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Cascading failures in airport networks

Abstract

Cascading failure phenomena can appear in complex networks that distribute
flows of information, people or goods, when flow going through nodes or edges
exceeds the capacity of network nodes or edges. Cascading failure models from
previous research are not adequate for airport networks, as flow is not continuous,
and load has to be redistributed among close airports, rather than previously ex-
isting connections. With these constraints in mind, we have defined an algorithm
to simulate the management of cascading failures in airport networks. We use the
algorithm to evaluate the effectiveness of several selection rules of alternative de-
parture and arrival airports to affected flights to reduce the impact of the cascading
failure. We have applied the algorithm to the Oceanic Airport Network to assess
the impact of several incidents. Results show that selection rules of arriving airports
have significant impact in reducing the effect of incidents affecting central airports.

1 Introduction

The air transport industry has been growing until becoming an essential part of the
everyday life in today’s economy. Airline industry deregulation and liberalization has
lead to a continuous growth of air transport (Wang et al., 2016; Burghouwt and de Wit,
2015; Goetz and Vowles, 2009). Air transport is generally considered safer and faster
than other means of transport (Chambers, 2012), particularly to connect isolated rural
areas and islands with urbanized areas, or to connect mutually distant locations such as
cities in different continents (Rocha, 2017). Air transport has been shaped by historic,
politic, geographic and economic factors (Guimerà et al., 2005), and is the result of the
aggregation of routing decisions of airlines, that try to serve the air transport demand
in the context of a competitive industry. The recent COVID-19 pandemic has been an
important drawback for this trajectory of sustained growth. Beyond short-term effects
like travel ban and border closures, the pandemic has brought some significant menaces
for the airline industry in the future years. Some of these threats are the extensive use of
teleworking by companies providing the demand of business travelers, the implementation
of health screening controls that can make air travel less attractive for leisure passengers,
and the likely lack of governmental support for full-service airlines (Suau-Sanchez et al.,
2020).

An air transport network can be represented as an airport network, where nodes rep-
resent airports or cities and edges direct connections between nodes. This representation
can be completed assigning weights to edges, usually representing intensity of connections
(e.g. weekly frequency of flights). Following the pioneering study of Guimerà and Amaral
(2004) for the global airport network, the topology of several regional airport networks
has been examined by (Bagler, 2008) (India), (Guida and Maria, 2007) (Italy), (Wang
et al., 2011) (China), (Hossain et al., 2013) (Australia) and (Tsiotas and Polyzos, 2015)
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(Greece), among others. All of these studies conclude, with minor differences between
them, that air transport networks have the small-world property (a small average path
length together with a high average clustering coefficient) and a truncated scale-free de-
gree distribution (Amaral et al., 2000). In airport networks well-connected nodes have
high values of node degree while central nodes have high values of betweenness, therefore
degree and betweenness are measures of local and global centrality, respectively. (Guimerà
et al., 2005) found that for the world airport network the better-connected nodes are not
necessarily the most central, resulting in anomalous values of centrality.

Air transport can be particularly affected by airport closure. This event can be trig-
gered for environmental causes, accidents, security alerts, strikes or terrorist attacks,
producing high costs for the airline industry (Lordan et al., 2014). One example of clo-
sure of airports by environmental causes is the ash plume from Iceland’s Eyjafallajökull
volcano. This event led to the progressive closure of large sectors of European airspace
over a period of seven days, causing over 100,000 flights to be canceled (Wilkinson et al.,
2011; Brooker, 2010). The effect of the closure of a particular airport depends of its role in
the air transport network, i.e., the system shaped by airports and the flights that connect
them.

