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ABSTRACT. We describe a recent method to show instability in Hamiltonian
systems. The main hypothesis of the method is that some explicit transversal-
ity conditions — which can be verified in concrete systems by finite calculations
— are satisfied.

In particular, for several types of perturbations of integrable Hamiltonian
systems, the hypothesis can be verified by just checking that some Melnikov-
type integrals have non-degenerate zeros. This holds for Baire generic sets
of perturbations in the C"-topology, for r € [3,00) U {w}. Our method does
not require that the unperturbed Hamiltonian system is convex, or that the
perturbation is polynomial, which are non-generic properties.

Provided that the transversality conditions are verified, one concludes the
existence of orbits which change the action coordinate by a quantity inde-
pendent of the size of the perturbation. In fact, one can obtain orbits that
follow any path in action space, up to an error decreasing with the size of the
perturbation.

1. Introduction and informal description. The goal of this expository paper
is to describe some recent developments in the geometric program for Arnol’d dif-
fusion. These results are presented in Sections 3.1 and 3.2. We also announce some
new results in Section 3.3. For the moment, we just indicate that the problem of
Arnol’d diffusion refers to situations in which small perturbations of a Hamiltonian
system accumulate over time to produce chaotic motions at a scale much larger
than the size of the perturbation.
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In the geometric program, the first step is to identify geometric structures whose
presence implies the existence of very rich sets of motions. The second step is
to develop tools which allow to verify the existence of such structures in concrete
problems of interest (e.g. in astrodynamics) or in generic systems.

The fact that some simple structures — whose existence can be established by a
finite calculation —, lead to a rich set of orbits has a long history in dynamics. A
famous example is the result [51, 15, 54] that a transverse homoclinic intersection
implies the existence of infinitely many periodic orbits, as well as of other dynamical
features such as horseshoes etc. Of course, by now there are many other results and
a variety of tools to establish the existence of features in concrete systems (fixed
point equations with interval arithmetic, combinatorial topology, etc) or in generic
systems.

For the problem of Arnold diffusion, the first geometric structures proposed were
chains of whiskered tori [1], with transverse intersection between the stable mani-
folds and the unstable manifolds of nearby tori. By now, whiskered tori have been
supplemented by several other geometric objects that can be more effective for
diffusion.

In this paper, we focus on the use of normally hyperbolic invariant manifolds
(NHIM’s). See Section 2.1 for the definition.

There are several mechanisms of Arnold diffusion based on NHIM’s. Since
NHIM’s exist even in non-Hamiltonian systems, these mechanisms apply to more
general systems (e.g., magnetic fields [44] or dissipative systems [37]). The mech-
anisms based on NHIM’s can accommodate also general time-dependent perturba-
tions (e.g., quasiperiodic [19], or time-recurrent [30]). In many cases, the use of
NHIM’s leads to optimal estimates on the diffusion time, — i.e., the time it takes
an orbit to change its action coordinate by O(1) with respect to the size of the
perturbation —, and can show that the set of diffusing orbits has large Hausdorff
dimension. See [25, 26, 39, 40, 55, 56, 57, 50, 10].

Mechanisms based on NHIM’s can be verified in concrete systems via non-
perturbative methods — e.g., numerical computations [11, 23, 10, 17, 35] —, and
can be applied in astrodynamics and space mission design.

This paper does not aim to be a review paper and its only goal is to present the
ideas in a recent geometric mechanism [34].

The basic idea of the mechanism described here is the following. The NHIM’s
have stable and unstable manifolds. When these stable and unstable manifolds
intersect transversally — one of the main hypothesis in the mechanism — they gener-
ate families of (homoclinic) orbits that converge asymptotically to the NHIM both
in the future and in the past. If one has many homoclinic orbits, then one can
produce pseudo-orbits of the system by alternatively combining long segments of
homoclinic excursions and long orbits in the NHIM. In the mathematical treatment
of Arnol’d diffusion, a good deal of work is devoted to produce true orbits out of the
pseudo-orbits. In applications to space mission design, pseudo-orbits that require
small maneuvers are acceptable. For example, one can have a spacecraft follow
one segment of a homoclinic orbit at zero cost, and at the end of that segment
use a low-cost maneuver to jump to another segment of a homoclinic orbit. Such
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a low-cost maneuver would replace the orbit in the NHIM that is required in the
theoretical treatment.'.

The first result — see Theorem 3.1 — is that, when the intersections are transverse
(plus some other transversality properties), one can shadow these pseudo-orbits
(i.e., show that there are true orbits that follow them) provided that each of the
orbit segments is long enough.

One convenient tool to quantify the homoclinic excursions and putting them in
the same footing as the orbits in the manifold is the scattering map (discussed in
more detail in Section 2.2). The main idea is that if we consider a long segment of
a homoclinic orbit to the NHIM, in the future it resembles the orbit of a point in
the NHIM and in the past it resembles another orbit. The orbit mimicked in the
future may be different from the orbit mimicked in the past. The scattering map
gives the asymptotic orbit in the future as a function of the asymptotic orbit in the
past. If we denote the scattering map by o, a long segment of the homoclinic orbit
will be in a neighborhood of f~¥(z) at time —N and will be in a neighborhood of
(fNoo)(x) at time N. The content of Theorem 3.1 is that we can concatenate such
excursions.

The power of the language of scattering maps comes from the fact that, as a con-
sequence of Theorem 3.1, we can think of them as generators of a second dynamics,
not just as book-keeping devices. The dynamics generated by the scattering map,
however, allows to obtain consequences for the original dynamics. In Corollary 1,
we obtain that if the system has recurrence, one can shadow orbits of the scattering
map itself. Moreover, we present a dichotomy: either the dynamics in the NHIM is
unbounded, or the system has recurrence and one can shadow the scattering map
itself.

The second result — see Theorem 3.2 — is to show that, under some mild extra
conditions, for nearly integrable Hamiltonian systems the orbits constructed above
have large drift in the action coordinates. The precise statements and the proofs
are contained in [34].

