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Abstract

Semi-definite positive Schrodinger operators on finite connected networks are particular
examples of a general class of self-adjoint operators called elliptic operators. Any elliptic
operator defines an automorphism on the subspace orthogonal to the eigenfunctions associ-
ated with the lowest eigenvalue, whose inverse is called orthogonal Green operator. Our aim
is to study the effect of a perturbation of an elliptic operator on its orthogonal Green oper-
ator. The perturbation here considered is performed by adding a self-adjoint and positive
semi—definite operator.

We show that Schrédinger operators on networks that are obtained by adding weighted
edges to a given network can be seen as perturbations of the Schrédinger operators on the
original network. Therefore, we can compute the Green function, the effective resistances
and the Kirchhoff index of a perturbed network in terms of the corresponding ones on the
original network. We apply the obtained results to the study of perturbations of a weighted
Star, which includes as particular cases the Wheel and Fan networks.

1 Introduction

The Sherman—Morrison—-Woodbury formulas compute the inverse of the perturbation of an in-
vertible matrix through a small rank matrix in terms of the inverse of the original matrix. Slight
modifications allow us to extend these formulas by replacing the inverse with the Moore—Penrose
inverse, if necessary. Since its original formulation in the late forties, this problem has attracted
the attention of many authors, [8, 9, 11]. The so—called Sherman—Morrison formula displays the
particular case in which the perturbation has rank one. Iterating this formula one obtains the
general case. However, the iteration of the Sherman—Morrison formula usually leads to compli-
cated and somewhat unpleasant expressions.
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Recently, Y. Yang and D.J. Klein, [13|, use the Sherman—Morrison formula to obtain a
recursive procedure for the computation of effective resistances in a perturbed network in terms
of the effective resistances of the original network. The motivation of the use of this technique
is based on P. Chebotarev and E.V. Shamis’ study of the so—called adjusted forest distances on
a network, [6]. The adjusted forest distance coincides with the generalized effective resistance
associated with a positive semi-definite Schrodinger operator on the network that was introduced
by the authors in |2, 3]. Therefore, our aim here is to analyze the effect of a perturbation of
the network on the generalized effective resistance. Actually, we compute the effective resistance
of perturbed networks throughout Sherman—Morrison—-Woodbury like—formulas, instead of using
the Sherman—Morrison formula recursively.

A positive semi—definite Schridinger operator on a perturbed network appears as a pertur-
bation of a positive semi—definite Schrédinger operator on the original network. Therefore, we
start our analysis by dealing with perturbations in a broader framework: we define discrete ellip-
tic operators as the discrete counterpart of elliptic partial differential operators. We show that
each operator in this class has a singular elliptic operator associated that we call the orthogonal
Green operator. We perturb the elliptic operator with a positive semi-definite and self-adjoint
operator; or equivalently, with a sum of projectors. Then, we obtain the orthogonal Green oper-
ator associated with the perturbed elliptic operator in terms of the orthogonal Green operator
associated with the initial one.

The application of the general results to the case of perturbed positive semi-definite Schro-
dinger operators is carried out in Section 4. We extend the definition of effective resistance
between any pair of vertices, associated with the given Schrédinger operators, to a similar concept
between two pairs of vertices that we call pairwise effective resistance. It turns out to be the
key for expressing the effective resistances in the perturbed network in terms of the effective
resistances in the original network.

Finally, the last section is devoted to computing the orthogonal Green function, the effective
resistances and the Kirchhoff index of the networks obtained by adding edges between consec-
utive vertices in the weighted Start network. The Sherman—Morrison-Woodbury like-formulas
involved are related with Jacobi matrices. We invert these matrices by means of the resolvent
kernels of suitable self-adjoint boundary value problems on a path. The comparison of our results
with those previously obtained for very particular cases leads to somehow surprising identities
relating trigonometric expressions and Fibonacci numbers.

2 Preliminaries

Given a finite set V, the space of real valued functions on V' is denoted by C(V') and for any
x €V, e, € C(V) stands for the Dirac function at z. The standard inner product on C(V) is

denoted by (-,-); that is, (u,v) = > u(x)v(z) for each u,v € C(V). A unitary and positive
eV
function is called a weight and we denote by Q(V') the set of weights. Given a > 0 the expression

a’ > 0 means either ¢! when @ > 0 or 0 when a = 0.



If K is an endomorphism of C(V), it is called self-adjoint when (K(u),v) = (u, (v)), for any
u,v € C(V). Moreover, K is called positive semi-definite when (C(u),u) > 0 for any v € C(V)
and positive definite when (K(u),u) > 0 for any non-null u € C(V). A self-adjoint operator K
is named elliptic if it is positive semi-definite and its lowest eigenvalue, A, is simple. Therefore,
there exists a unique, up to sign, unitary function w € C(V') satisfying K(w) = Aw and then K is
named (A, w)—elliptic. Clearly, a (A, w)—elliptic operator is singular iff A = 0.

A function K: V xV — R is called a kernel on V and determines an endomorphism of

C(V) by assigning to any u € C(V) the function K(u) = > K(-,y)u(y). Conversely, each
yev
endomorphism of C(V) is determined by the kernel given by K(z,y) = (K(gy),e,) for any

x,y € V. Therefore, an endomorphism K is self-adjoint iff its kernel is a symmetric function.

Given o,7 € C(V), we denote by P, , the endomorphism of C(V') that assigns to each u €
C(V) the function P,(u) = (7,u)o and hence, its kernel is (¢ ® 7)(z,y) = o(z)7(y). In
particular, when w # 0 the endomorphism P, ,, is denoted simply by P,. The operators P, -
are generically named Projectors, since when (o,7) = 1, the subspaces 71+ and span{c} are
complementary and P, . assigns to any u € C(V) its projection on o along 7.

Given A > 0, w € Q(V) and F a (\,w)-elliptic operator, we shall be concerned with the
so—called Poisson equation for F on V

Given f € C(V) find u € C(V') such that F(u) = f. (1)

The general result about the resolubility of the Poisson equation is given in the following
well-know result, where we use of the common terminology in Operator Theory.