The analysis of the impact of airport closure on a transport network is an example of
operational resilience analysis (Ganin et al., 2016), which focuses in analyzing the evo-
lution of a critical functionality for a class of adverse events. Two critical functionality
measures have drawn researcher’s attention: delays and loss of connectivity. Using passen-
ger demand data, Voltes-Dorta et al. (2017a) analyze the vulnerability of the European air
transport network from the perspective of passenger delays. They simulate the disruption
of each of the 25 busiest airports and reallocating affected passengers in minimum delay
itineraries. In Voltes-Dorta et al. (2017b) the same authors perform a case study analysis
of the reallocation of passengers of the Palma de Mallorca airport. Cardillo et al. (2013)
use schedules supply data to examine the passenger re-scheduling in a multi-layered air-
port network. The apparition of delays in an airport can trigger delays in other airports
in the network on downstream flights. Du et al. (2018) analyse the delay propagation
network using Granger causality analysis, and Zanin (2015) examine delay networks for a
multi-layered model of the European airport network. From the connectivity loss perspec-
tive, the impact of airport closure can be analyzed through static robustness analysis, i.e.,
the study of the effect of the disconnection of a subset of nodes on network connectivity,
usually measured as the size of the largest connected component. Chi and Cai (2004)
performed a robustness analysis for the US airport network, and Lordan et al. (2014)
detected the critical nodes of the world airport network using several node selection crite-
ria. Both studies concluded that airport networks are robust to errors (isolation of nodes
chosen at random), but not to attacks (isolation of important or central nodes). This
behavior is typical of scale free networks (Albert et al., 2000). Static robustness analysis
does not consider the dynamic effects that can occur after a network disruption. A small
initial disruption can trigger secondary failures to other network components, leading to
a cascading failure effect (Motter and Lai, 2002). This phenomenon is a significant threat
to some networked systems, like the power grid (Kinney et al., 2005; Wang and Rong,
2011) or the Internet (Wang et al., 2014). Similar effects have been reported in some
incidents in the air transport system, like the Eyjafallajökull volcano incident mentioned
above. The first aim of this study is to create a model of cascading failures in airport
transport networks. This model assesses the immediate impact of an incident involving
the closure of a set of airports, evaluating the flights that have to be modified or canceled,
and the airports that must be closed due to overload, until the incident ends and normal
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operations can be resumed. This model has to take into account the specificity of airport
networks, specially when defining capacity and load of network components, and rules of
flow redistribution compatible with air transport operations. Our second aim is to use
the model to evaluate the effectiveness of several selection rules of alternative departure
and arrival airports to reduce the impact of the incident. This approach extends the op-
erational resilience analysis framework to the cascading effects of airport closure. If this
analysis is performed beforehand, air navigation service providers (ANSPs) can define act
more effectively when unanticipated events occur. In the case of anticipated events, such
as meteorological hazards, the application of the algorithm to the specific situation can
give a more precise guidance to mitigate impact event.

2 Models of cascading failures

Motter and Lai (2002) define a global load-based cascading model for analyzing cascading
failures on complex networks. The basic assumption of this model is that flows of energy
or information between nodes are transmitted along the shortest paths connecting them.
Then L0

i , the initial load of node i, is defined as the total number of shortest paths from
all vertices to all other that pass through the node. In later formulations of this model
(Dou et al., 2010), load is equal to node betweenness. The capacity, or maximum flow
that a node is able to transmit, is defined as Ci = (1 + α)L0

i , where α ≥ 0 is a tolerance
parameter. If a disruption leading to the isolation of one or several nodes occurs, node
loads may change. In a iteration t of the cascading process, all nodes with Lti > Ci are
overloaded, then removed from the network. This causes a new load redistribution, which
may lead to new overload of nodes in the next iteration. The cascading process finishes
when no new nodes are overloaded. The damage caused by this process is measured
with the parameter G = N ′/N where N and N ′ are the sizes of the largest connected
component before and after the cascading process, respectively. Crucitti et al. (2004)
propose an alternative model where the overload of a node degrades the communication
through edges incident to that node, so shortest paths will go through other nodes. In
this model, overloaded nodes are not removed from the network, and and the damage
caused by a cascade is quantified in terms of decrease of global efficiency.

The models described above are adequate to represent cascading phenomena where
flows between nodes are transmitted trough the shortest paths connecting them, and
consequently flow redistribution takes place at the global level. This is an unrealistic
assumption for air transport operations, where redistribution of flows takes place at the
local level, as the congestion of an airport causes redistribution of traffic to neighboring
airports. Wu et al. (2008) define a local weighted flow redistribution model. In this model,
the load or flow going through node i is equal to L0

i = kθi , where ki is the degree of node i
and θ is an adjustable parameter. Node capacity is equal to Ci = CL0

i , where C > 1 is a
threshold parameter characterizing network tolerance. Once a node i is disconnected or
overloaded, its load Lti is redistributed among their neighbors proportionally to the load
of each neighbor Ltj:

∆Lt+1
j = Lti

Ltj∑
m∈Ωi

Ltm
(1)

where Ωi is the set of neighbors of i. In this new iteration, the nodes to be overloaded
will be those which hold:
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Lt+1
j = Ltj + ∆Lt+1

j > Cj (2)

Similarly to the global load-based models, the redistribution of loads may lead to
further overload of other nodes. Wang and Chen (2008) define a similar model of local
weighted flow redistribution for edge overload.

