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Abstract 

Cities today must address the challenge of sustainable mobility, and traffic state forecasting plays a key role in mitigating traffic 

congestion in urban areas. For example, predicting path travel time is a crucial issue in navigation and route planning applications. 

Furthermore, the pervasive penetration of information and communication technologies makes floating car data an important source 

of real-time data for intelligent transportation system applications. This paper deals with the problem of forecasting urban traffic 

when floating car data is available. A comparison of four deep learning methods is presented to demonstrate the capabilities of the 

neural network approaches (recurrent and/or convolutional) in solving the traffic forecasting problem in an urban context. Different 

tests are proposed in order to not only evaluate the developed deep learning models, but also to analyze how the penetration rates 

of floating cars affect forecasting accuracy. The presented experiments were designed according to a microscopic traffic simulation 

approach in order to emulate floating car data fleets, which provide vehicle position and speed, and to validate the obtained results. 

Finally, some conclusions and further research are presented. 
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1. Introduction 

Traffic forecasting has been an active research topic since the late 1970s. It is far too general of a problem and 

includes different sub-problems with different degrees of complexity, depending on some aspects such as context, 

data source, predicted variables, and the prediction horizon, among others. This research focuses on traffic forecasting 

in urban contexts using floating car data (FCD) to predict the average speed of the roads on the network. 
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The existing literature presents many different approaches to solving the forecasting problem, which van Lint et al. 

(2012) classifies as the following: naïve methods that make no model assumptions; parametric methods whose 

structures are predetermined according to theoretical considerations that fit the parameters with data; and non-

parametric methods whose structures and parameter values are determined from data.  

Due to increases in the quantity and different sources of data, as well as the computational capabilities of new 

systems, the trend in recent years has changed in favor of non-parametric methods, specifically machine learning 

methods. In the field of traffic forecasting, deep learning (DL) proposals have proven to give more accurate 

predictions, and the use of these methods have increased intensively in recent years. For this reason, our work here 

focuses on developing DL based models. 

This contribution is organized as follows. First, Section 2 summarizes a literature review of traffic forecasting using 

DL methods. Then, Section 3 specifies the selected methods to be compared. Section 4 presents the computational 

experiments by detailing the simulation scenarios, the proposed experimental design, the hyper-parameter 

optimization and the obtained results. Finally, Section 5 describes the final conclusions and some future research. 

2. Related work  

Vlahogianni et al. (2014) and Lana et al. (2018) systematically examine recent developments in data-driven traffic 

forecasting methods. The evolution between these two works shows a clear increase in the use of non-parametric 

methods in this field. In particular, DL is the most salient and recommended approach in recent proposals.  

Long short-term memory (LSTM) methods are some of the most used DL approaches in studies on time series and 

other sequential data such as traffic data. These methods are considered a subfamily of recurrent neural networks 

(RNN) and are able to learn long-term dependencies while remembering information for long periods. The proposals 

of Duan et al. (2016), Liu et al. (2017), and Du et al. (2018) are good examples of applying LSTM to traffic forecasting. 

Fu et al. (2017) compare an LSTM model with a gated recurrent units (GRU) model, which is an NN method similar 

to LSTM and suggested by Cho et al. (2014). The results conclude that GRU outperforms LSTM in traffic forecasting. 

In order to add spatial information to the previous LSTM methods, some authors propose merging LSTM with 

convolutional neural networks (CNN). In this way, Yu et al. (2017) present a spatiotemporal recurrent convolutional 

networks model (SRCN), which take as input a set of static images that represents the network-wide traffic speeds. 

Moreover, Cheng et al. (2017) introduce an end-to-end framework called DeepTransport, in which CNN and RNN 

are utilized to obtain spatial-temporal traffic. In addition, Cui et al. (2018) propose an approach that merges CNN and 

LSTM, which they call a High-Order Graph Convolutional Long Short-Term Memory Neural Network (HGC-LSTM). 

This applies CNN to the network graph encoded as a matrix, which is a similar format to images. The experiments 

presented in these papers demonstrate that the methods capture the complex relationships in the spatiotemporal domain 

and outperform traditional state-of-the-art DL methods. 

Due to the lack of a generic suite for testing these kinds of solutions under the same conditions, it is difficult to 

compare different methods using the results from the original papers. Therefore, our proposal implements four of the 

most relevant proposals introduced above in order to compare them properly. In particular, we consider two recurrent 

neural network approaches (LSTM and GRU), and two of the previously mentioned combined solutions, SRCN and 

the HGC-LSTM methods. 