Proposition 2.1 Given A > 0 and w € Q(V) any (A, w)—elliptic operator is an automorphism
1
of w—.

Proof. Consider F a (\,w)—elliptic operator. If F(u) = f, then

(f;w) = (F(u),w) = (u, F(@)) = Mu,w).

When F is non-singular, the above identity implies that F is an automorphism of w™.

When F is singular, the result is nothing else but the Fredholm Alternative: the Poisson
equation with data f € C(V) has solution iff f € w' and moreover the solution is unique up to

a multiple of w. In particular, there exists a unique solution belonging to w™. O

The inverse of a (A, w)-elliptic operator F on w' is called orthogonal Green operator and it

is denoted by G. We can extend the orthogonal Green operator to C(V) by assigning to any
f € C(V), the unique solution of the Poisson equation F(u) = f — P, (f).



Proposition 2.2 The orthogonal Green operator G of a (A, w)—elliptic operator F is a singular
elliptic operator satisfying G(w) = 0; 1i.e., it is a (0,w)—elliptic operator, satisfying

GoF=FoG=1-P,.

Moreover, when F is non-singular, then F~1 =G 4+ \71P,,.

When F is a non-singular (), w)—elliptic operator, F~! is usually named Green operator. This is
the main reason to introduce the terminology orthogonal Green operator, so we can distinguish
between both of them. In the singular case, the kernel associated with the orthogonal Green
operator corresponds to the Moore—Penrose inverse of the kernel associated with F.

In any case, the kernel of the orthogonal Green operator is called orthogonal Green kernel
and denoted generically by G.

3  Perturbation of elliptic operators

We study here the perturbations of a fixed (A, w)—elliptic operator F due to the addition of a self—
adjoint and positive semi-definite operator, or equivalently a sum of projections. Specifically,
we consider non-null functions o1,...,04 € C(V), the associated self-adjoint projections Py,

j=1,...,k and the operator
k

H=F+> Po, (2)

j=1

which is called perturbation of F by o1,...,0k.

Lemma 3.1 If H is the perturbation of F by o1,...,0k, then it is a self-adjoint and positive
semi—definite operator. Moreover, if Ay is the lowest eigenvalue of H then Ay > X and Ay = A
iff H is (\,w)—elliptic and this occurs iff o; € wr for any j =1,...,k.

Proof. Clearly H is self-adjoint and positive semi—definite. Given a unitary u € C(V'), then

(H(u), u) = (Flu),u) +

J

k
<Uj7 u>2 > A,
=1
k
which implies that Ay > A. Moreover, Ay = X iff (F(u),u) = X and ) (0;,u)? = 0 for any
j=1

Jj = 1,...,k. The first identity implies that v = £w and the second one that o; € wt for any
j=1,... k. O



In the sequel, we denote by A the matrix A = | + ((G(0}),0;)). In addition, for any A > 0
and any v € R¥ we denote by A Ay the matrix defined as

A —v
AA,v:[ T (3)

v A

Lemma 3.2 The matriz A is invertible and the matriz Ay, s invertible except when A\ = 0 and
v = 0 simultaneously. In any case, the Moore—Penrose inverse of Ay, is

A=l 0 A-lve A~lv —A Ly
T — — —1y, W] .
(A)\,V) - [ OT 0 ] [)\ + <A 9 >] [ <A71V)T _1 ]

Proof. Clearly A is symmetric and positive definite and hence invertible.

A —v a 0
On the other hand, if € R and a € R” satisfy = , then Aa = av
vl a 0

and a)\ + (v,a) = 0. Therefore, (Aa,a) = a(v,a) = —a?X < 0, which implies that a?A = 0 and
a = 0, because A is positive definite. Finally, a = 0 except when A = 0 and v = 0 simultaneously.

A direct verification shows that the given expression is the Moore-Penrose inverse of Ay . O

Our objective is to obtain, in terms of the orthogonal Green operator of F, either the or-
thogonal Green operator of H when it is a (A, w)—elliptic operator or its inverse. To do this we
denote by (b;;) the matrix A~1.

We start with the case in which H is a (A, w)—elliptic operator, where we take into account
the result of Lemma 3.1.

Theorem 3.3 Assume that o € wt forany j =1,...,k and consider G’ the orthogonal Green
operator of H. Then,

k
G =G bi/Po(o) 60y

1,7=1

Proof. Given f € w™, consider the Poisson equation

Then,



and clearly, the function on the right hand side in the last identity is in w'. Therefore, the
unique solution of the Poisson equation in w' is given by

k
)= {oju

7=1
Multiplying by o4, ¢ = 1...,k, we get that
k
Uzy +Z 0]7 > <f7 ( )>
J=1

The coefficient matrix of the above system is A and hence applying Lemma 3.2 we obtain that

k
(o, u) =Y bji(f,G(04)),
i=1

and then,

k k
= > bil£,G(0))G(0) = G(F) = D biPo(o,).6(on) (f)- .

ij=1 i,j=1

Corollary 3.4 Ifo; € wh for any j =1,...,k and consider G the orthogonal Green operator
of H, then

Ail =|— (<QH(O']),O'Z>)

In particular, 0 < bj; <1 forany j=1,... k.

Proof. First, observe that the identity | = A~'A = A=+ A~1((G(0;), 0;)) holds, which implies
that for any £, =1,...,k

k
Z b£j<g(o-j)’ oi) = €¢(i) — by;.
j=1

Applying now the above Theorem we obtain that

k k k
GM(a0) = G(o0) = D bi3G(0:)(G(05), 00) = G(o0) = > G(03) Y bi(G(o;), 00)
i,j=1 i=1 j=1
k k
=G(or) — Zg(o'i)(ffi(g) — big) = Z G(03)bie
i=1 i=1
and hence,
k
(G (00),00) =D (G(04), 0r)bie = £0(r) — bey
=1



and the first claim follows.