One remarkable aspect of the new developments is that there is almost no in-
formation required on the dynamics on the NHIM (just recurrence is more than
enough). All the hypotheses used in the new mechanism regard properties of the
family of homoclinic orbits.

It is important to note that the hypothesis on the existence of intersections of
the stable and unstable manifolds of the NHIM, and the hypothesis on the family of
homoclinic orbits (see Section 2.2) are transversality conditions, hence they are very
robust and very generic. The use of symplectic properties is rather minimal, mainly
that, in the symplectic case, the Melnikov potential has always critical points. If
these points are non-degenerate, they give the transverse intersection between the
manifolds.

We also note that the existence of NHIM’s and homoclinic intersections are rather
‘soft” methods which work with low regularity and even in infinite dimensional
systems. The present method does not rely on sophisticated tools such as KAM
theory, Aubry-Mather theory, etc.

LOf course, to translate these ideas into commercial technology one needs to develop a theoret-
ical approach to optimize the maneuvers with respect to cost, time of flight, reliability, etc., which
are deep mathematical problems now being actively explored.



4 MARIAN GIDEA AND RAFAEL DE LA LLAVE AND TERE M-SEARA

The new results Theorems 3.3 and 3.4 can take advantage of having several
scattering maps. If multiple scattering maps are available, we can shadow the
orbits of the iterated function system generated by the scattering maps.

Note that, even if the dynamics of one map can have difficulties moving long
distances (KAM and Nekhoroshev theorems), the dynamics of several maps do not
have such restrictions. It is very unusual to have objects that are invariant for two
maps.

As a consequence, we show that if the scattering vector fields (3.8) — the scat-
tering map for infinitesimal values of the perturbation parameter — satisfy some
non-degeneracy conditions that are generic, then there exist orbits that follow any
prescribed path in the action space. In particular, they visit any neighborhood of
a certain size — that goes to zero with the perturbation parameter — contained in a
domain independent of the perturbation.

In the rest of this exposition we will give some more details on the nature of the
hypotheses; they will typically be formulas that have to give a non-zero result. Such
hypotheses can be verified with finite computations to establish the conclusions in
concrete systems. The nature of the conditions is that they can be considered as
transversality conditions in a space of mappings, so one can obtain rather strong
genericity results.

For brevity, we can only hope to give the main ideas only of the skipping method
in [34]. We cannot even hope to make justice to the geometric program (see [22]
for an attempt to survey up to 2006, and [21] for extended list of references).

We omit important developments in the geometric program (e.g., the resonant
cylinders, the anti-integrable limit, the separatrix map, normally hyperbolic lami-
nations, etc.).

Of course, the geometric program is not the only program for the study of Arnol’d
diffusion in the pure mathematics literature. A variational program was formulated
in [45, 46, 47].

A hybrid program in which geometric methods are used to produce approximate
orbits and then variational methods to produce shadowing orbits was started in [2, 3]
using local variational methods. Global variational methods for shadowing have
been used in [12, 16, 4, 42]. Tt seems that variational methods require a Hamiltonian
structure, positive definiteness, and are restricted to time-periodic perturbations.

To simplify the exposition, we will present the general result Theorem 3.1 only
for the case of maps. This allows us to lower the dimension? of the phase space.
The corresponding results for flows can be deduced by the usual procedure of taking
surfaces of section, reduction to lower dimensional invariant manifolds, or proved
directly using the same ideas as for maps.

The rest of the results Theorems 3.2, 3.3 and 3.4 are presented for Hamiltonian
flows because in this case more explicit formulas and conditions can be given.

2. Preliminary notions. In this section, we collect some more or less standard
definitions and results so that we can make the exposition largely self-contained and
set the notation.

2.1. Standard definitions and results on normal hyperbolicity. Let f :
M — M be a C7"-diffeomorphism of a C"-differentiable manifold M. Following
[27, 28, 41, 49] we say that a A C M with f(A) = A is a normally hyperbolic

21t is well known that Arnol’d diffusion can only happen when the dimension of phase space is
6 for flows or 4 for maps.
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invariant manifold (NHIM) if there exists a splitting of the tangent bundle of T M
into D f-invariant sub-bundles

TM =E"®E*®TA,
and there exist a constant C' > 0 and rates
0<Ap<n-<1<ng<p, (2.1)
such that for all x € A we have
v € B & |DfF(v)|| < CAE o] for all k >0,
v e EY & |Dffw)] < Cu=F|v|| for all k <0, (2.2)
v e TA & IDFEW) < Coflloll, D w)I| < Cy=* o], for all k > 0.

Even if many standard references assume that A is compact, this is not needed if
one assumes that the definition of C" spaces includes uniform continuity and uniform
boundedness in the derivatives. [6, 5]. This allows to develop the theory even in
infinite dimensional problems. We note that the proof of Theorem 3.1 presented in
[34] based on nested balls works even in the infinite dimensional context.

If Df(x), Df~*(x) are uniformly bounded, we have that there are opposite in-
equalities, namely there exist A_ < Ay and g4 > p— such that

ve BS = ||[Dff(v)]| > ONE o] for all k > 0,

u k —k (2.3)

The normal hyperbolicity of A implies that there exist stable and unstable invariant
manifolds, W?#(A), W*(A) formed by points whose orbits are asymptotic to orbits
of points in A in the future or in the past.

In the case when f is symplectic, it is natural to consider hyperbolic manifolds
with the property that

n-=1/ny, Ay=1/p_, and A_ =1/py. (2.4)

As shown in [20], normally hyperbolic invariant manifolds for symplectic maps with
the restricted exponents as in (2.4) enjoy many geometric properties (e.g., the map
restricted to the manifold is symplectic).

Assume that there exists an integer ¢ > 0 such that

¢ < min(r,log )\:l/lognll, logn_/log py).

Then A is C’-differentiable, and its stable and unstable manifolds W#*(A), W*(A)
are C’-differentiable manifolds. See [53]. It is also well known that one cannot
expect, in general, more differentiability of the manifolds even if the map f is
analytic.

