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Structural control and health monitoring as condition monitoring are some essential
areas that allow for different system parameters to be designed, supervised, controlled,
and evaluated during the system’s operation in different processes, such as those used in
machinery, structures, and different physical variables in mechanical, chemical, electrical,
aeronautical, civil, electronics, mechatronics, and agricultural engineering applications,
among others. Continuous monitoring of these structures is a need because these are subject
to changes in environmental and operation conditions along their lifetime, which can result
in changes and possible fails and damages in all the structure and their components.
The proper development of these applications is associated with the use of reliable data
from sensors or sensor networks, which requires the use of advanced signal processing
techniques, sensor data fusion, and data processing (sometimes in real-time) to produce a
reliable system and avoid accidents or failures in the process.

After a rigorous peer review process, a total of 19 papers were published, covering dif-
ferent aspects of condition monitoring, structural control, and health monitoring (SCHM).

Damage identification process is addressed into the structural health monitoring
(SHM) task to determine different levels of the state of a structure. These levels include
damage detection and localization, the knowledge of the type and extent of damage, the
prediction of the remaining lifetime, and the development of smart structures. Each of
these steps can be addressed from different points of view, but one of the more used is
data-driven strategies. In [1], the use of data-driven algorithms is explored at each level of
the damage diagnosis as well as the instrumentation and implementation process to show
the current state of some of the developments of data-driven SHM.

In terms of the use of sensors for industrial applications, the design of algorithms and
methodologies to process all data from sensors still remains as an open research topic. In
the case of the development of artificial taste recognition systems, it implies the use of data-
driven algorithms and methodologies to monitor the condition and quality of a process as
in the case of the food industry. The work of [2] explores the use of a new nonlinear feature
extraction-based approach using manifold learning algorithms to improve the classification
accuracy in an electronic tongue sensor array. The paper results show that it is possible to
perform the classification in a data set belonging to seven different aqueous matrices with
nine samples per class for a total of 63 samples with an accuracy of 96.83%.

During its operation, the structures are subject to conditions that can result in failure
or damage and affect its normal behavior. Structures using reinforced concrete can be
affected by corrosion resulting in risk for operation. As a contribution to monitoring these
kinds of structures, in [3] the authors develop a device that can be embedded into the
concrete at various locations and depths to monitor corrosion. Results show that it is
possible to determine the corrosion in a structure by measuring its electrical resistance with
the developed device.
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SHM and condition monitoring have multiple applications in civil infrastructure
and multiple works address developments to monitor beams. In [4] it is possible to find
an alternative to the techniques that make use of structural analysis and strain gauge
measurements to locate the neutral axis of a T-Beam bridge. This work shows the analysis
of ultrasonic coda waves in a sensor network and explores its advantages in locating the
neutral axis and evaluate the global structural health and inner damages.

In [5], a methodology is described that makes use of a damage index for degradation
assessment of concrete beams. This methodology considers two steps starting with the
use of raw acoustic emission data from degradation in concrete beams and after the use
of the damage index, which considers the use of 5 acoustic emission burst features and a
Mahalanobis–Taguchi system to classify the condition of the structure under test.

Applications of condition monitoring are more common in machinery by its multiple
advantages. An example of this development can be found in [6] where a dynamic
monitoring system to monitor and evaluate the dynamic response of the triad formed
by an UVABB tool, milling machine, and C45 steel work-piece is presented. The work is
validated by using five accelerometers, and a dynamometric table is proposed and proved
to be effective in characterizing the whole system.

Structural health monitoring of civil structures, such as bridges or dams, has received
much attention in the last few years, since they are key components of transportation
infrastructure [7–9]. In [7], a damage detection method is proposed to locate and quantify
a damage in a bridge subjected to a moving load. Since recording input excitation in a
bridge may be an extremely difficult task, this paper presents an output-only vibration-
based approach for the bridge health monitoring. The lack of investigation on the direct
use of time-domain filters in the field of structural health monitoring lead the authors to
explore the direct application of the Savitzky–Golay filter (SGF) for damage localization and
quantification. One of the main advantages of the proposed method is that this approach is
insensitive to noise. Furthermore, fitting a Gaussian curve, the proposed method can be
viewed as baseline-free.

A different approach for bridge damage identification is presented in [8], with an
additional virtual mass for damage identification and where a vehicle bump is considered
as the excitation. The proposed approach, validated using a numerical example of a two-
span continuous beam, broadens the potential application scope in practical engineering
by using additional virtual physical parameters. In addition, the presented strategy is
equivalent to the addition of a mass to the bridge for testing purposes, without the risks of
overloading the structure.