Finally, given j = 1,...,k, we have that b;; > 0 because A~! is positive definite and the
positive semi-definiteness of G* implies that bj; < 1. In addition, b;; < 1 because G™ is positive

definite on w™. O

We tackle now the case in which Ay > A. Recall that from Lemma 3.1, this hypothesis implies
that H is positive definite, and hence invertible, but non necessarily elliptic. Therefore, there is
not guarantee that the orthogonal Green operator for H exists, and hence we are concerned in
obtaining H ! in terms of the orthogonal Green operator of F.

Theorem 3.5 Ifo; & wt for some j =1,...,k, then the operator H is positive definite and

e

=G - Z b epg(a] (or Z jk+1 Pg (05), Pw,g(crj)] + 8k+1k+1PW7
j,=1 j=1

. k -1
where byt1k+1 = |:)\ + > br7s<ar,w><as,w>} and for any i,j=1,...,k,

rs=1

k

k
bjk+1 = brrikt1 Z bjr(or,w) and by =bjp — bprirs1 ( Z ir (O, W ) (Z ber (o, w )
r=1 r=1

Proof. Given f € C(V), if we consider the Poisson equation H(u) = f on V, then

k k
Flu)=f=) Po(u)=F~) {oju)o
j=1 J=1
and hence,
k
D g u)(w,a5) + Mu,w) = (f,w)
j=1

On the other hand,
k
Flu — (u,w)w) = F(u) — Mu,w)w = f — Z(q,u)aj — Mu, w)w,

which implies



Multiplying by o, i = 1...,k, we obtain the following linear system

(5,0} + 3403, u)(6(03), 01) — (w,)oin) = (£,G(2)), i =1,...,k,

j=1
k
Z:l<gj7 u><w, Uj> + A<uvw> = <f7w>7
J:
where the unknowns are (o, u), i =1,...,k, and (u,w).
If we consider v = ((o1,w),..., (o), w)) ", then v # 0 and the coefficient matrix of the above

system is Ay ,. Therefore, applying Lemma 3.2

k k k
w=G(1) =Y bjelf:G(00))G(05)+D  bjkra(f,w)G(o)+w | D bk (f,G(05)) + bryrera(f,w)
=1

j=1 j=1

A-lvo A~lv —A- Ly
(A=) T -1

) A=t 0 1
vhere G0l = gr o | T A Y

Next we specify the simple case in which the perturbation is due to only one projector; or
equivalenty, to a symmetric matrix of rank 1. This is a well-known result, see for instance [9, 11].

Corollary 3.6 Consider o € C(V) and H, = F + P,. Then, when (o,w) =0

1
H_c_
g"=g 1+<g(0.)70>7jg(0)

whereas, when (o, w) # 0

1
(14(9(0),0)) + (o, w)?

H =G~ 3 (XPQ(U) —(0,w) (Pg(o)w — Pugo)) — (1 + <g(0),0>)7’w>-

We remark that the result in Theorem 3.3 can be obtained by applying k£ times the above
Corollary. For instance, if oy € w™ for any £ = 1,...,k, and we define the (A, w)—elliptic operator

J4
He = F + ) Py, and consider G, the orthogonal Green operator of Hy, then
j=1

1
g :g - P o 9
T T4 Gl o) T

because Hpr1 = Ho + Py

+1°



4 Perturbation of elliptic Schrodinger operators

In this section we consider fixed the connected finite network I' = (V, E, ¢) on the vertex set V
whose conductance is the symmetric kernel ¢: V- x V' — [0, +00) satisfying that ¢(z,z) = 0 for
any x € V and moreover, x is adjacent to y iff ¢(z,y) > 0. We call T the base network.

Given w € Q(V) a weight on V for any pair (z,y) we call w—dipole between x and y the
€z Ey ]

— ——. Clearl = — d —0iff = 1.
o(z)  wly) early, 7y Tyz and mMoreover, Ty iffe =y

The combinatorial Laplacian or simply the Laplacian of the network I' is the endomorphism
of C(V') that assigns to each w € C(V') the function

Lu)(w) = e(w,y) (ux) —uly), zeV. (4)

yev

function 7,y =

It is well-known, that the Laplacian is a singular elliptic operator on C(V') and moreover £(u) = 0
iff u is a constant function.

Given g € C(V), the Schrodinger operator on T with potential q is the endomorphism of C(V')
that assigns to each u € C(V') the function £,(u) = L(u) + qu.

1
If w e Q(V) is a weight on V, the function ¢, = —— L(w) is named the potential determined
w
by w.

It is well-known that the Schrédinger operator £, is elliptic iff there exist unique w € Q(V)
and A > 0 such that ¢ = ¢, + A, see for instance |2, 3]. Moreover, L, is singular iff A = 0 and
then, £, (v) = 0 iff v = aw, a € R. Equivalently, the Schrédinger operator £, is (A, w)—elliptic
iff ¢ = g, + A. In this case, we denote by G, , the orthogonal Green operator and we also denote
by G the kernel of Gy ,,. In the sequel, we consider fixed the value A > 0, the weight w € Q(V)
and the corresponding Schrodinger operator L4, where ¢ = g, + A.

Given z,y € V, we call effective resistance between x and y, with respect to A and w, or
simply effective resistance between z and y, the value

Gyw(z, Gw(y,
_ A,($$)+ Ao (YY)

Ry w(@,y) = (Grw(Tay)s Tay) = w(zx)? SuE 2G>\,w($,y)

w(@)w(y)

(5)

The kernel Ry,: V x V — R is symmetric, non-negative and, in addition, Ry, (z,y) =0
iff 7,y = aw, which is equivalent to be a = 0 and hence to be x = y. In addition, it is well-
known that the matrix (RAM(:U,y)) is non-singular, see |2, Proposition 4.3], and moreover for
any x,y,z € V it is satisfied the triangular inequality

R/\,w(xa y) < R)\,w(x; Z) + R)\,W(Zv y) (6)

and the equality holds iff A = 0 and, in addition, z separates x and y, see |2, Corollary 4.4|. We
must notice that when A = 0 and w is the constant weight the effective resistance R, ,, coincides,
up to a normalization factor, with the classical effective resistance.



