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Abstract. In this paper we study the robustness of the stability in nonau-

tonomous linear ordinary differential equations under integrally small pertur-
bations in infinite dimensional Banach spaces. Some applications are obtained

to the case of rapidly oscillating perturbations, with arbitrarily small periods,

showing that even in this case the stability is robust. These results extend to
infinite dimensions some results given in Coppel [3]. Based in Rodrigues [11]

and in Kloeden & Rodrigues [10] we introduce a class of functions that we call

Generalized Almost Periodic Functions that extend the usual class of almost
periodic functions and are suitable tomodel these oscillating perturbations. We

also present an infinite dimensional example of the previous results.
As counterparts, we show first in another example that it is possible to

stabilize an unstable system by using a perturbation with a large period and

a small mean value, and finally we give an example where we stabilize an
unstable linear ODE with a small perturbation in infinite dimensions by using

some ideas developed in Rodrigues & Solà-Morales [21] after an example due

to Kakutani (see [13]).
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1. Introduction. In several papers of some of us we have been extending or
analysing in infinite dimensions some results that were known for finite-dimensional
problems. This was the case of Kloeden & Rodrigues [10], Rodrigues [11], Rodrigues
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& Ruas [16], Rodrigues & Solà-Morales [17, 18, 19, 20], Rodrigues, Caraballo &
Gameiro [14] and Rodrigues, Teixeira & Gameiro [15].

Following this philosophy, in this paper we study the relation between the stabil-
ity properties of a system ẋ = A(t)x of ordinary differential equations in an infinite
dimensional Banach space X and a perturbed system ẏ = A(t)y + B(t)y, where
B(t) is supposed to be small in some sense. We suppose first that A(t) and B(t)
are bounded operators, continuous and uniformly bounded with respect to t ∈ R,
that the first system is asymptotically stable and that B(t) is integrally small in
an arbitrary interval of length bounded by h > 0. We establish conditions on the
smallness of B(t) in such a way that the perturbed system will also be asymptot-
ically stable. This is established in Theorem 2.1. Then we extend to some cases
where A : D → X is unbounded and generatesa C0-semigroup T (t), t ≥ 0. This is
established in Theorem 5.1.

In Daleckii & Krein [4] page 178 and in Carvalho et al. [1] similar results are
presented about robustness of stability but with a stronger assumption, given by
1
τ0

∫ t+τ0
t

‖B(τ)‖dτ ≤ δ, for some τ0 > 0, for every t ∈ R for sufficiently small δ. One
observes that the smallness condition is imposed with the norm inside the integral
and in our case the norm appears outside the integral and this makes a significant
difference, as it is shown in Theorem (2.1).

Then we introduce in Section 3 a class of functions that we call Generalised Al-
most Periodic Functions, that contains the usual almost periodic functions. In fact,
part of it was introduced in Kloeden & Rodrigues [10], where the authors studied
perturbations of an hyperbolic equilibrium. This class of Generalized Almost Peri-
odic Functions (GAP) is suitable to define the concept of mean value, as it will be
shown, which will be used in this paper .

This new class of functions has some important advantages compared with the
usual almost periodic functions, namely, if we perturb an almost periodic function
of a variable t with a local perturbation in t, then the perturbed function will no
longer be almost periodic. Therefore, the usual class it is not robust with respect to
this kind of perturbations. It is also not robust with respect to some more general
perturbations, like chaotic functions. We understand that the class GAP is one of
the natural classes for our perturbation B(t) to belong.

As an application of Theorem 2.1 we study a system of the form ẏ = A(t)y +
B(ωt)y and prove that if ω > 0 is sufficiently large the the stability is preserved.
When B(t) is periodic the result says that for sufficiently small periods and large os-
cillations the stability is preserved. The function B(t) does not need to be small and
so if we have a linear perturbation with large oscillations the stability is preserved.
This is shown in Theorem 3.12. In the periodic case the perturbation will have a
very small period. In Section 4 we present an example in the infinite-dimensional
space `2 where we show that the stability is preserved. These results extend to
infinite dimensions some results of Coppel [3].

Then in Theorem 5.1 we extend the above results to the case where we have an
unbounded infinitesimal generator. Henry [8] proves similar results with different
applications, but using a different method where he passes from the continuous
case to a discrete case and then recover the results for the continuous problem. Our
method follows more the method of Coppel [3] (finite dimension).

As a counterpart of the previous results on the robustness of the stability, the
last two sections are devoted to show, by means of examples, that instability is not
so difficult to break. In Section 7 we present a two dimensional example where we
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ROBUSTNESS OF STABILITY. 3

show that it is possible to stabilise an unstable system with a periodic perturbation
with large period and small mean value.

Finally in Section 8 using some ideas developed in Rodrigues &Solà-Morales [21]
and in an example of Kakutani [13], we give an example in infinite dimensions where
we textcolorredstabilize an unstable linear system using a linear perturbation B(t)
that tends to zero as t tends to infinity.

These two last examples seem to be new in the literature, to our knowledge.

2. Robustness of Stability.
This section is devoted to state and prove the following Theorem. It extends to

infinite dimensional Banach spaces a result of W. A. Coppel [3], Proposition 6, p.6.
We think that the key point is the three-terms integration by parts that appears in
the beginning of the proof. This integration by parts shows also how the condition
of B(t) being integrally small appears along the proof.

Theorem 2.1. Let X be a Banach space and A, B : R → L(X) be continuous
functions such that ‖A(t)‖ ≤M and ‖B(t)‖ ≤M for every t ∈ R.

Consider the equations:

ẋ = A(t)x (1)

ẏ = A(t)y +B(t)y (2)

Let T (t, s) = X(t)X−1(s) the evolution operator of (1). Suppose that ‖T (t, s)‖ ≤
Keα(t−s) for t ≥ s, t, s ∈ R, where α ∈ R and K ≥ 1.

