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Abstract
This work provides a new methodology based on a statistical downscaling with a perfect prognosis
approach to produce seasonal predictions of near-surface wind speeds at the local scale. Hybrid
predictions combine a dynamical prediction of the four main Euro-Atlantic Teleconnections
(EATC) and a multilinear statistical regression, which is fitted with observations and includes the
EATC as predictors. Once generated, the skill of the hybrid predictions is assessed at 17 tall tower
locations in Europe targeting the winter season. For comparative purposes, hybrid predictions have
also been produced and assessed at a pan-European scale, using the ERA5 100 m wind speed as the
observational reference. Overall, results indicate that hybrid predictions outperform the dynamical
predictions of near-surface wind speeds, obtained from five prediction systems available through
the Climate Data Store of the Copernicus Climate Change Service. The performance of a
multi-system ensemble prediction has also been assessed. In all cases, the enhancement is
particularly noted in northern Europe. By being more capable of anticipating local wind speed
conditions in higher quality, hybrid predictions will boost the application of seasonal predictions
outside the field of pure climate research.

1. Introduction

Recent advances in the fields of climatemodelling and
seasonal prediction have resulted in skilful seasonal
predictions of surface variables over the extratrop-
ics (Merryfield et al 2020). This has, in turn, led
to the development of climate services that inform
weather-and-climate-vulnerable socio-economic sec-
tors of seasonal anomalies a few months ahead
(Buontempo et al 2018). The energy sector takes
advantage of such valuable information since energy
production and demand are strongly linked to cli-
mate variability. In particular, the renewable energy
industry can profit from seasonal predictions of sur-
face wind speed (Clark et al 2017, Torralba et al
2017) and wind power generation (Lledó et al 2019)
to anticipate revenues, balance electricity supply and
demand or schedule maintenance activities among
others. However, those predictions still suffer from
some limitations, mainly due to (1) the limited skill

levels on surface variables available from current sea-
sonal prediction systems and (2) its relatively coarse
spatial scales.

Generally, seasonal anomalies of atmospheric
variables arise from large-scale forcings that other
components of the Earth system exert as bound-
ary conditions, such as anomalies of sea ice extent,
sea surface temperature or soil moisture. These
boundary-condition forcings can be adequately
represented in coarse-scale coupled models—often
delivered in grids of tens of square kilometres—
leading to some skill in the predictions. However, the
absolute values that are experienced near the surface
at the local scales can be highly affected by local effects
and vary substantially even at short distances. Values
of surface temperature or precipitation are affected by
the local topography, particularly in complex-terrain
regions (e.g. Anders et al 2006). Near-surface wind
speeds are affected not only by topography but also
by surface roughness, buildings and obstacles. For
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instance, near-surface wind speed conditions can be
very different at the top of a ridge, at a mountain
pass or at a valley floor. These differences in mag-
nitude are especially relevant for deriving indicators
that are non-linear and therefore sensitive to absolute
magnitudes, such as the capacity factor (CF) of wind
power (Pickering et al 2020).

To transfer climate information from coarser to
finer scales, many downscaling techniques have been
developed and employed inweather and climate stud-
ies to refine model outputs. There are essentially two
different downscaling approaches. Firstly, dynam-
ical downscaling couples a Regional Climate Model
(RCM) to a Global Circulation Model (GCM) over
a limited region within the global domain, using the
data from the GCM as boundary conditions. The
computational costs of dynamical downscaling are
rather high and the additional skill is sometimes neg-
ligible (Robertson et al 2012), which explains its lim-
ited use in seasonal predictions (García-Díez et al
2015, Schwitalla et al 2020).

Secondly, statistical downscaling relies on the
assumption that a relationship exists between the
large-scale information provided by a GCM and the
fine-scale variable. Once a statistical relationship is
built, local values —predictands— are inferred using
large-scale information—predictors—. Then, future
dynamical predictions of the large-scale variables (i.e.
those generated using the physically-based equations
of the dynamics of the atmosphere) can be inserted as
predictors into the statistical relationship to produce
local-scale predictions. Statistical downscaling tech-
niques (see Gutierrez et al 2013 for a review) can be in
turn subdivided depending on whether the statistical
model is fitted using observational data for both pre-
dictors and predictands (known as Perfect Prognosis
or PP; Klein et al 1959) or using data from the GCM
itself (often referred to as Model Output Statistics or
MOS; Glahn and Lowry 1972).

The statistical downscaling approach is relat-
ively easy to implement with climate prediction sys-
tems containing several ensemble members and has
already been employed in some studies for downscal-
ing temperature and precipitation forecasts at sea-
sonal timescales (e.g. Pavan and Doblas-Reyes 2013,
Manzanas et al 2018). However, to the best of the
authors’ knowledge, no attempt has yet been made to
downscale seasonal predictions of wind speed.