Analogously, given x € V, we define the total resistance at x, with respect to A and w, or

B Grw(z,x)

simply the total resistance at x as the positive value ry ,(z) = 7 that generalizes the

w(x
notion of status of a vertex introduced in [10], see also [2|. The Kirchhoff Indez, with respect to
A and w, or simply the Kirchhoff Index of I' is the value

kvw) = 3 Gl 2) = % S Ryl p)w?(@)e?(y). (7

zeV z,yeV

Moreover for any x € V, it is satisfied that

k()‘7w) = Z R)\,w(xvy)w2(y) - T)\,w(x) and |T)\,w($) - TA,w(y)| < Rk,w(x,y)a ) 7& z, (8)
yev

see |2, 3| for details.

Next, we extend the notion of effective resistance between vertices to pairs of vertices. So,
given two pairs (x,y),(Z,9) € V x V, we define the pairwise effective resistance between the
pairs (z,y) and (&,7) as the value

R/\,w (:Ua Y; T, Q) = <g)\,w (Txy)v T;i’@}>' (9)

Therefore, for any z,y, 2,9y € V we have

1

RA,w(:Ea Y; j? g) = 5 (R)\,w(x7 g) + R)\,w(ya :i') - R)\,w (CL’, i) - R/\,w (ya Q)) . (10)

The triangular inequality (6) implies that for any z,y,%,5 € V

0< R/\,w('xvy;:%ay)vR/\,w(xvy;ZE?@) and |R)\,w($ay;j;ag)| < min{Rk,w(ZE?y)aR/\,w(‘%vg)}‘

If we consider an orientation on the graph, 9, and for any edge e € E we denote the tail by
t(e) and the head by h(e), we can generalize the notion of effective resistance between vertices
to an analogue value between edges. Specifically, if given e € E we define 7. = Tj,(0)¢(e), We call
edge effective resistance between e and €, with respect to ¥, A and w, or simply the edge effective
resistance between e and é, the value

Rﬁ,w(ev é) = <gz\,w(Te); Té> (11)

Clearly, the kernel Ri w: Ex E — R is symmetric and positive on the diagonal. In fact,
we have the identity

RS (e,€) = R (hle), t(e); h(e),t(e)) (12)

which in particular implies that Rf’w(e, e) = Rxw(h(e),t(e)). Therefore, the matrix (Riw(e, é))
is positive semi—definite. Moreover, it is singular except when the subjacent graph is a tree, since
the dipoles associated with the edges of any cycle in I' are always linearly dependent. Newly,

10



as a consequence of the triangular inequality for the effective resistance between vertices, we get
that
|R§7w(e, é)| < min {ngw(e, e), Riw(é, é)}, foranye,éckE.

Our next aim is to analyze the elliptic Schrédinger operators associated with a perturbation
of the conductance. Specifically, we consider e: V' x V' — [0, +00) a symmetric function and
denote by L€ the combinatorial Laplacian associated with the perturbed conductance ¢ + €. In
addition, for any w € Q(V) we denote by ¢, the potential —w™!L¢(w). Futhermore, if ¢ € C(V)
is such that £ is elliptic, then we denote by G the orthogonal Green operator of L. Moreover,
given A > 0 and w € Q(V) we denote by G\ the orthogonal Green operator and by G, its
corresponding kernel.

If we consider E€ = {(z,y) : €(z,y) > 0}, then the new network whose conductance is ¢ + €
isI'“ = (V, EUE€, c+¢€). Therefore, we can understand the perturbed network as a new network
built from the base network I' by introducing new edges and/or by increasing the conductance
of some old edges. Observe that I'° is also connected.

Now we show that elliptic Schrédinger operators on the perturbed network can be seen as
perturbations, in the sense of the above section, of elliptic Schrédinger operators on the base
network. For this purpose, for any e € E€ we consider the positive value and the function

ple) = \/e(h(e),t(e))w(h(e))w(t(e)) and 0. = p(e)Te. (13)

Proposition 4.1 The following identity holds:

L =Ly + Y Po,.

ecbe

Proof. First, observe that the combinatorial Laplacian for the perturbed conductance can be
expressed as

LY=L+ Py,

ecE€
where v, = y/¢(h(e), t(e)) (sh(e) - st(e)). Therefore, we get that
1
e _ __ —1pe - _,,1 S
gh =~ L(w) = ~w ' L(w) wégZEf (),

and hence,

Lo = Lo+ [Pr— %7?% ()]

ec ke

11



The result follows taking into account that given e € E€, if h(e) = x and t(e) = y, then for
any u € C(V),

Pou () = 2P, () = e, ) (0 — &) [ule) = uly) = = (@(@) — w(y))]
— o) |25 - 28] (t)er - (o))

R

O

Now we can establish the claimed result about Schrédinger operators on the perturbed net-
work and their Green operators. According with the results of the above section, the matrix

A=1+ (<g)\,w(0'e)7‘7é>)

is invertible and we denote by (b(e, é)) its inverse.

Theorem 4.2 Given q € C(V), then L5, the Schrodinger operator on the perturbed network, is
(A, w)—elliptic; that is, ¢ = q5, + X iff

LS=Ly+ Y P,

ecEe€

where p = qu, + A; that is, iff it is a perturbation of the (A, w)—elliptic Schrédinger operator on the
base network. Moreover, L is singular iff Ly, is; and this occurs iff A = 0. In any case, singular
or not,

gf\,w = g)\7w - Z b(ev é)lpg/\#w(ae),ghw(aé)'

e,ec b€

In particular, Eg — L, and Qf\,w — Gxw when € — 0.

Proof. Taking into account the characterization of elliptic Schrédinger operators, then the first
part is a straightforward consequence of Proposition 4.1. In addition, bearing in mind that
0. € wt, for any e € E€, the expression of gs ., is also a straightforward application of Theorem
3.3. o

Corollary 4.3 The orthogonal Green operator for any elliptic Schrédinger operator on a network
s a perturbation of the orthogonal Green operator of a Schridinger operator on a spanning tree
of the network.

Now we analyze the effect of a perturbation on the effective resistances.