Let δ, h be two positive numbers.

If ‖
∫ t2
t1
B(t)dt‖ ≤ δ for |t2 − t1| ≤ h, and t1, t2 ∈ R, then the evolution operator

S(t, s) = Y (t)Y −1(s) of (2) satisfies the inequality:

‖S(t, s)‖ ≤ (1+δ)Keβ(t−s) for t ≥ s, t, s ∈ R, where β = α+3MKδ+
log((1 + δ)K)

h
.

If α is negative, h is sufficiently large and δ sufficiently small in such a way that
β < 0 then it follows that system (2) is asymptotically stable.

Proof: By the variation of constants formula

S(t, s) = T (t, s) +

∫ t

s

T (t, u)B(u)S(u, s)du, t ≥ s.

If we let C(u) =
∫ u
t
B(τ)dτ∫ t

s

T (t, u)B(u)S(u, s)du =

∫ t

s

T (t, u)
d

du

∫ u

t

B(τ)dτS(u, s)du =

∫ t

s

T (t, u)
d

du
C(u)S(u, s)du

Taking derivatives,
d

du
[T (t, u)C(u)S(u, s)] =

−T (t, u)A(u)C(u)S(u, s) + T (t, u)B(u)S(u, s) + T (t, u)C(u)(A(u) +B(u))S(u, s)

Integrating the above equation gives the three-terms integration by parts we
commented above. Then we obtain∫ t

s

d

du
[T (t, u)C(u)S(u, s)]du = −

∫ t

s

T (t, u)A(u)C(u)S(u, s)du+
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s

T (t, u)B(u)S(u, s)du+

∫ t

s

T (t, u)C(u)A(u)S(u, s)du+

∫ t

s

T (t, u)C(u)B(u)S(u, s)du

And so,

−T (t, s)C(s) = −
∫ t

s

T (t, u)A(u)C(u)S(u, s)du+∫ t

s

T (t, u)B(u)S(u, s)du+

∫ t

s

T (t, u)C(u)A(u)S(u, s)du+

∫ t

s

T (t, u)C(u)B(u)S(u, s)du

Therefore,

∫ t

s

T (t, u)B(u)S(u, s)du = −T (t, s)C(s) +

∫ t

s

T (t, u)A(u)C(u)S(u, s)du

−
∫ t

s

T (t, u)C(u)A(u)S(u, s)du−
∫ t

s

T (t, u)C(u)B(u)S(u, s)du.

Therefore,

S(t, s) = T (t, s) +

∫ t

s

T (t, u)B(u)S(u, s)du =

T (t, s)(I − C(s)) +

∫ t

s

T (t, u)A(u)C(u)S(u, s)du

−
∫ t

s

T (t, u)C(u)A(u)S(u, s)du−
∫ t

s

T (t, u)C(u)B(u)S(u, s)du.

We first suppose that s ≤ t ≤ s + h and estimate |S(t, s)|. Let s ≤ u ≤ s + h.
Suppose

|C(u)| ≤ |
∫ u

t

B(τ)dτ | ≤ δ.

Therefore,

|S(t, s)| ≤ K(1 + δ)eα(t−s) + 3MKδ

∫ t

s

e−α(t−u)|S(u, s)|du.

and so, using Gronwall’s inequlity it follows that in an arbitrary interval of length
h, say for s ≤ t ≤ s+ h we have

|S(t, s)| ≤ K(1 + δ)eα(t−s)e3MKδ(t−s) = K(1 + δ)e(α+3MKδ)(t−s)

For t ≥ s there exists n ∈ N, n = n(t, s) such that s+ nh ≤ t ≤ s+ (n+ 1)h and
so

|S(t, s+ nh)| ≤ K(1 + δ)e(α+3MKδ)(t−s−nh).

We are going to prove by induction that for s+ nh ≤ t ≤ s+ (n+ 1)h

|S(t, s)| ≤ [K(1 + δ)]n+1e(α+3KMδ)(t−s)

The case n = 0 has already been proved.
But S(s+ nh, s) = S(s+ nh, s+ (n− 1)h) · · ·S(s+ h, s) and so

|S(s+ nh, s)| ≤ [K(1 + δ)]ne(α+3KMδ)nh

Therefore for s+ nh ≤ t ≤ s+ (n+ 1)h

|S(t, s)| ≤ |S(t, s+ nh)||S(s+ nh, s)| ≤

K(1 + δ)e(α+3KMδ)(t−s−nh)[K(1+δ)]ne(α+3KMδ)nh = [K(1+δ)]n+1e(α+3KMδ)(t−s)
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Therefore for s+ nh ≤ t ≤ s+ (n+ 1)h we have

|S(t, s)| ≤ [K(1 + δ)]n+1e((α+3KMδ)(t−s).

Let γ
.
= ln((1+δ)K)

h . Since t ≥ s+ nh, we have

[(1 + δ)K]n = eγnh ≤ eγ(t−s).

Therefore,

|S(t, s)| ≤ K(1 + δ)e(α+3KMδ+
ln((1+δ)K)

h )(t−s)

3. The space of generalised almost periodic functions.
In this section we introduce the class that we call Generalised Almost Periodic

Functions that extends the usual concept of almost periodicity. As we said in the
Introduction Section, this new class is more robust with respect to perturbations
and it is a natural class for our function B(t) to belong, as it will appear in Theorem
3.12 and its corollary.

Let (X, | · |) be a Banach space and recall the definition of an almost periodic
function [5].

Definition 3.1. A continuous function f : R → X is said to be almost periodic if
for every sequence (α′n) there exists a subsequence (αn) such that the
limn→∞ f(t+ αn) exists uniformly in R.

Now let BUC(R, L(X) denote the space of bounded and uniformly continuous
functions A : R → L(X), which is a Banach space with the supremum norm ‖A‖ .=
supt∈R |A(t)|, and define

F .
= {A ∈ BUC(R, L(X)) : A is uniformly continuous with precompact rangeR(A)} .