The selection of the employed predictors is vital
for the success of the statistical downscaling method.
Not only do the predictors need to be strongly related
to the predictand, but also predictable from the
dynamical model. Teleconnection indices that sum-
marise the state of the atmospheric circulation are
optimal for this purpose. In this work, four Euro-
Atlantic Teleconnection (EATC) indices (namely the
North Atlantic Oscillation (NAO), East Atlantic (EA),
East Atlantic/Western Russia (EAWR) and Scand-
inavian Pattern (SCA)) are employed as predictors

to anticipate near-surface wind speed conditions in
Europe. Those teleconnection indices are strongly
related to wind speed conditions in Europe (Zubi-
ate et al 2017) and wind power generation (Yang et al
2020), and have been recently shown to be predictable
(Lledó et al 2020). Since the downscaled predictions
combine a dynamical forecast of a circulation variable
and a statistical relationship with a second variable
of interest, they are referred to as hybrid predictions
(see chapter 2 in WMO 2020), to differentiate them
from purely statistical seasonal forecasts that employ
observed values of potential forcing fields to derive
the predictions (Kämäräinen et al 2019). Hybrid pre-
dictions take advantage of the predictability of the
EATC indices from dynamical predictions, especially
in winter, and thus help to overcome limitation (1).
At the same time, the downscaling allows for trans-
ferring such information to a finer grid scale, circum-
venting limitation (2).

The objective of this work is to generate and assess
the quality of a hybrid seasonal prediction of near-
surface wind speeds and wind power CF by applying
a statistical downscaling with a PP approach to a set
of dynamical predictions of EATC indices. Sections 2
and 3 describe the data and methodology employed,
respectively. Results are presented in section 4 while
conclusions are drawn in section 5.

2. Datasets

The hindcasts from five different operationally-
produced seasonal prediction systems have been used
in this study: the System2 from Deutscher Wet-
terdienst (DWD2, Deutscher Wetterdienst 2019), the
GloSea5-GC2 from the UK Met Office (GS5GC2,
Maclachlan et al 2015, Williams et al 2015), the
System 6 from Météo France (MF6, Dorel et al
2017), the SEAS5 (Johnson et al 2019) from the
European Centre for Medium-Range Weather Fore-
casts (ECMWF) and the Seasonal Prediction System
3 from Centro Euro-Mediterraneo sui Cambiamenti
Climatici (SPS3, Sanna et al 2017). All five prediction
systems have been retrieved from the Climate Data
Store data portal in a regular grid of 1◦ × 1◦ of spa-
tial resolution and covering the 1993–2016 period.
Particular details of the employed seasonal prediction
systems, as well as the two observational references,
can be found in table 1.

The ERA5 HRES (hereafter ERA5) reanalysis
dataset (Hersbach et al 2020) produced by the
ECMWF has been used as the gridded observational
reference. The dataset has been downloaded through
the ECMWF retrieval system (MARS) in its native
grid (i.e. 0.3◦ approximately), and at 1-hourly time
resolution. Then, the ERA5data has been horizontally
interpolated using a conservative approach to match
the spatial resolution of the predictions, allowing for
bias adjustment and verification at the grid level.

2



Environ. Res. Lett. 16 (2021) 054010 J Ramon et al

Table 1. Specific details of the datasets employed.

Dataset Type of dataset Available period Time resolution
Horizontal grid
spacing

Ensemble
members

DWD2 Seasonal prediction 1993–2016 6 h 1◦ × 1◦ 30
GS5GC2 Seasonal prediction 1993–2016 6 h 1◦ × 1◦ 28
MF6 Seasonal prediction 1993–2016 6 h 1◦ × 1◦ 25
SEAS5 Seasonal prediction 1993–2016 6 h 1◦ × 1◦ 25
SPS3 Seasonal prediction 1993–2016 6 h 1◦ × 1◦ 40
multi-system Seasonal prediction 1993–2016 Seasonal 1◦ × 1◦ 148
ERA5 Reanalysis 1950–present Hourly 0.3◦ × 0.3◦ —
TTD In-situ observations 1984–2017 Sub-hourly Irregular —

Table 2. Particular details of the 17 tall towers employed in this study. r represents the Pearson correlation coefficient between the
seasonal tall tower winds and the ERA5 100 m winds from closest grid point to each tall tower location.