3 Cascading failures model for air transport networks

3.1 Algorithm definition

The models defined in the previous section are not adequate to represent realistically
cascading failures in air transport networks. A common assumption of these models is of
continuous flow along the network, while the air transport network is a temporal network
of scheduled flights. An implication of this modeling is that airport load is equal to the
number of planes parked in the airport. Second, air traffic management establishes that
load redistribution has to be made considering spatial considerations. Aircraft departures
or arrivals will be rerouted to airports close to the original location with available capacity.
Third, although airports with high degree should have high capacity, in this model airport
capacity (the maximum number of aircraft that can be parked to be operative) is an
exogenous parameter, rather than proportional to initial load.

Taking into account this considerations, we define a cascading failures model that
takes into account the specificity of air traffic management. In this model, an airport a is
modeled as a tuple with elements {L (t) , C}. Load L (t) is equal to the number of planes
in the airport at time t, and C is airport capacity, defined as the maximum number of
planes that can be parked at the airport to carry out normal operations. The value of C
is specific for each airport, and is set to zero for attacked airports. If L (t) < C the airport
is open, allowing normal operations. If C ≤ L (t) ≤ 1.3C, the airport is saturated : in a
saturated airport only can land active flights with arriving airports closed, and with no
alternative open airport. No flights can depart from saturated airports. If L (t) > 1.3C
the airport is closed, meaning that has too much load even for emergency operations. For
each airport is defined a set N of secondary airports where traffic can be redirected in
case of saturation of closure. Airports belonging to this set must be closer than a distance
R from the original airport. A flight f is modeled as a tuple with elements {i, j, td, ta, s},
where i and td are the departing airport and departing time, and j and ta are the arrival
airport and arrival time. Variable s represents the state of the flight, which can be non-
active (not yet departed), active (on flight), landed, canceled or in emergency. Emergency
flights are those flights on air in the moment that the incident starts that have no airport
to land, as all alternative airports are closed. This does not necessarily mean that the
flight has to crash, but it is certainly an effect to be avoided, for instance varying the
parameter R.

The algorithm uses a discrete time variable t, defined by time intervals ts for a the time
horizon starting in Tmin and ending at Tmax. If an attack has occurred between t− ts and
t, we set to zero the capacity of attacked airports, so that no flight can arrive or depart
to these airports. Then, we start examining the flights scheduled to depart between t
and t + ts. For flights departing from saturated airports, the algorithm tries to assign a
new non-saturated departing airport with non-zero load. Doing this we try to get enough
load in arriving airports to start future flights. Then we check if the arrival airport for
those flights is saturated of closed. In that case, we try to assign a new arrival airport.
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If it is not possible to assign a new departing or arriving airport, the flight is canceled.
Once departing flights are examined, we proceed to register landing flights. We assume
that any incident between t and t + ts will affect airports at t + ts. Finally, we look for
active flights that should be landing on closed airports, and we try to find an alternative
arrival airport for these flights. If it is not possible, the flight is in emergency. If we
cannot assign an airport to a flight in emergency before its landing time, we have a major
incident generated by the cascading failures process. The pseudo code of the algorithm
is presented in Algorithm 1. The assignment of a new departing airport for flights in
saturated airports may limit the scope o the simulated incident, possibly reducing the
load of saturated airports so that they can be open again.

The algorithm requires defining selection rules for alternative departing and arriving
airports. We have defined two rules for selecting a departing airport i∗, that prioritize
airports with high load. Rule MD1 selects an airport fromNi randomly, with a probability
proportional to its load. This rule is similar to the local redistribution rule defined in Wu
et al. (2008), and tries to reduce the load of most congested airports by increasing the
number of departing flights. MD2 selects the airport with minimal slack Ci∗ − Li∗ (t).
When applying MD2, we try to reduce load from airports which are closer to saturation.
We have defined three rules for selecting an alternative arrival airport j∗. Rule MA1
selects the airport of set Nj closest to j. MA2 selects the airport of maximal Cj∗−Lj∗ (t).
This rule has a logic analogous to MD2, but now we are locating arriving flights in airports
with low load. MA3 selects the airport of minimal Lj∗ (t) djj∗ , where djj∗ is the distance
between the original arrival airport j and the selected new arrival airport j∗. This measure
looks for airports which are closer to the initial destination, and with low load. Rules
MA1 and MA2 lead to preferring open airports to saturated airports, if the former are
available, as alternative landing airports. Ties between candidate airports are broken
randomly.

3.2 Toy model application

To illustrate the algorithm, we present a toy model with four airports, labeled from A to D
(Table 1) and eight scheduled flights, labeled from 1 to 8 (see Table 2). We will examine
the effect of a closure of airport B at 10:00, remaining closed the rest of the day (see
Table 3). Before the closure of B, flights 1 to 4 have departed normally. The closure of B
at 10:00 does not affect flight 1, but affects flights 2 and 3, which are rerouted to airport
C. Arrival times of both flights need to be recalculated. This re-routing is affecting flight
4 critically, as it is expected to land in C, which is now closed. The alternative airport
B is not available, so this flight is in emergency. At 10:10 has to depart flight 5 with
destination to B. As B is closed, this flight is rerouted to A before departing. Flight 6
has to be canceled, as it is departing from a closed airport C with no alternative. Flight
7 has to be also canceled, as the alternatives for airport B are unavailable: airport C is
closed and airport A has no load. Finally, flight 8 has to be also canceled as its departing
airport D has no load, and it has no alternative airport available.

