
A Reliable and Universal
Cloud Wallet

Master Thesis

Pau de la Cuesta i Sala

Tutor: Juan Hernández Serrano

A thesis submitted in partial fulfillment of the requirements for the
Master in Advanced Telecommunication Technologies

MATT

Department of Telematics Engineering
Universitat Politècnica de Catalunya

Barcelona, Autumn Semester 2020/2021

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Methodology . 4
1.4 Cybersecurity Approach . 5

2 Related Work 6
2.1 Ethereum . 6
2.2 Cyberattacks . 7

2.2.1 Brute-force Attacks . 7
2.2.2 Impersonation Attacks . 7

2.3 Key Stretching and Key Derivation Functions 8
2.4 PBKDF . 9
2.5 Scrypt . 9
2.6 Password-Authenticated Key Exchange 10

3 High-Level Architecture 12

4 Frontend Application 13
4.1 Browser Extension vs SPA . 13
4.2 Client Library . 13
4.3 Example Application . 14

5 Backend Server 16
5.1 Infrastructure . 16
5.2 Public API . 16
5.3 Secrets Vault . 17
5.4 Security Aspects . 18

5.4.1 Key Stretching . 18
5.4.2 Authentication . 19

5.5 OpenAPI Specification . 19

6 Client-Server Interactions 21
6.1 Sign Up . 21
6.2 Login . 22
6.3 Create Resource . 23
6.4 Import Resource . 24
6.5 Sign Message . 25

7 Conclusions 28

Bibliography 29

I

List of Figures

1 Verifiable claim components . 2
2 i3 Market Backplane Architecture . 4
3 Project Gantt Chart . 5
4 Blockchain cryptographic relationship 6
5 Man-in-the-Middle Diagram . 8
6 Key Stretching deriving a strong cryptographic key 9
7 OPAQUE Diagram . 11
8 High-level diagram of the application 12
9 Cloud Wallet App main page . 14
10 Cloud Wallet App key selection page 15
11 Cloud Wallet App signing page . 15
12 API Schemas excerpt from Cloud Wallet Server documentation website 19
13 Server OpenAPI Specification 3 Website 20
14 Sign Up diagram . 21
15 Login diagram . 22
16 Create Resource diagram . 23
17 Import Resource diagram . 24
18 Sign Message with Key ID . 26
19 Sign Message without Key ID . 27

List of Tables

1 Estimated cost of hardware in $ to crack a password 10
2 Estimated derivation time on Browser and Node.js of different work-

ing factors N for scrypt-pbkdf implementation 18

II

Abstract

This document explains the design, implementation and deployment of
a secure Ethereum wallet backed up by a vault of secrets on the cloud. It
also introduces key concepts for this task in the field of cryptography and
cybersecurity.

This project is done in collaboration with the European H2020 i3-Market
project. Intelligent, Interoperable, Integrative and deployable open source
MARKETplace with trusted and secure software tools for incentivising the
industry data economy [3].

Within this project, the development of a vault of secrets, such as a se-
cure wallet on the cloud, is essential if we desire a trusted data-exchange
environment backed up by the blockchain.

The developed solution, named Cloud Wallet, consists of three pieces of
code, each of which, serves a specific purpose within the complete project:

• Frontend Application (CloudWalletApp)

• Client Library (CloudWalletClient)

• Backend Server (CloudWalletServer)

On the one hand, the frontend app allows the user to intuitively create
and import Ethereum accounts in order to sign raw messages or Ethereum
transactions. While the client takes care of the setup and communication with
the server (among others) the app works as a UI wrapper made with the React
framework for this client. To sum up, the app manages user interactions,
renders the website and uses CloudWalletClient to manage blockchain and
interact with the server.

On the other one, CloudWalletServer safely stores an encrypted represen-
tation of account credentials so that the client used on the application can
rely on a secure credentials cloud backup to restore them back to client in case
of incidences (i.e. lost device). Additionally, it uses Key Derivation Functions
to deliberately slow password-check processes and make them expensive in
terms of CPU and memory in order to discourage pre-computation attacks.

This project has been developed in conjunction with Alberto Miras Gil
with our university and tutor’s approval. Even though we have worked on the
same project, while Alberto has focused his work on the Blockchain aspects
developed exclusively at the frontend client, I have developed the security
aspects of the complete solution, implemented on all frontend app, client and
backend server.

III

Acknowledgements

Let me first extend this acknowledgement to every person who supported
me during my academic career as engineer.

I would like to thank my tutor Juan Hernández Serrano for introducing me
to the amazing project he is involved into. We have been able to successfully
develop it, specially in this very unusual year of mobility restrictions due to
the COVID-19 pandemic.

Furthermore, a great appreciation to my colleague Alberto Miras Gil, with
whom I have also collaborated in the design and making of this project.
Thanks for your relentless determination and expertise at every step of this
project, specially on Blockchain topics.

Also, to conclude, special gratitude to my friends and family for their
support and help during the development of this thesis.

IV

Revision history and approval record

Revision Date Purpose
0 02/11/2020 Document creation
1 14/11/2020 Document revision
2 20/11/2020 Document final revision

Name Email
Pau de la Cuesta Sala pau.de.la.cuesta@alumne.upc.edu

Juan Hernández Serrano j.hernandez@upc.edu

Written by: Reviewed and approved by:
Date 14/12/2020 Date 20/12/2020
Name Pau de la Cuesta Sala Name Juan Hernández Serrano
Position Author Position Tutor

V

1 INTRODUCTION

1 Introduction

In recent years, digital world has been rapidly introduced into most aspects of hu-
man’s everyday life, some experts state our civilization has dived right into the
information age [2]. We can observe how Internet-enabled devices are increasingly
being used at schools, workplaces, hospitals, universities. The Internet did not only
pave the way for establishing long distance connectivity but it also moved part of
our identity as individuals to this digital world.