From now on, we assume that r and the hyperbolic structure are so that ¢ > 2.

The manifolds W#(A), W*(A) are foliated by stable and unstable manifolds
of points W#(z), W*(2') respectively, with z,z" € A, which are C"-differentiable
manifolds. The foliations are C*~!-differentiable. Again this regularity is known to
be optimal in general.

For each # € W*(A) there exists a unique z* € A such that z € W#*(z), and for
each x € W*(A) there exists a unique = € A such that x € W*(xz~). We define
the wave maps:

Qt o WS(A) = Aby QF (z) =aT,
Q" 0 W'A) - Aby Q (z)=x
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The maps Q1 and Q~ are C*~'-smooth.

The interpretation of the maps QF is that, given a point in the stable (unstable)
manifold, its orbit gets close very fast in the future (or in the past) to the orbit of
a unique point in A. The maps QF applied to a point x give the point z* in the
manifold whose orbit is asymptotic to the orbit of z (in the future or in the past).
Note that in the intersections of the stable and unstable manifolds, we can define
both Q.

2.1.1. Dependence on parameters in the theory of normally hyperbolic invariant
manifolds. For our purposes, it is important to note that these objects depend
smoothly on parameters. Given a family f., if fo admits a NHIM Ay, for each |e|
small enough, we can find a NHIM A, for f., which form a smooth family>.
Similarly, we obtain smooth dependence of the stable and unstable manifolds
and of the projections QF.
One way to obtain A is to find C*-smooth maps k. : Ag — M, with ky = Ida,,

ks(AO) = A57 (25)

so that k. is a diffeomorphism from Ag to A.. Indeed, there are many such k.’s.

In [20] it is shown that there is a very natural way to select the parametrization
ke; we require that it gives a graph of the hyperbolic variables over the central ones
(which give the dynamics in the NHIM):

d
— EoE! 2.
d€k€($> € x @ x ( 6)

where the splitting £ @ EY corresponds to the invariant manifold of f..

Notice that the mapping k. giving the parameterization is not uniquely defined,
since any reparametrization of Ay will also give (2.5). The normalization (2.6)
eliminates this possibility, so that the d% is determined uniquely. This makes it
plausible that it is a good normalization.

In [20] it is shown that k. satisfying (2.5) and (2.6) exists, is unique and, more
surprisingly, is symplectic if f is symplectic. That is, kXQx, = Qa,, where Q4 _, Q4,
denote the pull backs of the symplectic form on M to A., Ag, respectively. Hence,
if g. is symplectic on A (i.e g, = Q4_), then

(k2! 0 ge 0k)" Qay = Qn,. (2.7)

We note that the differentiability of these objects, which is established by the
general theory, has an important consequence. When we consider perturbation
theory, we start from the knowledge that the derivatives exist and we only need to
identify the formulas for what the derivatives are. Since we know that they exist,
this can be done by easy methods such as matching power expansions and solving
the resulting equations.

2.2. The scattering map. The scattering map is an effective way to quantify
homoclinic excursions, and enjoys remarkable geometric properties. See [20]. The
scattering map is defined on the NHIM, hence it makes it very comfortable to discuss
at the same time the homoclinic excursions and the orbits in the NHIM.

3The standard trick is to consider the extended map Fy(z,e) = (fo,€), F(x,e) = (fe,¢). If
Fy, F are C" close, the NHIM for F' is a smooth family of manifolds. The precise meaning of a
smooth family of manifolds is that they are jointly smooth in the parameter and in the coordinates
of the manifolds. This is straightforward but long to state and we refer to [20].
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To define the scattering map we assume that there exists a transverse homoclinic
manifold ' C M, which is C*~!-differentiable. This means that I' C W*(A)NW*(A)
and, for each z € T', we have the following transversality condition:

(A) The intersection of W3 and W} is transverse along I':

T, M = T,W*(A) + T,W*5(A),

T,T = T,W"(A) N T W*(A). (2.8)

Moreover, to define the scattering map we require two extra conditions:
(B) The manifold I' C W{NW} is transverse to the foliations of the stable/unstable
manifolds at each point:

T,W*(A) = T,W*(a) @ T,T,

_ (2.9)
T,W*(A) = T,W*(x") & T,T,

The final assumption for defining the scattering map is that
(C) The wave map Q~ : T'— Q~(T') C A is a C*~!-diffeomorphism.

Note that given (2.8) and (2.9), the invertibility condition happens in an open set.
When the above assumptions are fulfilled we refer to I' as a homoclinic channel,
and define the associated scattering map as

1

o =0to (7 |r)” (2.10)

If o' (#7) = o™, then there exits a unique 2 € I" such that W*(z~)NW?*(z )T =
{z}. Note that the backwards orbit f~™(z) of x in M is asymptotic to the backwards
orbit f~"™(z~) in A as n — oo, and the forward orbit f™(z) of x in M is asymptotic
to the forward orbit f™(z™) in A as m — +oo.

Informally, for the orbits in I', which are assymptotic in the future and in the past
to orbits in A, o' gives the future asymptotics as a function of the past asymptotics.

From (2.10) one can show that the scattering map is C*~!-differentiable.

Remark 1. For those readers with a background in mathematical physics, we note
that if we consider the dynamics on the NHIM as the free dynamics and the ho-
moclinic excursions as an interaction, this is quite analogous to the S matrix in
quantum mechanics and the QF are analogues of the Moeller wave operators. The-
orem 2.1 below is analogous to the unitarity of the S matrix and the perturbation
calculations in Section 2.2.1 are analogue to the Fermi Golden rule.

Remark 2. In general, the domain of the scattering map is not the whole manifold
A. Even if we have the transversality conditions for all ', there could be global
obstructions to considering the scattering map defined everywhere (monodromy).
Continuing it along a closed path we obtain a different map. See [18].

