
Characterizing the impact of last-level cache
replacement policies on big-data workloads

Alexandre Valentin Jamet∗, Lluc Alvarez∗†, Daniel A. Jiménez‡, Marc Casas∗
∗Barcelona Supercomputing Center (BSC), †Universitat Politècnica de Catalunya (UPC), ‡Texas A&M University

{alexandre.jamet, lluc.alvarez, marc.casas}@bsc.es, djimenez@acm.org

Abstract—The vast disparity between Last Level Cache (LLC)
and memory latencies has motivated the need for efficient cache
management policies. For this reason, the computer architecture
literature abounds with works on LLC replacement policies.
Although these works present great improvements over the LRU
policy, they only focus on the SPEC CPU 2006 benchmark suite
– and more recently on the SPEC CPU 2017 benchmark suite –
for evaluation. However, these workloads are representative for
only a subset of High-Performance Computing (HPC) workloads.

In this paper we evaluate the behavior of a mix of graph
processing, scientific and industrial workloads (GAP, XSBench
and Qualcomm) along with the well-known SPEC CPU 2006 and
SPEC CPU 2017 workloads on state-of-the-art LLC replacement
policies such as Multiperspective Reuse Prediction (MPPPB),
Glider, Hawkeye, SHiP, DRRIP and SRRIP. Our evaluation re-
veals that, even though current state-of-the-art LLC replacement
policies provide a significant performance improvement over
LRU for both SPEC CPU 2006 and SPEC CPU 2017 workloads,
those policies are hardly able to capture the access patterns
and yield sensible improvement on current HPC and big data
workloads due to their highly complex behavior.

In addition, this paper introduces two new LLC replacement
policies derived from MPPPB. The first proposed replacement
policy, Multi-Sampler Multiperspective (MS-MPPPB), uses mul-
tiple samplers instead of a single one and dynamically selects
the best-behaving sampler to drive reuse distance predictions.
The second replacement policy presented in this paper, Multi-
perspective with Dynamic Features Selector (DS-MPPPB), selects
the best behaving features among a set of 64 features to improve
the accuracy of the predictions. On a large set of workloads
that stress the LLC, MS-MPPPB achieves a geometric mean
speed-up of 8.3% over LRU, while DS-MPPPB outperforms
LRU by a geometric mean speedup of 8.0%. For big data and
HPC workloads, the two proposed techniques present higher
performance benefits than state-of-the-art approaches such as
MPPPB, Glider and Hawkeye, which yield geometric mean
speedups of 7.0%, 5.0% and 4.8% over LRU, respectively.

Index Terms—cache management, big data, graph processing,
workload evaluation, micro-architecture

I. INTRODUCTION

The vast disparity between main memory and CPUs speed
called for a hierarchical caching system in modern CPUs. The
goal of the cache hierarchy is to keep data on-chip, close to
the cores that are accessing it and, thus, avoiding hitting the
memory wall [28]. Although computer architects highlighted
the need for cache hierarchies with multiple levels, the Last
Level Cache (LLC) suffers from a high latency compared to
the other cache levels. In addition, the LLC suffers from poor
temporal and spatial locality in the access sequence as some
accesses get filtered by the upper levels of the cache hierarchy.

This phenomenon is exacerbated when considering emerging
workloads such as big data or graph processing workloads that
show highly irregular behaviors. Thus, emerging workloads
require more sophisticated cache replacement policies that can
cope with a broader set of workloads than the traditional ones.

State-of-the-art LLC replacement policies such as
MPPPB [13], Glider [21], Hawkeye [9], SHiP [27],
DRRIP, and SRRIP [11] show significant improvement when
challenged by SPEC CPU 2006 [10] and SPEC CPU 2017
workloads. However, when facing workloads representative of
another part of the spectrum of the HPC applications, these
policies fail at delivering significant improvement over the
baseline LRU policy. Such workloads with highly irregular
behavior prevent the LLC replacement policies mentioned
above from capturing the access patterns and, therefore,
producing meaningful predictions and decisions. To address
this issue, we argue that future work on LLC replacement
policies should consider a more extensive set of workloads
such as the one we study in this paper, which is composed of
the following benchmark suites:

• the GAP benchmark suite [3].
• the XSBench benchmark suite [25].
• Qualcomm workloads for the CVP1 [1] championship.

This paper also proposes two MPPPB variants that increase
its benefits. First, we propose Multi-Sampler Multiperspective
(MS-MPPPB), a variant of MPPPB that uses four samplers
and perceptrons. MS-MPPPB adapts its replacement policy to
the workload in a phase-wise manner, selecting the sampler
that provides the best predictions out of the four available
and using the most accurate sampler to make predictions and
drive placement, promotion and bypass decisions in the LLC.
Second, this paper proposes Multiperspective with Dynamic
Features Selector (DS-MPPPB), another variant of MPPPB
that is also able to adapt its behavior to the execution phases
of the workloads by dynamically selecting the most accurate
subset of 16 features out of a bigger pool of 64 features.

This paper makes the following contributions:

1) It evaluates state-of-the-art LLC replacement policies
over a broader set of benchmark suites than usually
considered in the literature. The selected benchmark
suites better represent current and emerging big data
and scientific workloads on HPC systems. This paper
considers the SPEC CPU 2006 and the SPEC CPU 2017
suites, a large set of workloads provided by Qualcomm

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/IISWC50251.2020.00022



for the CVP1 championship, the GAP benchmark suite,
and the XSBench. This paper also takes the opportunity
to build knowledge on these workloads and analyzes
their behavior and impact on the LLC and the memory
hierarchy, thus paving the way for further work.

2) We present MS-MPPPB and DS-MPPPB, two novel
LLC replacement policies derived from MPPPB. The
main idea behind both schemes is to improve the ac-
curacy of the predictions by dynamically selecting the
most accurate features for each phase of the running
workload. On a set of 50 cache intensive benchmarks,
these new designs respectively yield a geometric mean
speed-up of 8.3 % and 8.0 % over LRU, and outperform
all the state-of-the-art approaches.

The rest of this paper is organized as follows: Sections II
and III describe the workloads and the state-of-the-art replace-
ment policies evaluated in this paper, respectively. Section IV
motivates the need for additional benchmarks in the evaluation
of LLC replacement policies. Section V proposes MS-MPPPB
and DS-MPPPB, two designs derived from MPPPB that
achieve higher accuracy on the studied benchmarks. Section
VI defines the evaluation methodology. Section VII presents
the results of our experiments and comment on them. Finally,
Section VIII remarks the main conclusions of this work.

II. WORKLOADS

Benchmarks are of paramount importance for the computer
architecture community, as they are used in practically all the
stages of processor development, from the very initial research
to the final performance verification of the processors that are
manufactured for all market segments, from embedded devices
to the most powerful supercomputers in the world. Benchmark
suites are composed of a series of codes and representative
input sets, and their goal is to mimic the behavior of real
workloads to define the performance goals of a processor
design and to bring to light unexpected design issues. Hence,
their choice is of crucial importance. This section presents a
set of benchmarks that are commonly used by the community
to model the behavior of different types of workloads.

A. SPEC CPU Benchmark Suites

The SPEC CPU benchmark suite [10] is a set of benchmarks
aimed at studying the performance of CPU designs. These
benchmarks are well-known and highly used by the computer
architecture community, specially to evaluate new proposals
in the area of microarchitecture. These benchmarks provide
representative codes of real compute intensive workloads such
as compilers, data compression, AI algorithms, and physics.
These workloads are mostly scientific applications or com-
monly used algorithms in computer sciences such as data
compression and parsers which loop over data structures in a
reasonably predictable manner, which allows the cache struc-
tures of the CPUs to leverage the locality of these workloads.
However, although these benchmarks cover a broad spectrum
of applications, they do not represent some codes running on
current HPC systems and mobile devices.