As John Perry Barlow mentioned some years ago on his famous manifest A Dec-
laration of Independence of the Cyberspace in opposition of government legislation
on the Internet and in defense of net neutrality and a borderless digital world of
universal access:

“Cyberspace consists of transactions, relationships, and thought itself,
arrayed like a standing wave in the web of our communications. Ours is
a world that is both everywhere and nowhere, but it is not where bodies
live. [...] We will create a civilization of the Mind in Cyberspace” [1]

Unfortunately, the current Cyberspace is quite different from the one Barlow
described. Due to a generalized use of digital services, some problems in terms of
identity privacy appeared online, and so did new protection mechanisms to restore
and achieve confidentiality, integrity and availability for all online events.

Since the first blockchain ’Bitcoin’ went public, thousands of ’alt-coins’, or al-
ternative coins, have been created to represent different digital assets with different
algorithm and security levels [8]. The so called distributed ledger technologies (DLT)
involved in cryptocurrencies aim, as the name states, to work as a ledger for dig-
ital assets in which there is not a trusted centralized party. Its most well-known
subtype is blockchain, which registers these transactions of digital assets with a
structure formed by a chain of blocks. These blocks are cryptographically encrypted
and consensually approved so that this chain of blocks is immutable, meaning, any
transaction committed to the blockchain can not be altered a posteriori.

i3 Market is a European project aiming to provide a trusted and secure data
sharing mechanism for organizations using Ethereum blockchain to store data trans-
actions. Cloud Wallet is created as a tool to interact with the i3 Market backplane
which will be described later. The user is in control of his Ethereum accounts as the
keys are stored on the App and has additional features such as signing messages or
transactions. The system is resilient in case the device running the App is lost or
stolen because Cloud Wallet securely stores an encrypted version of public/private
keys on the Cloud Wallet Server, only allowing a new App instance with the valid
credentials to correctly decrypt the keys when restoring these accounts to a new
device.

1.1 Motivation

Not every user of Internet-enabled devices knows, or even understands, how or what
the device is actually doing in order to interact with the millions of online services
a lot of organizations provide across the world.

This gap creates a serious problem for the less knowledgeable users, which end
up delegating this responsibility to their online service providers. Moreover, it has

1

1.1 Motivation 1 INTRODUCTION

become more usual for online services to require real-world data in order to function,
thus creating a direct link between the digital identity and the real one.

The centralized paradigm for data ownership does not allow end users to effec-
tively own and decide about their data. This may lead to severe privacy flaws such
as: data mishandling by non-encrypted services, espionage by several trackers used
by online service providers and even location tracking.

Even though there have been several legal initiatives to protect users online
privacy (i.e. European GDPR, California Consumer Privacy Act, etc...), these legal
initiatives are mostly focused on user consent but do not tackle the root cause or
prevent the flaws described above as they are inherent to the centralized paradigm,
simply because, this digital identity and its management does not reside on users’
devices.

In this context and opposing the centralized paradigm, another prominent ini-
tiative is self-sovereign identity [9], a new approach to identity management tasks
which rely on the blockchain working as an identity registry, it uses public/private
key-pair authentication mechanism and Decentralized Identifier (DID) to bind an
identification namespace to a public key thus defining an identity attached to the
ownership of the public/private key-pair.

The decentralized paradigm is based upon entities (i.e. individuals, organiza-
tions, devices, etc...) which interact in a trustless ecosystem (such as the Internet)
by means of claims (i.e. age, nationality, accomplishments, etc...). While these
claims may vary in content, they always refer to a subject, are issued by an issuer,
held by a holder and in order to give trust to the trustless environment, can be
verified by a verifier.

Verifiable claims are essentially cryptographically signed and non-repudiable
claims. Claims are statements about subjects, they are verifiable because a sig-
nificant set of trusted attestators prove the verifiable claim is either issued by them-
selves or can prove the correctness of the claim with respect to the subject. This
system provides scoped access to verifiable pieces of information about a subject in
the shape of claims, a powerful feature which can be used to provide restricted access
to the concrete information needed for a service provider (acting also as verifier) and
allow the provided service to authenticate the claimed subject.

Figure 1: Verifiable claim components

For instance, an online company on a security audit sharing their data mining
raw sources to an external auditor could make an access pass to the data stream
by attesting a claim issued by the auditor to access the data residing in a third
party storage provider (i.e: AWS S3, Dropbox, etc...). The auditor would show that
pass and the data storage provider would verify the identity of the issuer and the

2

1.2 Problem Statement 1 INTRODUCTION

attestator and then return the data as long as the attestator was the data stream
owner, as it would be considered a valid verified claim. In this case:

• Subject: Data ID for the thirdparty storage provider

• Claim-Issuer: External Auditor

• Claim: Time-Limited Access to Subject

• Attestator: Company being audited

• Verifier: Storage provider

A simpler example, a user at a shop needs to prove the legal age required to
buy alcoholic beverages, the user would issue a non-expirable statement claiming
his legal age and ask an attestator, the government, to sign it in order to prove that
claim any time in the future. This user should only provide that verifiable claim
in the shop and the shop would know that a trusted third party, in this case the
government, attests that claim.

• Subject: Shop User

• Claim-Issuer: Shop User

• Claim: Subject’s legal age

• Attestator: Government

• Verifier: Shop owner

1.2 Problem Statement

Cloud Wallet solves a series of problems inherent to the centralized paradigm. More-
over, it is developed to fit into the European framework for an open-source, secure
and reliable digital data market called i3 Market [3].