4 Case Study: Oceanic Airport Network

We simulate the cascading process in the Oceanic Airport Network (OAN). We have
considered flights in the OAN between airports with at least 1 Km of asphalt runway
between 4 and 17 August 2014. The resulting airport network, where two airports (nodes)
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t← Tmin
while t < Tmax do

Departing flights:
for flights with td ≥ t and td < t+ ts do

saturated or closed departing airport:
if Li (t) > Ci then

select new departing airport i∗ ∈ Ni
i← i∗

if Lj (t) > Cj then
select new arriving airport j∗ ∈ Nj
j ← j∗ recalculate arriving time

end

end
if i = ∅ or j = ∅ then

cancel flight
else

flight is active
Li (t)← Li (t)− 1

end

end
Landing flights:
for flights with ta ≥ t and ta < t+ ts do

if flight is in emergency then
flight has major incident

else
flight is landed
Lj (t)← Lj (t) + 1

end

end
Rerouting active flights:
for flights with td < t and ta > t+ ts do

active flights with closed arriving airport:
if Lj (t) > 1.3Cj then

select new arriving airport j∗ ∈ Nj
if j∗ = ∅ then

flight is in emergency
else

recalculate arriving time
end

end

end
t← t+ ts

end
Algorithm 1: Cascading failures algorithm
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Figure 1: Toy model: distances between airports (in kilometers).

Airport i Li (0) Ci Ni
A 3 3 B
B 0 2 A,C
C 0 2 B
D 2 2 —

Table 1: Toy model: initial load, capacity and secondary airports.

are connected by a link when there is at least a direct flight between them, has N = 169
nodes and E = 726 edges. In Figure 2 we present the geographical position of the
airports of the network, and all direct connections between these airports. We measure
airport centrality by degree (number of connections), strength(number of flights arriving
and departing) and betweenness. In all rankings of centrality the airports of Auckland
(AKL), Brisbane (BNE), Cairns (CNS) and Sydney (SYD) are in the top-five ranking.
Port Moresby (POM) has a high ranking of betweenness, and Melbourne (MEL) of degree
and strength.

We have checked the effectiveness of several selection rules of new arriving and depart-
ing airports, checking the six possible combinations of rules MD1 and MD2 for departing
airports and MA1, MA2 and MA3 for arriving airports. We have applied the combinations
of rules to the following incidents:

• Closure of five and ten airports of maximum degree (deg), maximum strength (str),
maximum betweenness (btw) and random selection (rnd).

Flight Origin Destination ETD ETA

1 A C 08:10 10:40

2 A B 08:20 10:30

3 A B 08:40 10:50

4 D C 09:30 12:45

5 D B 10:10 13:15

6 C D 12:00 14:50

7 B D 13:00 17:50

8 D C 15:25 16:05

Table 2: Toy model: scheduled flights
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Time Event A B C D 1 2 3 4 5 6 7 8

08:00 Start 3 0 0 2 N N N N N N N N
08:10 Depart 1 2 0 0 2 A N N N N N N N
08:20 Depart 2 1 0 0 2 A A N N N N N N
08:40 Depart 3 0 0 0 2 A A A N N N N N
09:30 Depart 4 0 0 0 1 A A A A N N N N
10:00 Closure B A A A A N N N N
10:00 Reroute 2 new arrival C

(arrival time 10:40)
A A A A N N N N

10:00 Reroute 3 new arrival C
(arrival time 10:50)

A A A A N N N N

10:00 Flight 4 cannot land
on C, and B is closed:
emergency

E N N N N

10:10 Reroute 5 new arrival A
(arrival time 13:15)

A A A E A N N N

10:10 Depart 5 0 0 0 0 A A A E A N N N
10:30 Arrival 2 0 0 1 0 A L A E A N N N
10:40 Arrival 1 0 0 2 0 L L A E A N N N
10:50 Arrival 3 0 0 3 0 L L L E A N N N
12:00 Cancel 6: only alter-

native departing is B,
which is closed

L L L E A C N N

13:00 Cancel 7: only alter-
native departing is A,
which has no load

L L L E A C C N

13:15 Arrival 5 1 0 3 0 L L L E L C C N
15:25 Cancel 8: departing air-

port is closed and alter-
native B is closed

1 0 3 0 L L L E L C C C

Table 3: Operations of the toy model with closure of B at 10:00. Columns A to D show
load of each airport at each time, and columns 1 to 8 show flight state (N: non-active, A:
active, L: landed, C: cancelled, E: emergency).