Of course, from the point of view of establishing Arnol’d diffusion, non-trivial
monodromy is a very favorable situation. It implies that there are several scattering
maps that one can use to build more pseudo-orbits. Indeed, as we will see, the
natural situation is that one has an infinite collection of scattering maps. In such
case, it can be natural to define a scattering relation that consists of all pairs
(x=,2%) for which o' (27) = 2T for some scattering map o'. See [36].

A remarkable result in [20] is:
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Theorem 2.1. If f is a symplectic map, A is a symplectic NHIM, and I" homoclinic
channel satisfying (2.8), (2.9), then the corresponding scattering map o' is also
symplectic.

2.2.1. Perturbative expansions of scattering map. If we consider families of maps
fe, the usual smooth dependence on parameters of transversal intersections shows
that the intersections I'. depend smoothly on parameters. The definition of the
scattering map (2.10) shows also that the scattering map associated to I'. depends
smoothly on €.

Via the parametrization k. of A, defined as in (2.5) and (2.6), we can express
the scattering map ol in terms of the coordinates on Ag as

se=se=klooleok, (2.11)

From Theorem 2.1 and from (2.7) we obtain that s, is a smooth family of symplec-

tic maps. Hence, we can describe s. in terms of a family of Hamiltonian functions
using the standard deformation theory. More precisely, we have

4
de
i(S:)Qa, = dSe

Se = S: 08,

(2.12)

where S is a vector field, S; is a function, and i(-) denotes the interior product on
differential forms; in our case, i(S.) maps the 2-form Q|5, to the 1-form dS..

In conclusion, because of the differentiability of the scattering map s , its de-
rivative respect to the parameter € can be described by a Hamiltonian vector field
S, which can be obtained from a Hamiltonian function S..

Observe that, if we call ¢(g; €9, ) the general solution of the vector field S(e, z) =
S.(x), with e viewed as the ‘time variable’, £y as the ‘initial time’, and z the ‘initial
point’, then we have that s.(z) = 9¥(e;0, 50(z)). In particular, when sy = Id the
scattering map is given by the time e-map of the time-dependent Hamiltonian vector
field S.

The perturbation theory for the scattering map amounts to finding the function
Se or at least formal expansions. This feature is of great advantage, since functions
transform very easily under changes of coordinates, and allow for natural geometric
computations. For example we can easily compute the effect of the perturbation on
fast variables symplectically conjugate to slow variables.

At least in the first approximation it is easy to guess (up to a multiple) what the
first order in € of the Hamiltonian function S, should be taking into account: (i) It
should depend linearly on the perturbing Hamiltonian, (ii) It has to depend only on
the values of the perturbing Hamiltonian evaluated on the homoclinic orbit, (iii) It
has to be independent of the choice of the origin of time.

In the case that the map f. is the Poincaré map of a Hamiltonian system H.,
one has to integrate the Hamiltonian over the homoclinic orbit and subtract the
integrals over the asymptotic orbits. In fact, [20] provides a perturbative formula
for the scattering map:

se = 59 +eJVSo0sy+O0(e?) (2.13)

where J is the almost complex structure compatible with the standard symplectic
form, and S is the real valued C*-function on Aq given by:



THE SKIPPING METHOD ARNOL’D DIFFUSION 9

. O [dH. dH. .
S(z) = T1—1>I}rloo 7 [ de |e=0 °ulz) = de |e=0 ° 9el% (w))} dt (2:14)
_ T TdH. dH.
T T1—1>I}rloo 0 [ de |e=0 °ulz) = de |e=0 ° d)t(x)] .

where 2z € W¥((so) ' (x)) N W*(xz) N Ty and ¢ is the flow corresponding to the
unperturbed Hamiltonian Hy. See also [31].

The normal hyperbolicity of Ay ensures that ¢;(2) — ¢:(sy ' (x)) and ¢4 (2) — ¢y ()
converge to zero exponentially fast as ¢ — Foo respectively. This makes the integral
in (2.14) absolutely convergent with its derivatives.

Similar calculations were done in the past using Melnikov theory, but this typi-
cally needed to assume properties of the asymptotic orbits. In contrast, the scatter-
ing map allows to compute the effect of the perturbation on all homoclinic orbits to
A., irrespective of their asymptotic behavior. Note also that the integrals giving the
first order approximation of the perturbed scattering map are improper integrals
that converge uniformly (exponentially fast) as well as its derivatives up to an order
(in the case of perturbations of integrable mappings all derivatives converge).

2.3. Arnol'd diffusion. There are many definitions of Arnol’d diffusion®*. The
basic idea is that perturbations in Hamiltonian systems accumulate and lead to
effects much larger than their strength. These effects are supposed to happen for
‘typical’ perturbations®.

The most interesting case is that of nearly integrable systems, since for them
there are two important results that say that — under appropriate hypotheses —
perturbations do not accumulate:

(A) The KAM theorem, which says that perturbations of size € can only cause
changes in the actions of order £'/2 in infinite time, except for a set of orbits
of measure® smaller than order £'/2.

(B) The Nekhoroshev theorem, which says that there are positive numbers a,b
depending only on the dimension of the system, such that changes in the
actions of order £ can only happen after times of order exp(Ce™%).

In this note, besides perturbative cases, we will also consider non-perturbative
situations, and we give verifiable conditions on the system that imply large effects
in the phase space.

In both cases, we provide general results that can be applied to concrete systems.

We start with integrable systems”. These systems preserve the action variables,
denoted by I.

4Two of the authors remember the conference: Hamiltonian Systems with three or more degrees
of freedom (Sagard, Spain, 1995), where, having an after dinner event with V. Arnol’d, M. Herman,
G. Gallavotti, J. Moser, Y. Sinai where they were posed the question of coming up with a standard,
precise definition. Specially V. Arnol’d was adamant about not doing it.

5We note that there are many different possibilities for typical. One can think of typical as
being exhibited by many systems on their own or being exhibited by many families of one or more
parameters. The precise meaning of ‘many’ can be taken to be generic in the sense of Baire in
different topologies, or some more or less ad-hoc definitions.