B. GAP Benchmark Suite

To help to standardize the evaluation of big data and
graph processing algorithms, Beamer et al. proposed the GAP
Benchmark Suite [3], a set of domain specific workloads that
include graph computational kernels as well as representative
input graphs. These domain specific workloads provide com-
puter architects with the ability to extend their working sets
of workloads. The benchmark suite provides a standardized
evaluation framework for commonly used graph algorithms
such as Page Rank and Connected Components, along with
standard graph inputs available in industry and research.

1) Graph kernels: Next we provide a short description of
each of the six graph kernels available in the benchmark suite.

Breadth-First Search (BFS) was proposed in 1945 by Kon-
rad Zuse and it is one of the most well-known and widely used
graph processing algorithms. Its principle is rather simple,
and it comes down to a straightforward statement: first, one
designates a root vertex to initiate the search algorithm,
then the kernel traverses all the neighbouring vertices before
moving to the next depth level.

Single Source Shortest Path (SSSP) is a prevalent problem
in graph theory and engineering in general. This algorithm
computes the distance to any reachable vertices from a given
source vertex, being the distance between two vertices the
minimum sum of edge weights along a path connecting the
two vertices.

Page Rank (PR), invented by Larry Page to quantify the
popularity of a web page, is a widespread algorithm in our
daily life as it allows search engines to build meaningful
proposals to our questions. It is an iterative algorithm that
associates a score (a PageRank) to each vertex of the graph.
During an iteration, the algorithm updates the score of every
vertex proportionally to the sum of the scores of its incoming
neighbourhood. The algorithm stops when the variation of
PageRanks in the graph falls below a limit, which means
that the sum of the variations of the scores of all the vertices
between two steps is below a certain threshold.

Connected Components (CC) is an algorithm meant to iden-
tify and label connected components in a graph. A connected
component is a sub-graph in which its paths connect any two
vertices, and the vertices of the sub-graph are not connected
to any other vertex in the super-graph.

Betweeness Centrality (BC) is a crucial concept in graph
and network theory that allows measuring the influence of
a vertex in the data transfers of a network, assuming ideal
transfers through the shortest paths.

Triangle Count (TC) is an algorithm that is mostly used
in social network analysis to detect communities by detecting
triangles in a graph. Triangles are a group of three vertices
directly connected.

2) Input graphs: The GAP Benchmark suite comes with
five inputs graphs of diverse origin (synthetic versus real
world). The real world data sets model the connection between
people, websites and roads. When selecting these real world
graphs, the authors paid particular attention to the size of the



graphs so that they can fit in the memory of most servers while
stressing the cache hierarchy of such systems.

Twitter is a crawl of Twitter that has been commonly used
by researchers to evaluate prior work and thus allows fair
comparisons. It allows working with a typical example of
social network topology, and its real world origin gives it
interesting properties such as irregularities.

Web is a web crawl of the .sk domain. Even though it has
a large size, it exhibits good locality and high average degree.

Road is an input graph that models the distances of all of
the roads in the USA. Although it has a modest size compared
to the other graphs available, it has a rather high diameter that
can cause some algorithms to present large execution times.

Kron provides continuity with prior work as it has been
used frequently in research. This graph uses the Kronecker
synthetic graph generator.

Urand represents a worst case scenario as all vertices have
an equal probability of being a neighbour of every other vertex.

C. XSBench workloads

XSBench workloads [25], as stated by their authors Tramm
and Siegel, are meant to represent the most computationally
intensive steps of a robust nuclear core Monte Carlo particle
transport simulation. These workloads provide a variety of
grid types, sizes and browsing algorithms, which allows com-
puter architects to stress the memory hierarchy of a CPU in
different ways and to expand their working set of workloads
towards new scientific applications.

The XSBench suite allows customizing the code that will be
effectively executed in order to stress the memory hierarchy.
The benchmark suite relies on a handful of parameters to
achieve this flexibility. In this work we focus on the three
parameters that put more pressure on the cache hierarchy and,
thus, have a higher significance for this work.

1) Problem size: When solving the particle transport prob-
lem, the size of the problem has a dramatic influence on
performance and on the stress that is being put on the memory
hierarchy. Eventually, increasing the size of the problem has a
significant impact on performance as data structures are much
larger, so we use the two largest sizes of grid available.

2) Grid type: This parameter allows the user to select
among three types of grids. The nuclide grid is known as
a naive implementation and does not require any additional
memory other than what is necessary to store the point-wise
cross-section data. However, it is computationally intensive as
the benchmarks execute a binary search with high frequency.
Unionized is a grid type that allows for higher performance
as it uses an acceleration structure to reduce the number
of binary searches triggered during the execution. Here, this
optimization sacrifices memory footprint to leverage increased
performance. The hash grid is presented as a competitive
alternative to the unionized grid type as it allows to achieve
similar performance while using far less memory.

3) Number of cross-section look-ups: This parameter sets
the number of look-ups to perform per particle.

D. Industrial workloads

During the CVP1 contest, the evaluation of Value Prediction
mechanisms used a set of over 2000 industrial workloads
provided by Qualcomm. These are typical server and database
workloads such as Redis and MongoDB, among others. Real
world database workloads traverse vast amounts of data while
processing a query and show low reuse of data over time.
Thus, these workloads are known to be memory intensive and
they stress the LLC more than the SPEC CPU 2006 and the
SPEC CPU 2017 workloads.

III. CACHE REPLACEMENT POLICIES

While developing new cache replacement algorithms for
LLCs, one needs to evaluate the policy against a set of work-
loads that show the behavior of interest. This section reviews
the most relevant cache replacement algorithms designed for
LLCs. As this work studies the impact of emerging work-
loads on the LLC, we present the state-of-the-art replacement
policies developed for this specific cache level. The cache
replacement problem is slightly more complex in the context
of the LLC than in the context of L1 and L2 caches. Although
the underlying idea remains the same, the LLC suffers from
poor locality as the upper-level caches filter accesses and
leave only a cluttered sequence to the LLC. To cope with
this particular replacement problem, researchers have come
up with more and more sophisticated design ideas to leverage
higher prediction accuracy and performance.

The next subsections present the most relevant state-of-the-
art work on LLC replacement policies.

A. Reuse Distance Prediction

As reuse distance is a crucial concept when it comes to
cache replacement, recent works focus on proposing new
techniques to build run-time approximations of the distance
to the next reuse of a cache block. Re-reference Interval
Prediction (RRIP) and all its derivatives are efficient yet light-
weight implementations of reuse distance prediction.

The main idea behind RRIP is the classification of blocks
into re-reference classes. In their work, Jaleel et al. propose
three versions of the RRIP replacement policies [11], [20]:
SRRIP, BRRIP, and DRRIP. The former, scan-resistant, is
limited to always inserting new coming blocks in a fixed class.
In contrast, BRRIP provides more flexibility by frequently
inserting blocks in the distance re-reference class and infre-
quently inserting blocks in the long re-reference class. Finally,
DRRIP leverages Set-Dueling to determine which of SRRIP
and BRRIP is best suited for a given workload or program
phase, making it both scan and thrash resistant.

B. Signature-based Hit Predictor

Building on the reuse distance prediction [11], [20] frame-
work built by Jaleel et al. and program-counter based dead
block prediction [15], Wu et al. [27] proposed a LLC re-
placement policy design that uses a program-counter based
signature as a feature.