• Closure of all airports of the following territories: New Zealand (NZ), Western
Australia (WA), Tasmania and Victoria (TV) and Papua and New Guinea (PNG).
These territories are labeled in black, red, green and orange in Figure 2.

We have computed the total number of closed airports and the proportion of modified
(with a different departure and/or arrival airport), canceled and emergency flights out
of total flights for each of the 14 days between 4 and 17 August 2014 for R = 100 and
R = 600 kilometers. The maximum number of flights was 2707 (on 8 August), and the
minimum 1820 (on 9 August). To examine the effect of R with more detail, we evaluated
the effect of a sequence of values of R from 50 to 600 kilometers with a step of 50 on
two specific incidents (the closure of the ten airports of highest degree and of Tasmania
and Victoria) in the day of highest traffic (8 of August). The results of this evolution
are presented on Figure 3. In an additional analysis (not shown here), we observed that
increasing R above 600 did not change the results significantly for the OAN network. The
results of the analysis performed showed a regular pattern regarding affected flights and
closed airports, therefore we can conclude that the algorithm yields consistent results.
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Figure 2: A map of the Oceanic Airport network, presenting the airports of the network
and the direct connections between them. Colors distinguish each of the territories of the
OAN: New Zealand (black), Western Australia (red), Eastern Australia (blue), Tasmania
and Victoria (green) and Papua and New Guinea (orange).

In Figures 4 and 5 we present the results, averaged by the 14 days examined, of the
impact caused by the removal of the ten airports of largest degree (deg), strength (str),
betweenness (btw) and random selection (rnd), and by the closure of all airports of four
territories: New Zealand (NZ), Western Australia (WA), Tasmania and Victoria (TV)
and Papua New Guinea (PNG) for R = 100 and R = 600 kilometers. On a real setting,
the value of R = 100 would be a realistic one for reallocating passengers. The values
of R = 600 are reported to show the evolution of the cascading failure as R increases.
In Figure 4 we present the average value of closed airports, and in Figure 5 we present
the average number of modified, canceled and emergency flights for the same incidents.
We also present the values of mean and standard deviation of affected flights and closed
airports for attacks based on central nodes in Table 4, and for closures of territories in
Table 5.

The initiating incident that causes most damage is the closure of central nodes, selected
either by degree, strength or betweenness. These incidents are the ones affecting more
flights and closing more airports. The three centrality measures have a similar impact,
much larger than selection of random nodes or the closure of a whole territory. These
results are similar to the obtained for the evaluation of static robustness in air transport
networks (Lordan et al., 2014), and are in line to theoretical predictions for scale free
networks (Albert et al., 2000). The closure of territories has a global impact intermediate
between the closure of ten random airports and the closure of central nodes.

The R parameter defines the number of alternative airports for each affected flight: the
larger the value of R, the larger the set of alternative departing or arriving airports will be.
We can observe the effect of varying R for two specific incidents (labeled deg and TV on
Figures 4 and 5) on Figure 3. The panels of the left on Figure 3 present the proportion of
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Figure 3: Sensitivity analysis of the algorithm for the closure of the ten airports of highest
degree (upper row) and the closure of Tasmania and Victoria territory (lower row). The
horizontal axis represents values of R. In the left panels, the vertical axis presents the
fraction of unaffected (U), modified (M), canceled (C) and emergency (E) flights. In the
right panel, the vertical axis represents the number of closed airports.
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Figure 4: Average number of closed airports by cascading failures from several incidents
with combinations of selection rules of departing and arriving airports. Left figures are
computed with R = 100 and right with R = 600 kilometers.

flights in each state: as we increase R, canceled flights turn into modified flights, and the
number of emergency flights decreases until going to zero. In both incidents, the number
of affected flights remains approximately constant: around 70% for the deg incident, and
around 20% for TV. The right panels of Figure 3 show the effect of increasing R on the
number of closed airports: for the two incidents selected, we observe that the number of
closed airports increases with R. The impact of increasing R can be thus summarized as
follows: as we increase R the number of airports where flights can be rerouted increases,
so the number of canceled flights lowers, and the number of modified (rerouted) flights
increases. The rerouting of flights to airports not affected by the primary attack ends
ups exhausting the capacity not used by regular flights in these airports, so these airports
go into closed state, as can be observed in the right panel of Figure 3. Going again to
Figures 4 and 5, we observe that the evolution describe for deg and TV applies for the
rest of incidents affecting central nodes, but not for the closure of NZ, WA and PNG
territories: for these incidents, the results for R = 600 are similar to the obtained for
R = 100. Examining the values for these incidents in Table 5, when go from R = 100
to R = 600 we can observe a small increase of number of closed airports, an increase
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Figure 5: Average number of modified (M), canceled (C) and emergency (E) flights af-
fected by cascading failures from several incidents with combinations of selection rules of
departing and arriving airports. Left figures are computed with R = 100 and right with
R = 600 kilometers.
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R var. deg str btw rnd

