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ABSTRACT

Mobile robots are already playing a pivotal role in our
society. New innovative systems are emerging, while
autonomous driving’s software is evolving thanks
to Deep Learning (DL). In our work, we propose a
modular pipeline for autonomous systems, which can
combine DL algorithms for Computer Vision (CV)
with classic robust functions for Path Planning and
Control tasks. We design our structure to be generic
for diverse mobile robots, flexible to changes on its
modules, and robust in different scenarios. As we
use the Robot Operating System (ROS) and socket
connections between the pipeline and our system,
we create a wireless network that goes from sensors’
outputs to actuators’ inputs. Finally, we implement
the designed environment in a Loomo Segway robot
with real scenarios, testing the proposed method’s
robustness and flexibility.

1 INTRODUCTION

Itis known that mobility has a clear tendency to remove the
human factor [26, 18]. For this reason, we need to find the
best possible replacement for our brain and our five senses:
cutting-edge sensors, classic robotics, and Artificial In-
telligence (AI) combination. The main reason for this
change is to increase users’ safety, reducing human-caused
accidents. Other fundamental consequences include im-
proving the vehicle’s energy efficiency or reducing lost
time in displacements.

We are about to face building a robust platform, which
allows substituting a driver in real transportation scenarios.
Consequently, it is essential first to understand how we
are behaving in these situations. Considering that our
system is the brain, we first require input data. We use
our senses to know our surroundings; then, we process
the perceived information inside our brain; and finally,
following the previous steps, we actuate with our bodies.
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Figure 1: Human driving process.

® &

While humans are processing the information as we show
in Figure 1, robots also need to follow the same three
steps, changing the senses, brain, and body by sensors,
software, and actuators, respectively. In this work, we
focus on the software part, presented in green in Figure 2,
receiving the environment information as an input (blue)
and sending the actuator commands as an output (yellow).

Figure 2: Robot driving process approach.

Pioneering work in autonomous vehicles software archi-
tecture design and implementation was done for racing by
AMZ [11]. The ETH Formula Student team performed
outstanding results in the competitions thanks to the robust
and modular pipeline they created, suitable for modern
Deep Learning algorithms. Despite this fact, their project
was focused on a singular competition, so their software
structure was specific. For this reason, they did not in-
clude a fundamental task for traffic scenarios: predicting
how the environment will behave in the near future.

In contrast to the mentioned related paper, we aim to design
and implement a pipeline adapted to different driving
situations. Two central challenges exist for achieving the
goal, the reliability and flexibility of the structure, and the
integration in a real system.
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Our main goal is to design and implement a real-time,
robust and flexible pipeline, which needs to be easy to
modify and suitable for diverse autonomous vehicles.
We contribute with a tested open-source mobile robot’s
structure, improving a conventional method, based on five
different pillars: Perception, Estimation, Prediction, Path
Planning, and Control. In our contribution, each one has
its own fixed inputs and outputs that give robustness and a
variable main algorithm that allows flexibility. Moreover,
every single pillar can be designed independently from
the others, supporting Deep Learning functions. We
design and implement the pipeline using ROS, testing it
in a Loomo Segway robot, where socket enables wireless
communication between the autonomous vehicle and the
structure (external computer). Finally, we present and
explain all details related to the code on GitHub!.

2 REeLATED WORK

To expand our knowledge and have an reasonable basis
before designing the method, we present the most helpful
bibliography we found for the project. We classify it
depending on where they have contributed to our work.

Pipelines completely designed with AI. As Al has be-
come a right solution for modelling complex processes
in real-time, we considered related work [14, 27, 13, 2]
to build the structure. In [27], a model is built with
deep reinforcement learning and tested in a 3D simula-
tion, while in [13, 2], a combination of Recursive Neural
Networks (RNNSs) for Prediction and Model Predictive
Control (MPC) is shown.

The main advantages they give are the low sampling time
of the entire pipeline (compared to separate nodes) and
the accuracy and the robustness they have if they are
adequately trained.

We decided not to focus on these methods due to the
complexity of acquiring useful data for training and,
principally, due to the lack of flexibility they present:
We cannot split them in different modules. None of the
mentioned related work was implemented in real systems
due to its complexity and expensive computation, whereas
they were only tested in simulations. As we explained
before, we aim to implement all our design in a mobile
robot; therefore, we consider real execution feasibility a
decisive factor.

Modular Pipelines. Looking for an alternative to Al,
modular pipelines for mobile robots have been studied.
We analysed autonomous car [29, 4, 24, 31, 12, 25, 19,
20, 1] and Formula Student vehicle [11, 23] structures.

1GitHub: Autonomous Driving Pipeline in ROS [6]

In [4, 24, 25, 19, 20], structures were designed and
theoretically discussed, but not implemented in a real
system. On the other hand, [29, 11, 23, 31, 12, 1] include
modern machine learning algorithms for Perception and
Prediction with an implementation section.

Prediction was not considered in the Formula Student
work because it does not exist vehicle coexistence nor
object motion in the competitions. Our project requires
this module as it needs to be adaptable to all possible
scenarios.