The i3 Market project aims to provide a trustworthy and secure data sharing
mechanism between organizations of different sizes. It is a solution towards present
and future federation of diverse European data markets which is characterized by
being:

• Trusted: secure, self-governing, consensus-based and auditable.

• Interoperable: semantic-driven

• Decentralized: scalable

3

1.3 Methodology 1 INTRODUCTION

Figure 2: i3 Market Backplane Architecture

As seen above in Figure 2, i3 Market relies on the blockchain in order for it to
fulfil the aforementioned trusted characteristic.

Cloud Wallet allows its users to effectively own and manage their sensitive
data assets by providing a secure storage for their blockchain accounts’ creden-
tials. Blockchain accounts are unlocked by public/private keypairs which provide
the owner of these keys the capability of, for instance, sign verifiable and auditable
transactions of data assets and commit them to the blockchain to remain immutable.

In addition to blockchain transactions for the data market, any other type of text-
based message can be encrypted and signed using these accounts keypairs hosted at
the secure Cloud Wallet application.

Finally, a lost key prevention design allows its users to securely recover these
keypairs in case of loss or thief. The mechanism is secure with state-of-the-art
cybersecurity defense techniques later explained in this document.

1.3 Methodology

The development of this project is characterized by 4 different phases. On Figure 3
the Gantt chart of the project is shown:

• Design.

• Backend Implementation.

• Frontend Implementation.

• Documentation.

This project began phase 1 and 4 by mid-July 2020. In the first phase, the general
structure and project planning were developed as well as a previous implementation
tool study to decide which technological tool to use in order to build our solution.

4

1.4 Cybersecurity Approach 1 INTRODUCTION

Phase 2 was focused on the back end server of the Cloud Wallet, specifically, on
its architecture and implementation. Phase 3 was focused on the same aspects for
the front end app of the Cloud Wallet solution.

Phase 4 was focused on documentation, the drawing of sequence diagrams of
the solution and documentation followed by the writing of this document and the
preparation of support media for the presentation day.

Figure 3: Project Gantt Chart

1.4 Cybersecurity Approach

Generally, online services rely on user’s ability to secure their account by means of a
robust password. Nonetheless, this is generally not the case because the longer these
passwords are, the easier it is for a user to forget them. Another usual behaviour is
using the same weak password across different services, in case of a data breach on
one service where weak passwords are revealed, it would be easier for an attacker to
test these same passwords in other online services.

Cloud Wallet does not rely on users robust passwords, but rather assumes user
passwords are generally weak, and makes them robust by means of password-based
key derivation functions. Our approach relies on making brute-force attacks unfea-
sible by deliberately making the computations slow and expensive both in terms of
CPU and memory. While a valid user will see no difference as of performance, an
attacker without the proper password will have to spend a vast amount of resources
to be able to crack Cloud Wallet passwords.

5

2 RELATED WORK

2 Related Work

In this section we are going to describe some concepts used in Cloud Wallet in order
to better understand the solution proposed.

2.1 Ethereum

A blockchain is a kind of peer-to-peer decentralized and distributed database where
the data can not be altered once stored. It is a shared, trusted and public ledger
that saves immutable and encrypted transactions across different nodes. It is made
of blocks linked between them by cryptographic means. It is because of the crypto-
graphic relationship between blocks that the chain can not be modified.

• Decentralized: No centralized trusted party.

• Cryptographically secure: Cryptography is used to improve the security
and the integrity of the network.

• Immutable: Each block has a cryptographic relationship with its predecessors
making it computationally infeasible to modify once accepted and stored.

• Distributed: Each node has a full copy of the ledger.

Figure 4: Blockchain cryptographic relationship

As a decentralized system, in this case a distributed ledger, single point of failure
is avoided because every node has a copy of the ledger or blockchain; so it behaves
like a decentralized database for digital assets. As there is not a centralized source
of truth, no user is trusted more than another and consensus mechanisms are used
in order to agree on adding or not new blocks to the shared ledger. The most used
consensus algorithm is called Proof of Work (PoW), there is a hardware processing
competition among nodes to validate new entries, called mining. Once a miner
wins the competition, the candidate block is accepted and stored across the network
(thus, appending a new block to the chain) and the miner receives a reward for the
computational work.

Ethereum is often described as “the world computer”, a globally-decentralized
computing infrastructure that executes programs called smart contracts. Smart
contracts decide through their logic whether or not a certain transaction is valid
and what is the resulting modification in the ledger.

6

2.2 Cyberattacks 2 RELATED WORK

More technically speaking Ethereum is a deterministic but practically unbounded
state machine, consisting of a globally accessible singleton state and a virtual ma-
chine that applies changes to that state. The system’s state is shared and synchro-
nized among the Ethereum nodes by using a blockchain.

In order to incentivize Ethereum use and to pay for the costs of executing smart
contracts, Ethereum also has a it own cryptocurrency, which is called ether.

2.2 Cyberattacks

There are many kinds of attacks, both online and offline, to exploit system’s vul-
nerabilities. In this section we are going to see the two main types of cyberattacks
which could present a threat to Cloud Wallet.

2.2.1 Brute-force Attacks

This type of attack aims at correctly guessing some user’s password by means of an
exhaustive test of candidates.

Pre-computation attack, also known as dictionary attack, is a specific brute-
force attack in which an attacker prepares long lists of candidate passwords and its
associated hashes. In case of a database exposure, a sufficient long list with a vast
amount of candidate pre-computed hashes would almost instantaneously find the
correct password.