ID Name
Longitude
(deg east)

Latitude
(deg north) Offshore

Measuring
height (m)

Original
time spana r

T1 Braschaat 4.52 51.31 No 41 1996–2015 0.82
T2 Cabauw 4.92 51.97 No 80 1986–2017 0.91
T3 Cardington −0.42 51.10 No 50 2004–2013 0.98
T4 Fino1 6.59 55.01 Yes 100 2004–2017 0.96
T5 Fino2 13.15 55.01 Yes 102 2007–2017 0.90
T6 Fino3 7.16 55.20 Yes 100 2009–2017 0.94
T7 Greater Gabbard

MMZ
1.92 51.94 Yes 82 2005–2015 0.97

T8 Hamburg
University

10.10 53.52 No 110 2004–2017 0.93

T9 Hegyhatsal 16.65 49.96 No 115 1994–2016 0.21b

T10 Inner Dowsing 0.44 53.13 Yes 43 1999–2008 0.83
T11 Juelich 6.22 50.93 No 100 2011–2017 0.88
T12 Lindenberg 14.12 52.17 No 98 1999–2017 0.98
T13 Lutjewad 6.35 53.40 No 60 2001–2017 0.89
T14 Malin Head −7.33 55.35 No 22 1988–2017 0.89
T15 Obninsk 36.60 55.11 No 121 2007–2016 0.90
T16 Puijo 27.65 62.91 No 75 2005–2016 0.76
T17 Sodankyla 26.64 67.36 No 24 2000–2015 0.83
a May contain no-data periods.
b T9 will not be included in the results.

At the local scale, wind speeds measured in-situ
at 17 tall tower locations over Europe have been
considered (see details in table 2 and their spa-
tial distribution in figure S1 (available online at
stacks.iop.org/ERL/16/054010/mmedia)). Those
observations have been obtained from the Tall
Tower Dataset (TTD, Ramon et al 2020), a quality-
controlled collection of wind data taken at tall met-
eorological masts of 20 to more than 200 m height.
Since these structures measure winds simultaneously
at several heights above ground, we have selected at
each of the 17 locations the wind speed series which
is closest to the 100-metre height. Modern wind tur-
bines are placed at those heights since the wind flow
is notably less affected by surface roughness than
at surface level. The 17 time series span from 6 to
30 years within the 1984–2017 period. To unify the
timespan of the series, and ensure the representative-
ness of the comparisons against predictions, the 17
time series have been averaged into hourly values and
reconstructed to cover the entire 1981–2017 period.
To this end, a Measure-Correlate-Predict approach

with a simple linear regression has been employed
(see Carta et al 2013 for further details), using as the
reference series the hourly 100 m wind series of the
ERA5’s closest grid point to each tall tower location.

3. Methods

3.1. Hybrid predictions
Hybrid predictions for the boreal winter
(December–January–February, DJF) have been pro-
duced using the PP methodology as represented in
figure 1. Once the dynamical forecasts of the predict-
ors (i.e. the EATC indices) are generated, they are used
in a statistical model that accounts for variations in
wind speed related to variations in the EATC indices.
The statistical model has been previously built solely
on observations of wind speed and EATC indices. For
the purposes of our work, the PP approach represents
an advantage over MOS, because (1) it uses one
single statistical relationship that can be applied over
various dynamical prediction systems, and (2) the
amount of data available for fitting the relationship
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Figure 1. Schematic representation followed in the generation of the hybrid predictions.

is not limited to the length of the hindcast, but to
the timespan of the observational series (Marzban
et al 2006). A more precise description of the differ-
ent steps of the PP and the generation of the hybrid
predictions follows.

Firstly, four EATC indices are computed as
described in Lledó et al (2020). The EATC patterns
and indices have been derived from the 500 hPa geo-
potential height field anomalies employing a Rotated
Empirical Orthogonal Function (REOF) analysis
over the Euro-Atlantic domain [90◦ W–60◦ E; 20◦

N–80◦ N]. The four teleconnections obtained cor-
respond to the North Atlantic Oscillation (NAO),
East Atlantic (EA), East Atlantic/Western Russia
(EAWR) and Scandinavian pattern (SCA). This pro-
cedure has been followed to obtain both observed—
using the ERA5 anomalies—and predicted—
employing the anomalies from DWD2, GS5GC2,
MF6, SEAS5 and SPS3—EATC indices. The observed
EATC patterns are shown in figure 1 in Lledó
et al (2020).