All other work that includes implementation is focused on
a particular problem (autonomous cars). Therefore, they
do not consider possible space problems in other mobile
robots and, consequently, their network that connects the
structure and the vehicle is wholly wired, via Ethernet
and CAN. We purpose using socket to avoid these issues,
connecting an external server with the robot via IP address.
This wireless solution enables to test the pipeline in
different mobile robots.

Algorithms. As we want to create a robust and flexible
structure, we have been looking for algorithms that are
only focused on a singular task. Consequently, if a user
decides to change a specific module, the rest will remain
invariant. At the same time, we look for algorithms that
hold a low computation time, i.e. applicable to real-time
scenarios.

Starting from Perception, fast human detection algorithms
(PifPaf) [16] and simple object detectors [22] have been
studied. They both use Al to build a model that enables a
more accurate detection.

Continuing with State Estimation, Kalman Filters [30]
are commonly used for robot pose estimation, when state
observation is required without the presence of sensors that
directly output the value. On the other hand, Simultaneous
Localisation and Mapping (SLAM) [8] is usually useful
to complement the state observation and to generate a
map that stores all previous observations, associating data
if required.

Concerning Prediction, algorithms implemented with
neural networks for real-time problems have been con-
sidered, like human or vehicle predictors [15, 3].

Regarding Path Planning functions, obstacle avoidance
has been prioritised in the research. Efficient methods
like RRT and RRT* [17, 10] have been considered for our
designed algorithm.

Finally, to build the Control pillar, research on robust
classic control algorithms is made. Model Predictive
Control [5] and other control techniques for non-linear
systems [7] have been researched.


https://github.com/cconejob/Autonomous_driving_pipeline
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3 MEeTHOD

Before going deeper into the method, it is essential to
remind that the project’s primary goal is to create a robust
and flexible pipeline, which can be changed partially
without disturbing mobile robot’s behaviour. To achieve
it, we expose a ROS structure based on five different nodes,
each containing fixed topics and variable algorithms.

As we show in Figure 3, the complete ROS pipeline
represents what we process in our brain. It consists of
five interconnected pillars: State Estimation, Perception,
Prediction, Path Planning and Control.

Prediction
State
Estimation 7 l 9
Map 8 Path Planning L, Control

T et
@i—-r Robot S ] J

Figure 3: Purposed pipeline. We represent the main autonom-
ous systems’ components in circles, including sensors (blue),
low-level software (red) and actuators (yellow). The ROS struc-
ture is drawn inside the central big gray rectangle, with its main
pillars in green. Finally, numbers in connections are explained in
detail in Table 1. We build all links that come in or out the ROS
pipeline (1, 2, 3, 4, 9) with wireless socket.

It is important to note that we design the structure attach-
ing importance to how it can be maximally invariant to
different autonomous driving systems.

Intending to give flexibility to the pipeline, we present a
group of parameters, which can be changed depending on
user’s needs. We decide all parameters to enable users a
reasonable control over the algorithms. We provide:

e Sample Time (A7): Iteration execution time of every
node, equivalent to the inverse of the node rate. We
include it as it gives control over the pipeline’s total
period. It is measured in seconds. We recommend
to monitor ROS node rates and add a safety margin
to ensure not to exceed never the set sample time.

* Algorithm (Algo): User can change a node al-
gorithm by modifying the mentioned parameter. We
decide to incorporate it to centralise all possible
variations in a simple file.

* Node activated: We include this parameter to allow
enabling or disabling optional nodes (Prediction and
Mapping) depending on the problem requirements.

In addition to the previous parameters, we add specific
ones for Prediction, Path Planning and Control, adequate
to the used algorithms and taken directly from related
work [5, 10, 15].

In addition to flexibility, we consider robustness as another
pipeline’s priority. Consequently, we present in Table 1,
the principal connections between pillars, considered our
structure’s basis.

Topic Description N
Camera Raw Image 1
Bboxes Boxes with detections 2
Popj Detection’s position 3
Ximu State given by IMU 4
Xv Robot’s estimated state 5
Mapp; Map of all detections 6
Top; Predicted trajectories 7
Path Robot’s planned path 8
Control Cmds | Optimal Control commands | 9

Table 1: Main pipeline’s connections. Each one with a descrip-
tion and a label (N), represented in Figure 3.

3.1 PERCEPTION

As we use our senses to get an idea about the environ-
ment and interpret the information inside our brain, we
present the Perception node. It pretends to substitute the
process explained by an algorithm, which can be simple
or complex depending on our necessities. We implement
and explain both options to compare their advantages and
disadvantages.

In this project, we use data sent by mobile robot’s cameras,
and we try to detect objects, animals or persons inside
every frame, using neural networks. The expected inputs
are raw images, which can be previously processed if
needed, while expected outputs are bounding boxes that
include the detection, as we expose in Table 2.

Inputs
Camera

Outputs
Bounding Boxes

Table 2: Perception’s node inputs and outputs.

We implemented two different algorithms inside the ROS
structure, both previously designed: a fast detector [22]
and a more accurate but slower detector, Openpifpaf [16].
The fast one was trained to detect minions’ images and is
especially helpful for testing, thanks to its short detection
time. However, the bounding box accuracy is low, and it
may indirectly affect the rest of the pipeline.
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On the other hand, we use Openpifpaf for human detection
with high accuracy on the bounding box position. While
detection time is higher, we need to consider that it causes
a delay, directly affecting the data flow. Consequently,
and explained afterwards with more detail, we must raise
the control period as long as the autonomous vehicle’s
principal loop time increases. We show all parameters
that allow Perception’s node flexibility in Table 3.