Custom Hardware attack, on the other hand, relies on custom hardware
specifically crafted to hash candidate passwords at a high rate. So, instead of pre-
computing hashes, the attacker uses machines under his control (such as ASICs or
FPGAs) which are specially designed to crack passwords.

2.2.2 Impersonation Attacks

Another relevant type of online threat are impersonation attacks. An attacker tries
to deceives a user by making him believe it is communicating with another trusted
user.

Man-in-the-Middle (MITM) attack is a specific impersonation attack in
which the attacker secretly eavesdrops and relays the communication between two
trusted parties while these interaction happens. While the original connection be-
tween the two users is not used anymore, all the traffic is relayed by the attacker
and can potentially be altered.

7

2.3 Key Stretching and Key Derivation Functions 2 RELATED WORK

Figure 5: Man-in-the-Middle Diagram

2.3 Key Stretching and Key Derivation Functions

Key stretching is a set of techniques to create a strong cryptographic key from a low
entropy input password or passphrase. Usually using salts to prevent pre-computed
dictionary attacks, it outputs keys of different lengths by deriving the original key
with a salt and password, passphrase or similar. Key stretching can be accomplished
by using key derivation functions as it is described in Figure 6.

A Key Derivation Function (KDF) is a function which constructs a cryptographic
key from a password using Pseudo-Random Functions (PRF). The PRFs add ran-
domness to the key derivation process making the result efficiently indistinguishable
from a truly random generated key.

Most common implementation for PRFs are keyed-Hash Message Authentication
Codes (HMAC) that produce a cryptographic digest of the input based on a key and
a cryptographic hash function. The cryptographic strength of the HMAC depends
upon the cryptographic strength of the underlying hash function, the size of its hash
output, and the size and quality of the key.

Quoting the author of Scrypt [11]:

“Since all modern key derivation functions are constructed from hashes
against which no non-trivial pre-image attacks are known, attacking the
key derivation function directly is infeasible; consequently, the best attack
in either case is to iterate through likely passwords and apply the key
derivation function to each in turn.”

Knowing that the best strategy to crack a password is iteratively hashing the
input candidates until a match is found, there rises the necessity of discouraging
an attacker to test keys excessively fast. By using key stretching, longer keys take
longer time to process and that is of paramount importance to discourage massive
brute-force attacks.

8

2.4 PBKDF 2 RELATED WORK

Figure 6: Key Stretching deriving a strong cryptographic key

2.4 PBKDF

Password-based key derivation function (PBKDF1 and PBKDF2) are two imple-
mentations of Key Derivation Functions defined in RFC2898 [6].

We can control the iteration count by means of the parameter c, adding more
iterations will make the function run slower. It may seem secure enough but it
still is not, attackers could take advantage of the easy and cheap implementation
of this function and use Application-specific integrated circuits (ASIC) or graphical
processing units (GPU) to brute-force as many iterations c as it is required as long
as enough CPU and RAM can be provisioned [11].

• P: Password as an octet string

• S: Salt as a PRF-generated octet string

• c: Iteration count

• dkLen: Derived key length, positive integer, at most (232− 1) ∗ hLen, where
hLen is the length in octets of the pseudorandom function output

It outputs a derived key dk of length dkLen.

2.5 Scrypt

Scrypt was born as an alternative of PBKDF2, it is also a Key Derivation Func-
tion (KDF) but unlike PBKDF2, scrypt offers resistance to Application-specific
integrated circuits (ASIC) and graphical processor units (GPU) brute-force attacks
[11].

It can be parametrized to make custom hardware attacks very expensive by
requiring a vast amount of memory.

• N: Is the working factor (CPU/memory cost) Default: 16384

• r: Is the blocksize for sequential reading performance fine-tuning. Default: 8

• p: Is the parallelization factor. Default: 1

9

2.6 Password-Authenticated Key Exchange 2 RELATED WORK

The tuning of these parameters modifies the time and resources spent for the
calculations and can be adapted for different environments and adversaries. Given
the different KDFs and parameters lead to different amounts of time and resources
spent while deriving keys, we can see a cost estimation in dollars for an attacker to
brute-force a password on Table 2.5. These times have been estimated with a 2,5GHz
Core 2 processor [10] and take into account two main usages of KDF, interactive
logins (≤1s) and file encryption(≤5s).

KDF 6 letters 8 letters 8 chars 10 chars

MD5 1 1 1 1.1k
PBKDF2 (100 ms) 1 1 18k 160k

scrypt (64 ms) 1 150 4.8M 43B
PBKDF2 (5.0 s) 1 29 920k 8.3B

scrypt (3.8 s) 900 610k 19B 175T

Table 1: Estimated cost of hardware in $ to crack a password

2.6 Password-Authenticated Key Exchange

OPAQUE is an asymmetric Password-Authenticated Key Exchange (aPAKE) pro-
tocol[5]. OPAQUE provide a secure method to authenticate two parties without
needing certificates and their Public Key Infrastructure (PKI), it is able to securely
verify users’ identity just with a password (password-only).

In most of online services, servers have a database of hashed passwords obtained
from hashing the users’ registered passwords with user-specific nonce values, called
salts. When a user logs in the system the username and password are sent in
cleartext on a secure TLS client-server connection. Then, the server hashes the
received password with the salt stored for that user, and checks whether it matches
the stored hashed password.

Unfortunately, TLS security may be undergone in several situations. Some ex-
amples are: rogue servers operating with leaked private keys; client software that
does not verify certificates correctly; users that accept invalid or suspicious cer-
tificates, certificates issued by rogue CAs; servers that share their TLS keys with
others, e.g. CDN providers or security monitoring software, information (includ-
ing passwords) that traverses networks in plaintext form after TLS termination;
and more[14]. OPAQUE offers two main advantages over password-over-TLS and
current aPAKE authentication protocols, respectively:

• May not use TLS even though it is recommended to combine both. Regis-
tration is the only step that requires an authenticated channel (out-of-band,
PKI-based...)