6Using that a good part of the domain to which the KAM theory does not apply is covered by
secondary tori, one can reduce the measure of the orbits for which the action can change [58].

"There are many definitions of an integrable system. See Section 2.3.1.
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We will say that a family of Hamiltonians H, with Hy integrable, exhibits weak
Arnol’d diffusion when there is a number a > 0 such that for all 0 < ¢ < 1 there
are trajectories such that the actions change by more than a.

We will say that a family H, exhibits strong Arnol’d diffusion when we can find
an open set U in action space and a continuous function §(¢) with lim._,0d(e) =0
such that given any Cl-path v(s) in U for every 0 < ¢ < 1, we can find a trajectory
ze(t) of H. in such a way that |I(z-(®(s;))) — v(s;)] < 6(e) for some monotone
function ®(s) and for some sequence of values s; such that |y(sj11) —7(s;)| < 0(e).
Above, I(-) denotes the action coordinate of a point.

The strong version of Arnol’d diffusion is very similar to the notion of transitivity.
It implies that all neighborhoods of a certain size §(¢) are getting visited. We allow
some error in the times and we allow that there are intermediate segments of the
orbit that we do not investigate.

We assert that for every H. in the family, there is a neighborhood U in action
space that is visited by some orbits. There are more ambitious results that one
could hope. One first specifies the open set U and wants to obtain conditions on
the family H. such that for small enough values of the parameter there exist orbits
that visit all the neighborhoods of size d(¢) in U. One can prescribe the set U
uniformly for all the families. We refer to this version as the ‘uniform’ version of
Arnol’d diffusion.

We will give explicit sufficient conditions that guarantee that the family satisfies
the conclusions of the existence of Arnol’d diffusion.

We will also discuss the abundance (in different meanings) of families satisfying
the hypotheses sufficient to obtain diffusion.

With the method presented below, the much stronger, in principle, uniform ver-
sion of diffusion, follows with minor modification of the proof.

2

2.3.1. Remarks on the distinction between ‘a-priori stable’ and ‘a-priori unstable
systems. Sometimes, in the literature, one finds distinctions among ‘a-priori sta-
ble’ and ‘a-priori unstable’ systems. These definitions were introduced in [9] for
one-parameter analytic systems. A-priori stable corresponds to the case when the
unperturbed system is integrable in the sense that it can be expressed in action-angle
variables, and then all the actions are preserved, and a-priori unstable corresponds
to the case when the unperturbed system has a subsystem with some hyperbolic
fixed point — e.g., a pendulum factor, and the rest of the actions are preserved.

When considering systems involving two (or more) parameters Ho+ puy Hy + po Ho
the distinction is more muddled. Moving one of the parameters (under some mild
non-degeneracy conditions) one can get normally hyperbolic invariant manifolds
with weak hyberbolicity. Moving the second parameter allows obtain a NHIM with
stable and unstable manifolds. If these manifolds intersect, moving the second pa-
rameter allows to generate transversal intersections. Hence, the study of a-priori
stable systems with two parameters can be done by averaging and using the tech-
niques of a-priori unstable systems.

In the analytic case, one has to face the problem that the second parameter has
to be exponentially small with respect to the first, but in the finitely differentiable
case it is enough to take the second parameter to be just a power of the first one
[29].

Finally, we note that systems with general perturbations Hy + H; can be con-
sidered as systems involving infinitely many parameters since the H; range in an
infinite dimensional space.
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3. Statement of results. We will present two results. The first one, Theorem 3.1
will be a non-perturbative shadowing lemma showing that if we have a pseudo-orbit
obtained by alternatively applying the scattering map® and the dynamics restricted
to the NHIM, then we can obtain nearby orbits. If the system has recurrence, one
immediately obtains that one can shadow pseudo-orbits of the scattering map itself
(see Corollary 1).

The second result, Theorem 3.2, shows that one can verify the hypothesis of
Theorem 3.1 in a perturbative setting. This can be accomplished by verifying two
conditions: (i) We first verify a condition that ensures that the stable and unstable
manifolds intersect transversally, and that they define a scattering map in a domain
of size one. (ii) Second, we verify a sufficient condition so that the scattering map
associated to the homoclinic intersection is not trivial.

3.1. The main shadowing result.

Theorem 3.1 ([34]). Assume that f : M — M is a C"-map, r > 19, A C M
is a normally hyperbolic invariant manifold, T C M 1is a homoclinic channel, and
ol : Q= (I) — QT (I) is the scattering map associated to I'. Assume that A and T
are compact.

Then, for every § > 0 there exists n* € N depending on &, and a family of
functions m} : N>*1 — N, i > 0, depending on 0, such that, for every pseudo-orbit
{yi}i>o0 in A of the form

Yir1 = f™ ool o fi(y,), (3.1)

for alli > 0, withn; > n* and m; > mj(no,...,ni—1,ni, Mo, ..., M;_1), there exists
an orbit {z; }i>0 of [ in M such that, for alli >0,

zigr = [ (z),

and

In Theorem 3.1 and below we assume that rq is sufficiently large.

We call attention that the main assumption of Theorem 3.1 is that the time we
spend among the jumps is long enough and depends on the previous history.

We emphasize that Theorem 3.1 is not tied up to having a Hamiltonian structure.
If one can verify the hypotheses in a non-Hamiltonian system, then one obtains the
conclusions. Of course, the abundance of the hypotheses and the methods to check
them are different in the Hamiltonian systems from the non-Hamiltonian ones. An
interesting class of systems is that of non-Hamiltonian perturbations of Hamiltonian
systems [37, 32].

In the case that the system is Hamiltonian, the following corollary is very natural.