The class F is quite large and includes both periodic and almost periodic functions
as well as other nonrecurrent functions.

Proposition 3.2. Let A(t) ∈ L(X) be almost periodic. Then A ∈ F .

Proof: The proof is trivial.

Theorem 3.3. F is a closed subspace of BUC(R, L(X)) and hence a Banach space.

Proof: This proof can be found in Kloeden-Rodrigues [10].

Lemma 3.4. Let supt∈R |A(t)| ≤ M , If there exists limT→∞
1
T

∫ a+T

a
A(t)dt for

some a ∈ R then it is independent of a.

Proof: Let a ∈ R.

| 1
T

∫ a+T

a

A(t)dt− 1

T

∫ T

0

A(t)dt| = | 1
T

[

∫ a+T

a

A(t)dt−
∫ T

0

A(t)dt]|

| 1
T

[

∫ 0

a

A(t)dt+

∫ a+T

T

A(t)dt]| ≤ 2M |a|
T

→ 0, as T →∞.

Then we define:

Definition 3.5. We say that A ∈ F is a generalized almost periodic function if

there exists the limit limT→∞
1
T

∫ a+T

a
A(t)dt in L(X), that is, there exists A ∈ L(X)

such that, given ε > 0 there exists T0 = T0(ε) > 0 such that | 1T
∫ a+T

a
A(t)dt−A| < ε

for every T ≥ T0 uniformly with respect do a ∈ R.
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Definition 3.6. We define the class of generalized almost periodic functions as

GAP = {A ∈ F : A is a generalized almost periodic function}

Lemma 3.7. GAP is a closed subspace of F .

Proof: Let An ∈ GAP, An → A in F. We must prove that A ∈ GAP. Given
ε > 0 there exists n0 = n0(ε) such that ‖An0

−A‖ = supt∈R |An0
(t)−A(t)| < ε.

Since there exists the limT→∞
1
T

∫ a+T

a
An0(t)dt = An0 , there exists T0 = T0(ε)

such that

T1, T2 > T0 ⇒ |
1

T2

∫ a+T2

a

An0
(t)dt− 1

T1

∫ a+T1

a

An0
(t)dt| < ε, ∀a ∈ R

Then

T1, T2 > T0 ⇒ |
1

T2

∫ a+T2

a

A(t)dt− 1

T1

∫ a+T1

a

A(t)dt| ≤

| 1

T2

∫ a+T2

a

A(t)dt− 1

T2

∫ a+T2

a

An0
(t)dt|+| 1

T2

∫ a+T2

a

An0
(t)dt− 1

T1

∫ a+T1

a

An0
(t)dt|+

| 1

T1

∫ a+T1

a

An0
(t)dt− 1

T1

∫ a+T1

a

A(t)dt| ≤

1

T2

∫ a+T2

a

|A(t)−An0(t)|dt+ | 1

T2

∫ a+T2

a

An0(t)dt− 1

T1

∫ a+T1

a

An0(t)dt|+

| 1

T1

∫ a+T1

a

|A(t)−An0(t)|dt ≤ 3ε

Using Cauchy Criterion we conclude that there exists

lim
T→∞

1

T

∫ a+T

a

A(t)dt = A ∈ L(X), ∀a ∈ R

This implies that A ∈ GAP.

Definition 3.8. For A ∈ GAP we define the mean value of A as:

M(A)
.
= lim
T→∞

1

T

∫ a+T

a

A(t)dt ∈ L(X).

Lemma 3.9. The functionM : GAP → L(X) is an uniformly continuous function.

Proof: Let A,B ∈ GAP. Then

|M(A)−M(B)| = | lim
T→∞

1

T

∫ a+T

a

A(t)dt− lim
T→∞

1

T

∫ a+T

a

B(t)dt| =

| lim
T→∞

1

T

∫ a+T

a

[A(t)−B(t)]dt| ≤ sup
t∈R
|A(t)−B(t)| = ‖A−B‖.

Let O = {A ∈ GAP :M(A) = limT→∞
1
T

∫ a+T

a
A(t)dt = 0, ∀ a ∈ R}

Corollary 3.10. O is a closed subspace of GAP.

Proof: Since M(A) is a continuous function, the set O =M−1{{0}} is closed set.

Corollary 3.11. Any function A ∈ GAP can be written as A = A0 + B, where
A0 =M(A) and B ∈ O.
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ROBUSTNESS OF STABILITY. 7

The next theorem shows that stability is preserved if the linear perturbation has
sufficiently large frequency:

Theorem 3.12. Let A, B : R→ L(X) be continuous functions such that ‖A(t)‖ ≤
M and ‖B(t)‖ ≤ M for every t ∈ R. Suppose that B(t) is a generalized almost
periodic function with mean value zero (GAP). Consider the equations:

ẋ = A(t)x (3)

ẋ = A(t)x+B(ωt)x (4)

Let T (t, s) the evolution operator of (3). Suppose that ‖T (t, s)‖ ≤ Ke−α(t−s) for

t ≥ s, t, s ∈ R, where α > 0 and K > 1. Then there exists K̃ and ω0 > 0 such that
for ω > ω0

|Sω(t, s)| ≤ K̃e
−α
2 (t−s), t ≥ s,

where Sω(t, s) indicates the evolution operator of (4).

Proof:
We are going to show that for any h > 0, δ > 0 there exists ω0 = ω0(h, δ) > 0

such that if ω > ω0 then

|
∫ t2

t1

B(ωt)dt| ≤ δ for |t2 − t1| ≤ h.

Let us consider first the case |t2 − t1| ≤ δ
M . Since |B(t)| ≤ M for every t ∈ R,

we have

|
∫ t2

t1

B(ωt)dt| ≤ |
∫ t2

t1

|B(ωt)|dt| ≤M |t2 − t1| ≤M
δ

M
= δ.