100

M 713.310 (124.005) 717.155 (123.926) 658.250 (107.453) 95.417 (113.375)
C 731.190 (151.225) 688.917 (149.346) 648.500 (113.115) 63.488 ( 70.981)
E 73.036 ( 12.928) 67.226 ( 13.149) 66.369 ( 12.507) 2.750 ( 5.068)
CA 5.595 ( 1.291) 5.619 ( 1.211) 5.095 ( 0.989) 0.524 ( 0.799)

600

M 1377.571 (241.571) 1337.012 (238.641) 1260.405 (179.963) 154.131 (143.268)
C 164.869 (138.742) 160.500 (137.786) 153.167 (114.719) 16.655 ( 22.649)
E 0.000 ( 0.000) 0.000 ( 0.000) 0.000 ( 0.000) 0.000 ( 0.000)
CA 12.500 ( 6.572) 11.595 ( 5.687) 11.869 ( 6.868) 1.571 ( 2.208)

Table 4: Mean and standard deviation across all days and selection rules for total number
of modified (M), canceled (C) and emergency (E) flights and of closed airports (CA) for
degree (deg), betweenness (btw) and random (rnd) attacks.

R var. NZ WA TV PNG

100

M 13.881 ( 5.574) 0.000 ( 0.000) 20.190 (30.927) 0.000 ( 0.000)
C 508.869 ( 67.922) 170.000 (41.199) 299.643 (55.239) 108.643 ( 7.007)
E 24.607 ( 3.868) 15.786 ( 2.287) 29.310 ( 5.490) 3.786 ( 1.665)

CA 0.000 ( 0.000) 0.000 ( 0.000) 0.143 ( 0.352) 0.000 ( 0.000)

600

M 108.893 ( 63.276) 11.000 (11.420) 301.905 (41.838) 57.845 (14.790)
C 420.560 (105.133) 157.560 (45.228) 67.250 (30.004) 52.452 (14.793)
E 21.964 ( 6.861) 17.083 ( 4.037) 0.012 ( 0.109) 3.179 ( 1.909)

CA 0.214 ( 0.441) 0.143 ( 0.352) 3.024 ( 1.932) 0.119 ( 0.326)

Table 5: Mean and standard deviation across all days and selection rules for total number
of modified (M), canceled (C) and emergency (E) flights and of closed airports (CA) for
New Zealand (NZ), Western Australia (WA), Tasmania and Victoria (TV) and Papua
New Guinea (PNG).

of modified flights and the persistence of a significant volume of emergency flights. An
explanation for this behavior can be obtained if we examine the map of Figure 2: there
we can see that New Zealand, Western Australia and Papua New Guinea are territories
more isolated than Tasmania and Victoria, so for these territories the increase of R to
600 Km offers less possibilities to reach airports to reroute flights.

The most effective action for minimizing the effect of cascading failures involves se-
lecting alternative arrival airports minimizing the product of load and distance to affected
airport (MA3). In Figure 3 we observe that using MA3 reduces the total number of closed
airports for the specific incident analyzed. In Figure 4 we observe the same pattern for
the other incidents analysed.

5 Conclusions

Cascading failure phenomena can appear in complex networks that distribute flows of
information, people or goods, when flow going through nodes or edges exceeds the capacity
of network elements. Previous research has defined models where flow is redistributed
globally or locally. In global redistribution rules flows are proportional to betweenness
(Motter and Lai, 2002; Crucitti et al., 2004), and in local redistribution to degree (Wu
et al., 2008; Wang and Chen, 2008). These models are not adequate to model cascading
failures in airport networks, because flow is not continuous, and criteria for redistributing
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load has to consider close airports, rather than previously existing connections.

We have defined an algorithm to simulate the management of cascading failures in
airport networks (see pseudo code in algorithm 1). The algorithm tries to reduce the
impact of an incident of the network assigning alternative departure or arrival airports to
affected flights with several alternative rules. The impact of the incident can be measured
by the proportion of affected flights (modified, canceled or in emergency) and number
of closed airports. This algorithm is a tool to perform an operational resilience analysis
of a transport network, helping to allocate resources and define rules of action to act
when an unanticipated airport closure event occurs. In the case of anticipated events, like
meteorological hazards, the algorithm can be run with the specific boundary conditions
of the event, and therefore provide a more specific guidance to mitigate the cascading
closure of airports.