• Resolves pre-computation attacks vulnerability, even if an attacker could ac-
cess the server database, it would not be able to perform a brute-force attack
as it does not store password hashes but only user salts and client-encrypted
blobs of data.

This new protocol is meant to be oblivious as it is constructed with Oblivious
PRF functions (OPRF). While these oblivious concept may seem new and flashy, it

10

2.6 Password-Authenticated Key Exchange 2 RELATED WORK

has actually been referenced and studied since 1981 by Rabin on his 1-2 Oblivious
Transfer protocol based upon RSA cryptosystem [12]. OPAQUE authentication
protocol uses DH-OPRF composed of an OPRF and a Diffie-Hellman key-exchange
protocol. An OPRF is a pseudorandom function family (PRF) H with an associated
protocol between a server that holds a key for User kU and a client with a password
passwd. It is oblivious because at the end of the protocol execution, the client learns
the PRF output HkU(passwd) and nothing else, and the server learns nothing about
the passwd.

The user runs OPRF with the server to compute decryptKey = HkU(passwd),
then runs the Diffie-Hellman key exchange protocol with the server by using the
key-pair decrypted with decryptKey. By using this previously generated key, the
server is able to verify users identities without the need of PKI while not learning
anything about passwd.

In Figure 7 the OPAQUE protocol is depicted with some of its parameters: a
hash function AuthEnc (e.g., SHA2 or SHA3 function) with 256-bit output at least,
a cyclic group G of prime order q, a generator g of G, and a hash function H mapping
arbitrary strings into G (where H is modelled as a random oracle). After OPRF,
Diffie-Hellman Key Exchange would be executed with the learned keys.

Figure 7: OPAQUE Diagram

11

3 HIGH-LEVEL ARCHITECTURE

3 High-Level Architecture

In this section, a high-level explanation of Cloud Wallet architecture will be done.
As can be seen in Figure 8, the Cloud Wallet architecture is based on two main

blocks:

• App: working as cryptocurrency wallet which was done by Alberto Miras. A
brief explanation will be given later in this document.

• Server: working as a vault of secrets which I designed and implemented. An
extended explanation will be given later in this document.

In the diagram, we can also see other blocks that interact with Cloud Wallet :

• End User: client who is browsing the Cloud Wallet user interface.

• i3-Market SDK: the i3-Market ecosystem will interact with our application
by requesting the signature of blockchain transactions.

• Blockchain: the application will have to keep in touch with the blockchain
in order to be able to use some of its cryptographic functions and to retrieve
some information about the users’ blockchain accounts (as we will see later on
in other chapters).

Figure 8: High-level diagram of the application

12

4 FRONTEND APPLICATION

4 Frontend Application

The frontend application works as the visual interface for users to interact with
the Cloud Wallet. It contains the cloud-wallet-client which, in turn, is the part
interacting with the blockchain and the Server, i3 Market SDK itself will interact
directly with this client. The frontend application is a wrapper for cloud-wallet-
client.

4.1 Browser Extension vs SPA

An initial tool study was done in order to evaluate the suitability of two well-
known platforms to distribute the frontend application. The two options were either
building a Browser Extension (BE) or a Single Page Application (SPA).

In either case, React web framework was the most suitable framework to use
considering it is open-source and maintained by both the community and several
important companies, also because of its fast bootstrapping tool create-react-app
and due to its seamless integration with the rest of software used in the i3 Market
project, which is hevalyly develop with Javascript. Moreover, React can easily switch
from one to the other option, so in case of a change in the distribution platform,
most part of the software would still be usable.

We finally decided to build a Single Page Application contrarily to the Browser
Extension option due to maintainability and security reasons.

Browser Extensions can potentially become a threat from a privacy perspective.
They have access to more browser APIs than websites, even capable to modify and
capture sensitive information from the browser storage and configuration. In case of
a remote malware hijacking our frontend BE, a higher impact can be done because
of this access to more capabilities than the application on a SPA.

Also, it is harder to maintain code for some specific extension APIs that differ
across browsers, it is more maintainable to develop a web application built as a SPA
with community-tested polyfill software that outputs the same visualization of User
Interface (UI) across all browsers.

4.2 Client Library

CloudWalletClient is a Javascript client library of the system. This local wallet
connected to the blockchain and the CloudWalletServer allows the user to securely
store its Ethereum accounts, which are public/private keypairs.

This library is conformed by three modules:

• Authentication Module: store and validate credentials or interact with User
entity on Server

• Blockchain Module: interactions with Blockchain.

• Resource Module: interactions with Resource entity on Server

It exposes some public methods which other applications can use in order to
interact with the system:

• Create new accounts

13

4.3 Example Application 4 FRONTEND APPLICATION

• Import existing accounts

• Sign text-based messages and Ethereum transactions

• Check accounts balance

• Save and Recover accounts from CloudWalletServer

4.3 Example Application

CloudWalletApp is a React web application which offers a basic and intuitive UI
wrapper for the CloudWalletClient library. It is a visual resource to access the
public methods exposed by the library. The example application can be found at
https://cloudwallet.gold.upc.edu

Figure 9: Cloud Wallet App main page

On Figure 9, a screenshot of the main page for an authenticated user. It visually
allows a user to view public key, edit descriptions or delete resources for all his
keys. Moreover, several available actions are clearly displayed on the buttons at the
bottom.