To complete the proof we consider now the case h ≥ |t2 − t1| ≥ δ
M .

Since B(t) has mean value zero, there exists T0 = T0( δh ) > 0 such that

T ≥ T0 ⇒ |
1

T

∫ s+T

s

B(t)dt| ≤ δ

h
for all s ∈ R.

By a change of variables,∫ t2

t1

B(ωt)dt =
1

ω

∫ ωt2

ωt1

B(u)du

and so for δ
M ≤ |t2 − t1| ≤ h

|
∫ t2

t1

B(ωt)dt| = 1

ω|t2 − t1|
|
∫ ωt2

ωt1

B(u)du||t2 − t1| ≤
1

|ωt2 − ωt1|
|
∫ ωt2

ωt1

B(u)du| h.

If we take ω0
.
= MT0

δ we have for ω ≥ ω0

|ωt2 − ωt1| ≥ ω0|t2 − t1| ≥
MT0

δ

δ

M
= T0

Therefore,

|
∫ t2

t1

B(ωt)dt| = 1

|ωt2 − ωt1|
|
∫ ωt2

ωt1

B(u)du| h ≤ δ

h
h = δ

The result follows from Theorem 3.12 for δ sufficiently small.
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Consider now A ∈ GAP. Then we have A(t) = A0 + B(t), where A0 = M(A)
and M(B) = 0. We suppose that |A0| ≤ M and |B(t)| ≤ M for every t ∈ R.
Consider the equations:

ẋ = A0x (5)

ẋ = A0x+B(ωt)x (6)

Let T (t)
.
= eA0t be the semigroup generated by (5) and Sω(t, s) be the evolution

operator of (6).
As a consequence of Theorem 3.12 it follows that if σ(A0) ⊂ {λ ∈ C : Re(λ) <

−α} we willl have:

Corollary 3.13. Suppose |T (t)| ≤ Ke−αt for t ≥ 0, K ≥ 1. Then there exists

α̃ < α, K̃ > K, ω0 > 0, such that for ω > ω0 we have

Sω(t, s) ≤ K̃e−α̃(t−s),∀t ≥ s.

4. An infinite dimensional example. In this section we will construct a true
infinite dimension example to apply the results of the previous section. We are going
to use some results of the paper Rodrigues and Solà-Morales [19]. Consider the
space X = `2. We consider the operator J ∈ L(X) given by the infinite dimensional
Jordan matrix:

J :=


0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
. . . · · ·
. . . · · ·

 (7)

As it is proved in Rodrigues and Solà-Morales [19] the spectrum of J is the
closed unity circle of the complex plane. Now we take 0 < a < 1 and we define the
operator:

L :=

(
a 0
0 νJ + aI

)
= aI + ν

(
0 0
0 J

)
= a

(
I −

(
−ν
a

)(
0 0
0 J

))
(8)

If we let

D =

(
−ν
a

)(
0 0
0 J

)
we have that

L = a(I −D).

From the same paper above it follows that the spectrum of L is the closed disc
Bν(a) with center in a and radius ν. Then we take 0 < ν < min{a, 1− a}

Then we let A := logL = (log a)I + log(I −D).
But

log(I −D) = −(D +
D2

2
+ · · · D

n

n
· · · ).

Therefore

‖ log(I −D)‖ ≤ ν

a
+

(νa )2

2
+ · · ·

(νa )n

n
+ · · · = − log(1− ν

a
)

Let ν > 0 sufficiently small such that 0 < − log(1− ν
a ) < a

2 .
Then it follows that

‖eAt‖ ≤ e(−at−log(1− νa )t) ≤ e− a2 t, t ≥ 0

In the space X = `2. We consider the operator A ∈ L(X) given above.
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Figure 1. Left: The spectrum of L given by σ(L) = Bν(a).
Right: The spectrum of A given by σ(A) = log(σ(L)), with
a = 1/2 and ν = 1/4.

Corollary 4.1. Consider now the systems:

ẋ = Ax (9)

ẏ = Ay +B(ωt)y (10)

where B ∈ GAP with meanvalue zero. Let M > 0 be such that |A| ≤ M and
supt∈R |B(t)| ≤M .

Let Sω(t, s) = Y (t)Y −1(s) be the evolution operator associated to to system (10),
where Y (t) is the solution with initial condition Y (0) = I, where I indicates the
Identity operator.

Then there exists K̃, α̃ and ω0 > 0 such that for ω > ω0

|Sω(t, s)| ≤ K̃e−α̃(t−s), t ≥ s,

Proof: Follows from Theorem 3.12 .
Next we will present a simple example where the perturbation B(t) belongs to

GAP but it is not almost periodic.

Example 4.2. Let b : R → R be uniformly continuous, bounded with mean value
zero. Let

B(t)
.
=


0 0 0 · · ·
b(t) 0 0 · · ·
0 b(t) 0 · · ·
0 0 b(t) · · ·
. . . · · ·
. . . · · ·

 = b(t)


0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
. . . · · ·
. . . · · ·

 (11)

Then B ∈ GAP and has mean value zero. Let d(t)
.
=
√

1− t2 if −1 ≤ t ≤ 1,
d(t) = 0 if t ∈ (∞, 0) ∪ (1,∞). In the special case that we take b(t)

.
= d(t) + cos t,

B(t) is not almost periodic.
Therefore we can apply Corollary 4.1 if we take b(ωt) = d(ωt)+cos(ωt) and then

we can take B(ωt) as above.
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5. A case where the infinitesimal generator is unbounded. Consider the
equations:

ẋ = Ax (12)

ẏ = Ay +B(t)y (13)

We suppose that D is dense in X and A : D → X is the infinitesimal generator of a
C0 semigroup T (t), such that |T (t)| ≤ Keαt, t ≥ 0, K ≥ 1, α ∈ R.