Then, a statistical model that relates seasonal
anomalies of near-surface wind speed and the EATC
indices is built from historical observations. A very
simple multilinear regression model (equation (1))
has been used here, due to the rather small sample

size available for fitting the model. This method has
already been used in Rust et al (2015) to model
European temperatures from several teleconnections.
A model that expresses anomalies of near-surface
wind speeds (predictand: w ′) as a linear combin-
ation of the EATC indices (predictors: NAO, EA,
EAWR, SCA) is built separately at each grid point
or tall tower location (x, y). The fit adjustment para-
meters an are obtained employing an ordinary least
squares method (see their spatial distribution in
figure S2). The reference period that is used in all the
model fits is 1981–2017. Additionally in the genera-
tion of the multilinear models, a leave-one-out cross-
validation approach has been considered. The EATC
observed indices and its corresponding wind obser-
vation of the year under consideration are excluded
from the sample used to estimate the fit adjustment
parameters. In this way, they can be used later for
verification

w ′(x,y, t) = a0(x,y)+ a1(x,y) ∗NAO(t)

+ a2(x,y) ∗ EA(t)+ a3(x,y) ∗ EAWR(t)

+ a4(x,y) ∗ SCA(t). (1)

To avoid overfitting in the statistical model, a
selection of the best subset of predictors that retains
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Figure 2. (a) Coefficient of determination R2 of the linear fit between the ERA5 near-surface wind anomalies and the EATCs over
the 1981–2017 period. Time resolution is seasonal and the map corresponds to DJF. The higher the R2, the better are surface
winds explained by the EATCs. Grey-masked areas show R2 values lower than 0.3. (b) Interannual variability of ERA5
near-surface boreal-winter wind speeds over the 1981–2017 period. Interannual variability has been computed as the standard
deviation of all boreal-winter seasonal means of the years under consideration.

the maximum information in the model without
necessarily keeping all the predictors is made at each
location by using the Akaike Information Criterion
and a backward stepwise selection (James et al 2013).
Albeit using a relatively simple statistical model, the
coefficient of determination (R2) of the fit presented
in figure 2(a) shows that the EATCs explain most of
the year-to-year variability (also known as interan-
nual variability) in the near-surface winds over exten-
ded areas of Europe (figure 2(b)).

In order to obtain an ensemble of hybrid near-
surface wind anomaly predictions, the individual-
member predictions of EATC indices are inserted
into the multi-linear regressions, both at gridded
and local scales. The seasonal ensemble predictions
of the EATC indices are initialised at the begin-
ning of winter (December) and one, two and three
months in advance (i.e. November, October and
September, respectively). In this work, lead-zero pre-
dictions will refer to those initialised in Decem-
ber, lead-one predictions will be those initialised in
November, and so on. Finally, all members from the
five prediction system are pooled together to create
a new dataset, the multi-system henceforth, with a
total of 148members. Multi-system ensemble predic-
tions can outperform individual-system predictions
(Athanasiadis et al 2017).

3.2. Wind capacity factor
The wind-based CF index is obtained using the
6 h wind speed data from the predictions, and the
1-hourly winds from the ERA5 and TTD. The con-
version between wind speed and power output has
been made employing a power curve, which takes
into account the specific efficiency characteristics of
the wind turbine. Specifically, a power curve for
the turbine Type I defined in the IEC-61400-12-1
international standard has been considered (see IEC
2017 and Lledó et al 2019 for further information).

Although this turbine type might not be the most
suitable for all the investigated locations, it serves the
purpose of investigating whether the non-linearities
of its power curve affect the quality of the hybrid pre-
dictions. Once the conversion is made, CF values are
obtained dividing by the nominal power capacity of
the turbine. Lastly, seasonal anomalies are calculated.

Hybrid predictions of CF, which might be of
particular interest at a turbine or wind farm level
within the wind industry, are studied in detail at one
tall tower location where local wind effects repres-
ent a huge proportion of the seasonal mean wind
speed value, and subsequently the seasonal CF value.
The relatively low r obtained for Puijo tall tower
(T16, table 2) envisages that local wind effects are
likely to occur there, and a comparison against a sur-
face station located two kilometres away reveals so
(Leskinen et al 2009).

3.3. Verificationmetrics
The quality of the hybrid predictions has been
assessed employing both gridded and local-scale
observations. Multiple verification scores have been
considered to account for different aspects of forecast
quality: association, discrimination and reliability
(Jolliffe and Stephenson 2012, Mason 2018). In some
of those scores, the performance of the hybrid predic-
tions is compared to that of a benchmark prediction.
Two different benchmarks have been employed: the
climatological forecast (i.e. a 33% of probability for
all tercile categories) and the dynamical predictions of
near-surface wind speed from the considered systems
(table 1). Skill scores using the climatological forecast
as a reference are identified with the sub-index cwhile
those using the dynamical prediction use d.