3. Selected models 

As indicated in the previous section, we implemented four different DL methods in order to perform traffic 

forecasting in urban contexts, using FCD to predict the average speed of the network road sections. Before delving 

into the different methods, the common initial data format should be defined. A new dataset is generated from the 

source FCD in order to represent the state of the network in different time periods of a predefined duration 𝑡𝑑𝑝. The 

form of the new dataset 𝑆 is 𝑆 ∈ ℝ𝑁𝑥𝑀 , where 𝑁 is the number of time windows with duration 𝑡𝑑𝑝 and 𝑀 is the 

number of road sections. So, for a time period 𝑖 and a section 𝑗, 𝑆𝑖𝑗  represents the average speed of all recorded 

vehicles in 𝑗 during 𝑖. 𝑆𝑖𝑗 is a missing value when the original data has no records for a section 𝑗 at time period 𝑖. 
Because the proposed models do not accept missing values, they are imputed by performing a k-nearest neighbor 

imputation. 
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The LSTM and GRU models can be defined as a sequence of one or more specific layers (LSTM and GRU, 

respectively), which are all connected to each other. The last layer of each model is a fully connected NN layer for 

transforming the output of the last layer to the desired format (in this case, one value for each predicted road section 

speed). Therefore, given the state of the network in a period (𝑆𝑖), these models are able to predict the state of the 

network in the next time period (𝑆𝑖+1). 

For the SRCN method, the input data incorporates the spatial relationships of the data, and each input state is 

codified as an image. To achieve this, an image template is defined by mapping the network model to a grid, where 

each cell represents a pixel. Thus, to build the state image for a period, each pixel of the image is filled by computing 

the average speed of 𝑆 for that period and for all the road sections of the corresponding cell. 

The inputs of the HGC-LSTM model are also 2-dimensional. Although they are not images, they are numerical 

matrices that can be interpreted as images. Given a predefined value 𝐾, and for a time period 𝑡, the input is computed 

with the following equation: 𝑇𝑆𝑡  = [𝑇𝑆𝑡
1, … , 𝑇𝑆𝑡

𝐾]. Each element of the array is computed by 𝑇𝑆𝑡
𝑘 = (𝐹𝐹𝑅 ʘ Ã𝑘) ·

𝑆𝑡, where ʘ is the element-wise product of matrices. 𝐹𝐹𝑅 ∈ ℝ𝑀𝑥𝑀 is a binary matrix where 𝐹𝐹𝑅𝑖𝑗  = 1 if a path 

exists from section 𝑖 to section 𝑗 in a time up to 𝑡𝑑𝑝. Ã𝑘 ∈  ℝ𝑀𝑥𝑀 is also a binary matrix, where Ã𝑖𝑗
𝑘  = 1 if a path 

exists from section 𝑖 to section 𝑗 and crossing exactly 𝑘 − 1 sections.  

In contrast to the differences in the input generation process, the SRCN and the HGC-LSTM models share the same 

structure. Because of the new format of the input, these models combine the RNN layers with some extra CNN layers. 

The following four consecutive parts comprise their structure. (1) The first part of the model is a set of CNN layers, 

each one composed of a convolutional and a pooling layer. (2) A flatten layer transforms the output of this first part 

into the required RNN format. (3) In order to incorporate the temporal relation of data into the model, a set of RNN 

layers (LSTM or GRU) is added before the flatten one. (4) The last layer is a fully connected layer that transforms the 

output to the desired format. This structure allows the models to take images as inputs and extract spatial and temporal 

information from these inputs. 

4. Computational experiments 

Once the proposed methods are defined, we will expose the comparative methodology to evaluate them. Our work 

here proposes a traffic simulation approach to generating the needed FCD input. In contrast to using real FCD, 

generating data through simulation allows creating data for a great variety of scenarios in order to study the 

performance of models in different situations. In addition, this saves a lot of effort in terms of the time and cost 

required for collecting real data. That said, depending on the case, it is better to use real or simulated data. If the goal 

is to use the traffic forecasting model in a real scenario, real data is highly recommended. Otherwise, if the goal is to 

compare different methods and evaluate their general performance under different conditions, simulated data is a 

better option.  

The source FCD is generated using Aimsun (2018), a microscopic traffic simulator able to model the interactions 

for each vehicle and also collect data from them individually. From the simulation, a record (vehicle identifier, speed, 

section, and lane) is collected for each connected vehicle in every pre-defined period. In the following proposed 

experiments, the collection period is 10 seconds.  

4.1. Scenarios 

In this study, we use two different urban traffic networks in Spain to evaluate the performance of the forecasting 

models: Camp Nou and Amara (see Fig. 1). The former represents a small area of Barcelona composed of 4 nodes 

and 22 sections. The latter, Amara, is a district in San Sebastian composed of 105 nodes and 192 sections. Using these 

urban scenarios allows us to analyze the performance of the forecasting models using different network features, such 

as size, capacity, and the topology of the roads, among others. 
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Fig. 1. Camp Nou (left) and Amara (Right) traffic simulation networks. 