As stated while describing reuse distance prediction mecha-
nism in Section III-A, SRRIP learns the re-reference intervals
of the living cache blocks relatively to one another. The
primary feature of Signature-based Hit Predictor (SHiP) [27]
is that, not only it allows the SRRIP policy to learn the
relative re-reference intervals, but it also tries to learn the
likelihood of cache blocks to experience hits through a feature.
The intuition being that cache blocks with the same signature
behave comparably. In order to learn the likelihood of a cache
block to experience further hits, SHiP maintains a prediction
table with an entry per signature. When a signature gets hit, the
associated saturating counter is incremented. Conversely, when
a signature misses, the associated counter is decremented.

With the prediction values thus learned, SHiP modifies SR-
RIP policy for insertion by inserting new coming cache blocks
in the distant re-reference interval if the prediction associated
with the signature of that cache blocks is zero. A zero in the
prediction table gives a strong hint that the associated signature
belongs to the distance re-reference interval.

C. Multiperspective Reuse Prediction

The Multiperpsective Reuse Prediction [13] cache replace-
ment algorithm (hereafter MPPPB) leverages perceptron learn-
ing for reuse prediction and drives placement, promotion and
bypass decisions. This replacement policy extends the idea of
features developed in previous work [15], [24], [27] to achieve
higher accuracy. It is essentially made of two components,
a sampler and a perceptron predictor. The sampler, based
on observations of block evictions relatively to its features
associativity, is responsible for triggering learning signals to
the perceptron. The perceptron, based on the learning signals
triggered by the sampler, updates its prediction tables.

MPPPB relies on the idea of correlating reuse prediction of
a cache block with a large number of features that ranges from
PCs to characterizing bursty access patterns. In this context,
a feature can be defined as a hash function applied to cache
block characteristics such as the PC or the physical address.
When a prediction request occurs, the perceptron selects
weights out of its prediction tables using hashes of multiple
features. Each feature is hashed to index its prediction table,
and the weights obtained are gathered in a single prediction
value by a simple addition and compared to a set of thresholds
to drive actions such as bypass, promotion and placement.

Perceptron learning is used to update the weights of the
prediction tables through the learning algorithm. At the time
a sampled block is reused or evicted, the perceptron updates
the weights of the prediction tables associated with the last
access to this block, according to the perceptron learning rule.
For instance, if a block hits in the sampler while having its
LRU stack position lower than the associativity of a feature,
it is trained positively for that feature. Conversely, if a block
gets demoted beyond the associativity of a given feature, it is
trained negatively for that feature.

With this work, Jiménez and Teran demonstrated the useful-
ness and impact of combining multiple features. Among the
correlating features, the sequence of PCs leading to the usage

of a block is one; however, the sequence of PCs is highly
filtered by the other levels of the cache hierarchy, making it
inaccurate for predictions. The introduced additional features
such as bits extracted from the memory address help mitigating
the inaccuracy of a filtered PC sequence. MPPPB relies on
this idea of combining multiple features while significantly
augmenting the set of available features.

D. Optimal Replacement Approximation

The Hawkeye [9] replacement policy marked the birth
of a new class of cache replacement algorithms aiming at
approximating, in a relatively affordable way, optimal but
unimplementable algorithms such MIN [5].

Hawkeye and its successor, Glider [21], are primarily made
of two major building blocks: an optimal solution approxima-
tion component and a predictor that learns from the former
component. The predictor is used to compute predictions
and to trigger actions based on these predictions. The first
component provides a binary output about the cache block
of interest: needs to be cached or not. For this outcome, the
predictor gets trained for the associated PC as it is a PC-based
predictor. When the replacement policy requests a prediction to
drive its decision making, the predictor is indexed, and it uses
its outcome to place blocks in the matching RRIP categories,
thus prioritizing eviction for blocks classified as cache-averse.
Conversely, blocks identified as cache-friendly tend to stay in
the immediate-reuse category.

Further work on the Hawkeye predictor provided it with
a more complex predictor infrastructure. That infrastructure,
named Glider, leveraged on the knowledge obtained through
the offline training of a machine learning model, yielding
additional performance improvements.

IV. MOTIVATION

To highlight the need for new benchmarks in the context of
the development of new cache replacement policies for LLCs,
we provide a quantitative analysis to build intuition on why the
current state-of-the-art techniques need to take into account a
broader set of workloads in the process of their constructions.
This analysis relies on results obtained using the simulation
methodology detailed in VI.

Figure 1a shows the average LLC MPKI for each of the
benchmark suites described in Section II using the baseline
LRU replacement policy. In both Figures 1a and 1b we only
consider the cache-intensive benchmarks of these benchamrks
suites, namely the ones which present a LLC MPKI over
1.0 with the baseline LRU replacement policy. The GAP
benchmark suite and all the different runs of XSBench,
with respective LLC MPKI of 78.29 and 36.62, provide a
significantly higher LLC MPKI than what is provided by the
SPEC CPU benchmarks. The industrial Qualcomm workloads
and the SPEC CPU workloads, with respective LLC MPKI of
10.63 and 15.76, do not show such a high impact on the LLC.

These results demonstrate that big data graph processing
workloads like the ones modeled in the GAP benchmark suite
highly stress the cache hierarchy, and particularly the LLC,



much more than well-known workloads such as SPEC CPU
2006 and SPEC CPU 2017 suites do. This is due to the nature
of these workloads, where moving from edge to edge in a
graph structure leads to extremely unpredictable and sparse
access patterns [29], [30]. Also, the memory footprint of the
inputs is an important factor, as jumping from edges to edges
in an extensively large graph exhibits very low spatial and
temporal locality, which are two key concepts in the design of
cache replacement policies.

Figure 1b shows the speed-up of the state-of-the-art cache
replacement policies presented in Section III over the baseline
LRU policy for the different benchmark suites presented in
Section II. Each bar represents a single replacement policy,
and each bar group stands for a benchmark suite. Results show
that the different policies can catch a different kind of access
patterns and are beneficial for different kind of workloads.

For the SPEC benchmarks, the plot shows that every single
replacement policy is consistently delivering improvements
over the baseline LRU and the previously proposed replace-
ment policies in the literature, incrementally improving the
performance of these benchmarks.

The replacement policies based on Reuse Distance Predic-
tion (SRRIP and DRRIP) are consistent in their improvement
over the baseline LRU, while more complex policies such as
SHiP, Hawkeye, Glider and MPPPB have more difficulties
generalizing to all the benchmark suites. The main reason
behind this observation is that all these replacement policies
rely either on assumptions about the access patterns (e.g.,
SHiP and Hawkeye) or on a training phase over a set of
workloads (e.g., Glider and MPPPB). On the one hand, SHiP
and Hawkeye use the observation that they can accurately
learn the access patterns to the LLC using the PCs that
triggered the memory accesses as a classification feature. On
the other hand, both Glider and MPPPB rely on a learning
algorithm that learns the access patterns of a couple of
workloads and provide correlating features such as the i-
th PC of the history or some bits of the physical address
of the accessed block. Thus, although these state-of-the-art
replacement policies deliver some performance improvements,
they suffer from a structural bias that prevents them from
generalizing to unexplored benchmarks in an optimal way.

The main conclusions arising from our analysis are:

1) The commonly used SPEC CPU 2006 and SPEC CPU
2017 suites no more represent a challenge for computer
architects, as they are well studied and there are plenty
of ingenious mechanisms that cope with their behavior.

2) The current state-of-the-art LLC replacement policies do
not generalize well to new benchmarks.