Parameter | Description
Atpere Perception sample time
Algopere Perception algorithm

Table 3: Perception parameters.

The detection information goes back to the autonomous
system, where we search the depth sensor outputs for
singular ranges of the image. It returns the positions,
calculated with Equation (1).

b= ] [zt

d - sin() M

Once we know the positions, we can send them to Mapping,
Prediction or Path Planning, depending on our needs.

3.2 StATE ESTIMATION

In order to locate ourselves, we need our position sense,
known as proprioception, our motion sense, called kin-
aesthesia, and our memory [28]. Processing all this
information, we estimate where or how fast we are.

Intending to substitute our proprioception and kinaes-
thesia, we use sensors such as an Inertial Measurement
Unit (IMU) or wheel odometers data, which allow us to
get the robot current states. We expect this sensor data
as an input in our project, and we will give the estimated
current position and speed as an output.

While we are also using our memory for location, we
implement a Mapping algorithm that stores previous
detections and access them when required. Consequently,
another input is the current detection position and, storing
it, we can generate a map with all past scenes. We present
all inputs and outputs in Table 4.

Inputs Outputs
Ximu Xy
Pobj Mapobj

Table 4: State Estimation node inputs and outputs.

We also take into consideration one of our main project
goals, flexibility. Therefore, we present the main para-
meters in Table 5, which users can set depending on their
requirements.

Parameter | Description

Aty Robot State sample time
Ate,, Map State sample time
Mmapactive Map State activated
state map State estimated by SLAM
AlgoRobot Robot State algorithm
Algonyap Map State algorithm

Table 5: State Estimation parameters.

3.2.1 RosoTt STATE ESTIMATION

The first and usually the most straightforward way of State
Estimation consists of combining sensors information,
considering that they may not be accurate. If we com-
pare it to the human driving process, proprioception and
kinaesthesia are considered, while memory is not neces-
sarily used. We recommend Extended Kalman Filters
(EKF) [30] for generating immeasurable variables from a
non-linear model.

In mobile robots, we design the model depending on the
speeds or accelerations we are expecting. For low values
(v < 3m/s), and due to its simplicity, we usually build
a kinematic model. We suggest using a dynamic model
for larger speed values, which is more complex and more
accurate than the kinematic.

In the project, we decide not to include EKF inside our
default structure, despite enabling an option to add it.
We dispose of states’ information directly from sensors,
which already use EKF to correct their noise. We use
a state formed by three components: 2-D position and
heading (x, y, 6), where x belongs to the longitudinal axis
and y to the lateral. We show the coordinate system used
in Figure 5 and the state structure in Equation (2).

x
Ximu = |y 2
MU

S

Intending to calibrate current’s state every time we turn
on our mobile robot, we implement inside the State
Estimation pillar an initialisation algorithm. It consists of
storing the first state acquired, considering it a reference
value for all iterations, as we present in Equation (3).

X0
Xo = Ximu (0) = |yo 3)
6o
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Afterwards, applying rotation and translation from the
current IMU state (X7 ) to the reference state (X)), we
obtain the current position and orientation respect the
initial robot’s situation, as shown in Equations (4) and (5).

cos(By) —sin(6y) O
R =|sin(6y) cos(6y) O @)
0 0 1
x
Xy =|y| =R [Ximu - Xo] %)
o]y

3.2.2 Mapr STATE ESTIMATION

The second way of estimating a mobile robot’s state is
to consider the previous inputs, allowing an overview of
the surrounding (memory). One of the most used and
recommended methods is the Simultaneous Localisation
and Mapping (SLAM) [8]. The algorithm is used to
estimate the state depending on the position related to
the environment and, besides, it allows to generate a map
containing all previous observations.

As we explained in Robot State Estimation, we dispose
of an Inertial Measurement Unit, which provides the
information we need for estimating our current state.
Consequently, in our particular problem, we only use the
second part of the SLAM, Mapping.

To add memory to the mobile robot, we decide to imple-
ment a Simple Mapping algorithm that helps us better
understand the environment. It consists of associating or
adding perceived objects or persons to a map depending
on distances related to the robot and previous detections.

We consider that n observations in m periods come from
the same object if the relative distances between them
during the Perception time sample has not reached a
specific value (motion,,,,). On the other hand, we only
consider all perceived objects located inside a range
(Rangemax)- For us, the rest are noisy and not reliable.
We explain in more detail how the Simple Mapping
algorithm works.

Simple Mapping
1. Check if detection is inside the sensor’s distance
range. If the condition is True = Continue.
2. Transformation from local to global coordin-
ates.
3. Check if detection is already on the current
map.
(a) If it had been detected previously = Up-
date from previous to the current position.
(b) Else = Add new detection to the map.

3.3 PREDICTION

In order to predict trajectories from persons, animals or
objects moved by an external force, humans use prior
knowledge and observations [9]. As we show in Table 6
and to substitute the complex intuition process, we need
detections as inputs (P,;). As outputs, we calculate
future positions of the mentioned observations (Typ;)
depending on their previous behaviour.