To prepare the dynamical prediction benchmark,
seasonal anomalies of surface (10 m) wind speeds
for the 1993–2016 period have been obtained at
gridded and local scales (in the latter case using a
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bilinear interpolation) and then bias-adjusted using a
simple bias correction approach (Torralba et al 2017).
The method adjusts predictions to have an equi-
valent standard deviation and mean to that of the
reference dataset, which has been the ERA5 reana-
lysis near-surface wind speeds. A leave-one-out cross-
validation approach has been again used: the predic-
tion to be adjusted and its corresponding observation
are excluded from the sample used to estimate the
adjustment parameters (see equations (1)–(4) in Tor-
ralba et al 2017). The multi-system of the dynamical
predictions is also generated by pooling together all
the bias-corrected anomalies from the five prediction
systems.

The considered scores for the skill assessment are
both deterministic and probabilistic, and the R pack-
ages easyVerification and SpecsVerification have been
used for their computation:

• The Ensemble Mean Correlation (EMC) quanti-
fies the association (i.e. linear dependency) between
observed and predicted wind speeds. The EMC
ranges from −1 to 1, with a value of 1 indicating
a perfect association. A Student’s t-test at the 95%
of confidence level has been applied to emphasise
statistically significant areas.

• The Relative Operating Characteristic Skill Score
(ROCSS) assesses the discrimination of probabil-
istic single-category forecasts. Here, predictions are
prepared in the formof probability of occurrence of
three categories defined by the 33rd and 66th per-
centiles of the hindcast values. The ROCSS meas-
ures the proportion of hits (i.e. correct predictions)
versus false alarms (i.e. non-occurrences that were
incorrectly predicted) for each of the three categor-
ies. The ROCSS ranges from−1 to 1, with negative
values indicating a weaker discrimination capacity
than that of the benchmark prediction.

• The Rank Histogram (RH) tests the reliability of
the probabilistic predictions, by comparing how
the observations rank with respect to the ensemble
members of the predictions. Reliable ensemble pre-
dictions show a flat RH, which has been statistic-
ally assessed with a decomposed Pearson’sχ2 test as
in Jolliffe and Primo (2008). When the sample size
is small in comparison with the number of ranks
available (i.e. the ensemble size), non-flat rank his-
tograms are likely to occur due to randomness,
which is not desirable. To prevent this from hap-
pening, counts from every ten adjacent bins have
been grouped so that the number of ranks has been
reduced by a factor of ten.

• The Continuous Ranked Probability Skill Score
(CRPSS) measures the quality of the cumulat-
ive forecast probability distribution by measuring
the distance between the observed and predicted
probability distributions. The CRPSS penalises
both reliability and resolution—the latter is closely
related to discrimination—errors. It ranges from

−Inf to 1, and positive values indicate an increased
skill compared to the benchmark forecast. The
Diebold–Mariano test (Diebold andMariano 1995)
has been applied to explore the statistical signi-
ficance of the differences between the CRPSSs of
hybrid and dynamical predictions.

Finally, areas where the hybrid model shows a
poor performance based on the R2 of the statistical
fit being smaller than 0.3—grey areas in figure 2(a)—
have been omitted in the verification. Those areas are
located around the Black Sea and scattered around the
northernMediterranean,where low values of interan-
nual variability are noted (figure 2(b)). There, winds
respond mainly to mesoscale systems rather than
large-scale circulation patterns, which may explain
the inability of the hybrid model in reproducing the
year-to-year variations of near-surface wind speeds.
T9 has been omitted in the results as well since the
local winds correlate very poorlywith the ERA5winds
(table 2), thus not giving robustness to the Measure-
Correlate-Predict reconstruction.

4. Results

In the following sections, we analyse the skill of
the hybrid predictions at the local scale. We com-
plement these results with the verification of grid-
scale hybrid forecasts (i.e. adjusted to reanalysis data
instead of tower observations) at a pan-European
scale [27◦ N–72◦ N; 22◦ W–45◦ E]. This is import-
ant because potential users of hybrid predictions may
face the limitation of the unavailability of in-situ local
data needed to generate the predictions. The verific-
ation focuses on three key attributes of a probabil-
istic prediction: association, discrimination and reli-
ability. For the sake of simplicity, results are shown
only for the multi-system prediction. Remaining res-
ults for the individual systems are available from the
authors upon request. We focus on the winter season,
when wind speed variability is highest, and so is the
importance of its anticipation.