Corollary 1 ([34]). (a) If the map f |a satisfies Poincaré recurrence, then we can
shadow every finite orbit of the scattering map {(o¥)™(z)}N_;.
(b) Moreover, we have the following alternative:

o If the manifold A has finite volume, then every finite orbit of the scattering
map {(o¥)"(x)}_, can be shadowed.

o If the manifold A is unbounded, then either {(o')"(z)}\_, can be shadowed,
or there is a positive measure set of unbounded orbits of the inner map in any
neighborhood of {(o)™(x) }XV

n=1"

8or in the case that there are several scattering maps, an arbitrarily chosen scattering map
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In other words, if a finite orbit (o7)"(x) experiences Arnol’d diffusion, then
either we get Arnol’d diffusion for the true orbits of the Hamiltonian system — by
shadowing the orbits of o' through homoclinic excursions —, or we get Arnol’d
diffusion just by drifting along the NHIM.

It is important to remark that Theorem 3.1 and Corollary 1 can be formulated
just as well for a finite collection of different scattering maps (or even for an infinite
collection of scattering maps), but in this case we will need to require m > m,
n > n;, where m;,n; depend not only on the previous n and m’s but also on the
scattering maps used up to the (i + 1)-st jump. Hence, from the point of view of
diffusing orbits, we can use iterations of several scattering maps in an arbitrary
order (this is sometimes called ‘polysystem’ or ‘iterated function system’). Note
that polysystems have few barriers to diffusion [48, 7, 36]. The KAM tori for one
map do not in general constitute barriers for another one.

3.2. Perturbative results. In view of Theorem 3.1, the only thing we have to
do is to verify that, given a family of nearly integrable systems, there are some
perturbative calculations that establish that all the elements of the family satisfy
the hypotheses of Theorem 3.1 and that the orbits obtained are rich enough. Since
the main hypothesis of Theorem 3.1 is a transversality hypothesis (i.e., the existence
of a homoclinic channel T'), we note that a first order perturbative calculation is
enough to establish it. After that, the rich variety in the behavior of orbits is a
consequence. There is no need to construct the orbits one by one.
For simplicity, we consider the nearly-integrable time-periodic Hamiltonian

i=1

where I € R? ¢ € T? are symplectically conjugate variables, (p;,q;) € R?, i =
1,...n, are symplectically conjugate variables, and the phase t € T'.
We assume

e The functions h, V;, H; are C"-differentiable, r > rq.

e V/(0) =0, V}"(0) <0, and (V/(q) = 0& Vi(q) = Vi(0)) = ¢ =0.

The second part of the assumption is just that each V; has a non-degenerate
maximum, which, without loss of generality we set at zero; furthermore, 0 is the
only critical point at this energy level. This assumption implies that each of the
penduli has two homoclinic orbits to the critical point 0. When we consider the
system of n penduli we obtain 2" geometrically different homoclinic orbits. Of
course, we can also shift the origin of time independently in each of them.

We choose one homoclinic orbit for the system of penduli:

(P° (1 +t1), " (7 + t1)) = (p(l)(ﬁ 1), PO (Tn 1),
BA(ri+1),....qh(mm +1)),

where 7 = (71,...,7,) € R", and 1 = (1,...,1) € R", and ¢ € R is the time. One
can think of the components of 7 as a choice of the times at which the penduli
perform jumps. It seems clear that, depending on the times at which the jumps
take place, the external forcing will make the system gain energy or loose energy.
Notice that the homoclinic orbits in the coupled system are parameterized by the
state of the action-angle variables I, ¢, the phase ¢ of the system, and the times 7
of jump of the penduli.
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The observation is that, for € = 0, the manifold Ay given by p =0, ¢ = 0 is a
normally hyperbolic invariant manifold foliated by invariant d-dimensional tori I =
const. Its stable and unstable manifolds are union of the separatrices corresponding
to the tori, and they coincide. Consequently, for every € > 0 sufficiently small,
there is a normally hyperbolic invariant manifold A, for the time-one map of the
flow of (3.2), which persists from the unperturbed case. (In fact, one first shows
the persistence of the NHIM for the flow, and then reduce the problem to the case
of maps by taking the time-one map.)

To study the splitting of the stable and unstable manifolds of A., we define the
Melnikov potential associated to this family of homoclinic intersections:

o0

L(7717¢,s):f[ [Hi(p° (7 +1),¢° (7 + t1),1,¢ + w(I)t, s + t;0) 53)

—Hl(0,0,I,ngrw(I)t,ert;O)] dt.

where w(I) = Oh/0I.

The physical meaning of the function L in (3.3) is the following: fixing (I, ¢, s)
the gradient of L as a function of 7 gives the first order expansion of the gain of
energy due to a jump of the penduli. The proof of this is very simple using that the
energies of the penduli are slow variables. See [21]. A streamlined proof for more
general dependence on time is in [31].

Theorem 3.2. [34] Assume the following conditions:
(A.0) We have Poincaré recurrence in the manifold A for all € sufficiently small.
(A.1) There exists a set U~ :=T x J C R x T, such that T is an open ball
in RY, and for any values (I, ¢,s) € U™, the map

TR = L(r,1,9,5) € R has a non-degenerate critical point 7*. (3.4)

By the implicit function theorem, we can find a family of such critical points indexed
by the other variables.
=711, 09,s).
Define
L(I,¢,8)=L(r"(I,,s),1,0,s), L*(I,0)=L(I,0,0). (3.5)
We regard L*(I,0) as a function on the set
Dom(L*) = {(I,0) e RT x T¢|3s € T s.t. (1,0 +w(I)s,s) €U }.

(A.2) The reduced Poincaré function L£L*(I,0) associated to the critical point 7*
satisfies that JVL*(I,0) is transverse, relative to R x T, to the level set {I = I}
at some point (I, 0,) = (L, s — w(I,)s), with (I, ¢«,s) € U™. That is:

oL*
o (1.,0.) # 0. (3.6)

Then, there exists eg > 0, and p > 0 such that, for each € € (0,¢¢), there exists
a trajectory z(t) of the Hamiltonian flow of Hamiltonian (3.2) and T > 0 such that

1((T)) = I(z(0))[| > p.