Inputs Outputs
P obj Tob J

Table 6: Prediction node inputs and outputs.

Intending to add flexibility to the Prediction pillar, we
decided to set a group of parameters, which can be modi-
fied by users depending on their constraints or needs. We
present them in Table 7.

Parameter | Description

Atprea Prediction sample time
Thyrea Prediction time horizon
Npred Number of predictions
Npastprea Prediction past observations
Algopred Prediction algorithm

Table 7: Prediction parameters.

We need to find an approach for intuition, and one pos-
sible solution is using Artificial Intelligence. The main
advantage is the accuracy, while we predict in a high
sample time. Another more straightforward option comes
from approximating the motion with a kinematic or a
dynamic model. Combining both presented methods, Al
and modelling represented with constraints, we achieve a
better approach in terms of accuracy but still with a high
sample time.

As we need real-time responses in this project, we prior-
itise achieving a low sampling time before getting high
Prediction accuracy.
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Consequently, we present a simple model based on linear
kinematics, where the input position Py is the current
observation with an identifier k. The output trajectory
Ty contains the current and the future positions from ¢
to 1+ Tp,,.,, being k detection’s identifier-we present
variables structure in Equations (6) and (7).

Py = xobf] ©)

Yobj k

xobj] xobj]
T, = LEREL) 7
k Yobj |, Yobj I+Thpi‘edlk (7

We use the difference of positions between diverse con-
secutive detections to estimate the observation’s present
speed. We divide this velocity into two components,
longitudinal and lateral, as we show in Equation (8). We
decide not to consider accelerations in our model be-
cause small position errors caused high-speed variations
and, consequently, the trajectory predictor estimated large
moves when, in reality, the object was not moving.

Vion 1
- = - (Py - Py 8
k [Vlat]k Atyere (Px — Pk-1) (®)

Using Equation (9), we replace our intuition process by a
kinematic Prediction model.

Ty = P +vg -t (&)

As we mentioned before, Al is commonly used for Predic-
tion. For this reason, we decide to implement TrajNet++
[15], a network used for human trajectory forecasting,
based on an LSTM architecture. We give the possibility
of combining the Prediction algorithm with the previously
presented Openpifpaf human detector. However, we want
to warn users about the consequences that could have
the fact of increasing the sampling time: lower Control
frequency means lower admissible speed in the robot.

3.4 PatH PLANNING

While we use our prior knowledge and predicted traject-
ories of our surrounding to calculate the optimal path to
follow, robots need a replacement for this calculation that
we do unconsciously, by generating math equations and
implementing search algorithms.

As we show in Table 8, Path Planning requires all pre-
viously obtained information as an input, including the
vehicle’s current estimated state (Xy ), the map gener-
ated with all previous observations (Map,p;) and the
predicted trajectories (Tp ).

On the other hand, algorithm’s output consists of a set of
states where we want the autonomous vehicle to be in the
near future (Path), ensuring that it does not collide with
an obstacle during its way.

Inputs Outputs
Ton j Path
Mapop;

Xy

Table 8: Path Planning node inputs and outputs.

Like in the rest of the pillars, we try to allow the pipeline
to remain robust to user changes. Depending on user
requirements, all parameters, presented in Table 9, can be
changed depending on the singular mobile robot problem.

Parameter | Description

Atparn Path Planning sample time
speed Mobile robot speed

goal Goal coordinates (X,y)
Thypern Path Planning time horizon
Algoparn Path Planning algorithm

Table 9: Path Planning parameters.

We consider that the understanding of the parameters is
crucial, and, for this reason, we give a brief explanation.
Firstly, we need to ensure that the Path Planning sample
time is higher than the search algorithm maximum com-
putation time. Secondly, the mobile robot’s speed should
depend on the Control’s sampling time and the free space
we have around the autonomous vehicle. We strongly re-
commend first to test the robot with lower speeds to avoid
severe collisions. In addition to the last recommendation,
we suggest checking if Control is driving the robot over
the path because we observed that MPC could decrease
its accuracy when increasing the speed. Finally, we find
it essential to remind that the Path Planning time horizon
must be higher than Control’s time horizon while using a
Model Predictive Control.

For us, Path Planning aims to avoid obstacle collision
going from a start to an endpoint. We know several
algorithms, such as A* (search-based algorithm), RRT,
RRT* (sample-based algorithms).

A*is a search-based method that adds nodes in an ordered
way and considers the distance between nodes and goal to
get the shortest path. The main problem of this method
is that it becomes computationally expensive when we
require a long path. For this reason, we discard using
search-based algorithms, and we focus on comparing
sample-based ones.
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On the other hand, Rapidly Exploring Random Trees
methods, find the path selecting nodes randomly over the
working area, with a maximum distance between nodes
set by the user. It also checks obstacle collision in every
connection. The main difference between RRT and RRT*
is that the first one is not necessarily close to the optimal
path (zig-zag pattern). In contrast, the second one is
smoother and considered optimal for a large number of

iterations, thanks to the trajectory restructure (rewiring).