4.1. Do hybrid predictions improve their
dynamical counterparts?
The association between the observed and hybrid-
predicted near-surface wind anomalies is measured
by the EMC and illustrated in figures 3(a)–(d) at both
local and grid scales. The EMC is a deterministic met-
ric which is insensitive to forecast errors in the mag-
nitudes and the spread of the ensemble, so only some
association with the observations is required for a
forecast to be skilful. In this regard, the negative cor-
relation values noted across the Mediterranean basin
anticipate a poor performance of the hybrid predic-
tion over there. Conversely, positive and significant
correlations above 0.6 have been obtained for lead
month zero across northern Europe (figure 3(a)).
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Figure 3. (a)–(d) EMC of the multi-system near-surface wind speed hybrid predictions over Europe for DJF. Black dots highlight
areas statistically significant at the 95% of confidence level. (e)–(h) Differences between the EMC of the hybrid predictions and
the EMC of the dynamical predictions. Filled points indicate the EMC of the hybrid predictions ((a)–(d)) and the differences in
EMC ((e)–(h)) at the 16 tall tower locations. Grey-masked areas indicate regions where the R2 of the multi-linear regression is
below 0.3.
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Figure 4. EMC of the DWD2, GS5GC2, MF6, SEAS5 and SPS3 near-surface wind speed predictions at the 16 tall tower locations
for DJF. The circle of the lollipop shows the EMC of the hybrid prediction, whereas the opposite end represents the EMC of the
dynamical prediction. Right-side-up lollipops show that the hybrid prediction outperforms its dynamical counterpart, and
vice-versa. Predictions were initialised in December (lead month 0, first row), November (lead month 1, second row), October
(lead month 2, third row) and September (lead month 3, fourth row).

At longer leads, correlations decrease but still
depict positive values above 0.4 in the British Isles
and the east of the Baltic sea. For the latter region,
we observe increased and statistically significant EMC
values at lead month two, which are not seen at
lead months one and three. This improvement in
the hybrid prediction at that particular lead month
responds to an increase in the skill values of the
EATC predictions. More specifically, the SCA index
has the greatest weight in the hybrid model over
that region (figure S2), and shows a relative max-
imum in correlation at lead month two (i.e. 0.42; see
table S1). The differences in EMC between the hybrid
and dynamical predictions (figures 3(e)–(h)) reveal
that the highest gains in skill are seen at the longest
leads. While the dynamical forecast offers skill only
at leads zero and one (see figure S3), the hybrid pre-
diction shows positive EMCs at all lead times. The
increased scores for predictions based on the circu-
lation patterns in the hybrid method appear to match
the increase in skill seen in other recent studies (e.g.
Scaife et al 2014, Baker et al 2017).

Results are similar at the local scale. The lollipop
plots (figure 4) depict the most noticeable differences
between hybrid and dynamical predictions at longer
leads, where the improvement of the hybrid predic-
tion is substantial for all systems but the SPS3.

The sensitivity of the predictions to discriminate
between observations belonging to different categor-
ies has been exploredwith theROCSS. TheROCSSc of
the lower-tercile category for the multi-system hybrid

and dynamical predictions is compared in figure 5.
While both hybrid and dynamical predictions show
similar skill score values at lead zero (panel (a); the
density is centred around the y= x line), it is noted
that hybrid predictions enhance the discrimination
ability at leads one, two and three (panels (b), (c) and
(d); most of the density is found above the y= x line).
Furthermore, this improvement is not only restricted
to a particular region but positive ROCSSd values are
observed all over Europe (not shown).

Analogous results are obtained for the predic-
tions of the upper-tercile category (figure S4). On
the other hand, neither hybrid nor dynamical pre-
dictions show skill for the central-tercile category
(figure S5). The lack of skill in predictions for
near-normal is a recurrent issue which has already
been addressed in the literature and stems from
the definition of the skill scores itself, thus not
requiring any physical or dynamical explanation
(Van Den Dool and Toth 1991).

To gain more insight into the performance of
the hybrid predictions at the local scale, we have
selected four tall tower locations to evaluate the
reliability of the ensemble predictions by explor-
ing their rank histograms (figure 6). The set of
four locations include T2 (Cabauw, The Nether-
lands), T5 (Fino2, Germany), T15 (Obninsk, Rus-
sian Federation) and T16 (Puijo, Finland), which
are located in both continental—flat and com-
plex terrain—and offshore platforms across northern
Europe.
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Figure 5. Two-dimensional density plots showing the ROCSSc of the lower-tercile hybrid and dynamical predictions from the
multi-system at all the grid points within the pan-European domain. On a linear scale, greens represent the highest density of
points, whereas purples depict the lowest density estimates. The region above the y= x dashed line indicates an improvement of
ROCSSc of the hybrid forecast over its dynamical counterpart. Predictions were initialised in (a) December (lead month 0),
(b) November (lead month 1), (c) October (lead month 2) and (d) September (lead month 3). Grid points where the R2 of the
multi-linear regression is below 0.3 have not been included.