12



Corollary 4.4 If RS, is the effective resistance on the perturbed network, then

Sw(®y) = Ryw(z,y)— Z be,e)p(e)p(é)Rxw(h(e), t(e);x,y)Raw(h(é), t(é);x,y), xz,yeV
e,ecke

and hence, RS  — Ry, when e — 0.

In particular, when e(z,y) > 0, then RS (z,y) = where e € E€ is the edge

whose extremes are x and y.

Proof. The first identity follows from the identity (5) and Theorem 4.2

Ri,w('r7y) R}\,UJ(‘/L‘ y Z b 6 6 g>\ w(ae) Txy><g)\ w(Ue) Txy>
e,ec ke

= Raw(m,y) = D ble,&)p(e)p(é) R w(h(e), t(e); , y) Raw(h(e), t(e); 2, y).
e,ecb€

On the other hand, when €(z,y) > 0, from Corollary 3.4 we get

p(€)’RS ,(z,y) = (Gy(7e), 7e) = 1 — b(e, €)
and the result follows. O

Observe that the effective resistance of the perturbed network decrease with respect to the
effective resistance of the original network. Moreover, the effective resistance between x and
y does not change iff Ry, (h(e),y) + Ryu(t(e),z) = Ry, (h(e),z) + Ry, (t(e),y), for any edge
e € E€. Therefore, if €(x,y) > 0, R*(z,y) < R(x,y).

In the following result we get an explicit expression for the Kirchhoff Index of the perturbed
network in terms of the Kirchhoff Index of the original network, the effective resistances and the
total resistances of the vertices involved in the perturbation.

Corollary 4.5

KO w) = k@) + 5 3 ble,E)p()ple) [ (t(8) = ra(h(@)] [ra(t(e) — ra(h(e))]

e,ecE¢
_ i S @)Y be p(6)[Raw(t(e), 7) — Ra(h(é), )] [Raw(t(e), ) — Ry w(hle), z)].
zeV e,ecE«

Proof. If we denote by a(e,z) = [Ryu(t(e),z) — Ry w(h(e), z)|w(x) and b(z) = w(z), we can

13



apply the Binet—Cauchy Identity as follows
1

ke()‘7w) = k(Aaw) Yy Z b(e,é)p(e)p(é) Z R)\_’w(h(é),t(é);x,y)R)\’w(h(e),t(e);x,y)wQ(x)wQ(y)
2
e,ecke z,yeVvV
= k(A w) —é > ble,é)ple)p(e) Y [alé, x)b(y) — a(é, y)b(x)] [ale, 2)b(y) — ale,y)b(x)]
e,ecEc z,ycV
T2 bedplep(@)] 3 ate,a)ale.x) = (D alea)w(@)) (D ale,v)w(@))]
e,eckEe eV eV zeV

We conclude this section by observing that, as in the perturbation of elliptic operators, the
result in Theorem 4.2 can be obtained by perturbing the network edge to edge. Specifically,
given z,y € V with x # y, then the elliptic Schridinger operator with potential ¢ on the
network resulting by adding an edge e between vertices x and y with conductance ¢, is given by

e _ _ €z &y _ ., —1pe _ -1
L = Ly + Py, where o = ew(w)w(y)(w(aj) w(y))’ q w i LY(w), p w™ L(w) and
then,
e 1
oo = O = TG, ey Ol
Therefore,
cw(@)w(y) Raw(@,y;8,9)* . 1

Ri\,w(iﬂ Q) = Rk,w(i‘)@) - R}\M(.I, y) = 1

1+ ew(x)w(y) Raw(z,y) ew(z)w(y) + Ryo(z,y)
Aw T, Y

and

ke(\,w) = k(A w)

ew(z)w(y) 2 2
"~ 4(1 4 ew(@)w(y)Raw(z,v)) (;w [Frw(@2) = Baw, 2] = [ma(@) =) > '

When A = 0 and w is constant, the above results coincide with those obtained in [13].

5 From Star to Wheel

Let us consider the simplest tree; that is, the Star network S,, with n+1 vertices, {zo, z1,..., 2z},

and conductances a; = a(x;,z9) > 0,7 = 1,...,n. Moreover, let w; = w(z;), i =0,...,n be a
a;w

weight on S,,. Then, q,(x;) = —a; + Z—O, for any i = 1,...,n. In addition, given A > 0, and
o

the potential ¢ = ¢, + A we also consider the corresponding positive semi—definite Schrédinger
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operator L,. Although the following expressions for the orthogonal Green function, effective
resistances and Kirchhoff Index can be deduced from the results in [5, Proposition 3.1|, we
include the proofs here for completeness.

For the sake of simplicity we consider the following value

n 3
J

Lemma 5.1 It is satisfied that 0 < AQ(\,w) < 1

Proof. It suffices to observe that the following identity holds

o
Proposition 5.2 If f € wt, then
Grw(f)(wo) = — “o Sy
W 1— )\Q()\,w) i )\wj + a]-wo’
ws a;wo .
N — . =1,...,n.
Greo( ) i) Aw; + a;wo fws) = 1-AQ(\,w) Z )\wj + a]wo T el
Proof. If we consider u = Gy ,,(f), then, for any i =1,...,n we get
a; (u(wi) — unw(®0)) + qiu(z:) = f(z:)
and hence,
_ f(@) + aiu(xo) w; [ ]
wxi) = g +a; ~ Awi + ajwo f(@:) + awulwo) |-
In addition, the condition v € w is equivalent to
;)W
0 —_
wou(wo) + Z )\w] + a]wo Z )\wj —l— ajwo
which from Lemma 5.1 implies that
u(wo) wo = f(xj)wjz
0) = —
1-— )\Q()\,w) = )\wj + a;wo
and the result follows. o
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Corollary 5.3 The orthogonal Green function of the Star with respect to A\ and w is given by

W\, w) a;w;iWo wo@A\w)  wi
Gl = 7500wy O T [Toe e wl
G (T, i) = Qi ApWiWEWo [ wo@(\, w) Wi wk] _ )\w?wi
AT D + agwo] Pk + axwo] [1-AQNw) @i ar] [+ aiwo] Pwk + arwo]
aw?wy woQ (A, w) 2w; Awi w;
Grwl(@i @) = [ ’ - } - - + :
’ [Aw; + aiw0]2 1=2QA\w)  a [Aw; + aiwo]Q Aw; + a;wo

where i,k =1,...,n and k # 1.

