorem 3.4.
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Proof. By construction, the Algorithm 3.1 produces a set Y such that every v ∈ V (D)
satisfies that v ∈ Y at a certain step of the algorithm. Then, v ∈ N+(x) \ {y} for
certain x and y in the algorithm such that xv ∈ Ω+(x) \ {xy} ⊂ C̃ because δ+ ≥ 2.
Then, Ω−(v) ∩ C̃ 6= ∅ and Theorem 3.4 (i) holds. Finally, since D is oriented, for all
uv ∈ C̃, clearly vu 6∈ A(D), and we have |(Ω−(u) ∪ (Ω−(v) \ {uv})) ∩ C̃| ≥ 1 because
Ω−(u) ∩ C̃ 6= ∅. Hence, Theorem 3.4 (ii) also holds. Therefore, C̃ is an arc-identifying
code of D and |C̃| = |A(D)| − |V (D)|. This completes the proof.

As a consequence of Theorems 3.5 and 3.13, we can conclude the following.

Corollary 3.14. Let D be an oriented graph D with minimum degree δ ≥ 2. Then,

−→γ ID(LD) = |A(D)| − |V (D)|.
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