Moreover, this rewiring is the main reason why we choose
RRT* algorithm for our project. We take into account that,
as we have a real-time problem, we cannot iterate until
finding the optimal solution. However, the path is close
to the optimal and, applying external smoothness, we can
obtain a good approximation of RRT* large number of
iterations algorithm.

Depending on the objects, persons or animals we want to
detect, we estimate a safety radius to ensure that robot and
observation do not collide. We show how the Prediction
RRT* (PRRT¥*) algorithm is working in Figure 4.

Prediction RRT* (PRRT%*)

1. Get a random node, inside a delimited area and
meeting the established constraints between
nodes: dypax [M], Ymax [rad] (max. node
distance and max. node angle, respectively).

2. Calculate the total cost to get to the node from
the start point, where cost =t =d/v [s].

3. Check possible collisions between the gener-
ated path and the obstacles in # = cost to add
Prediction:

(a) If collision = Go back to 1.
(b) Else = Continue.

4. Find a previously calculated neighbour node

that minimises the total path cost to get smooth-

ness.

Append node to the path node list.

6. Node rewiring process inside a decided radius.

(a) If reached max. iterations = Continue.
(b) Else = Go back to 1.

7. Calculate the angle between the current and the
first desired positions and rotate all the path.

8. Improve smoothness in the sharpest nodes with
a spline function and rotate back.

e

As we only need to avoid an obstacle if it is located in
the middle of our way, we decide to check if the shortest
feasible path (straight line between the goal and the start)
collides with an observation or a Prediction (7,5, and
Map,pj). If no collision exists, we decide to take the
shortest path. Otherwise, we need to recalculate it using

y [m]
°
&
g

ai P |4
0.0 . X 15
x[m]

Figure 4: Robot’s Prediction RRT* for Path Planning. Where
obstacles are represented with blue continuous circles (their
safety margin in blue discontinuous), all trees connecting gen-
erated nodes are drawn in green. The PRRT* best solution is
represented in black, while the smooth PRRT* (and final desired
trajectory) is drawn in discontinuous red.

the algorithm presented before. Finally, as the controller
tries to follow the generated path, we need to ensure
that the mentioned path is feasible and meets all vehicle
restrictions and kinematic constraints (such as maximum
speed, angular speed, acceleration or brake).

Smooth MPC constrained Path Planning

1. Create a straight line between the starting point
and the local coordinates’ goal (shortest path):
y =m-x,where m = ygoai/Xgoal-

2. Check possible collisions between the shortest
path and the obstacles (T, ;) in t = cost to add
Prediction:

(a) If collision = Continue.
(b) Else = Shortest feasible path. Directly
go to step 4.

3. RRT* algorithm including Prediction, avoiding
obstacle collision.

4. Addkinematic constraints and split it into points
separated in At to get the smooth feasible MPC
path.

We send the smooth feasible path to Control, ensuring
that we obtain a valid solution from the controller’s solver.
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3.5 CoNTROL

We are about to explain in details the last pillar before
actuating over the system, Control. By definition, a
controller’s primary goal in mobile robot scenarios is to
follow the desired path providing commands to a plant
that reacts changing (or not) its state. In order to design a
controller and get the optimal Control commands (u;), we
require the current autonomous vehicle’s state (Xy = X;)
and the planned path (Path;), as we present in Table 10.

Inputs Outputs
Path Control Commands
Xy

Table 10: Control node inputs and outputs.

As we need flexibility in our robust pipeline, we present
in Table 11, all parameters that the user could change if
required.

Parameter | Description
Atcontrol Control sample time
Nstates Number of states
heontrol Control time horizon
Algocontror | Control algorithm

Table 11: Control parameters.

‘We considered different control methods and, for us, the
main factors that help us decide for one are maximum
robustness, maximum flexibility and minimum sample
time. For this reason, we implement one of the most robust
controls for mobile robots, which takes into consideration
the kinematic or dynamic model of the vehicle (good
flexibility), and that can be used in real-time. It is known
as Model Predictive Control (MPC).

One of the distinctive characteristics of MPC is that it
predicts the vehicle’s behaviour during 7,.,,,., (future
predicted states) depending on the equations designed
(model). This project determines that using a kinematic
model instead of a dynamic one is better because it is
simpler to design and faster to compute. It is known that
with low accelerations and speeds, both models behaviour
is considered the same. We present our built model
in Equation (10), where i is the iteration number. It
is important to remark that we use the local coordinate
system inside our MPC Control and that these equations
with three states are only valid for a two-wheel robot.

Xi+l X; vi - cos(0; + wiAt.)
Visl| = |vi| + | vi - sin(0; + wiAte) | - At (10)
0i+1 0; wi

Depending on the error between future predicted states
and desired path (e;) and the output variation (Au;), we
consider that a set of control commands is good or bad.
Changing these outputs, we try to minimise both variables
with a solver and, in parallel, we give more importance
to one than other adding weights (Q and dR) to the
optimisation function (J), as we show in Equations (11)
and (12).

Ox
dR,
0= |0y ;dR=[dR } (1n
o v
i=N
J =) [efwoQe; + Auf wardRAu;]  (12)

=1

MPC Solver

1. Start solver’s first iteration with the N previous
predicted Control outputs.

2. Get next state from the current state and Control
output X;1 = f(X;, u;) for N times.

3. Get state error for every N Prediction, calcu-
lated as the difference between the predicted
state and the reference state: e; = X; — Path,;.