Now we will analyse some smallness conditions on the perturbation B(t), such
that the equation 13 is also asymptotically stable in the case α < 0. The case when
B(t) is uniformly small is studied in Kloeden-Rodrigues [10] without leaving the
continuous case. Similar results are obtained by Carvalho et all [1], but they first
find the result for the discrete case.

Similar results to the next theorem are treated by Carvalho et all [1] and Dalekii-

Krein [4] but they use the stronger assumption that
∫ t
τ
|B(t)| is small, with the norm

inside the integral and in the first one they prove via a discretiztion method. Similar
results are obtained by Henry [8] in Thorem7.6.11, pag. 238, where he also consider
first the discrete case, and requires that B(t) is uniformly small and integrally small.

Our result is an extension of a classical result of Coppel [3] for the infinite di-
mensional case, and A being an unbounded operator.

We will follow the steps of Theorem 2.1 where we imposed that |B(t)| ≤ M for
every t ∈ R and that |

∫ u
t
B(τ)dτ | ≤ δ for t ≤ u ≤ t + h. We also assume that the

range of B(t) is contained in the domain of A.

Theorem 5.1. We assume besides the above assumptions on A and T (t), that
B : R → L(X) is a continuous function and such that for each t ∈ R AB(t)
is a bounded operator and B(t)A can be extended to the whole space as a bounded
operator. For each t ∈ R let Ct(u)

.
=
∫ u
t
B(τ)dτ , for |t − u| ≤ h, where h is a

positive real number. We suppose that there are positive numbers M and δ such
that

|Ct(u)B(u)| ≤Mδ, |Ct(u)A| ≤Mδ, and |ACt(u)| ≤Mδ, for |u− t| ≤ h.
Let S(t, s) be the evolution operator associated to system 13. Then

‖S(t, s)‖ ≤ (1+δ)Keβ(t−s) for t ≥ s, t, s ∈ R, where β = α+3MKδ+
log((1 + δ)K)

h
.

If α is negative, h is sufficiently large and δ sufficiently small in such a way that
β < 0 then it follows that system (13) is asymptotically stable.

Proof: The proof follows the ideas of (2.1). By the variation of constants formula

S(t, s) = T (t− s) +

∫ t

s

T (t− u)B(u)S(u, s)du, t ≥ s.

∫ t

s

T (t−u)B(u)S(u, s)du =

∫ t

s

T (t−u)
d

du

∫ u

t

B(τ)dτS(u, s)du =

∫ t

s

T (t−u)
d

du
Ct(u)S(u, s)du

Taking derivatives,
d

du
[T (t− u)Ct(u)S(u, s)] =

−T (t− u)ACt(u)S(u, s) + T (t− u)B(u)S(u, s) + T (t− u)Ct(u)(A+B(u))S(u, s)

Integrating the above equation, we obtain

23 Sep 2019 03:53:08 PDT
Version 2 - Submitted to Comm. Pure Appl. Anal.



ROBUSTNESS OF STABILITY. 11

∫ t

s

d

du
[T (t− u)Ct(u)S(u, s)]du = −

∫ t

s

T (t− u)ACt(u)S(u, s)du+∫ t

s

T (t−u)B(u)S(u, s)du+

∫ t

s

T (t−u)Ct(u)AS(u, s)du+

∫ t

s

T (t−u)Ct(u)B(u)S(u, s)du

And so,

−T (t− s)Ct(s) = −
∫ t

s

T (t− u)ACt(u)S(u, s)du+∫ t

s

T (t−u)B(u)S(u, s)du+

∫ t

s

T (t−u)Ct(u)AS(u, s)du+

∫ t

s

T (t−u)Ct(u)B(u)S(u, s)du

Therefore,

∫ t

s

T (t− u)B(u)S(u, s)du = −T (t− s)Ct(s) +

∫ t

s

T (t− u)ACt(u)S(u, s)du

−
∫ t

s

T (t− u)C(tu)AS(u, s)du−
∫ t

s

T (t− u)Ct(u)B(u)S(u, s)du.

Therefore,

S(t, s) = T (t− s) +

∫ t

s

T (t− u)B(u)S(u, s)du =

T (t− s)(I − Ct(s)) +

∫ t

s

T (t− u)ACt(u)S(u, s)du

−
∫ t

s

T (t− u)Ct(u)AS(u, s)du−
∫ t

s

T (t− u)Ct(u)B(u)S(u, s)du.

We first suppose that s ≤ t ≤ s+ h and estimate |S(t, s)|.
If 0 ≤ |u− t| ≤ h then

|Ct(u)B(u)| ≤ |
∫ u

t

B(τ)dτB(u)| ≤Mδ, |Ct(u)A| ≤Mδ and |ACt(u)| ≤Mδ

Therefore,

|S(t, s)| ≤ K(1 + δ)eα(t−s) + 3MKδ

∫ t

s

e−α(t−u)|S(u, s)|du.

and so using Gronwall’s inequality it follows that in an arbitrary interval of length
h, say for s ≤ t ≤ s+ h we have

|S(t, s)| ≤ K(1 + δ)eα(t−s)e3MKδ(t−s) = K(1 + δ)e(α+3MKδ)(t−s)

For t ≥ s there exists n ∈ N, n = n(t, s) such that s+ nh ≤ t ≤ s+ (n+ 1)h and
so

|S(t, s+ nh)| ≤ K(1 + δ)e(α+3MKδ)(t−s−nh).