3) Emerging big data and HPC workloads do represent a
challenge for computer architects, as they stress more
the cache hierarchy than traditional workloads. Never-
theless, they reveal the need to take into account their
behavior in the design of forthcoming CPUs.

0

10

20

30

40

50

60

70

SPEC XSBench Qualcomm GAPBS
0

10

20

30

40

50

60

70

LL
C

 M
PK

I

(a) Average LLC MPKI of the different benchmark suites using the LRU
replacement policy.

1

0

1

2

3

SPEC XSBench Qualcomm GAPBS
1

0

1

2

3

Sp
ee

d-
up

 (%
)

SRRIP
DRRIP
SHIP

Hawkeye
Glider
MPPPB

(b) Geometric mean speed-up over LRU of state-of-the-art LLC replacement
policies for the different benchmark suites.

Fig. 1. LLC MPKI using the LRU replacement policy and performance
improvement of state-of-the-art LLC replacement policies for the different
benchmark suites.

V. DESIGN PROPOSALS

Along with the state-of-the-art cache replacement policies
presented in Section III, we introduce MS-MPPPB and DS-
MPPPB, two new LLC replacement policies derived from the
original MPPPB. These two policies try, in distinct manners,
to adapt themselves to the behavior of the emerging big data
and HPC workloads.

A. Multi-Sampler Multiperspective

With MPPPB, Jiménez and Teran provide a replacement
policy based on a reuse predictor, which ultimately relies on
a hashed perceptron table.

Our first proposed design, named MS-MPPPB, is based on
the idea that having not just one but many hashed perceptron
tables can yield higher prediction accuracy and improved
performance by dynamically choosing one of the perceptrons
to trigger predictions. To perform the selection of the best
behaving perceptron that will eventually trigger predictions,
all perceptrons are competing against each other though a
two-rounds decision tree scheme [14] that duels each of the
four available perceptrons and selects the one that minimizes
misses in the LLC. Although not used to produce a prediction,
the three perceptrons left unused are concurrently updated
following the process described by Jiménez and Teran in
Multiperspective reuse prediction [13].

The additional hardware budget required for this proposal
is rather high, as a naive implementation would lead to
the instantiation of 4 individual samplers along with the 4
perceptron tables bound to them. Each block of the sampler
holds an indices trace of the last accessed elements of the
prediction tables, which requires a maximum of 128 bits. For
each block, the sampler holds a 16-bit partial tag along with



a 5-bit LRU state and a 9-bits confidence value. The sampler
takes the form of a cache with 80 sets and 18 ways.

B. Multiperspective with Dynamic Features Selector

In the second design proposal, named DS-MPPPB, we use
an additional concept along with the already existing idea of
weights. Our new concept, Coefficients, revisits the conception
of a hashed perceptron [22] by introducing the weights used
in the mathematical definition of a perceptron [26].

We thus differentiate two key concepts. The weights are the
actual values contained in the prediction tables of a hashed
perceptron. These values are meant to reflect the learned reuse
distance based on the observation of past events. These events
can be the occurrence of a specific PC, a physical address
or any other source of information used as feature [15], [17],
[18]. The coefficients are confidence counters that reflect how
accurate is the prediction table bound to a specific confidence
counter.

The original code of MPPPB is shipped with not just one
set of features but four, which adds up to a total of 64 features.
Each of these sets of features was developed following the hill-
climbing methodology described in Multiperspective Reuse
Prediction [13] and is designed to fit each of the possible
configurations of the CRC2 contest.

We gather all the features in a single set and build a
perceptron predictor using them all. Although we now have a
set of 64 features, we want to select only the 16 best behaving
ones among the 64 available. To do so, for each prediction
triggered by the replacement policy, the predictor searches
for the 16 features with the highest confidence values and
uses them to build a prediction, and the other features are left
unused for that prediction. However, confidence values of all
features are updated following algorithm 1.

Algorithm 1 Updating confidence values of prediction tables
hit← false
truth← 0Bn {A n-vector of falses.}
pred ∈ J−32; 31Kn {A vector of individual predictions.}
if Accessed block hits in the sampler then
hit← false

else
hit← true

end if
for all i such that 0 ≤ i ≤ n− 1 do
truth [i]← ((pred [i] < 0) = hit)
if truth [i] = true then
confi ← max(confi + 1, confmax,i)

else
confi ← min(confi − 1, 0)

end if
end for

For clarity, we include a summary of the notations we use.
F denotes the set of features, n is the total number of features
and m the number of features we include in the prediction
value. We denote the confidence counter of the i-th feature

as conf(fi) = confi along with the upper bound of the
confidence counters confmax,i. We denote as ti the prediction
table associated with feature fi.

We thus define F̆, the set of all possible arrangements of
unique m features taken out of F and F̆max the element of
F̆ that maximizes the sum of confidence counters. Finally, we
compute the prediction value by summing the weights taken
out of the tables of the elements of F̆max.

Table I summarizes the hardware budget of each design pro-
posal described in this section. Along with the total hardware
budget required for each proposal, we also provide the budget
required by each component, namely: the replacement states
(here we use MDPP, a modified Tree-based PLRU [12], [23]
policy that uses a custom transition vector to determine to
which position an accessed block should be moved to), the
sampler(s) and perceptron(s).

Replacement states Sampler(s) Percpetron(s) Total
MS-MPPPB 3.75KiB 111.09KiB 12KiB 126.84KiB

DS-MPPPB 3.75KiB 95.27KiB 12KiB 111.02KiB

TABLE I
HARDWARE BUDGET OF THE PROPOSED DESIGNS.

VI. METHODOLOGY

In this section we present the evaluation methodology
used to report results in Section VII. In particular, the next
subsections present the set of workloads used to evaluate the
different LLC replacement policies and our workload selection
methodology, a description of the simulation environment, and
the evaluated replacement policies and their configuration.

Overall, we follow the same evaluation methodology as the
one used by Shi et al. [21] with the aim of building the fairest
comparison possible against state-of-the-art techniques.

A. Workloads

For the evaluation of the different LLC replacement policies
we consider the following sets of workloads:

• Over 2000 Qualcomm workloads used for CVP1 contest.
• All SPEC CPU 2006 and CPU 2017 benchmarks.
• All workloads included in the GAP Benchmark Suite.
• All workloads included in the XSBench Suite.
From all these benchmarks we select the 50 most intensive

workloads so that our evaluation set of workloads is a blend
of each suite designated above. We use the SimPoints [19]
methodology to identify intervals (hereafter SimPoints) rep-
resentative of at least 5 % of the SPEC, GAP and XSBench
workloads. Each SimPoint is 1 billion instructions long and
characterizes a different phase of these workloads. Each Sim-
Point is executed for 200 million instructions in order to
warm-up the memory hierarchy, and then it is executed for an
additional 1 billion instructions to report experimental results.