4.2. Experimental design 

In order to evaluate the developed models, a partial factorial experimental design is defined. It is based on three 

experimental factors:  

 

 Penetration rate: percentage of vehicles in the network used to generate the FCD. This factor is presented 

at four levels: 25%, 50%, 75%, and 100%. 

 Prediction horizon: this defines how far ahead the model predicts the future. This factor is presented at 

six levels: 5, 10, 15, 20, 40 and 60 minutes. The first three levels are considered to be short-term, and 

the rest are long-term. 

 Training data: amount of historical data used to train the methods. This is quantified by the number of 

days corresponding to the data. This factor is presented at three levels: 5, 10 and 15 days. 

 

Every experiment is based on a common initial configuration set at a 100% penetration rate within a 5-minute 

prediction horizon and using 5 days’ worth of data to train the models. For each experiment, the factor level is changed 

and the rest maintain their initial values. In addition, every selected factor configuration is tested for each of the four 

implemented models and in the two previously presented scenarios.  

4.3. Hyper-parameter optimization 

The selected deep learning methods require setting a group of parameters for use in an optimization process. This 

process is named hyper-parameter optimization. In particular, we optimize the hyper-parameters of the models for 

every test by using a random search as an alternative to grid search and manual search. The results presented by 

Bergstra & Yoshua (2012) show that this strategy is able to find models that are as good or better, and they also 

perform within a small fraction of the computation time needed by other search strategies. This algorithm consists of 

generating a random set of possible configurations and selecting the best one based on its accuracy with the validation 

dataset. In this case, 60 different random configurations are generated for each experiment. 
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Fig. 2. MAE of the four models, depending on the FCD penetration ratio in Camp Nou (left) and Amara (right). 

4.4. Results and discussion 

In order to evaluate the performance of the implemented models, two different forecast error measures are used. A 

forecast error measure quantifies how well the forecasted values 𝑦̃ ∈ ℝ𝑁 match the observed ones 𝑦 ∈ ℝ𝑁. The error 

measures used to evaluate the models’ accuracy are mean absolute error (Equation 1) and root mean squared error 

(Equation 2). 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦𝑖̃|

𝑁
𝑖     (1) 

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖 − 𝑦𝑖̃)
2𝑁

𝑖      (2) 

The first experiments analyze the performance of the forecasting models using four different FCD penetration rates 

(25%, 50%, 75%, and 100%). The results presented in Table 1, Table 2 and Fig. 2 show that the best models for the 

highest penetration rates (100% and 75%) are LSTM and GRU. In the Amara scenario, which is the largest, these two 

models are also the best for the lowest penetration rates (50% and 25%). In contrast, for the Camp Nou scenario, the 

HGC-LSTM model is the best option for the lowest penetration values. Also, the decrease in the penetration rate 

directly affects prediction accuracy by causing it to also decrease, especially in the smallest scenario. Having said this, 

it is important to consider that the errors for the lowest penetration rate are reasonably good for forecasting urban 

traffic. 

In general, the GRU and LSTM methods outperform the others in mostly all the short-term experiments performed 

for both the Camp Nou and Amara scenarios (see Tables 3 and 4). In the long-term case, the accuracy of the four 

options is very similar for the two scenarios. The prediction error of GRU and LSTM models is practically constant 

for long-term and short-term experiments, so the prediction horizon is not so critical for them. The performance of the 

convolutional methods is also very similar for all situations, with the exception of the smallest prediction horizons in 

the Amara scenario, where the results are worse than the others. 

Table 1. Penetration rate – Camp Nou. 

 25% 50% 75% 100% 

Models MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

LSTM 4.72 8.227 3.963 6.134 3.128 5.196 2.932 4.865 

GRU 4.837 8.318 3.677 5.817 3.287 5.292 2.862 4.776 

SRCN 4.857 8.27 3.932 5.937 3.394 5.436 3.197 5.12 

HGC−LSTM 4.731 8.306 3.637 5.836 3.322 5.408 3.104 5.03 
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Table 2. Penetration rate – Amara. 

 25% 50% 75% 100% 

Models MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

LSTM 2.04 4.948 1.951 4.834 1.953 4.835 1.831 4.602 

GRU 2.045 5.185 1.991 5.016 2.021 5.062 1.88 4.73 

SRCN 4.026 6.532 3.681 6.264 3.723 6.347 3.368 5.896 

HGC−LSTM 3.525 6.034 3.332 5.91 3.186 5.811 2.905 5.412 

Table 3. Prediction horizon – Camp Nou.  