We are going to prove by induction that for s+ nh ≤ t ≤ s+ (n+ 1)h

|S(t, s)| ≤ [K(1 + δ)]n+1e(α+3KMδ)(t−s)

The case n = 0 has already been proved.
But S(s+ nh, s) = S(s+ nh, s+ (n− 1)h) · · ·S(s+ h, s) and so

|S(s+ nh, s)| ≤ [K(1 + δ)]ne(α+3KMδ)nh
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Therefore for s+ nh ≤ t ≤ s+ (n+ 1)h

|S(t, s)| ≤ |S(t, s+ nh)||S(s+ nh, s)| ≤

K(1 + δ)e(−α−3KMδ)(t−s−nh)[K(1+δ)]ne(α+3KMδ)nh = [K(1+δ)]n+1e(α+3KMδ)(t−s)

Therefore for s+ nh ≤ t ≤ s+ (n+ 1)h we have

|S(t, s)| ≤ [K(1 + δ)]n+1e(α+3KMδ)(t−s).

Let γ
.
= ln((1+δ)K)

h . Since t ≥ s+ nh, we have

[(1 + δ)K]n = eγnh ≤ eγ(t−s).

Therefore,

|S(t, s)| ≤ K(1 + δ)e(α−+3KMδ+
ln((1+δ)K)

h )(t−s)

6. Applications of Section 5.
Consider the following result from Henry [8] pg. 30.

Theorem 6.1. Suppose A is a closed operator in the Banach space X and suppose
that σ1 is a bounded spectral set of A, and σ2 = σ(A)− σ1 so σ2 ∪ {∞} is another
spectral set. Let E1, E2 be the projections associated with these spectral sets, and
Xj = Ej(X), j = 1, 2. Then X = X1 ⊕ X2, the Xj are invariant under A, and if
Aj is the restriction of A to Xj, then

A1 : X1 → X1 is bounded, σ(A1) = σ1, D(A2) = D(A) ∩X2 and σ(A2) = σ2.

With our techniques what we can get is the next result:

Theorem 6.2. Let h and δ be positive real numbers.
Suppose that A : D(A) ⊂ X → X a generator of a C0-semigroup T (t), t ≥ 0,

B(t) ∈ L(X) and |B(t)| ≤ M for every t ∈ R. Suppose we can decompose σ(A)
.
=

σ1 ∪ σ2, where σ1 is a bounded spectral set and σ2 = σ(A) − σ1 so σ2 ∪ {∞} is
another spectral set. Suppose there is a smooth curve Γ, oriented positively, that
contains σ1 in its interior and σ2 is in the exterior of Γ. Consider the projection
P1

.
= −1

2πi

∮
Γ
(λ−A)−1dλ that projects X in the subspace X1 associated to the spectral

set σ1. Let P2
.
= I −P1. |T (t)P1| ≤ Ke−αt and |T (t)P2| ≤ Ke−µt, for t ≥ 0, where

µ > α. Then AP1 is a bounded operator and P1A = AP1 and so P1A is also a
bounded operator.

The above decomposition is chosen in such a way that |P2B(t)| ≤ Mδ for every
t ∈ R .

In analogy with the bounded case if Ct(u)
.
=
∫ u
t
B(τ)dτ , we suppose that

|P1Ct(u)B| ≤Mδ, |P1ACt(u)| ≤Mδ and |P1Ct(u)A| ≤Mδ, for t ≤ u ≤ t+ h.
(14)

Consider the equations:

ẋ = Ax (15)

ẏ = Ay +B(t)y (16)

If the above assumptions are satisfied if δ is sufficiently small, h is sufficiently
large and (15) is asymptotically stable then system (16) is also asymptotically stable.

Proof: The proof follows the ideas of Theorem 5.1.

Remark 6.3. The decomposition σ(A) = σ1∪σ2 and the smallness conditions (6.2)
are satisfied if A is at least a sectorial operator and if B(t) comutes with P1.
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7. Stabilising unstable systems under small periodic perturbations, with
large period.

In contrast with the results of the previous sections on the robustness of the
stability, this section and the next one are devoted to show, by means of examples,
that instability is not so difficult to break.

The next example is in X =R2 and it shows that it is possible to stabilise an
unstable system under a small (in mean value) periodic perturbation.

Let 0 < α < β and δ < T . Let

A
.
=

(
α 0
0 −β

)
, R

.
=

(
0 π

2δ

− π
2δ 0

)
Let D(t) the T -periodic operator given by

D(t) = −A+R, T − δ ≤ t < T, D(t) = 0 t ∈ R− [T − δ, T ). (17)

Consider the systems:

ẋ = Ax (18)

ẏ = Ay +D(t)y (19)

First we observe that limT→∞
1
T

∫ T
0
D(s)ds = 0, that is B(t) has zero mean

value, but has large period.
Next we are going to prove, using Floquet Theorem that system (19) is uniformly

asymptotically stable.
For the sistem ẋ = A(t)x, where A(t) is continuous and T -periodic, will use

Floquet Theorem even if A(t) is not continuous, according to the comment in [7]
page 118.

Consider the matrix solution X(t) of (18) such that X(0) = I the identity matrix.
Then it is given by

X(t) = eAt =

(
eαt 0
0 e−βt

)
If we let R

.
=

(
0 π

2δ
− π

2δ 0

)
then we have the rotation matrix:

eRt =

(
cos(πt2δ ) sin(πt2δ )
− sin(πt2δ ) cos(πt2δ )

)
Since X(T − δ) = eA(t−δ) =

(
eα(T−δ) 0

0 e−β(T−δ)

)
, the fundamental matrix Y (t)

of ẏ = (A+D(t))y, such that Y (0) = I will be given by

Y (t) = eAt for 0 ≤ t < T − δ, Y (t) = eR(t−(T−δ))eA(T−δ) = eR(t−T )eRδeA(T−δ),

for T − δ ≤ t < T.
Then the monodromy matrix will be

Y (T ) = eRδeA(T−δ) =

(
cos(πδ2δ ) sin(πδ2δ )
− sin(πδ2δ ) cos(πδ2δ )

)(
eα(T−δ) 0

0 e−β(T−δ)

)
=

(
0 1
−1 0

)(
eα(T−δ) 0

0 e−β(T−δ)

)
=

(
0 e−β(T−δ)

−eα(T−δ) 0

)
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Now we can find the eigenvalues of the monodromy Y (T ) and they will be the
caracteristic multipliers of (19)

Y (T )− λI =

(
−λ e−β(T−δ)

−eα(T−δ) −λ

)
.