Corollary 5.4 When A > 0, the kernel of the operator C;l is given by

) 2
K/\,w(x()a .’L'()) - )\[1 _ )\Q()\’w)] ’ K)\M(.l‘(),-ivz) A[l — )\Q()\,W)] [)\WZ + CLiWO] 7
2
N QA |WiWEWy
Ky w(g, ;) A1 = AQ(\, w)] [Mwi + awo | [Awy + agwo]’
2,2 2 .
Ky o(xi,x;) = S -

+ )
Aﬂ—AQQMﬂpM+MMF Awi + aiwg
where i,k =1,...,n and k # 1.

Corollary 5.5 The effective resistance function with respect to A and w is given by
1 Aw?

Ry (o) = +
ro (23 20) wildwi +aico] 1 - AQ(\,w)] [Aw; + aiwo]”

7

1 i 1 4 A [aiwk — akwi] 2(,08
wiAw;i + ajwo]  wi[Adwg + agwol [1—2Q(\, w)] [Mwi + awo] 2 [Awy, + akwo]Q
where i,k =1,...,n and k # 1.

Ry o (xi, 1) =

)

Corollary 5.6 The pairwise resistance function with respect to \ and w s given by
M (awj — ajw;)(arwe — apwy)
[1—AQ(\, w)] [Aw; + ajwo] [Aw; + ajwo] [Adwr + arwo] [Awe + agwo]’
1 n M (aiw; — ajw;)(awr — agw;)
wi[Aw; + aiwo] [1 —AQ(A, w)] [)\wi + ain]Q [)\wj + ajwo] [)\wk + akwo} ,
Awow; (apwe — agw)
[1—AQ(\, w)] [Aw; + ajwo] [Awk + arwo] [Awe + agwo]’
Aw;wy
[1—AQ\, w)] [Aw; + ajwo] [Awe + agwo]’
-1 Awow; (ajwp — apw;)
+ ;
wi[Aw; + a;wo] [1 —AQ(A, w)] [)\wi + aiwo] 2 [)\wg + agwo]

Ry (i, zj5 28, 20) =

Ry (@i, x5 24, 21) =

Ry (o, i3 g, 70) =

Ry (w0, i3 0, 20) =

R)\,w ('1:07 Ti; Li, .’E[) =
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where 1,5, k, £ =1,...,n and are mutually different.

In this work we are interested on perturbations of the Star S, by adding edges only between

consecutive vertices. To study this kind of perturbations it is useful to define z,11 = =z,
Aw? 1
a =a, w —w and the valuesao = ——0 =~ i=1...,n+1
T B T=2QMw) ™ ™ wiDwy + agen]’
and r; = wiwit1ViYit1[aiwirs — aip1wil, @ = 1,...,n. Observe that v,41 = 71 and moreover
Apw — A W . .
rp = nl Ln . According with Corollary 5.6 we get
[/\wn + anwo] [)\wl + ale]
Ry w(Ti, Tig1; T, Thg 1) = arity, ihk=1...,n, 1<[i—k|l<n-1,
Ry w(®i-1, 2520, Tig1) = —vi +ariar,  i=2,...,n,
R)\,w(xi7fci+1;$iaxi+1) =7 +Y+1 + ar?, 1=1,...,n,
Ry o(Tn, 21521, 72) = —71 + arpry.

We consider the m—blade Fan network on 1 < m < n blades; that is, the perturbation of the
Star .S, by adding m edges with conductances cy,--- , ¢y, > 0 between consecutive vertices. In
particular, when m = n — 1 we have the standard Fan network, whereas when m = n we have
the so—called Wheel network; see |3, 13].

13 Ex;

If we denote by p; = ,/¢jw;w;11, then o; = ,Oj( Ti4l

), for j =1,...,m. Therefore,
Wi+l Wi

A =14 ((Gy(oj),0k) =1+ <ijkRA,w(9€j+1,Hfj; $k+1,l’k>> =TH+ar®r,

where r = (p171, ..., pmrm)! and T is a matrix that will be described below. Therefore, according
to the Sherman—Morrison formula, see [11]

a

Alt=T"1- —
1+ a(T1rr)

(T_lr) ® (T_lr).

When m = 1,2, the computation of T~! is straightforward. If we assume m < n, then

1+ pi(n +92) —p1p272 0 0 0 7
—p1p272 14 p3(y2 +73) —p2p373
0 —P2p373 1+ p3(vs +7a)
T= (14)
L+p2, 1 (ym—1+vm) —Pm—1PmVm
L 0 0 0 cee —Pm—1PmYm 1+ p?n(Wm + Ym+1)d

When m > 3, T is a tridiagonal matrix and hence, to obtain its inverse we can apply the results
involving this class of matrices, see for instance [12]. In addition, we can also apply the usual
techniques for discrete boundary value problems, see [4, 7]. Specifically, we have the following
result expressing the entries of T~! in terms of two solutions of a difference equation.
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Proposition 5.7 Consider {u;}7., and {v;}]L; the solutions of the difference equation

(L4 P2 (Vi + V1)) 2k — 21 PRPRA1Vo41 — Zh—1Pk—1Pk Ve = 0, k=2,...,m—1,

characterized by satisfying the initial conditions uy = pipeye, uz = 1+ p3(y1 + Y2) and the
final conditions vy—1 = 1+ p2,(Ym + Yma1), Vm = Pm—1PmYm, respectively. Then, p1payave #
(1+ pi(m1 +72))v1 and moreover the (j,k)—entry of T~ is
- umin{j,k}vmax{j,k}
p1pav2(1+ (p(v1 +72))v1 — prp2y2vs)

bjk N j,kzl,...,m.