 Short-term Long-term 

 5 min. 10 min. 15 min. 20 min. 40 min. 60 min. 

Models MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

LSTM 2.931 4.864 2.917 4.839 2.879 4.814 2.991 4.913 2.953 4.863 3.063 4.922 

GRU 2.862 4.775 2.868 4.767 2.873 4.769 2.912 4.804 2.892 4.802 2.927 4.874 

SRCN 3.196 5.12 3.181 3.181 3.179 5.1 3.168 5.082 2.945 4.864 3.02 4.935 

HGC−LSTM 3.103 5.029 3.179 5.11 3.322 5.178 3.164 5.084 3.2 5.077 3.185 5.061 

Table 4. Prediction horizon – Amara. 

 Short-term Long-term 

 5 min. 10 min. 15 min. 20 min. 40 min. 60 min. 

Models MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

LSTM 1.831 4.602 1.9 4.747 1.929 4.834 1.881 4.752 1.878 4.795 1.944 5.068 

GRU 1.88 4.73 1.861 4.699 1.897 4.794 1.89 4.722 1.857 4.832 1.934 4.947 

SRCN 3.363 5.891 2.477 5.076 1.851 4.791 1.849 4.811 1.848 4.84 1.837 4.859 

HGC−LSTM 2.905 5.412 3.317 5.84 1.836 4.782 1.845 4.807 3.349 5.914 1.851 4.86 

 

 Lastly, the results of the training data experiments are presented (see Table 5). The methods that perform better, 

in general, are LSTM and GRU. In particular, GRU shows a smaller error for the Camp Nou network, and LSTM is 

the best option for the Amara scenario. The convolutional solutions are better for the Amara network in twice the 

number of cases, but the difference is small. Although the accuracy of the proposed forecasting methods generally 

increases with more data, the difference is not critical. This is especially true for the Amara network, where the 

improvement is minimal. Thus, the implemented models show good performance in traffic forecasting with 5 days of 

training data.  

Table 5. Training data. 

 Camp Nou Amara 

 5 days 10 days 15 days 5 days 10 days 15 days 

Models MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

LSTM 2.931 4.864 2.852 4.645 2.69 4.606 1.812 4.097 1.412 3.085 1.565 3.55 

GRU 2.862 4.775 2.718 4.492 2.749 4.628 1.799 4.057 1.607 3.537 1.567 3.524 

SRCN 3.04 4.909 3.037 4.947 2.765 4.661 1.581 3.508 2.544 4.159 1.466 3.57 

HGC−LSTM 3.103 5.029 2.889 4.676 2.783 4.689 1.581 3.508 3.401 5.349 1.469 3.578 
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5. Conclusions 

This project deals with the traffic forecasting problem, which has been prominently active in the last 40 years. 

Traffic forecasting plays a key role in mitigating some traffic and transportation problems. In particular, this project 

focuses on traffic forecasting in urban networks using floating car data (FCD). 

Four deep learning methods were implemented in order to perform traffic forecasting. The results of the performed 

experiments show that these solutions are able to predict traffic speeds with good performance. Specifically, recurrent 

methods (LSTM and GRU) present smaller errors than convolutional ones (SRCN and HGC-LSTM). Therefore, the 

convolutional component is not needed to extract spatial information. 

In terms of penetration rate, its increment reduces the prediction error. However, the methods predict reasonably 

well with the smallest tested penetration (25%). Similarly, the use of more training data increases the accuracy, 

although the improvements are not very significant, and 5 days of data are enough to train the four tested methods. 

Furthermore, the presented computational experiments determine that the implemented models are able to perform 

accurate traffic forecasting regardless of scenario size and prediction horizon. These results inspire further research to 

complement the performed experiments, such as extending the experimental design by adding more levels for the 

proposed factors as well as by considering new factors. Although the forecasting models in the literature usually test 

smaller scenarios than Amara, the use of a larger network could be interesting for evaluating the feasibility of the 

models in terms of their forecasting and computational capabilities. Furthermore, in order to perform more realistic 

predictions, differentiating section lanes could pose a highly interesting challenge in detecting traffic congestion. 

FCD can at times be insufficient for covering all the network sections, and machine learning forecasting of a 

variable without any historical data does not make sense. Nevertheless, different approaches can be applied to solving 

this. For example, secondary methods may be used, the missing values can be extrapolated, or new data sources could 

be added. Aside from cases of missing values, including new data sources can complement the FCD and improve 

forecasting accuracy. The new data could be of the same type as that which we used here (speeds from loop sensors), 

or it could be completely different (exogenous variables like weather conditions or calendar events). 
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