14

4.3 Example Application 4 FRONTEND APPLICATION

Figure 10: Cloud Wallet App key selection page

On Figure 11, the signing page is shown with the parameters needed to create a
new transaction. Destination account, amount to transfer and the name of the chain
to use. i3 Market may operate over different blockchain networks, the SDK provides
the parameter to build a proper transaction. The signing key can be selected at the
previous page referenced on Figure 10.

Figure 11: Cloud Wallet App signing page

15

5 BACKEND SERVER

5 Backend Server

CloudWalletServer is a backend server working as a secrets vault implemented in
NodeJS, specifically using the NestJS framework. It allows Cloud Wallet users
to safely store their public/private key pairs of their Ethereum accounts. As it
is later discussed, security has been the most critical topic during the design and
development of the technology.

The code is hosted at GitLab in a private repository visible to i3 Market task-
force members. https://gitlab.com/i3-market/code/wp3/t3.2/cloud-wallet

5.1 Infrastructure

Cloud Wallet Server can be accessed via web at a server hosted by our University
with different software installed.

Docker is a virtualization tool aimed at isolating application software into con-
tainers. In conjunction with docker-compose, a network of containers can be created
and coordinated to deploy a complete technology stack.

This project’s infrastructure is composed of two containers:

• CloudWalletServer: builds the source code and starts the server.

• PostgreSQL: starts a PostgreSQL database.

Even though at production-grade deployments of PostgreSQL containers should
be avoided (as much as any kind of containerized database), it is very helpful at a
development stage. In production, open to end-users, the dockerized server should
establish connection with an external database. In i3 Market this database is going
to be a CockroachDB [7], a cloud-native, distributed database.

5.2 Public API

The server exposes an Application Programming Interface (API) in order to au-
thenticate clients and interact with their vault. Server’s publicly exposed HTTP
endpoints are represented with entities, user and resource:

User

• GET /user/login
→ Get login fields [”username”, ”password”]

• POST /user/login {username, password}
→ Login with request body {username, password}

• GET /user/signup
→ Get signup fields [”username”, ”email”, ”password”]

• POST /user/signup {username, email, password}
→ Sign up with request body {username, email, password}

16

5.3 Secrets Vault 5 BACKEND SERVER

Resource: Authenticated with Bearer JWT

These endpoints require an Authorization HTTP header with a value of ’Bearer
validToken’, where validToken must be stored at device’s localStorage from a pre-
vious request to POST /user/login or POST /user/signup.

• GET /resource/list
→ Get user’s resource list

• POST /resource {address, value, description}
→ Create a new resource

• PUT /resource/{id} {Optional(description), Optional(value)}
→ Update an existing resource with {Optional(description), Optional(value)}

• GET /resource/{id}
→ Get user’s resource with {id}

• DELETE /resource/{id}
→ Delete user’s resource with {id}

Cloud Wallet Server is documented conforming to the OpenAPI Specification 3
standard as it will be later seen on a dedicated section of the chapter. By using
OAS3, both humans and computers can easily understand public APIs of millions
of services.

5.3 Secrets Vault

While Cloud Wallet Server is designed to be a general purpose secrets vault, it
specifically acts as a vault to users’ Ethereum accounts storing a representation of
their private keys. The Server holds an encrypted copy of the private key, so that
only the legit owner is able to decrypt it. By doing this, the server will not be able
to know the value stored in it, it just returns it back to the legit client in order for
it to decrypt it.

This measure does not prevent offline attacks in case an attacker would steal
and download the server database and had unlimited time to try cracking pass-
words offline. For these cases, the Server includes a special key stretching derivation
extra step for which the usual weak passwords introduced by users is enhanced with
scrypt KDF in order to discourage offline brute-force attacks by making them overly
expensive.

In the i3 Market context, all the signing and connection to the Blockchain is
performed at the client application, for that reason, data owners need to have a
safe vault for their market access credentials in case the device (smartphone, laptop,
etc...) used to operate in the market (which has the access credentials in it) is stolen
or lost. It is necessary to store them securely on the cloud to be able to recover
them on the future in another device. But, as previously mentioned, the Server does
not store the private key by itself, but rather a client-encrypted version of it so that
in case of authentication recover, only real users will be able to provide the right
password to decrypt the credentials and use them.

17

5.4 Security Aspects 5 BACKEND SERVER

5.4 Security Aspects

Best practices for online security have been implemented on Cloud Wallet Server
such as HTTPS connections through TLS, JSON Web Token (JWT) authentication
mechanism and a derivation process when signing up and logging in or when creating,
retrieving or updating a resource.

5.4.1 Key Stretching

Users tend to have weak, low entropy passwords and that may cause a serious
problem for the security of the service. An attacker would easily be capable of per-
forming a brute-force attack with a massive amount of passwords until eventually
finding the correct one. In order to prevent this kind of attacks among others, the
server uses 32 pseudorandomly generated bytes as salt both for user and resources
within the server, that combined with the password and scrypt key-stretching algo-
rithm, it makes these set of tasks deliberately slower and overly expensive even for
state-sponsored attackers.

Cloud Wallet Server uses a new implementation, called scrypt-pbkdf made by
Juan Hernández, tutor of this thesis and main collaborator of the i3 Market project.
In the following table, a benchmarking comparison of scrypt-pbkdf Javascript library.
It estimates derivation time for several working factors N. Test were preformed on
an Intel Core i5-6200U with 8 GB of RAM running Ubuntu 20.04 LTS 64 bits, and
with Node.js 14 LTS for server testing, and Chrome 83 Linux 64 bits as browser
[13].