Focusing on lead zero, the RHs of the hybrid pre-
dictions at T2 and T5 (figures 6(a) and (b), respect-
ively) are both U-shaped, mirroring an overpopu-
lation of the outermost ranks which can occur due
to either a lack of ensemble mean signal or a lack
of spread around the ensemble mean (Eade et al
2014) in the hybrid prediction. The non-flatness of
the RH is statistically supported by the p-values of the
Jolliffe–Primo statistical test—at the 95% of confid-
ence level. Conversely, the RH at T15 (figure 6(c))
depicts an opposite convexity (i.e. overdispersion),
but this outcome is not statistically significant. These
results envisage a poor reliability of the multi-system
hybrid predictions at these particular locations, which
can also be noted for the individual systems (figures
S6–S10), especially at T5. The unreliability of the
multi-system hybrid predictions is observed in the
RHs of 10 out of the 16 tall tower locations, while
the other 6 locations show a flatter plot such as that
observed at T16 (figure 6(d)). This indicates that
the probability distribution of the ensemble at these
six locations is in agreement with the observed val-
ues. Similar results are obtained for the other leads

(not shown). The performance of the hybrid predic-
tions could be improved further by employing calib-
ration methods (Doblas-Reyes et al 2005, Manzanas
et al 2019) or performing variance corrections to the
ensemble mean and members (Eade et al 2014).

To complete the skill assessment we compute the
CRPSS, a restrictive quality metric of the ensemble
distribution that accounts for both discrimination
and reliability at the same time. Figure 7 presents
the CRPSSd, highlighting areas where the hybrid
approach improves (positive values) or degrades
(negative values) the dynamical prediction. In gen-
eral, the results match those discussed for the EMC
and ROCSS (figures 3 and 5, respectively) with the
highest gains seen for leads two and three. How-
ever, the corresponding CRPSSc values of the hybrid
predictions are mostly negative (figure S11). Positive
CRPSSc values are only noted for the lead-zero pre-
dictions and, in the case of MF6, the hybrid forecast
is the only that offers skill (figure S12).

According to Mason (2004), some scores such
as the Ranked Probability Skill Score—and thus the
CRPSS—are often too harsh when the climatological
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Figure 6. Rank histograms of the lead-zero multi-system near-surface wind speed hybrid predictions for DJF at (a) T2 [Cabauw;
4.92◦ E, 51.97◦ N], (b) T5 [Fino2; 13.15◦ E, 55.01◦ N], (c) T15 [Obninsk; 36.60◦ E, 55.11◦ N] and (d) T16 [Puijo; 27.65◦ E,
62.91◦ N] tall tower locations. The p-value of the Jolliffe–Primo test statistic for convexity under the null hypothesis of a flat rank
histogram is indicated.

forecast is considered as benchmark. This gives high
chances of getting negative values even when pre-
dictions provide useful information. Such is the case
observed here: although the CRPSSc is generally neg-
ative, we observe gains in association and discrim-
ination and, in some cases, hybrid predictions are
reliable. Therefore, one should not rely solely on a
single skill score but take into account the whole
verification.

4.2. Can hybrid predictions always be trusted at a
local scale?
At this point in the results, it has been shown that
hybrid predictions improve the dynamical in many
aspects, primarily in northern Europe. However, little
has been discussed about how hybrid predictions per-
form at the micro-scale level, especially when local
wind effects occur. In the following, we illustrate how
hybrid predictions could be applied to predict the
absolute values of the wind CF at a location where
local wind effects have been reported, and quantify
the error made when reanalysis gridded data—which
sometimes misrepresent those effects—are used to fit
the hybrid model.

The ensemble predictions of CF for Puijo site
are presented in figure 8 in the form of Probability
Density Functions (PDF).Wenote that the direct out-
put of the grid-scale hybrid predictions is consider-
ably biased, being the seasonal mean CF systemat-
ically underestimated (figure 8(a)). A CRPSSc value
of −4.215 indicates that the prediction is completely
useless. A later bias adjustment of this prediction
(figure 8(b)) removes the bias and adjusts the variab-
ility to that observed at Puijo—though the skill score
of the prediction is still negative (−0.046), indicating
a similar performance to that of a climatological fore-
cast. Finally, the hybrid prediction fitted with in-situ
data also adjusts well to the observed CFs, and the
CRPSS increases a bit more, up to a positive value of
0.0007, indicating that the use of local observations
with the hybrid method provides the most accurate
prediction of seasonal CF values.