We only evaluate these workloads in a single-thread context.
We deliberately chose to restrict our evaluation to single-core
as this work focuses on the characterization of the access
patterns of the selected workloads to the LLC. The modeled
architecture being composed of a shared LLC, modeling an
architecture using multiple cores we would not be able to



Component Description
Branch Predictor hashed perceptron
CPU 4GHz, 4-wide out-of-order processor

6-stage pipeline, 128-entries re-order buffer
L1 ITLB 64-entry, 4-way, 1-cycle latency, 8-entry MSHR
L1 DTLB 64-entry, 4-way, 1-cycle latency, 8-entry MSHR
L2 TLB 1536-entry, 12-way, 8-cycle latency, 16-entry MSHR
L1-I Cache 32KiB, 8-way, 4-cycle latency, 8-entry MSHR
L1-D Cache 32KiB, 8-way, 4-cycle latency, 8-entry MSHR

next line prefetcher
L2 Cache 256KiB, 8-way, 12-cycle latency, 16-entry MSHR

ip-stride prefetcher
LLC 2MiB, 16-way, 26-cycle latency, 32-entry MSHR
DRAM 4GiB, DDR4 SDRAM

data-rate: 3.2GT/s, I/O bus frequency: 1.6GHz
tRP = tRCD = tCAS = 24 cycles

TABLE II
SYSTEM SIMULATION PARAMETERS.

properly measure reuse distances as the different cores would
be asking for distinct data in the same cache, thus compro-
mising our measurements. The results reported per benchmark
(for SPEC, GAP and XSBench) are the normalized weighted
averages of the results for individual SimPoints. In contrast,
the Qualcomm workloads are single-trace benchmarks that do
not use such methodology.

B. Experimental setup

Our evaluation considers ChampSim [6], a detailed trace-
based simulator that models an out-of-order CPU along with
its cache hierarchy, prefethcing mechanisms and memory sub-
system. Table II provides a detailed configuration of the
modeled CPU and the memory hierarchy.

C. Replacement policies simulated

We evaluate the workloads described in Section II against
the most relevant cache replacement policies proposed in the
literature: SRRIP, DRRIP, SHiP, MPPPB, Hawkeye and Glider,
all detailed in Section III. Although there is a vast amount of
work in reuse prediction available in the literature [2], [4],
[7], [11], [12], [15], [16], [23], [24], [31], the aforementioned
replacement policies that have been selected for the evaluation
are the most recent and relevant approaches in the state-of-
the-art. In addition, in the evaluation we also include the two
new replacement policies proposed in this paper, explained
in Section V. These two new techniques are derived from
MPPPB and leverage the usage of multiple perceptrons to
achieve higher accuracy. For MPPPB we used the code that
is publicly available on the website of the CRC2 contest [8].
For Glider we use code graciously provided by the authors.

VII. RESULTS, ANALYSIS AND DISCUSSION

This section presents our experimental campaign along with
the results obtained and the characterization of the studied
workloads. Section VII-B presents the performance benefits
yielded by the different state of the art cache replacement
policies mentioned in Sections VI-C and V. Section VII-A
studies the impact of these workloads on the LLC in terms
of misses and presents the MPKI reduction obtained by the

replacement policies mentioned above. Finally, Section VII-C
studies the behavior of the studied workloads via the reuse
distance of the cache blocks to highlight the different behavior
of these benchmark suites.

A. Misses

Figure 2a shows the LLC MPKI of the 50 most intensive
workloads using the LRU replacement polity These workloads
show a very high impact on the LLC, with an average MPKI
of 120, much larger to the workloads used in previous work.
We use this to define the set of workloads that will be used in
Section VII-B to evaluate state-of-the-art replacement policies
along with our custom designs. These results clearly show the
high impact on the LLC of Qualcomm, GAP and XSBench
workloads. This selection of benchmarks is comprised of
each of the studied benchmark suites and allows to evaluate
replacement policies against a broad range of workloads with
different behaviors.

B. Performance

Figure 2b shows the speed-up of various replacement poli-
cies presented in Section VI-C and in Section V. LLC MPKI
sorts the benchmarks with a baseline LRU policy. While
Figure 1b was showing Glider standing out against MPPPB
in some situations, Figure 2b clearly shows the versatility
of the former and its ability to consistently deliver good
performance even facing the most intensive and hard to predict
workloads. MPPPB and Glider provide respectively 7.0 % and
5.0 % speed-up over baseline LRU. Thus, Glider is not able
to deliver significant improvement over the baseline LRU
compared with MPPPB. This fact suggests that the machine
learning algorithm used to design the predictor of Glider
should be trained against a wider variety of workloads, hence
the need to include the workloads used in this paper in further
work on LLC replacement policies.

Besides, we justify the difference of performance improve-
ment in Figures 1b and 2 between Glider and MPPPB com-
pared to the results published in Applying Deep Learning
to the Cache Replacement Problem [21] by a difference in
the methodology. As a matter of fact, we use the SimPoint
methodology to generate at most ten simpoints and we only
use the ones accounting for more than 5 % of the whole
execution, whereas the original results of Glider were reported
with only a single trace per benchmark. We argue that our
methodology is more robust as we cover more distinct behav-
iors, thus challenging the different techniques studied.

We also report significant performance improvements for
our proposed techniques derived from MPPPB. The two de-
signs proposed in this paper, MS-MPPPB and DS-MPPPB,
respectively yield 8.3 % and 8.0 % speed-up over the baseline
LRU, and both new approaches also outperform MPPPB. We
observe that this performance improvement is due to the ability
to adapt the set of features used for prediction in a execution
phase-wise manner, providing more versatility to the design
than the previously discussed techniques.



0

100

200

300

co
m

pu
te

_i
nt

_4
46

co
m

pu
te

_i
nt

_3
01

co
m

pu
te

_i
nt

_6
94

bc
.r

oa
d

co
m

pu
te

_i
nt

_3
34

co
m

pu
te

_i
nt

_2
48

xs
.X

L6
4h

as
h

co
m

pu
te

_f
p_

37
co

m
pu

te
_i

nt
_2

49
co

m
pu

te
_f

p_
9

xs
.X

L1
00

ha
sh

co
m

pu
te

_i
nt

_3
70

co
m

pu
te

_i
nt

_s
7

co
m

pu
te

_i
nt

_2
85

co
m

pu
te

_i
nt

_2
1

co
m

pu
te

_i
nt

_1
74

42
9.

m
cf

co
m

pu
te

_i
nt

_s
34

co
m

pu
te

_f
p_

12
7

co
m

pu
te

_i
nt

_1
4

xs
.X

L6
4n

uc
lid

e
xs

.X
L1

00
nu

cl
id

e
co

m
pu

te
_i

nt
_s

2
bf

s.
ur

an
d

co
m

pu
te

_i
nt

_4
87

co
m

pu
te

_i
nt

_2
72

co
m

pu
te

_i
nt

_8
20

co
m

pu
te

_i
nt

_6
91

co
m

pu
te

_i
nt

_s
37

co
m

pu
te

_i
nt

_5
68

bc
.tw

itt
er

co
m

pu
te

_i
nt

_6
68

cc
.u

ra
nd

ss
sp

.tw
itt

er
co

m
pu

te
_i

nt
_1

2
co

m
pu

te
_i

nt
_6

51
co

m
pu

te
_i

nt
_8

56
co

m
pu

te
_i

nt
_4

79
co

m
pu

te
_i

nt
_9

42
co

m
pu

te
_i

nt
_6

17
co

m
pu

te
_i

nt
_8

65
ss

sp
.u

ra
nd

co
m

pu
te

_i
nt

_4
24

co
m

pu
te

_i
nt

_3
54

co
m

pu
te

_i
nt

_7
88

pr
.tw

itt
er

co
m

pu
te

_i
nt

_s
45

co
m

pu
te

_i
nt

_4
52

pr
.k

ro
n

pr
.u

ra
nd

m
ea

n

0

100

200

300
LL

C
 M

PK
I

(a) LLC MPKI using the LRU replacement policy for the 50 most intensive workloads.