The caracteristic polynomial is given by p(λ)
.
= λ2 + e(α−β)(T−δ). Since β > α

this implies that

|λ| =
√
e(α−β)(T−δ) < 1.

Therefore ẏ = (A+D(t))y is uniformly asymptotic stable.

8. Stabilizing Unstable Linear ODE in Infinite Dimensions.
There is a classical example in Operator Theory due to S. Kakutani of a bounded

operator in an infinite-dimensional Hilbert space whose spectrum shrinks drastically
from a disk to a single point under an arbitrarily small bounded perturbation. The
example can be found in [13] (p. 282) and [6] (p. 248) and it is also described in [21],
where the present authors recently used it to build an example of the possibility
of nonlinear stabilization of an unstable linear map under Fréchet differentiability
hypotheses. It is also briefly described below. The purpose of the present section
is, by means of two examples, to use the ideas of Kakutani’s example to show this
drastic stabilization in linear ordinary differential equations in infinite dimensional
Hilbert spaces, of the form

ẋ(t) = Ax(t) +B(t)x(t), (20)

when the system ẋ(t) = Ax(t) is unstable and the perturbation B(t) is small in
some senses. Roughly speaking, we could say that the examples of this section
show that while stability is a robust feature, instability does not need to be so.

Let us describe briefly the example of Kakutani with the notations and choices of
[21]. In a real separable Hilbert space H with a Hilbert orthonormal basis (en)n≥1

a weighted shift operator W ∈ L(H) is a bounded linear operator defined by the
relations Wei = αiei+1 for a bounded sequence of real numbers (αn)n≥1. One
readily sees that

‖W‖ = sup{|αn|} and ‖W k‖ = sup{|αnαn+1 · · ·αn+k−1|}. (21)

We choose first the sequence εm = M/Km−1 for some M > 0 and some K > 1,
and define a weighted shift Wε by αn = εm if n = 2(m−1)(2` + 1), where ` is a
non-negative integer. This sophisticated way of distributing the numbers εm into
a sequence αn makes a number εm to appear for the first time in the αn sequence
at the position n = 2(m−1) and from that position onwards to appear periodically,
infinitely many times, with a period of 2m.

Then, one also defines the weighted shifts Lm by a sequence of weights αn that
are all of them equal to zero, except at the positions n = 2(m−1)(2` + 1), where `
is a non-negative integer, where αn = εm. With this choice, the operator Wε − Lm
is also a weighted shift, and it has zeroes along its sequence of weights, distributed
each 2m places, and starting at the 2(m−1) position. This means, according to 21,
that Wε−Lm is nilpotent of index 2m, (Wε−Lm)2m = 0. Consequently, its spectral
radius ρ(Wε−Lm) = 0. One can also obtain, after some work, that ρ(Wε) = M/K
and that the spectrum σ(Wε) is the whole disk of radius M/K centered at zero.
Concerning the norms, by using (21) one gets that ‖Wε‖ = M and ‖ − Lm‖ = εm.
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In this way, Kakutani’s example shows the existence of a bounded linear operator
Wε with positive spectral radius that is approximated, in the operator norm, by a
sequence Wε − Lm of operators whose spectrum reduces to the single point 0.

Our first example of translation of these ideas to (20) is very simple. Let us
choose a number R and the previous numbers M and K in such a way that 0 <
R −M/K < R < 1 < R + M/K and with these choices define the new operator
T = RI + Wε, where I is the identity operator. The spectrum of T is a disk of
radius M/K centered at the point R. This spectrum intersects the exterior of the
unit circle and lies entirely in the half-plane Re z ≥ R−M/K > 0. Because of this
last property, the operator A

.
= log(T ) can be defined, and by the Spectral Mapping

Theorem

‖etA‖ ≥ ρ(etA) = et log(R+M/K), (22)

which is unstable since R+M/K > 1.
We construct now the sequence of operators Sm = R I +Wε − Lm. All of these

operators have their spectra reduced to the single point z = R, and these operators
converge in the operator norm to T = RI+Wε, which spectrum is the disk of radius
M/K centered at z = R. If we take now Am = log(RI +Wε −Lm), we again have
that the sequence Am tends to A = log(T ) as m→∞ in the operator norm, by the
continuity of the logarithm. Also, by the properties of the exponential, perhaps by
using adapted norms, for all δ > 0 and all m, there exists a number Dm,δ such that

‖etAm‖ ≤ Dm,δ e
t(log(R)+δ), (23)

which implies stability since log(R) < 0, and δ can be chosen small enough.
In this way we have perturbed an autonomous unstable system ẋ(t) = Ax(t)

to a new autonomous system ẋ(t) = Ax(t) + (Am − A)x(t), with a perturbation
that can be taken as small as we wish in the operator norm, and the new system is
asymptotically stable.

This example deserves to be commented in relation of Theorem 4 of [10] (p.
2704). According to that theorem, if an equation ẋ(t) = A(t)x(t) exhibits an expo-
nential dichotomy with nontrivial stable and an unstable part (which in particular
means that it is unstable), then a new system ẋ(t) = A(t)x(t)+B(t)x(t) will exhibit
a similar dichotomy (which means that it is also unstable) if sup{‖B(t)‖; t ∈ R} is
sufficiently small, and if some compactness conditions are met, that are automat-
ically satisfied in our case since B does not depend on t. This robustness of the
instability is broken in our example, since the spectrum of A is a connected set
that has points both in Re z < 0 and in Re z > 0, but it is not possible to divide
it into two spectral sets by the vertical line Re z = 0. This is something very typi-
cal from infinite dimensional functional analysis, that cannot be expected in finite
dimensions.