Klun et al. [9] present a methodology to include non-contact vibration monitoring
as part of structural health monitoring of concrete dams with the first application of the
laser Doppler vibrometer in non-stationary conditions. An important pre-processing of
the data is performed to eliminate pseudo-vibrations and measurement noise that are
inherent in the conditions of the dam. The use of this laser technology is proven to be able
to complement the more standard monitoring activities on large dams.

Continuous health monitoring of transmission networks is a vital task to prevent
sudden failure in power transmission lines. In [10], a vibration-based technique to identify
the spatial location of existing damage in the power transmission towers is presented.
An important advantage of this approach is the use of a limited number of sensors. To
optimize the number of sensors, the authors minimize the non-diagonal entries of the
modal assurance criterion (MAC) matrix. To extract the modal parameters, two strategies
have been used: the Hilbert–Huang transform and continuous wavelet transform (CWT).
The approach was validated on a numerical model and the numerical model was verified
through modal testing of the actual tower.

An SHM strategy for detection and classification of structural changes based on
two-step data integration (data unfolding and mean-centered group-scaling), data trans-
formation using PCA, and a two-step data reduction combining PCA and t-SNE has been
proposed in [11]. Some features of this work worth highlighting are the extension and the
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adaptation of the t-SNE algorithm to the field of SHM as well as the high classification accu-
racy using collected data from the structure and without the use of complex mathematical
models. The method is evaluated using experimental data from an aluminum plate with
four piezoelectric transducers (PZTs). Results are illustrated in the frequency domain, and
they manifest the high classification accuracy and the strong performance of this method.

A typical SHM system consists of a sensor network, a central data acquisition node,
and algorithms. Literature research is extensive in the field of algorithm development.
However, the instrumentation, and the sensors in particular, is one of the elements in
the field of structural health monitoring and condition monitoring that is sometimes less
highlighted. It is worth remembering that various types of parameters are measured by
the SHM sensor network in which the strain is crucial for assessment of the structure state.
In [12], a miniaturization of a microstrip patch strain sensor is proposed and analyzed.
The sensor is designed using a specific patch shape, the Sierpinski curve based fractal
geometry. Simulation and experimental analysis for all sensors are carried out where a
good convergence between results of simulation and measurements is achieved.

In [13], the problem of crack monitoring of metallic materials is faced. Antenna sensors
have been generally employed for this purpose, exploiting the mathematical relationship
between the surface crack length of metallic material and the resonant frequency, but the
influence of the crack depth on the sensor output and the difference of whether the crack is
depth-penetrated remained unexplored. The paper, by means of numerical simulations,
reveals that the crack depth has a greater influence on the resonant frequency compared
with the crack length. The proposed monitoring approach is experimentally validated to
be feasible not only for cracks but also for corrosion pits of metallic materials.

The acoustic emission (AE) method is a very popular and well-developed method
for passive structural health monitoring of metallic and composite structures. It has been
efficiently used for damage source detection and damage characterization in a large variety
of structures such as thin sheet metals. On the other hand, piezoelectric wafer active sensors
(PWASs) are lightweight and inexpensive transducers, which recently drew the attention of
the AE research community for AE sensing. In [14], an understanding of the fatigue crack
growth from AE signals in thin sheet metals recorded using PWAS sensors on the basis of
the Lamb wave theory is given. Furthermore, this understanding is used to contribute a
predictive analytical model of AE signals (sensed by PWAS sensors during a fatigue crack
growth event). The analytical model and the simulated and experimental results showed a
close match, which verified the analytical prediction.

It is well known that temperature changes can lead to false diagnoses when using
piezoelectric sensors and electromechanical impedance technique (EMI) measurements.
In [15] a compensation method is developed to face this problem. It can be applied mainly to
structures that present impedance amplitude and frequency shifts with linear dependence
of the temperature and frequency. The strategy is tested experimentally in two steel pipes—
healthy and damaged—compensating the temperature effect ranging from −40◦ to 80◦,
with analysis on the frequency range from 5 to 120 kHz. The simulated and experimental
results showed that the studies effectively contribute to the SHM area, mainly to EMI-based
techniques.

Structural health monitoring (SHM) techniques can diagnose structural damage and
assess the structural safety of civil structures such as bridges. Vibration-based approaches
have excellent potential. However, bridges inevitably suffer from actions caused by varying
environmental temperatures; furthermore, the aforementioned actions may mask the
changes in damage features—for example, the natural frequencies of bridges—caused
by structural damage. In [16], a hybrid method is proposed to detect the damage of
bridges under environmental temperature changes. On one side, the PCA-based method
is applied to deal with the non-principal components; on the other side, the Gaussian
mixture method is used to classify all principal components into different clusters, and then
the stated detection method is implemented to detect bridge damage for each cluster. In
this way, all the damage feature information is saved and used to detect the damage. A
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numerical example, as well as an actual bridge example, show the effectiveness of the
proposed approach.