The meaning of the assumption (A.1) is that the perturbation generates a trans-
verse intersection between the stable and unstable manifolds of A, for the time-one
map of the flow of (3.2). The main content of the assumption is that the critical
points 7* are not degenerate. In [24, 26] one can find simple arguments that show
that there are always infinitely many critical points for each value of (I, @, s). These
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points may be degenerate, but this is a situation that can be removed by an small
perturbation [8].

Let us recall that each of these critical points 7 gives rise to a transverse ho-
moclinic intersection to A. and therefore to a scattering map. The meaning of the
assumption (A.2) follows from the fact that £* is the Hamiltonian generating the
scattering map (see (2.12), (2.13), (2.14)). Moreover, in this case the unperturbed
scattering map is the identity map in Ay and therefore formula (2.12) becomes:

s =Id+eJVL* + O(?). (3.7)

This formula shows that s. is O(g?)-close to the time-e map of the Hamiltonian
vector field:

&= JVL(x). (3.8)
We will call (3.8) the scattering vector field. It can be considered as an infinitesimal
version of the scattering map.

Condition (A.2) ensures that the flow of (3.8) has trajectories whose action I
moves a quantity independent of the parameter €. Nearby these trajectories one
can find orbits of the scattering map with similar behavior by an argument similar
to the study of the convergence of the Euler method in numerical analysis of ODE.

The computation of £* requires a non-trivial calculation and takes advantage
of beautiful cancelations afforded by the symplectic structure. As we discussed
before, the fact that a similar formula should be true can be guessed by the fact
that we know that the scattering map is given, in first order, by the symplectic
gradient of a function, that the function has to be linear in the perturbation and
can only depend on the connecting orbits in the unperturbed map and be invariant
under translation. It is important to note that (A.1) and (A.2) are transversality
conditions. They, therefore, hold generically in open sets of variables (I, ¢, s) and
parameters. One can be more ambitious and specify the set of (I, ¢,s). In such
case, of course, transversality conditions may fail for one intersection, but we have
infinitely many intersections. See Section 3.4 for a more detailed discussion.

3.3. Accessibility. If a finite number of scattering maps are available we can take
advantage that Theorem 3.1 to obtain the following theorem, whose proof will
appear in [33]:

Theorem 3.3. Assume the following conditions in the model (3.2).
(A.0) We have Poincaré recurrence in the manifold A. for all e sufficiently small.
(A.3) Consider the set U~ =T x J given in (A.1), and assume that for each
point in U™ we can find K non-degenerate critical points of the Melnikov potential
L and such that the corresponding reduced functions L7, ..., L5 satisfy

Span (JVL:, ..., VL) =T x R?

Then we have the strong form of Arnold diffusion in the ball Z in the action
space.

A more sophisticated argument, whose complete proof will appear in [33] and
which requires that the Hamiltonian (3.2) is differentiable enough, yields:

Theorem 3.4. Assume the following conditions in the model (3.2).
(A.0) We have Poincaré recurrence in the manifold A. for all e sufficiently small.
(A.3’) Consider the set U~ =1 x J given in (A.1), and assume that for each
point in U~ we can find K non-degenerate critical points of the Melnikov potential
L and such that the corresponding reduced functions L7, ..., L}, satisfy
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Span (JVLY, [JVL;, IVLE] [IVLE, [JVLE IVLE]] -+ ) =R (3.9)

Then we have the strong form of Arnold diffusion in the ball Z in the action
space.

The condition (3.9), where [-, -] denotes the Lie bracket, is just the well known
condition for accessibility’. Chow’s theorem also called Rashevsky theorem (see,
[14, 52, 38]) asserts that we can join any two points via segments of trajectories of
the scattering vector fields. One very subtle point is that the orbits of the scat-
tering maps can follow closely positive-time orbits associated to the corresponding
scattering vector fields (3.8). However, Chow’s theorem uses trajectories followed
in positive time, i.e., of the form 5 for s > 0, but also trajectories followed in neg-
ative time, i.e., of the form ¢_g for s > 0. Hence, a crucial step in [33] is to show
that, using the recurrence condition again, we can build pseudo orbits combining
the inner and the scattering maps to follow the flows for negative time. The main
difference between Theorem 3.2 and Theorem 3.3 is that in the former we need at
least K = 2d scattering vector fields, while in the latter it sufficient to have K’ = 2
scattering vector fields satisfying (3.9); see [38].

3.4. Genericity properties of the hypotheses of Theorems 3.2, 3.3, 3.4. It
is not difficult to show that if we fix I then there have to be critical points of the
Melnikov potential. We just observe that the Melnikov potential (3.3) is periodic
in 7 if w(I) is rational and quasi-periodic if w(I) is not rational. See, for example,
[24, 20].

The genericity of the hypothesis of Theorem 3.2 in the C"-topology, for r €
[3,00) U {w}, is established in [8]. They note that, since Melnikov potential (3.3)
is linear in Hj, it suffices to add a small deformation (e.g. trigonometric function)
and compute that it indeed yields a non-degenerate critical point (3.4).

To verify the second hypothesis, once the first one is ensured, it suffices to argue
that in the case that it is not satisfied, one can add another (smaller) perturbation
that achieves (3.6). If we choose to describe the perturbed system without using
parameters, i.e., as Hy + Hy, we can formulate the genericity of the condition on
H; that yield diffusion in the following way. Let

S'={H, e C"||Hi|cr =1}.

Then there exists an open-dense subset G 1 < 8! and a lower-semicontinuous func-
tion gg : ST — [0, +00) with £9 > 0 on G! and g9 = 0 on S\ G!, such that, for each
H; in the generalized ball

H
B_{H160T|0<|H1||<50 (M)}

the system Hy + H; has Arnol’d diffusion.
Above, we note that the radius of the generalized ball depends on the direction
in 8!, and it can be zero in a nowhere dense set of directions.

9The condition (3.9) is sometimes also called in the literature the Hérmander condition since
Hoérmander showed it is equivalent to hypoellipticity of the sum of squares of the vector fields.
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4. Applications to concrete systems. The main results in this paper can be
applied to concrete systems with explicit perturbations, and can be used to obtain
detailed quantitative information on diffusing orbits.