Our second example, also based on Kakutani’s construction, starts with the
same system ẋ(t) = Ax(t) as above, with A = log(RI + Wε) and Wε, with the
relations 0 < R−M/K < R < 1 < R+M/K, whose instability is expressed by the
inequality (22) above. We want to add to it now a time-dependent perturbation
B(t), depending continuously on t ≥ 0 such that sup{‖B(t)‖; t ∈ [0,∞)} can be
taken as small as we wish, but with the novelty that limt→∞ ‖B(t)‖ = 0. Despite
this, we want to obtain a system ẋ(t) = Ax(t) +B(t)x(t) that will be stable.

Let us name Bm the operators Am −A considered above. Let us say again that
‖Bm‖ → 0 as m → ∞ and that the spectra σ(A + Bm) = σ(Am) = {logR}. Let
us fix now one value of δ > 0 in (23) such that if we define ω = − log(R) − δ we
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still have ω > 0. For example, δ = − 1
2 logR. If we write Dm for Dm,δ in (23) we

will have ‖etAm‖ ≤ Dme
−ωt. We do not expect the sequence Dm to be bounded as

m→∞. Let us choose an index m0 ≥ 1 and define

B(t) =

{
Bm0+k, for tk ≤ t ≤ tk+1 − 1,

(tk+1 − t)Bm0+k + (t− tk+1 + 1)Bm0+k+1 for tk+1 − 1 ≤ t ≤ tk+1,

(24)
for an increasing sequence tk with t0 = 0 and tk + 1 < tk+1, to be defined later. It
is clear that B(t) is a continuous function from [0,∞) to L(H). Since ‖Bm‖ → 0 it
is clear that

Em0

.
= sup{‖Bm‖;m ≥ m0} → 0 as m0 →∞.

Therefore, ‖B(t)‖ ≤ Em0
for all t ≥ 0, and this can be made as small as we like by

choosing m0 sufficiently large.
In order to define the sequence (tk)k≥0 let us now bound the solutions of{

ẋ(t) = Ax(t) +B(t)x(t),

x(0) = x0.
(25)

For t between tk and tk+1− 1 we will have A+B(t) = Am0+k and, because of (23),

‖x(t)‖ ≤ ‖x(tk)‖Dm0+ke
−ω(t−tk).

To fix ideas, let us start with k = 0. For 0 = t0 ≤ t ≤ t1 − 1 we can write
‖x(t)‖ ≤ Dm0

e−ωt‖x(0)‖. Then, for t1 − 1 ≤ t ≤ t1 we can broadly bound as

‖x(t)‖ ≤ e(t−t1+1)(‖A‖+Em0
)‖x(t1 − 1)‖ ≤ e(‖A‖+Em0

)‖x(t1 − 1)‖,

and, putting the two parts together

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0e

−ωt‖x(0)‖, (26)

which obviously implies the weaker bound

‖x(t)‖ ≤ e(‖A‖+Em0 )Dm0
e−

1
2ωt‖x(0)‖, (27)

both for 0 ≤ t ≤ t1. Then, we continue with t1 ≤ t ≤ t2 − 1, and for this range of t
we have A+B(t) = Am0+1 and

‖x(t)‖ ≤ Dm0+1e
−ω(t−t1)‖x(t1)‖,

and, as before,

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0+1e

−ω(t−t1)‖x(t1)‖,
now for the whole t1 ≤ t ≤ t2. Putting this together with (26) we get, again for
t1 ≤ t ≤ t2,

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0+1e

−ω(t−t1)e(‖A‖+Em0
)Dm0e

−ωt1‖x(0)‖,

that we can write again as

‖x(t)‖ ≤ e(‖A‖+Em0 )Dm0+1e
−ω(t−t1)e(‖A‖+Em0 )Dm0

e−
1
2ωt1e−

1
2ωt1‖x(0)‖,

and at this point we see that we can choose t1 large enough in such a way that

e(‖A‖+Em0
)Dm0+1e

− 1
2ωt1 ≤ 1.

With this choice we get

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0e

−ω(t−t1)e−
1
2ωt1‖x(0)‖, (28)
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for t1 ≤ t ≤ t2, which will be needed in the next interval, and also deduce, together
with (27) the weaker but more global bound

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0e

− 1
2ωt‖x(0)‖, (29)

now for all t such that 0 ≤ t ≤ t2.
Now we proceed inductively. Suppose that along the interval tk−1 ≤ t ≤ tk,

where tk is still to be chosen, we have obtained, as in (28), the bound

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0e

−ω(t−tk−1)e−
1
2ωtk−1‖x(0)‖, (30)

for tk−1 ≤ t ≤ tk, and the weaker inequality

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0e

− 1
2ωt‖x(0)‖, (31)

for 0 ≤ t ≤ tk. Then we analyze for tk ≤ t ≤ tk+1 and obtain that

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0+ke

−w(t−tk)e(‖A‖+Em0
)Dm0

e−ω(tk−tk−1)e−
1
2ωtk−1‖x(0)‖.

Then we choose tk in such a way that

e(‖A‖+Em0
)Dm0+ke

− 1
2ω(tk−tk−1) ≤ 1,

and obtain

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0e

−ω(t−tk)e−
1
2ωtk‖x(0)‖, (32)

for tk ≤ t ≤ tk+1, and the weaker inequality

‖x(t)‖ ≤ e(‖A‖+Em0 )Dm0
e−

1
2ωt‖x(0)‖, (33)

for 0 ≤ t ≤ tk+1.
With these choices of the tk one can make k →∞ and obtain the final bound

‖x(t)‖ ≤ e(‖A‖+Em0
)Dm0

e−
1
2ωt‖x(0)‖, (34)

for all t ≥ 0, that proves the exponential asymptotic stability of the solutions of
(25).
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