N Browser (Chrome 83) Node.js 14

212 = 4096 85ms± 10.66% 12ms± 6.45%
213 = 8192 165ms± 4.47% 23ms± 1.80%
214 = 16384 336ms± 2.65% 47ms± 2.82%
215 = 32768 648ms± 1.93% 94ms± 0.66%
216 = 65536 1297ms± 0.29% 210ms± 1.81%
217 = 131072 2641ms± 0.36% 422ms± 0.81%
218 = 262144 5403ms± 2.31% 847ms± 0.81%
219 = 524288 10949ms± 0.32% 1704ms± 0.70%
220 = 1048576 22882ms± 0.45% 3487ms± 3.42%
221 = 2097152 - 7031ms± 1.06%

Table 2: Estimated derivation time on Browser and Node.js of different working
factors N for scrypt-pbkdf implementation

The Server establishes three levels of difficulty on derivation processes. By fol-
lowing the table in order to find the right balance between security and usability,
users do not feel like the app is stuck when it is performing some of the derivation
tasks. These different levels can be set by users according to their needs.

Such levels are:

• Low 1: N = 218 Used for login and sign up

• Mid 2: N = 219 Currently unused

18

5.5 OpenAPI Specification 5 BACKEND SERVER

• High 3 (Default): N = 220 Used for resource management

5.4.2 Authentication

Authentication mechanism relies on password-over-TLS strategy and JSON Web
Token for both registering and entering the application, the token itself contains the
following data for the client to use.

• Id: User ID to let know the client for subsequent interactions with the server.

• Username: To display in the application

• Email: To display in the application

• Password Hash: SHA-256 hash of the derived password to enable password
checking on the client for several operations.

5.5 OpenAPI Specification

As described on the OpenAPI Specification itself [4]:

The OpenAPI Specification (OAS) defines a standard, language-agnostic
interface to RESTful APIs which allows both humans and computers to
discover and understand the capabilities of the service without access to
source code, documentation, or through network traffic inspection.

CloudWalletServer is created to conform to this standard specification on its
newest version, OAS3. With OAS3 webpage depicted at Figure 13, a visual, concise
and clear picture of the publicly exposed API methods of the server can be used by ei-
ther humans or machines to learn on how to interact with it. Adopting OAS3 is a per-
fect decision for this project because it aims to be open-sourced, so well-documented
API with OAS3 could allow developers to easily test the API or even automatic gen-
eration of software in several programming languages to consume the API methods.
The full OAS3 documentation can be found at https://api.cloudwallet.gold.upc.edu/

Figure 12: API Schemas excerpt from Cloud Wallet Server documentation website

19

5.5 OpenAPI Specification 5 BACKEND SERVER

Figure 13: Server OpenAPI Specification 3 Website

20

6 CLIENT-SERVER INTERACTIONS

6 Client-Server Interactions

In this section, sequence diagrams are presented describing the interaction between
Cloud Wallet components and the End User.

6.1 Sign Up

Users need to register to the application in order to access to Cloud Wallet. Initially,
the client requests (GET /signup) the signup form from the Server to display it to
the user. Additionally, registration fields are rendered dynamically according to the
needed fields for a valid registration as for the Server, this behaviour dismisses the
Client from any responsibilities on the registration logic while putting the Server on
full control of it.

After the user fills the form, another request (POST /signup) is sent from the
Client to the Server with the required parameters in order to create a new user. In
case of failure, an error message is sent back to the Client as response. Otherwise,
the Server internally logs in that newly-created user and returns back a valid JSON
Web Token cw token as response.

Figure 14: Sign Up diagram

21

6.2 Login 6 CLIENT-SERVER INTERACTIONS

6.2 Login

Similar to registration, login logic and fields are controlled by the Server, with an
initial request (GET /login) the client gets the required forms for user input. After,
the request (POST /login) is sent with the required data.

When server verifies user input, either a valid JSON Web Token or an error
message is sent back as response.

Figure 15: Login diagram

22

6.3 Create Resource 6 CLIENT-SERVER INTERACTIONS

6.3 Create Resource

When an authenticated user wants to create a new wallet account (i.e. public/private
keypair) the blockchain interaction is held at the client. After creating the keypair
and encrypting its private key, it is sent to the server in a JWT authenticated request
(POST /resource) along a description of that account.

When the server receives the information to store a new account, it will derive
the encrypted private key, store the new resource record on database and confirm
the creation to the client. In case of failure, it will notify the reason to the client
with an error message.

Figure 16: Create Resource diagram

23

6.4 Import Resource 6 CLIENT-SERVER INTERACTIONS

6.4 Import Resource

Similar to resource creation, when a user wants to import an existing account (i.e.
public/private keypair), an import form will be displayed for the user to input the
description and private key of the account. After encrypting it and obtaining the
public key on the client, the same process for request (POST /resource) seen on the
previous section is done.

Figure 17: Import Resource diagram

24

6.5 Sign Message 6 CLIENT-SERVER INTERACTIONS

6.5 Sign Message

Cloud Wallet also includes signing capabilities for raw messages and Ethereum trans-
actions related to i3 Market. There are two similar procedures for this task depend-
ing on the pre-selection of the account used to sign the message or transaction.

• Sign with a specified Key ID on Figure 18

• Sign with an unspecified Key ID on Figure 19

When an authenticated user needs to sign an Ethereum transaction, the i3 Mar-
ket SDK will redirect the user to the Cloud Wallet and send a request to the client
with the account to be used, the callback URL to be redirected after signing and
the transaction parameters. The transaction parameters specified from the SDK
include:

• Destination address.

• Value/Amount to transfer.

• Blockchain network, as i3 Market can operate over several blockchains.

• Gas Price, it is optional and if not present, it will be calculated by Cloud
Wallet.

• Gas Limit, it is optional and if not present, the lowest limit value will be used
as in simple transactions.