This method can be generalized to the case of (my,..., ms)-blade Fan network that is, the
perturbation of the Star S, by adding m; 4+ --- 4+ ms = m < n — 1 edges with conductances
c1, + ,cm > 0in such a way that the edges corresponding to cy, . . ., ¢y, are consecutive, the edge
corresponding to ¢, is not incident with the one corresponding to ¢, 11, the edges corresponding
t0 Cmy41, .-+ Cmi+me are consecutive and so on. Newly, A =T 4+ ar ® r, where T is a block—
diagonal matrix with s-blocks and for any j = 1,..., s the block T; is like (14) and has size m;.
In particular, if m; = 1 for j = [ 5|, matrix T is diagonal.

T

Figure 1: A (3,2)-blade Fan (left) and a Wheel (right) networks

Finally, we consider the case m = n; that is, the Wheel network. Then,

(14 pi(n +72) —p1p2Y2 0 —pP1Pn1
—p1p22 1+ p3(72 +73) —p2p373 0
0 —pP2P373 L+ p3(v3 +74) 0
T =
0 L+ pp 1 (Va1 +7m)  —Pu—1Pnn
—P1Pn71 —Pn—1PnVn 1+ P?z (Vn + 'Yl)_

and hence T is a periodic Jacobi matrix. To obtain T~!, we newly apply the usual techniques
for discrete boundary value problems.
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Proposition 5.8 Consider {ujl 1 {u?}’]?zl, {’Ujl};»’:1 and {vj2 71 the solutions of the differ-
ence equation
(L4 pp (W + V41)) 2k — 2kt PRPRA1 V41 — Zh1Ph—1PkVe =0, k=2,...,n—1,

characterized by satisfying the initial conditions ul = p1paya, ud =1+ p3(y1 +72), vi =0, vi =
p1pn1 and the final conditions u_y = prpay1, u =0, v2_ =14 p2 (71 + ), Vi = Pr—1PnTn,
respectively. Let now {u;}i_; and {v;}i_; be defined as

Uj = Pr—1pnntl) + p1poyet  and  v; = pu_1ppnv) + p1p2yev;  j=1,...,m
Then, uy = vy, uivs # ugvy and moreover the (j,k)—entry of T—1 is

b = 1 (s Vet -+ Pr—1P21Yn i1
p1p2Y2(U2v1 — u1v2) 7 7 p2v2 (Uugv1 — uqv2

o Pn—1PnTn
p1p2Y2(Uu2v1 — U2

)2 [vjuk + ujvk}

)2 |:((1 + p%(’yl + 72)“1 - ppo’}/QUQ)Uj’Uk

(A + P2 (1 + ) von — pnflpwnvnq)ujuk} :

6 The constant case

In order to illustrate the above results, let us consider the Star network with constant conduc-
tances and weights. So, let S,, be the Star graph with n + 1 vertices labeled as {z¢, z1,...,z,},
conductances a; = a > 0 and weight w; = w, i = 1,...,n. Hence, wg = wyp = V1 — nw? and

qw(xi):qw:a<—1+@>,foranyi:1,...,n.
w

Corollary 6.1 The orthogonal Green function of the Star, with respect to A and w is given by

3 3 2
nw>wg w awg w
G = — G i Ti) = — 1 EVTIP.
Aw <$0’ xo) Awwg + a’ )\70_,(3} Hfz) ()\w + awo) ()\wwo +a + ) + Aw + awy
2,2 3 2
ww, w aw
Crolmpa) = g )= - o 41
Ao (T0, T4) wwg + a’ N (T i) (Aw + awyp) ()\wwo +a * ) 7

where i,k =1,...,n and k # i. Therefore, the Kirchhoff index for the Star is
nw (Awwo + a(1 — w?))
(Aw + awp) (Awwy + a)

k(A w) =

Corollary 6.2 When A > 0, the kernel of the operator E;l 15 given by
2,2

wo(Aw + awp) a*wwy w
Ky (0, =~ Ky (vi, ;) = ’
Ao (20, 70) A Awwg + a) roo @i 71) AAwwg + a)(Aw + awy) Tt awo
2,2
awwg a’w?wy
K w L) = —————, K w ybi) = ’
nala0,31) = S ) T 20 = 5 v+ a) O+ )

where i,k =1,...,n and k # 1.
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1
whw + awo)’
oi =C(ezipy —€x,), 1 =1,...,1.

In this case, v = v = i=1,...,n+1,r, =0, pj = p = wy/c, and moreover

If we consider the m—blade Fan networkon 1 < m <n — 1, then

1+ 20%y  —p*y 0 0
P’y 1420y —pPy 0 0
0 —p?y 1+ 2p%y 0 0
A= (15)
0 0 0 14202y —p?y
0 0 0 —p*y 1+ 2p*y]
To invert matrix A, the corresponding difference equation is
2pz — 2pv1 — 261 =0, k=2,....m—1,
1
where p = 1 + 3,2 whose solutions are related with Chebyshev polynomials, [4]. Applying
Py
Proposition 5.7, we get that
bjk _ 2(p - 1)Umin{j,k}71(p)Umfmax{j,k}(p) _ Terlf\kfj\(p) - Tm+1—k—j(p) ’ jk=1,....m,

Unm(p) (p+ 1)U (p)

where Ty, Uy are the first and second kind Chebyshev polynomials. Then, the perturbed Green
function is

nw3wo . w?w}
Sw(Zo, i) =

i=1,...

Gf\w(xo, xo) = , N

Cdwwo +a’

2cw? [Tm+17\sfi| (p) + Tinyo—s—i (p)]
(Aw + awp) (dew + Aw + awo)Up, (p)’

Awwy +a’

’LU3

2
G (s 1) = — 1)+
Aw s (Aw + awp) \ Awwgy + a

s, =1,...,m+1,

w 68i .
otherwise.