4. Calculate the output difference between every
two consecutive predictions Au; = w1 — u;.

5. Store objective function value (J) to compare it
with other solver iteration’s result to minimise
it. Output the predicted Control commands for
the minimum J.

It is important to note that Q and dR parameters need to
sum one and one, respectively. In the same way, weights
wo and wgg also need to sum the unit. The first pair
of parameters refer to the importance of giving to every
state or output rate, while the second means if we give
more importance to states’ error or output rate in general.
For example, giving a value of wyg = 0 would take us to
have no error between the predicted states and the desired
path but, at the same time, it could cause damage to the
motors due to high peaks on actuator commands. On the
other hand, setting wp = 0 would completely minimise
the output rate, but not necessarily following the path
designed beforehand.

All mentioned weights have been experimentally set and
could be changed by the user if needed. We also normalise
the weights dividing them by the maximum error admiss-
ible (for states and output rate) squared. This method
allows us to have total control over prioritisation inside
optimisation.
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4 EXPERIMENTS

Unlike all previously explained parts of the method, this
section is a singular detailed exposition of our implement-
ation in a real mobile robot.

We first expose the autonomous system we use for test-
ing, adding relevant information about complementary
software that connects the robot and our method. Then,
we make experiments to test how the structure behaves,
making changes in some pillars.

4.1 AutoNoMoOUS VEHICLE

As we informed before, we use a Loomo (Segway) robot
to implement and verify that the pipeline is meeting all
our goals. We choose Loomo because it allows us to
focus on the pipeline’s software part, avoiding the design
and hardware implementation (such as sensors or PCBs).
We also took advantage of the robot’s previous software
work [21], which made it easier to develop and test the
structure in a shorter time.

Figure 5 shows the coordinate system we use in all the
ROS structure, where G components are global, and L
coordinates are local.

4 Initial (Global) ~ ZG
Coordinates

Xa

Ya

Actual (Local)
Coordinates

Figure 5: Loomo coordinate system. We use it in all the structure
pillars. The global axis is represented in red, while the local one
in blue. The heading angle (6) goes from global x-axis to local
x-axis.

In addition to the ROS structure, we modified an already
implemented algorithm [21], which runs inside the robot
(system) in real-time. The system inputs are the bound-
ing boxes, from the previously explained detector, and
Control commands, sent by the controller. On the other
hand, system outputs are raw images (frames) sent to
Perception, observations’ positions provided to Mapping
and Prediction, and IMU data to estimate vehicle’s state
in real-time, as we show in Table 12.

Inputs Outputs

Bounding Boxes Camera

Control Commands Popj
Ximu

Table 12: Autonomous Vehicle inputs and outputs.

As we explained before, we only use Loomo already
integrated sensors required for topics in Table 12. 6-
axis IMU, wheel odometry, RealSense RGB camera and
ultrasonic sensors are used by State Estimation, Perception,
Prediction and Mapping to receive information about the
surroundings. At the same time, wheel motors receive
optimal Control commands.

The mentioned algorithm consists of a closed-loop that
receives and forwards information from Loomo sensors
and actuates over the robot using some optimal commands
calculated beforehand by Control. Between these two
steps, it estimates the detection’s positions from the de-
tector’s and depth sensor’s information. We establish the
connection between the main pipeline and the Loomo
via Socket, due to its easy implementation and fast data
transfer. We explain below the algorithm in more details.

Loomo Algorithm

1. Get an image from the camera and send it to
Perception.

2. Receive bounding boxes from Perception, get
depth sensor outputs in this range, transform
it to P,p; = (x,y) and send it back to State
Estimation.

3. Get X;pu = (X,Y,60,v,w) from the inertial
sensor and drive it to State Estimation.

4. Get optimal commands from Control.

Like all mobile robots and due to physical constraints,
Loomo has its limitations, shown in Table 13.

Loomo Segway Robot
Wheelbase | 0.57 m
Vimax 2.0 m/s

Table 13: Loomo kinematic properties.

4.2 POSSIBLE SCENARIOS

We analyse three different real scenarios and how the
autonomous vehicle behaves in each one depending on a
set of parameters. All experiments are located in the same
place. Consequently, we always set the same planner’s
working areatox € [0,3] mandy € [-1,1] m.
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4.2.1 No DETECTIONS’ PRESENCE

The first case of study is the easiest one, considering no
obstacles or persons in the scenario. It is important to
note that PRRT* is only activated when the mobile robot
finds an obstacle on its way, so this section’s results can
be extrapolated to all other scenes. Consequently, as we
show with a discontinuous red line in Figure 6, we take the
shortest feasible path between start and goal: A straight
line that includes Loomo’s kinematic constraints.

y [m]
k4
g
H
\\

\
\

0.0 05 10 15 2.0 2.5 3.0
x[m]

Figure 6: Robot clean environment’s analysis. We represent
in discontinuous red the desired path for the Loomo, while in
discontinuous blue, we plot the predicted robot’s positions if we
apply the MPC optimal Control commands calculated. The blue
arrow represents Loomo’s position and orientation.