A concrete application to celestial mechanics can be found in [11]. The unper-
turbed system is the planar circular restricted three-body problem, on the motion of
an infinitesimal mass under the gravity of two large masses (referred to as primaries)
that move on circular Keplerian orbits. This model, when written in rotating coor-
dinates is described by an autonomous Hamiltonian Hy.

For an open set of values of the mass ratio of the primaries, the Lagrange equi-
librium point Ly (which, by convention, we assume is between the primaries) is
of center-saddle type. For the purpose of [11], the mass ratio is fixed to that of
the physical system Sun-Jupiter. By the Lyapunov Theorem [43] for each energy
level sufficiently close to that of L, there exists a periodic orbit around L; that is
hyperbolic within the corresponding energy manifold (obtained by fixing the value
of Hy). Moreover, for a suitable range of energy levels, the stable and unstable
manifolds of each periodic orbit can be shown to intersect transversally within the
energy manifold. This family of periodic orbits defines the Lyapunov manifold Ag,
which is a NHIM as in Section 2.1. It can be naturally parametrized by symplectic
action-angle coordinates (I, 6), with the action I being a proxy for the energy. The
stable and unstable manifolds of Ag, W*(Ag) and W*(Ag), respectively, intersect
transversally. One can choose finitely many homoclinic channels T, i = 1,...,k,
and consider the unperturbed scattering maps o} associated to each I'j. Each scat-
tering map turns out to give a phase shift along each periodic orbit in Ag:

oo(1,0) = (1,0 + AY(I))

The perturbed system that is considered is the planar elliptic restricted three-body
problem, obtained by adding to the previous model the eccentricity of the orbits
of the primaries. The resulting system is described by a time-periodic Hamiltonian
H. = H_(-,t). Similarly to Section 3.2, there is a NHIM A. that persists from the
unperturbed case. Since Ag is a manifold with boundary, to show its persistence
as an invariant manifold (as opposed to only locally invariant), [11] checks that the
conditions of the KAM theorem are verified on the Lyapunov manifold, so A, can
be bounded by invariant tori, hence it is itself invariant. Since A. is 2-dimensional,
the KAM tori block diffusion for the dynamics restricted to A..

There are also homoclinic channels T'? that persist from the unperturbed case,
foralli=1,... k.

The paper [11] computes numerically the Melnikov potentials S? associated to
Iy, using the formula (2.14), and checks numerically that for each point in the
Lyapunov manifold there exists an S* with —%—SJ > 0 at that point. By (2.13), this
implies that the corresponding scattering map o’ increases the action I by O(g).
Applying Corollary 1 (a) in the case of multiple scattering maps, one concludes
that for the perturbed system, for every sufficiently small (but non-zero) values of
the eccentricity, there are orbits of the infinitesimal mass that start close to one
Lyapunov orbit and get close to another Lyapunov orbit. Hence these orbits start
at some energy level and end at some other energy level. The gain of energy that
can be accomplished is independent of the eccentricity. The conclusion is that there
exists weak Arnol’d diffusion in the energy.

We note that the KAM Theorem is only invoked to guarantee the persistence
of A, as an invariant manifold. Alternatively one can obtain the persistence of A,
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only as a locally invariant manifold. Even in this case, one can still obtain diffusing
orbits by using Corollary 1 (b): either the orbits of the inner dynamics (restricted to
A.) stay within some finite volume domain in A., in which case the first statement
of Corollary 1 (b) yields diffusing orbits under the combination of the inner and
outer dynamics, or the orbits of the inner dynamics leave any suitable finite volume
domain in A, in which case the second statement of Corollary 1 (b) yields diffusing
orbits under the inner dynamics alone.

Even if the verification of the conditions in [11] is only numerical, the computa-
tions of the integrals and the verification of the conditions that are needed are easy
for today’s computational tools, and standard numerical analysis heuristic estimates
predict that the computations are much more accurate than needed.

The paper [10] studies the same model as in [11], albeit for a different physical
system: Neptune-Triton. It provides a computer assisted proof, via validated nu-
merics, for the existence of diffusing orbits in energy. Most importantly, it provides
a very detailed quantitative information on these diffusing orbits. First, it gives
explicit estimates for the range of values of the eccentricity € for which there is
diffusion, of the amount of energy growth, and of the diffusion time. Second, it
shows the existence of symbolic dynamics in the energy, which amounts to strong
Arnol’d diffusion in the energy. Third, it estimates that the Hausdorff dimension
of the set of initial points that undergo symbolic dynamics is greater than 4 in the
5-dimensional extended phase space. Fourth, it shows that there exists a collec-
tion of sets (2. of positive Lebesgue measure, for which the distribution of energies
Hy(¢i(z)) — Ho(x), for x € ., approaches (relative to some appropriate topology)
a Brownian motion with drift as € — 0. Moreover, any Brownian motion with drift
(that is, for any drift and variance parameter) can be obtained by adequately choos-
ing the sets Q.. This latter result addresses a conjecture by Chirikov [13], that the
energy growth follows a diffusion process (in the stochastic sense). The fact that
there are collections of initial conditions that yield different Brownian motions with
drift is consistent with Chirikov’s numerical experiments and heuristic arguments.

The general shadowing theorem can be used even for non-Hamiltonian systems.
In the paper, [37], the mechanism is applied to show existence of orbits transferring
energy in some models of piezoelectric energy harvesters. These systems consist
of coupled piezolectric oscillators, and they can convert ambient vibrations into
electrical energy. An interesting problem that we are considering is to show that
the Arnol’d diffusion mechanism can overcome the mechanical dissipation inherent
to the system.

The results in this section illustrate that the geometric method presented in
this paper is quite powerful, since it can be applied to concrete systems (with
physically relevant parameters), and can provide, in principle, as much quantitative
information on the diffusing orbits as desired.
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