Gi,w(J:S’ xl) - -

w3 awd )Wl
(Aw + awy) \ Awwy + a Aw + awg’
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Therefore, the effective resistances between vertices of the m—blade Fan network are given by

Aw? 2¢[Trn41(p) + Tint2—2i(p)]
wo(Awwg + a)(Aw + awp) — (Aw + awp) (dew + Aw + awo)Up, (p)’

Ri,w ($07 xl) -

i=1,....m+1,
Aw? 4 1
wo(Awwg + a)(Aw + awy)  w(Aw + awg)’

Ac[Tps1(p) + Tinra—i—i (0) (Ti—jy(p) = 1) = T iy (P)]
(Aw + awp) (4dew + Aw + awo)Up, (p)

Riw(l'o,l’i): t=m+2,...,n,

Rf\,w(l‘i? l‘j) =

t,j=1,....,m+1,

2

—_— L, ] = 2,...
W()\U}+6Lw0)7 2W) m+ ) y 10y

Ri’w(xi, .’Ej) =

2¢[Trny1(p) + Tiny2—2i(p)] 1
(Aw + awp) (dew + Aw + awo)Up(p)  w(dw + awp)’
1=1,....m+1, j=m+2,...,n.

Ri,w(x“ l‘j) =

Moreover, the Kirchhoff index of the m-blade Fan network is

1 2cw? DTm Un
) = k() _ M D 2w [(m + 1) Tont1(p) + Un(p)]
Aw+awy  (Aw + awp) (dew + Aw + awy)Up, (p)
DT —pUp,
Cw) - [(m + 1) Tin41(p) — pUn(p)]
Aw + awp 2¢(p? — 1)U (p)
_ w((n —m)Awwy + a) — aw?) i w
(Aw 4 awp) (AMwwy + a) = Aw + awp + 4dew sin? (2(7211)) ’
The last equality follows taking into account that
VL) _ (m D Toia(0) —aUn(e) _ -
U () (22 = 1)Upy( p +1)

When m = n—1, these expressions coincide with those obtained in [5] using a different approach,
considering the Fan as the join network of a singleton with a path.
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Finally, we consider the case m = n; that is, the Wheel network. Then,

14207y —p%y 0 - 0 —p*y
—p’y 1420y —pPy - 0 0
0 —p%y 1422y - 0 0
A= (16)
0 0 0 e 14202y —pPy
|y 0 0 e =pPy 14 2p%]

To invert matrix A, we apply Proposition 5.8. So, defining the sequence u; = U;j_1(p)+Un—;—1(p),
j=1,...,n, then

p—1 (p—1)
bjr = Umin{j,k} Ymax{jk}—11
ik To(p) — 1 {5,k} {7,k}—1 Q(Tn(p) B 1)2

By properly using the Chebyshev Polynomials properties we get the equivalent expression

b — (0 = 1) (Up—1-j5—j|(p) + Up—_jj—1(p))
g Tn(p) -1 7
that coincides with the one obtained by some of this authors in [5]. Then, the perturbed Green
function is

[ul (uj,luk—i—ujuk_l) —Ug (uj,luk_l—}—ujuk)] .

nw3w0 w?wj
G&‘ = 5 s Ly ) = *70; = 17 s 1y
(0, 0) Awwo + a’ o 0, 24) Awwo + a l !
3 2 U, 1_1i_ + Uji_s—
SO p— aws g g D@ Ui @) 5y
; (Aw 4 awp) \ Awwy + a 2C(Tn(P) - 1)
Therefore, the effective resistances are
)\w2 Unfl(p)
RE ) — R = 1; 3 10y
RCUED) wo(Awwy + a)(Aw + awp) + 2cw?(Ty(p) — 1) l !
1 .
Bwlon ) = o = 1) (Unet0) = U 0) = Vi), bi=l..mn

Moreover, the Kirchhoff index of the Wheel network is

nw nUp—1(p)
+
M+ awy  2¢(T,(p) — 1)
1

kf(\,w) = k(A w) —

B naw? N <
(Aw + awp) (Awwg + a) — \w + awy + dew sin? (%“)

o

n—1
ww

- Awwy + a + ; Aw + awg + dewsin? (ET)

=1 n
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-1
nUp_1(x) < 1
where we have taken into account that 77 =nU,_ and hence n13) _ _—
( ) 1( ) Tn( )_1 zZ:B—COS(Qm)
For the standard Wheel and Fan; s.e., A =0, c =1 and w = wo = (v/n + 1)71, an expression
for the effective resistance was given in terms of the generalized Fibonacci numbers, Gy, in [1],
see also [13].

Comparing the expressions for the effective resistances on the standard Fan where a = 1, we
get
Fytniy1Foi-1 2(Tu(3) + Tny1-2i(3))
B 5Uaa(3)

where i =1,...,n and

Fotnejy+1 (Fojo1 — Faic1) + Foio1 (Fam—i41 — Fogn—j)+1)

= %(Tn(%) + Tn—&-l—i—j(%)(T\i—ﬂ(%) - 1) - Tn—li—jl(%))7

where 7,7 = 1,...,n. The above equalities could have been obtained taking into account that
Fo1 = Vi(2), where Vi(p) = Uy(p) — Ux—1(p) is the third kind Chebyshev polynomial.

On the other hand, comparing both expressions in the Wheel case we get the following nice
identities
G'?z _ Unfl(p) _ l nz:l 1
G2n - 2Gn N 2C(Tn(p) - 1) B n a + 4811’1 (%) ’
G2 <2 _ G2|ij> _ Un-1(p) — Un717|ifj\( ) = Uji—jj-1(p)
2G

Gli—jl co(Tn(p) — 1) '

GQn

These equalities could have been obtained taking into account that Gy = Ui_1(p), for p = 1+ %.

When a = 1 this equality becomes Fy, = Uk_l(%), where Fy, denotes the 2k—th Fibonacci
number.

From the expression for the Kirchhoff index we get that

G2 — (n—k)G - +1

Gon = 9G (nQ_Z(n G) =) = +Z —
2n = n =1 k e 1a-|—4sm ?)

and therefore, the following sum rule for generalized Fibonacci numbers holds

nz:l n—=k ng = = 4 sin? (%
a + 4 sin? 7”) — a + 4 sin? k—) ‘

k=1 k=0
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In particular,

nz_:l (n —k)Fy, <§ 1 >_1 (”z:_l 4nsin? (A2 )
1 Fyy, =0 1+ 4sin? (%’r) P 1 + 4 sin? %)
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