As the scenario is the simplest we can find, we use this
experiment to get the best set of Control parameters for
the Loomo and see how it reacts to goals that require
a variation in the heading. We ensure that there is no
presence of obstacles in the path; therefore, we can disable
Mapping and Prediction nodes, detecting with the simplest
algorithm available (Minion). We present the Loomo fixed
parameters for this scenario in Table 14.

We take care of actuator input rates, as we know that high
variations could cause an actuator failure. Thanks to dR
weights, we can avoid the presence of sharp signals inside
the motors.

We modify the speed to evaluate how the mean squared er-
ror (MSE) between the desired states (Path Planning) and
the estimated states (robot states) is varying. Depending
on these three values, we decide the best set of weights Q
and dR for the MPC Control. We present the best results
of the experiments in Tables 15 and 16.

MSE v=0.25m/s | v=0.5 m/s
X [m] 0.026 0.049
y [m] 0.018 0.054
0 [rad] | 0.084 0.137

Parameter Value
Prediction activated False
Mapping activated False
Detector Minion

Table 14: Loomo fixed parameters for no detections’ experiment.

In our project, we considered local state equations in the
MPC to facilitate our parameter calibration, ensuring that
x and y are strictly following the local coordinate system
presented in Figure 5.

Consequently, if Aerror is low, x error is associated with
the speed error (the difference between speed parameter
and current speed) and y error is related to the horizontal
error, which is crucial to avoid object collision. Thus, we
decide to give a higher dR weight value, verifying that
the robot’s orientation is still similar to the desired.

Table 15: Loomo states mean squared errors.

The mean squared error between the desired path and the
estimated state is always smaller than 6 centimetres for x
and y-axis. In the heading (0), the MSE is lower than 8°
when the robot’s speed is 0.5 m/s.

Au v=0.25m/s | v=0.5 m/s
v [m/s] 0.055 0.135
w [rad/s] 0.004 0.004

Table 16: Loomo rate of Control outputs.

We display the result of this set of weights in Figure 7.
The error is the difference between the red trace (already
followed by the vehicle) and the straight line that connects
the start (0, 0) and the goal, represented with a red cross.

=X

y [m]
s
g

T T T T T
.0 05 10 15 2.0 2.5 3.0
x[m]

Figure 7: Robot’s trajectory without detections’ presence. We
represent the trace followed by the robot in a continuous red line.
Other elements plotted were previously explained in Figure 6.

It is important to highlight that the error is concentrated in
the first part of the trajectory, when the robot is correcting
its heading.
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4.2.2 PRESENCE OF STATIC OBJECTS

The second scenario we are about to face consists of
detecting objects, located in the middle of the shortest
path between the start and the goal. We aim to find if the
algorithms designed are appropriate for obstacle collision
avoidance.

The scene consists of 3 static obstacles, represented by
minion images and located in a singular position relative
to the Loomo’s initial starting point. This particular case
requires RRT* Path Planning to avoid a collision, as we
present in Figure 8.

y [m]
e e
[T
& 3
L !
\
\
\
\
\
\
\
\
\
\,
\
\
\
\
\

0.00 po=br,__ -

] m m
-0.50 T T T T T

0.0 0.5 1.0 15 2.0 2.5 3.0

Figure 8: Robot's RRT* Path Planning avoiding static obstacle’s
collision. Observations are represented with green circles, while
other plot elements are explained in Figure 6 footnote.

On the other hand, we do not need the Prediction node,
as we consider observations completely static. We use
the default detector, where minion images replace the
objects. Itis important to note that the mentioned detector
effectiveness depends on the light and, for this reason,
we decide to enable Mapping and store all previously
seen objects. In Table 17, we show all fixed parameters
required for the experiment.

Parameter Value
Prediction activated False
Mapping activated True
Detector Minion

Table 17: Loomo fixed parameters for observations’ experiment.

Once the robot goes through the obstacles zone, the
desired trajectory corresponds to the shortest one if the
path is clear until the goal. Following the example of
Figure 8, we see how the Loomo reacts to the commented
scenario in Figure 9.

After we check that the robot is in the set goal position,
we repeat the experiment 20 times with the exact object
positions to verify that Loomo algorithms are robust.

y [m]
°
g

0.0 05 10 15 2.0 25 3.0
x[m]

Figure 9: Loomo’s trajectory once obstacle zone is crossed.

We show the repeatability test results in Table 18, where
objects 1, 2 and 3 are the observations ordered in the
x-axis. We also calculate in Table 19 the distances of the
different calculated paths for every experiment to see if
variability exists between them, adding in observations if
the robot goes to the right or the left relative to object 1.

Object 1 2 |3
Collisions 15% - -

Table 18: Repeatability test results for static detections for colli-
sion avoidance. We acquire data from 20 runs.

RRT#*
Length

Maximum
3.28 m

Minimum
2.87m

Average
3.0l m

Table 19: Repeatability test results: RRT* planning. Where
length is the total distance travelled by the mobile robot.

4.2.3 PRESENCE OF PERSONS

The last experiment contemplates the most challenging
scenario for a mobile robot: human interaction. The
scenario can be extrapolated to animals or other dynamic
objects, such as vehicles. Our goal is to verify robustness
and flexibility in the pipeline, modifying the algorithms,
enabling and disabling nodes, and checking that robot’s
behaviour is the expected.