We have applied the algorithm to the Oceanic Airport Network, assessing the effec-
tiveness of several rules of selection of alternative airports in three types of incidents:
closure of central airports, of random airports or a whole territory. Results show that
the closure of central airports has a much larger impact than random airports, and that
selection rules are effective to reduce the number of overloaded airports and proportion
of canceled flights. The selection rule MA3, based on minimizing the product of load and
distance to affected airport, is the most effective to mitigate cascading failures, reducing
the total number of airports closed (see Figure 4). Another way of mitigating the impact
of the cascading failure is increasing the value of the parameter R, the maximum distance
between the scheduled and the re-assigned departure or arrival airport. The increase of R
increases the possibility to find an alternative airport to land, and reduces the probability
that a flight on air in the moment of starting the incident goes to emergency state. These
results show the importance of considering spatial and temporal properties of airport
networks in network robustness analysis.

A possibility of reducing the load of some airports, thus mitigating the magnitude of
the cascading effect, is to delay the departure of some flights. This delay increases the
load of the departing airport, possibly advancing the moment the airport is saturated
or closed, but can alleviate the load of the arrival airport, as one or more flights can
depart before the delayed flight arrives. Further research can consider the possibility of
introducing delays to alleviate the impact of the cascading effect. This can be specially
useful to model incidents that close airports for a short time lapse.

The methodology used to define this algorithm can be extended to other transportation
networks, such as maritime or road networks, and to study other phenomena affecting the
performance of transportation networks, like jamming transitions or delay propagation.
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Voltes-Dorta, A., Rodŕıguez-Déniz, H., Suau-Sanchez, P., 2017b. Vulnerability of the Eu-
ropean air transport network to major airport closures from the perspective of passen-
ger delays: Ranking the most critical airports. Transportation Research Part A: Pol-
icy and Practice 96, 119–145. URL: http://dx.doi.org/10.1016/j.tra.2016.12.
009http://linkinghub.elsevier.com/retrieve/pii/S0965856416300234, doi:10.
1016/j.tra.2016.12.009.

Wang, J., Bonilla, D., Banister, D., 2016. Air deregulation in China and its im-
pact on airline competition 1994–2012. Journal of Transport Geography 50, 12–23.
URL: http://dx.doi.org/10.1016/j.jtrangeo.2015.03.007http://linkinghub.

elsevier.com/retrieve/pii/S0966692315000472, doi:10.1016/j.jtrangeo.2015.
03.007.

Wang, J., Jiang, C., Qian, J., 2014. Robustness of Internet under targeted attack: A
cascading failure perspective. Journal of Network and Computer Applications 40,
97–104. URL: http://dx.doi.org/10.1016/j.jnca.2013.08.007, doi:10.1016/j.
jnca.2013.08.007.

Wang, J., Mo, H., Wang, F., Jin, F., 2011. Exploring the network structure and nodal cen-
trality of China’s air transport network: A complex network approach. Journal of Trans-
port Geography 19, 712–721. URL: http://linkinghub.elsevier.com/retrieve/

pii/S0966692310001328, doi:10.1016/j.jtrangeo.2010.08.012.

Wang, J.W., Rong, L.L., 2011. Robustness of the western United States power grid under
edge attack strategies due to cascading failures. Safety Science 49, 807–812. URL: http:
//dx.doi.org/10.1016/j.ssci.2010.10.003, doi:10.1016/j.ssci.2010.10.003.

Wang, W.X., Chen, G., 2008. Universal robustness characteristic of weighted networks
against cascading failure. Physical Review E 77, 026101. URL: https://link.aps.
org/doi/10.1103/PhysRevE.77.026101, doi:10.1103/PhysRevE.77.026101.

Wilkinson, S.M., Dunn, S., Ma, S., 2011. The vulnerability of the European
air traffic network to spatial hazards. Natural Hazards 60, 1027–1036. URL:
http://www.springerlink.com/index/10.1007/s11069-011-9885-6, doi:10.1007/
s11069-011-9885-6.

Wu, Z.X., Peng, G., Wang, W.X., Chan, S., Wong, E.W.M., 2008. Cascading failure
spreading on weighted heterogeneous networks. Journal of Statistical Mechanics: The-
ory and Experiment 2008, P05013. URL: http://stacks.iop.org/1742-5468/2008/
i=05/a=P05013?key=crossref.3f1867440b40feb5c4e8cc4a67f0d2fe, doi:10.1088/
1742-5468/2008/05/P05013.