The client sends a JWT authenticated request (GET /resource/list) in order to
get a list of the public keys of all the stored accounts for that particular user. If the
signing key was not specified in the beginning by the i3 Market SDK, the user will
need to select an existing account to use for signing in the application.

When a valid key for that user is selected, another JWT authorized request
(GET /resource/id) is sent to server in order to get the full resource. Then, the
full transaction information is displayed to the user and explicit consent along with
the password is required from him in order to decrypt the key used to sign. After
decrypting it and signing the transaction, it returns the signature in the specified
callback URL. The application also displays a link to Etherscan blockchain explorer,
so that the user can verify the transaction block on this well-known tool.

25

6.5 Sign Message 6 CLIENT-SERVER INTERACTIONS

Figure 18: Sign Message with Key ID

26

6.5 Sign Message 6 CLIENT-SERVER INTERACTIONS

Figure 19: Sign Message without Key ID

27

7 CONCLUSIONS

7 Conclusions

Since online privacy is becoming of main interest to a growing number of population,
it has become crucial to find alternatives to the current centralized paradigm for data
ownership in which user data is watched over by organizations. Moreover, weak or
similar passwords across different online services enable easier password cracking
attacks, a password leakage from one of these services could lead to an impact on
the rest of them with similar or identical credentials, potentially compromising the
confidentiality, integrity and availability of users data.

i3 Market is a European project aware of these problematic. It aims to provide a
trustworthy and secure data sharing mechanism between organizations of different
sizes and a solution towards present and future federation of diverse European data
markets.

Cloud Wallet enables i3-Market users to own and manage their blockchain ac-
counts in a secure online vault with some basic cryptocurrency wallet functionalities.
It is composed of 3 elements: Server, Client and App. While the i3 Market SDK
will interact directly with the client, which establishes connections with the Server
and the blockchain, the App works as a visual wrapper for users to use the Cloud
Wallet.

In terms of security, it provides client-server authentication through TLS and
JSON Web Token. Internally, it also uses Key Derivation Functions to deliberately
slow password checks and discourage attackers to brute-force in. It is fine-tuned so
that the user experience remains intact; while one single valid password check will
see no difference, an attacker trying to brute-force it with custom hardware (ASIC,
FPGA) will have to invest a vast amount of resources to potentially succeed.

Cloud Wallet is at an early stage, great improvements are yet to be implemented
and deployed. Security is among the topmost priorities, that is why additional
security measures need to be developed to protect online data transactions on the
blockchain.

• OPAQUE would be a great improvement in order to guarantee a secure client-
server connection not depending on PKI as well as to prevent pre-computation
attacks.

• Multiple Factor Authentication (MFA) is another security feature which needs
to be implemented in the system. With MFA, users will need additional steps
besides password in order to authenticate (i.e Input code sent on SMS)

These two measures would add an extra layer of security to the presented solution
and make cyberattacks harder to perform by hardening users’ online accounts and
securing their data assets so that they can trade safely on the i3 Market ecosystem.

28

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[1] John Perry Barlow. A Declaration of the Independence of Cyberspace. 1996.
url: https://www.eff.org/cyberspace-independence.

[2] Manuel Castells. La era de la información. Economı́a, sociedad y cultura. Vol.
1. 1996. url: http://www.economia.unam.mx/lecturas/inae3/castellsm.
pdf.

[3] H2020 - i3 Market Project Description. 2020. url: https://cordis.europa.
eu/project/id/871754.

[4] OpenAPI Initiative. OpenAPI Specification v3.0.0. 2017. url: https://github.
com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md.

[5] H. Krawczyk. The OPAQUE Asymmetric PAKE Protocol. 2020. url: https:
//tools.ietf.org/html/draft-krawczyk-cfrg-opaque-06.

[6] RSA Laboratories. PKCS #5: Password-Based Cryptography Specification.
2000. url: https://tools.ietf.org/html/rfc2898.

[7] Cockroach Labs. CockroachDB Architecture. 2020. url: https://www.cockroachlabs.
com/docs/v20.2/architecture/overview.

[8] J. Moubarak, E. Filiol, and M. Chamoun. “On blockchain security and rele-
vant attacks”. In: 2018 IEEE Middle East and North Africa Communications
Conference (MENACOMM). 2018, pp. 1–6. doi: 10.1109/MENACOMM.2018.
8371010.

[9] Alexander Mühle et al. “A survey on essential components of a self-sovereign
identity”. In: Computer Science Review 30 (2018), pp. 80–86. issn: 1574-0137.
doi: https://doi.org/10.1016/j.cosrev.2018.10.002. url: http:

//www.sciencedirect.com/science/article/pii/S1574013718301217.

[10] Colin Percival. scrypt: A new key derivation function. 2009. url: https://
www.tarsnap.com/scrypt/scrypt-slides.pdf.

[11] Colin Percival. Stronger Key Derivation via Sequential Memory-Hard Func-
tions. 2009. url: https://www.tarsnap.com/scrypt/scrypt.pdf.

[12] Michael O. Rabin. How to exchange secrets with Oblivious Transfer. Techni-
cal Report TR-81, Aiken Computation Lab, Harvard University. 1981. url:
https://eprint.iacr.org/2005/187.pdf.

[13] Juan Hernández Serrano. ’scrypt-pbkdf ’ source code Repository. 2020. url:
https://github.com/juanelas/scrypt-pbkdf.

[14] Hugo Krawczyk Stanislaw Jarecki and Jiayu Xu. OPAQUE: An Asymmetric
PAKE Protocol Secure Against Pre-Computation Attacks. 2018. url: https:
//eprint.iacr.org/2018/163.pdf.

29