In this case, we need a more complex detector to locate
persons in every frame (Openpifpaf). As we could have
more than one person in the scene, we require Mapping to
associate two different frames’ observations. We want to
see how the vehicle is behaving by changing the predict-
ors (disabled, Linear or TrajNet) and the motion of the
observation (constant or variable) We present the fixed
parameters for the experiment with persons in Table 20.
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Parameter Value
Mapping activated True
Detector OpenPifPaf

Table 20: Loomo fixed parameters for person detection.

Predictor | Motion Collisions
Disabled Constant 45%
Disabled Variable 60%
Linear Constant 15%
Linear Variable 30%
TrajNet Constant 5%
TrajNet Variable 10%

The experiment consists of 1 person, going from a singular
starting point, (3, 1) relative to the initial robots’ position,
to a goal (0, 0) with a constant speed of 0.25 m/s. This
person does not stop until the robot has reached its goal’s
coordinates.

Furthermore, Path Planning needs to apply the Prediction
knowledge to avoid possible future person collision and,
consequently, we apply PRRT*, as we show in Figure 10.

y [m]

e

o

=

‘\

\
-

~0.25 4 -~ -

—0.50 T T T T T
0.0 0.5 10 15 2.0 25 3.0

Figure 10: Robot's PRRT* with persons’ presence. We plot the
current detection with a continuous blue circle, while predictions
are represented with a discontinuous blue circle. It is important
to note that we decide how many predictions and what value of
horizon time we set. In this experiment, the number of predictions
is two. We use the Linear Predictor in this singular scenario.

Deeply analysing Figure 10, we could think that the robot
did not take the shortest path. First, we need to consider
the safety margin we added to objects and predictions.
Moreover, it tends to go to the right direction relative to
persons, due to the working area we set (according to the
experiment’s space).

Like in the last scenario, we create a repeatability test to see
how the robot behaves while driving autonomously twenty
times inside the same scene. We make the experiments
with different person’s type of motion: constant and
variable. We want to see how predictors are behaving in
both scenarios.

We check the robot-human collision number and the
desired path’s length to compare values with the static
object’s presence ones. We give all results in Tables 21,
22.

Table 21: Human collision avoidance. Repeatability test res-

ults, receiving data from 20 runs in every experiment.

PRRT* Motion u Length | o Length
Disabled | Constant 2.87m 0.14m
Disabled | Variable 2.85m 0.15m
Linear Constant 2.94 m 0.14 m
Linear Variable 291 m 0.13 m
TrajNet Constant | 2.96 m 0.15m
TrajNet Variable 294 m 0.15m

Table 22: Human collision avoidance. Repeatability test res-
ults. Where length corresponds to the total distance driven by
the mobile robot. Person’s motion can be constant or variable.

First of all, we compare the means between all the men-
tioned scenarios. As we include motion in the robot goal’s
direction for the human experiments, the followed path
is larger than in static obstacles. Applying a one-way
ANOVA test, we can accept that length means obtained
in person detection scenes are the same, while in object
observations, they are different. Studying the standard
deviation in all scenarios, we can observe how the variab-
ility of the traces is small. This fact helps us to confirm
that the pipeline is robust to changes, as the trace is not
being modified while alternating a part of the structure.

The number of collisions changes when we switch the
predictors. The collision results while detecting motion
and not using a predictor are unequivocal: The accuracy
goes down as the robot cannot anticipate the environment
in the next time steps. We can affirm that when there is
presence of persons, TrajNet is recommended in order to
prevent a variable motion of the observations. If there are
only static obstacles in the scene, we do not need to use a
predictor.

We can confirm that our pipeline is flexible and robust
simultaneously, as we can switch detection and predic-
tion algorithms without affecting the mobile robot’s per-
formance, always taking into consideration all presented
results.
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5 ConcLusioN AND FUTURE WORK

We have presented the design and implementation of a
ROS structure for autonomous driving systems. Thanks
to our specifically designed PRRT* and MPC Control, our
proposed method enables the structure’s use in multiple
mobile robots and diverse scenarios without disturbing
the performance robustness. We have built a wireless
socket connection between pipeline and platform and,
consequently, we facilitate the implementation in a real
system, avoiding space problems caused by wired net-
works. We have also designed a modular structure that
allows an easy algorithms’ switch in every single pil-
lar, where algorithms could contain classic or modern
Deep Learning functions if required. We have tested our
method in a Loomo Segway robot, achieving outperform-
ing flexibility and robustness results for three different
real scenarios.

Future work will improve our pipeline’s applications if
other Deep Learning detectors and predictors are ac-
quired. Classifying by types of objects instead of using
data association would give better results in the robot’s
performance. SLAM implementation for State Estimation
would also improve the system’s behaviour, while abruptly
accelerating or decelerating.

Finally, we want to highlight the limitations of the pipeline.
Deep Learning algorithms can be used, but always being
careful with their execution times. If sample time is too
high, the control does not have enough environment’s
information update to perform successfully. We also find
it essential to warn users that all kinematic or dynamic
models need to be readapted if the autonomous system
changes.
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