17

http://dx.doi.org/10.1093/comnet/cnv003 http://comnet.oxfordjournals.org/lookup/doi/10.1093/comnet/cnv003
http://dx.doi.org/10.1093/comnet/cnv003 http://comnet.oxfordjournals.org/lookup/doi/10.1093/comnet/cnv003
http://dx.doi.org/10.1093/comnet/cnv003
http://linkinghub.elsevier.com/retrieve/pii/S0261517716301613
http://linkinghub.elsevier.com/retrieve/pii/S0261517716301613
http://dx.doi.org/10.1016/j.tourman.2016.09.001
http://dx.doi.org/10.1016/j.tra.2016.12.009 http://linkinghub.elsevier.com/retrieve/pii/S0965856416300234
http://dx.doi.org/10.1016/j.tra.2016.12.009 http://linkinghub.elsevier.com/retrieve/pii/S0965856416300234
http://dx.doi.org/10.1016/j.tra.2016.12.009
http://dx.doi.org/10.1016/j.tra.2016.12.009
http://dx.doi.org/10.1016/j.jtrangeo.2015.03.007 http://linkinghub.elsevier.com/retrieve/pii/S0966692315000472
http://dx.doi.org/10.1016/j.jtrangeo.2015.03.007 http://linkinghub.elsevier.com/retrieve/pii/S0966692315000472
http://dx.doi.org/10.1016/j.jtrangeo.2015.03.007
http://dx.doi.org/10.1016/j.jtrangeo.2015.03.007
http://dx.doi.org/10.1016/j.jnca.2013.08.007
http://dx.doi.org/10.1016/j.jnca.2013.08.007
http://dx.doi.org/10.1016/j.jnca.2013.08.007
http://linkinghub.elsevier.com/retrieve/pii/S0966692310001328
http://linkinghub.elsevier.com/retrieve/pii/S0966692310001328
http://dx.doi.org/10.1016/j.jtrangeo.2010.08.012
http://dx.doi.org/10.1016/j.ssci.2010.10.003
http://dx.doi.org/10.1016/j.ssci.2010.10.003
http://dx.doi.org/10.1016/j.ssci.2010.10.003
https://link.aps.org/doi/10.1103/PhysRevE.77.026101
https://link.aps.org/doi/10.1103/PhysRevE.77.026101
http://dx.doi.org/10.1103/PhysRevE.77.026101
http://www.springerlink.com/index/10.1007/s11069-011-9885-6
http://dx.doi.org/10.1007/s11069-011-9885-6
http://dx.doi.org/10.1007/s11069-011-9885-6
http://stacks.iop.org/1742-5468/2008/i=05/a=P05013?key=crossref.3f1867440b40feb5c4e8cc4a67f0d2fe
http://stacks.iop.org/1742-5468/2008/i=05/a=P05013?key=crossref.3f1867440b40feb5c4e8cc4a67f0d2fe
http://dx.doi.org/10.1088/1742-5468/2008/05/P05013
http://dx.doi.org/10.1088/1742-5468/2008/05/P05013


Zanin, M., 2015. Can we neglect the multi-layer structure of functional networks?
Physica A: Statistical Mechanics and its Applications 430, 184–192. URL: http:

//dx.doi.org/10.1016/j.physa.2015.02.099https://linkinghub.elsevier.

com/retrieve/pii/S0378437115002289, doi:10.1016/j.physa.2015.02.099,
arXiv:1503.04302v1.

18

http://dx.doi.org/10.1016/j.physa.2015.02.099 https://linkinghub.elsevier.com/retrieve/pii/S0378437115002289
http://dx.doi.org/10.1016/j.physa.2015.02.099 https://linkinghub.elsevier.com/retrieve/pii/S0378437115002289
http://dx.doi.org/10.1016/j.physa.2015.02.099 https://linkinghub.elsevier.com/retrieve/pii/S0378437115002289
http://dx.doi.org/10.1016/j.physa.2015.02.099
http://arxiv.org/abs/1503.04302v1

	Introduction
	Models of cascading failures
	Cascading failures model for air transport networks
	Algorithm definition
	Toy model application

	Case Study: Oceanic Airport Network
	Conclusions
	caratula Elsevier.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints
	Aquesta és una còpia de la versió author’s final draft d'un article publicat a la revista Journal of air transport management.
	URL d'aquest document a UPCommons E-prints:
	https://upcommons.upc.edu/handle/2117/344252
	Article publicat / Published paper:
	© 2021. Aquesta versió està disponible sota la llicència CC-BY-NC-ND 4.0  https://creativecommons.org/licenses/by-nc-nd/4.0/