The work by Kim et al. [17] contributes to the application of real-time structural health
monitoring for offshore structures, overcoming the problem of applicability in the field
due to increasing calculation costs with increasing structural complexity. In particular,
a multiple damage detection method using cosine similarity of the rate of change of
natural frequencies is proposed. The process is comprised of three parts: (1) a damage
estimation matrix is constructed from a finite element model using modal analysis; (2) the
rate of change of natural frequencies from operational modal analysis based on sensor
data during operating is normalized and utilized as a normalized warning index (when
the index becomes larger than a threshold, the damage reflection vector is generated);
(3) cosine similarity between the damage estimation matrix and the damage reflection
vector is computed, and finally the most similar damage cases among the vector sets of
the estimation matrix are identified in the ranking of similarity. Thus, a damage warning
and ranking of the most possible damage cases is provided, facilitating its applicability
and usability.

Periodic inspection of the technical condition of a railway transport system is essential
for maintaining its high reliability and safety. The increasing accuracy of global navigation
satellite system (GNSS) measurements provides new opportunities for developing effective
inspection methods and designing track axis adjustment projects. In [18], a measuring
platform equipped with at least two GNSS receivers installed above the bogie pivot pins is
studied. This approach makes it possible to determine more precisely the track axis, and
the base vector can be used for qualitative evaluation of the obtained measurement results.
That is, the developed method is capable of identifying incorrect measurement (due to
obstacles, for example) results with the Savitzky–Golay filter and it is characterized by the
high speed of numeric calculations (use of sparse matrices).

Increasing the length of wind turbine blades, for maximum energy capture, leads to
larger loads and forces acting on the blades. In particular, alternate bending due to gravity
or nonuniform wind profiles leads to increased loads and imminent fatigue. Therefore,
blade monitoring in operation is needed to optimize turbine settings and, consequently,
to reduce alternate bending. In [19] a novel approach, by using hierarchical clustering,
for continuously monitoring blade bending in the operation of the turbine, is proposed.
The stated method is characterized by the following advantages: (1) accelerometers at the
blade tip allow for a qualitative assessment of alternate bending at reasonable mounting
effort; (2) the sensors can operate wirelessly and self-sufficiently; (3) no properties of the
blade such as geometry and material are needed; (4) no environmental and operational
parameters of the turbine are needed for evaluation.

As it has been said, structural health monitoring and condition monitoring is a research
field that is attracting a lot of attention. One example of this interest is the growing number
of papers published in this field as well as the open call-for-papers of Special Issues. The
journal Sensors runs special issues to create collections of papers on specific topics with the
aim of building a community of researchers to discuss the latest innovations and ideas and
develop new interactions. Without going any further, more than 35 open Special Issues
include structural health monitoring as a keyword, 18 of which explicitly include structural
health monitoring in the Special Issue title. A brief selection of Special Issues could include:

• Interferometric Sensors and Sensing Technologies for Structural Health Monitoring,
edited by Giovanni Nico, Stefania Campopiano and Giuseppina Prezioso (submission
deadline 31 March 2021);

• Acoustic Emission Sensors for Structural Health Monitoring, edited by Tomoki Sh-
iotani (submission deadline 31 March 2021);

• Vision Based Sensors and Sensing Technologies for Structural Health Monitoring,
edited by Mohammad Jahanshahi (submission deadline 30 April 2021);

• Structural Health Monitoring with Ultrasonic Guided-Waves Sensors, edited by Ger-
ardo Aranguren and Josu Etxaniz (submission deadline 30 June 2021);
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• Toward Data-Driven Structural Health Monitoring: New Approaches and Sensor-
Based Methods, edited by Francesc Pozo and Diego Alexander Tibaduiza Burgos
(submission deadline 30 June 2021);

• Structural Health Monitoring and Non-Destructive Testing for Engineering Appli-
cations: Advances in Sensor and Technologies, edited by Leandro Maio, Vittorio
Memmolo and Marco Laracca (submission deadline 31 August 2021);

• Structural Health Monitoring and Nondestructive Evaluation with Ultrasonic Guided
Waves, edited by Clifford Lissenden (submission deadline 31 December 2021).

Finally, we would like to express our gratitude to the anonymous reviewers, who
dedicated their time reviewing the submitted papers, and to all authors who contributed,
as it was with the work, enthusiasm, and motivation of them that this special issue became
a reality. Finally, we hope the reader will find this issue enlightening in the compelling area
of condition monitoring and structural health monitoring.
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