0

25

50

co
m

pu
te

_i
nt

_4
46

co
m

pu
te

_i
nt

_3
01

co
m

pu
te

_i
nt

_6
94

bc
.r

oa
d

co
m

pu
te

_i
nt

_3
34

co
m

pu
te

_i
nt

_2
48

xs
.X

L6
4h

as
h

co
m

pu
te

_f
p_

37
co

m
pu

te
_i

nt
_2

49
co

m
pu

te
_f

p_
9

xs
.X

L1
00

ha
sh

co
m

pu
te

_i
nt

_3
70

co
m

pu
te

_i
nt

_s
7

co
m

pu
te

_i
nt

_2
85

co
m

pu
te

_i
nt

_2
1

co
m

pu
te

_i
nt

_1
74

42
9.

m
cf

co
m

pu
te

_i
nt

_s
34

co
m

pu
te

_f
p_

12
7

co
m

pu
te

_i
nt

_1
4

xs
.X

L6
4n

uc
lid

e
xs

.X
L1

00
nu

cl
id

e
co

m
pu

te
_i

nt
_s

2
bf

s.
ur

an
d

co
m

pu
te

_i
nt

_4
87

co
m

pu
te

_i
nt

_2
72

co
m

pu
te

_i
nt

_8
20

co
m

pu
te

_i
nt

_6
91

co
m

pu
te

_i
nt

_s
37

co
m

pu
te

_i
nt

_5
68

bc
.tw

itt
er

co
m

pu
te

_i
nt

_6
68

cc
.u

ra
nd

ss
sp

.tw
itt

er
co

m
pu

te
_i

nt
_1

2
co

m
pu

te
_i

nt
_6

51
co

m
pu

te
_i

nt
_8

56
co

m
pu

te
_i

nt
_4

79
co

m
pu

te
_i

nt
_9

42
co

m
pu

te
_i

nt
_6

17
co

m
pu

te
_i

nt
_8

65
ss

sp
.u

ra
nd

co
m

pu
te

_i
nt

_4
24

co
m

pu
te

_i
nt

_3
54

co
m

pu
te

_i
nt

_7
88

pr
.tw

itt
er

co
m

pu
te

_i
nt

_s
45

co
m

pu
te

_i
nt

_4
52

pr
.k

ro
n

pr
.u

ra
nd

ge
om

ea
n

0

25

50

Sp
ee

d-
up

 (%
)

Hawkeye
Glider
MPPPB

DS-MPPPB
MS-MPPPB

(b) Speed-up over LRU of the state-of-the-art LLC replacement policies and our custom replacement policies for the 50 most intensive workloads.

Fig. 2. LLC MPKI using the LRU replacement policy and performance improvement of LLC replacement policies for the 50 most intensive workloads.

C. Reuse distances

Figure 3 shows the distribution of reuse distances for each
benchmark suite used in this work. Figure 3 is organized as a
box plot; the horizontal line of each distribution representing
its median, the box ranging from the first to the third quartiles
and the whiskers representing extreme values through the first
and ninth deciles of the distributions. For readability purposes,
we cut the box plot to only show whiskers but not flyers.
For instance, the distribution of reuse distances of the GAP
workloads have ninth decile around 2000 and a median of 116.
We complete figure 3 with Table III as it provides additional
characteristics of the distribution such as maximum, median,
mean and standard deviation of the observed reuse distances.

In this work, we define reuse distance as the number of
accesses to different cache blocks between two consecutive
accesses coming from the CPU (e.g. read and writes but not
prefetches and write-backs) to the same cache block. Looking
at this figure, it is quite clear that all the benchmark suites
suffer from the presence of dead blocks in their access patterns.
However, having a closer look at each of the distribution
presented can provide us with valuable knowledge and give
intuition about the results obtained in Sections VII-B and
VII-A. Blocks that do not experience a single reuse during the
whole execution of a workload are not represented on Figure 3.
However, in order to still provide that valuable information,

we show in Table III the average proportion of accesses to
dead blocks during the execution.

For the rest of this section, we define as cache-friendly
blocks those blocks with a reuse distance lower than the
associativity of the LLC. Conversely, we define cache-averse
blocks as blocks with a reuse distance higher than the LLC
associativity. Assuming an LRU policy for the cache, if a
cache block A gets inserted in the LLC and the cache sees
16 accesses to different blocks before re-referencing block A,
the second access to block A will cause a miss because it will
have been evicted. This block A occupies part of the cache
capacity that can be used to allocate another block, hopefully
cache-friendly, and can provide a hit instead of miss.

1) SPEC benchmarks: As Figure 3a and Table III show,
the SPEC workloads present an average reuse distance of 126
and a standard deviation as low as 572.94, so the aggregated
distribution of reuse distances for these workloads focuses
mainly on low values with a relatively low standard deviation
which translates into a cache-friendly behavior. Also, most
accesses being cache-friendly, a bypass policy is not required
to achieve reasonable performance over LRU.

This behavior explains why policies such as Hawkeye and
Glider perform well when applied to SPEC workloads. These
policies are focusing on prioritizing eviction for blocks that
previously showed cache-averse behavior. Doing so allows to
free space for cache-friendly blocks, however, as we will see



Parameter (in accesses) SPEC XSBench all XSBench unionized XSBench others Qualcomm GAP all GAP kron & urand GAP others
Maximum 21 076 12 677 2248 12 677 59 934 34 836 33 771 34 836

Median 10 61 84 55 4 116 45 27

Mean 126.23 343.23 193.21 385.36 93.76 907.89 880.88 349.25

Standard deviation 572.94 875.68 256.33 977.54 541.80 2106.41 1885.68 1050.23

Avg. proportion of dead block accesses 48.03% 37.32% 46.63% 28.01% 10.54% 55.84% 59.31% 54.06%

TABLE III
MAIN PARAMETERS OF THE DISTRIBUTION OF REUSE DISTANCES FOR CACHE BLOCKS IN THE DIFFERENT BENCHMAKRS.

0

500

1000

1500

2000

SPEC XSBench Qualcomm GAPBS

0

500

1000

1500

2000

R
eu

se
 d

is
ta

nc
e

(a) Distribution of the reuse distances of the cache blocks for the different
benchmark suites.

0

1000

2000

3000

4000

GAPBS kron & urand GAPBS other inputs

0

1000

2000

3000

4000

R
eu

se
 d

is
ta

nc
e

(b) Distribution of the reuse distances of the cache blocks for the GAP
benchmark suite with different input sets.

Fig. 3. Distribution of the reuse distances of the cache blocks for the different
benchmark suites.

in details for GAP benchmarks and XSBench benchmarks in
the next subsections, replacement policies in general are less
effective when the memory footprint increases and the access
patterns become unpredictable.

2) XSBench benchmarks: The XSBench benchmark suite, as
expected based on the reuse distance characteristics established
in Table III, shows a very distinct behavior from the well-
known SPEC CPU 2006 and SPEC CPU 2017 workloads. As a
matter of fact, the XSBench workloads present an average reuse
distance of 343.23 and a standard deviation as high as 875.68,
which reveals a hard to predict behavior. However, they do
experience less dead accesses to the LLC, the proportion of
dead block accesses being 37.32 %.

With both mean and median reuse distances being the
double of the SPEC ones, it is clear that these workloads
are much more biased towards a cache-averse behavior than
the SPEC workloads. However, with such high distribution
parameters, we can still still make a crucial observation when
it comes to reuse prediction and dead blocks. We observe that,
even though the XSBench workloads experience reasonable
reuse of cache blocks that are accessed more than once during
the execution, this happens for all the grid types except the
unionized, which has a substantially larger memory footprint
than the other grid types. We explain such behavior by the
vast amount of data that the solver needs to traverse during
the workloads execution and the algorithms used to do so.