The important bias in the grid-scale predictions
in figure 8(a) responds to the fact that gridded data
are a representation of the average value within a
grid cell of hundreds of square kilometres. Therefore,
values of variables with high spatial variability such
as wind speed in complex terrain regions may dif-
fer substantially from the actual values observed at
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Figure 7. CRPSSd of the multi-system near-surface wind speed predictions over Europe for DJF. Predictions were initialised in (a)
December (lead month 0), (b) November (lead month 1), (c) October (lead month 2) and (d) September (lead month 3). Filled
points indicate the CRPSSd of the predictions at the 16 tall tower locations. Black dots highlight areas statistically significant at the
95% of confidence level. Grey-masked areas indicate regions where the R2 of the multi-linear regression is below 0.3.

different locations within the grid cell. This misrep-
resentation of local values is said to produce repres-
entativeness errors. In the case of wind, local effects
such as katabatic winds over complex terrain regions
may account for a large proportion of the mean wind
speed value, thus enlarging the representativeness
error of thewind speeds in the reanalysis. These errors
are propagated to the CF values, and eventually to the
hybrid predictions. Hence, reanalysis gridded data are
sometimes not suitable to generate hybrid predictions
because these datasets are unable to represent local
wind effects occurring at much finer scales, such as
those observed at Puijo. A later bias-correction may
enhance the grid-scale hybrid predictions, but this
post-processing can only be carried out where in-situ
measurements are available.

5. Summary and conclusions

This research proposes and applies a methodology to
overcome two main restraints of seasonal predictions
that jeopardises every decision based upon them. The
first impediment is the limited skill levels observed in
the prediction of surface variables such as wind speed,
while the second is the lack of adaptation to the local
scale due to the relatively coarse scales in which fore-
casts are delivered.

Results show that hybrid predictions of near-
surface wind speed based on a PP statistical
downscaling technique help reduce the effects of both
issues simultaneously. Using the indices of the four

main EATCs as predictors, the hybrid predictions
proposed here have been shown to improve the skill
of the same predictions obtained from a dynamical
approach. Besides, the statistical downscaling has
enabled to transfer the coarse-scale predictions to a
station-scale level, and the comparison with station-
based observations has revealed certain level of agree-
ment even when local wind effects play an important
role. In particular:

• Hybrid predictions enhance the skill scores of
the dynamical predictions at both local and pan-
European scales.

• In general, hybrid predictions are able to provide
skill at leads two and three, while dynamical fore-
casts cannot.

• The highest gains in quality are observed in the
association with the observations and the discrim-
ination against the different observed outcomes.

• Although hybrid predictions can also be built using
reanalyses, it is advisable not to use gridded data
to build the statistical model over areas where local
effects are considerable.

• EATC predictions—and thus hybrid predictions—
provide no added value in theMediterranean basin.

Hybrid forecasts foster the information available
in the EATC predictions to anticipate near-surface
wind speed or CF anomalies. The derived predic-
tions are consistent with the main features of the
atmospheric circulation, which are summarised in

11



Environ. Res. Lett. 16 (2021) 054010 J Ramon et al

Figure 8. Lead-three hybrid predictions generated using (a) grid-scale data, (b) grid-scale data followed by a bias-correction with
local observations, and (c) local-scale observations at Puijo tall tower [27.65◦ E, 62.91◦ N]. The multi-system predictions are
presented in the form of probabilities for the three tercile categories for the 2005–2016 period. The CRPSSc values are calculated
over the 1993–2016 hindcast period. The probability density functions have been built by dressing the ensemble members with
the kernel density estimate method.

the status of the EATCs. This provides interpretabil-
ity of the results, which enables users to make more
informed decisions. For example, one can link higher
winds across the UK and the North Sea to a positive
NAO phase.

The wind power industry is one of the potential
users that can profit most from hybrid predictions.
Wind and CF forecasts have been proven to offer use-
ful results at a wind farm scale, provided that site
observations fromametmast are available.Moreover,
the skilfulness is not restricted to the shortest leads—
as it is often the case of the dynamical forecasts—
but hybrid predictions issued two or three months in

advance can already anticipate understanding of the
conditions for the coming season.

The PP is a simple and effective approach but
also suffers from some limitations. For instance, the
proposed hybrid model does not account for the
biases in the EATC predictions. Future workmay look
into existing post-processingmethods like calibration
techniques to bias-correct the model output. Besides,
the optimal number of EATCs employed to explain
the wind variability can be tuned for each region as in
Bastien (2018) (chapter 3), who found varying results
over France. Investigating whether these improve-
ments lead to a marginal or substantial increase in
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skill would be valuable for any potential user of the
hybrid predictions.
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