3) Qualcomm benchmarks: When it comes to Qualcomm
workloads, we observe that the distribution of reuse distances
stretches towards higher values (Table III shows that the tail
of the distribution goes as high as 60 000 accesses). However,
these workloads are relatively biased towards a cache-friendly
behavior as the standard deviation is 541.80 and the dead block
accesses proportion is of 10.54 %. This stretched shape leads
to a rather low standard deviation and to the appearance of
low reuse distances with higher probability than of high reuses
distances. We understand the long-wide tail of the distribution
as a low amount of dead blocks thrashing the LLC, using
space that would be a better fit for cache-friendly blocks.

Thus, this observation gives us intuition about the behavior
of Glider on the Qualcomm benchmarks presented in Figures 2
and 1b. Glider is a replacement policy that does not implement
bypass, so it keeps on inserting dead blocks in the cache even
though it has learned that these blocks are cache-averse. The
absence of a bypass policy explains the poor results of Glider
compared to MPPPB and the two proposed approaches derived
from it.

4) GAP benchmarks: Based on the characteristics of the
reuse distance distribution shown in Table III and Figure 3 for
the GAP benchmark suite, these graph processing workloads
show a very cache-averse behavior with an average reuse
distance of 907.89, which is around 5.8 times higher than
the one of SPEC workloads, and a proportion of dead block
accesses of 55.84 %. Such behavior is expected as GAP
workloads are executing graph processing algorithms and are
known to traverse vast amount of data in a very unpredictable
way. Table III shows a median of 28 accesses, which provides
us with useful information as 50 % of the blocks accessed
experience a reuse distance of 28 or fewer accesses. This
characteristic suggests that having higher LLC associativity
could help to achieve higher performance.

In addition, these benchmarks show very high standard
deviation on reuse distances, which suggests that the CPU
triggers accesses to both cache-averse and cache-friendly
blocks with relatively uniform probabilities, which results in
the eviction of useful blocks. Thus, we deduce that using a
bypass policy like MPPPB does would provide performance
benefits. Results shown for GAP benchmarks on Figure 2
highlight this property of graph processing workloads.

As we observe that GAP benchmarks with inputs kron and
urand show dramatically low reuse of cache blocks during
execution, we categorize GAP benchmarks in two categories:
(i) GAP workloads using kron and urand inputs; (ii) GAP
workloads using other inputs.

As figure 3 shows, workloads using kron and urand



0

20

40

60

80

bc
.k

ro
n

bc
.r

oa
d

bc
.tw

itt
er

bc
.u

ra
nd

bc
.w

eb
bf

s.
kr

on
bf

s.
ro

ad
bf

s.
tw

itt
er

bf
s.

ur
an

d
bf

s.
w

eb
cc

.k
ro

n
cc

.r
oa

d
cc

.tw
itt

er
cc

.u
ra

nd
cc

.w
eb

pr
.k

ro
n

pr
.r

oa
d

pr
.tw

itt
er

pr
.u

ra
nd

pr
.w

eb
ss

sp
.k

ro
n

ss
sp

.r
oa

d
ss

sp
.tw

itt
er

ss
sp

.u
ra

nd
ss

sp
.w

eb
tc

.k
ro

n
tc

.r
oa

d
tc

.tw
itt

er
tc

.u
ra

nd
tc

.w
eb

m
ea

n

0

20

40

60

80
M

PK
I r

ed
uc

tio
n 

(%
)

0

20

40

bc
.k

ro
n

bc
.r

oa
d

bc
.tw

itt
er

bc
.u

ra
nd

bc
.w

eb
bf

s.
kr

on
bf

s.
ro

ad
bf

s.
tw

itt
er

bf
s.

ur
an

d
bf

s.
w

eb
cc

.k
ro

n
cc

.r
oa

d
cc

.tw
itt

er
cc

.u
ra

nd
cc

.w
eb

pr
.k

ro
n

pr
.r

oa
d

pr
.tw

itt
er

pr
.u

ra
nd

pr
.w

eb
ss

sp
.k

ro
n

ss
sp

.r
oa

d
ss

sp
.tw

itt
er

ss
sp

.u
ra

nd
ss

sp
.w

eb
tc

.k
ro

n
tc

.r
oa

d
tc

.tw
itt

er
tc

.u
ra

nd
tc

.w
eb

ge
om

ea
n

0

20

40

Sp
ee

d-
up

 o
ve

r 
ba

se
lin

e 
(%

)

Fig. 4. LLC MPKI reduction and speedup of a 16MiB LLC over the baseline
2MiB LLC.

inputs tend to stress more the LLC. As stated by Beamer et al.
in the specification of the benchmark, these inputs present a
very high memory footprint compared to the other inputs used
in this work and, moreover, their graphs have a very distinct
topology. Urand represents a worst-case as every vertex has
an equal probability of being a neighbour of every other vertex.
Thus, the graph processing kernel in charge of traversing these
inputs has to request memory blocks very distant from another,
which eventually causes poor reuse.

As a result, we see that LLC replacement policies are
impractical solutions in this context as these workloads are
biased towards a cache-averse behavior, all accesses being
cache-averse. Although replacement policies cannot improve
performance for these workloads, an excellent way to cope
with these workloads would be to increase the capacity of
the cache substantially or to incorporate a prefetcher that can
predict the access patterns to the memory blocks and bring
them to the cache before they are accessed.

To demonstrate the need for increased cache capacity, we
increase the size of the LLC from 2 MiB to 16 MiB and
present the results in Figure 4. Results show a clear benefit
from the increased capacity of the LLC. The average MPKI
over the whole set of GAP benchmarks drops by 18 %, which
delivers a geometric mean speedup of 6.1 % compared with
a 2 MiB LLC with an LRU replacement policy. However,
some workloads show reduced MPKI while suffering from
an IPC slow-down. The reason for this this phenomenon are
the DRAM latencies. While increasing the LLC capacity,
these workloads have similar statistics in terms of cache
accesses and miss rates, but the miss rate in the DRAM row
buffers increases. We interpret this behavior as a symptom of
workloads with extremely poor temporal and spatial locality.

This clearly shows the need for improved memory allocation
policies when it comes to graph processing algorithms. To
illustrate this example, we focus on pr.road, as Page Rank
is an algorithm that should show better locality than the others.
When computing the score of an edge of the graph, the

algorithm only visits neighbouring edges to that edge. Thus,
the only way for the DRAM to exhibit higher row buffer miss
rate is that neighbouring edges in graphs are stored in very
distant places in main memory. This showcases the need for a
memory allocation policy that takes into account the topology
of the graph. Another way to improve the performance of
these graph processing workloads would be to incorporate a
dedicated on-chip storage structure able to serve, at a low cost,
not only the required edges but also their neighbours.

To wrap up this discussion about GAP benchmark suite,
the presented results show that there is still a good amount
of work to be done on the algorithmic and software side of
these workloads to make them cache-friendly. In addition, the
reported characteristics of this benchmarks are hard to exploit
by traditional cache hierarchies and cache replacement poli-
cies, so different solutions should be explored on the hardware
side to improve the performance of these benchmarks.

VIII. CONCLUSIONS

For many years, advances in cache replacement policies
have provided important performance improvements. How-
ever, many techniques proposed in the literature have consid-
ered a reduced amount of CPU-centric benchmarks for their
evaluations. Emerging big data and HPC workloads present
very different behaviors than traditional benchmarks, specially
in terms of memory access patterns. Thus, cache replacement
policies need to be re-evaluated to understand their benefits
and limitations and to extend the performance benefits they
provide to a wider range of workloads.

This paper characterizes different benchmark suites and
evaluates state-of-the-art cache replacement policies with these
workloads. In particular, we evaluate a mix of graph pro-
cessing, scientific and industrial workloads (GAP, XSBench
and Qualcomm) along with the SPEC CPU 2006 and 2017
benchmark suites, and we observe that the replacement poli-
cies provide significant improvements over LRU for the SPEC
workloads, but they are not effective in capturing the complex
access patterns of HPC and big data workloads.

This paper also proposes two perceptron-based replace-
ment policies that provide good performance across all the
considered workloads by dynamically adapting the prediction
mechanisms in each program phase.

ACKNOWLEDGMENTS

This work has been partially supported by the European
Union’s Horizon 2020 research and innovation program under
the Mont-Blanc 2020 project (grant agreement 779877). Lluc
Alvarez has been partially supported by the Spanish Ministry
of Economy, Industry and Competitiveness under the Juan
de la Cierva Formacion fellowship number FJCI-2016-30984.
Marc Casas has been partially supported by the Spanish
Ministry of Economy, Industry and Competitiveness under
Ramon y Cajal fellowship number RYC-2017-23269. This
research was supported by National Science Foundation grant
CCF-1912617, Semiconductor Research Corporation project
2936.001, and generous gifts from Intel Labs.



REFERENCES

[1] Championship value prediction (CVP). [Online]. Available:
https://www.microarch.org/cvp1/

[2] J. Abella, A. González, X. Vera, and M. F. P. O’Boyle, “IATAC: a smart
predictor to turn-off l2 cache lines,” vol. 2, no. 1, pp. 55–77. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1061267.1061271

[3] S. Beamer, K. Asanović, and D. Patterson, “The GAP benchmark
suite.” [Online]. Available: http://arxiv.org/abs/1508.03619

[4] N. Beckmann and D. Sanchez, “Maximizing cache performance
under uncertainty,” in 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, pp. 109–120.
[Online]. Available: http://ieeexplore.ieee.org/document/7920818/

[5] L. A. Belady, “A study of replacement algorithms for
a virtual-storage computer,” pp. 78–101. [Online]. Available:
https://doi.org/10.1147/sj.52.0078

[6] ChampSIm, “ChampSim/ChampSim,” original-
date: 2017-06-30T05:41:50Z. [Online]. Available:
https://github.com/ChampSim/ChampSim

[7] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V.
Veidenbaum, “Improving cache management policies using dynamic
reuse distances,” in 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE, pp. 389–400. [Online].
Available: http://ieeexplore.ieee.org/document/6493636/

[8] P. V. Gratz, J. Kim, and G. Chacon. THE 2nd CACHE REPLACEMENT
CHAMPIONSHIP – co-located with ISCA june 2017. [Online].
Available: https://crc2.ece.tamu.edu/

[9] A. Jain and C. Lin, “Back to the future: Leveraging belady’s
algorithm for improved cache replacement,” in Proceedings of
the 43rd International Symposium on Computer Architecture,
ser. ISCA ’16. IEEE, pp. 78–89. [Online]. Available:
https://dl.acm.org/citation.cfm?doid=3007787.3001146

[10] A. Jaleel, “Memory characterization of workloads using instrumentation-
driven simulation,” p. 12.

[11] A. Jaleel, K. B. Theobald, S. C. S. Jr, and J. Emer, “High performance
cache replacement using re-reference interval prediction (RRIP),” in
Proceedings of the 37th annual international symposium on Computer
architecture, vol. ISCA’10. IEEE, pp. 60–71. [Online]. Available:
https://dl.acm.org/citation.cfm?doid=1815961.1815971

[12] D. A. Jiménez, “Insertion and promotion for tree-based
PseudoLRU last-level caches,” in Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchitecture
- MICRO-46. ACM Press, pp. 284–296. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2540708.2540733

[13] D. A. Jiménez and E. Teran, “Multiperspective reuse
prediction,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture - MICRO-50 ’17,
ser. MICRO ’17. IEEE, pp. 436–448. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3123939.3123942

[14] S. Khan and D. A. Jimenez, “Insertion policy selection using
decision tree analysis,” in 2010 IEEE International Conference
on Computer Design. IEEE, pp. 106–111. [Online]. Available:
http://ieeexplore.ieee.org/document/5647608/

[15] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block
prediction for last-level caches,” in 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE, pp. 175–186.
[Online]. Available: http://ieeexplore.ieee.org/document/5695535/

[16] M. Kharbutli and Yan Solihin, “Counter-based cache replacement and
bypassing algorithms,” vol. 57, no. 4, pp. 433–447. [Online]. Available:
http://ieeexplore.ieee.org/document/4358260/

[17] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction & dead-block
correlating prefetchers,” p. 11.

[18] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts:
A new approach for eliminating dead blocks and increasing
cache efficiency,” in 2008 41st IEEE/ACM International Symposium
on Microarchitecture. IEEE, pp. 222–233. [Online]. Available:
http://ieeexplore.ieee.org/document/4771793/

[19] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B. Calder,
“Using SimPoint for accurate and efficient simulation,” p. 2.

[20] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,” in
Proceedings of the 34th Annual International Symposium on Computer
Architecture, ser. ISCA ’07. IEEE, pp. 381–391. [Online]. Available:
http://doi.acm.org/10.1145/1250662.1250709

[21] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying deep learning to
the cache replacement problem,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’52. Association for Computing Machinery, pp. 413–425. [Online].
Available: https://doi.org/10.1145/3352460.3358319

[22] D. Tarjan, K. Skadron, and M. Stan, “An ahead pipelined alloyed
perceptron with single cycle access time,” in Proceedings of the 20th
Annual International Symposium on Computer Architecture, p. 8.

[23] E. Teran, Y. Tian, Z. Wang, and D. A. Jimenez, “Minimal disturbance
placement and promotion,” in 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, pp. 201–211.
[Online]. Available: http://ieeexplore.ieee.org/document/7446065/

[24] E. Teran, Z. Wang, and D. A. Jimenez, “Perceptron learning for reuse
prediction,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), ser. MICRO ’16. IEEE, pp. 1–12.
[Online]. Available: http://ieeexplore.ieee.org/document/7783705/

[25] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench
– the development and verification of a performance abstraction for
monte carlo reactor analysis,” in PHYSOR 2014 - The Role of Reactor
Physics toward a Sustainable Future, p. 12. [Online]. Available:
ttps://www.mcs.anl.gov/papers/P5064-0114.pdf

[26] B. Widrow and M. Lehr, “30 years of adaptive neural networks:
perceptron, madaline, and backpropagation,” vol. 78, no. 9, pp. 1415–
1442. [Online]. Available: http://ieeexplore.ieee.org/document/58323/

[27] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C.
Steely, and J. Emer, “SHiP: signature-based hit predictor
for high performance caching,” in Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture
- MICRO-44 ’11. ACM Press, p. 430. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2155620.2155671

[28] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious,” vol. 23, no. 1, pp. 20–24. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=216585.216588

[29] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “IMP: indirect memory
prefetcher,” in Proceedings of the 48th International Symposium on
Microarchitecture - MICRO-48. ACM Press, pp. 178–190. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2830772.2830807

[30] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia,
“Making caches work for graph analytics,” in 2017 IEEE International
Conference on Big Data (Big Data), pp. 293–302.

[31] Zhigang Hu, S. Kaxiras, and M. Martonosi, “Timekeeping in the mem-
ory system: predicting and optimizing memory behavior,” in Proceedings
29th Annual International Symposium on Computer Architecture. IEEE
Comput. Soc, pp. 209–220.


