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ABSTRACT

Vibration energy is abundantly present in many natural and artificial systems and can

be assembled by various devices,mainly using piezoelectric and electromagnetic means.

In the present article, the electromechanical system with two degrees of freedom is con-

sidered. To the main mass, whose vibrations are to be reduced, an additional element

(dynamical vibration absorber or DVA) is attached. The DVA consists of a spring, damping

and piezoelectric elements for energy harvesting. The goal is to reduce the maximal possi-

ble responses of the main structure and at the same time collect energy from the vibration
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of the system. An analytical approach is proposed to find the solution of the problem. We

show that the piezoelectric element allows effective energy harvesting and at the same has

a very limited influence on reducing the amplitude of oscillations of the main mass. The

theoretical results are confirmed by numerical experiments.

1 INTRODUCTION

In various environments, there are many different sources from which energy can be obtained.

Among the main types we highlight the ambient solar energy, thermal sources (based on tempera-

ture variations), radio frequency energy and kinetic energy. In this last direction much research has

been done over the past two decades [2–5]. In particular, this is caused by a significant reduction

in the size and energy use of modern electronic devices, which prompts researchers and indus-

try to open circuits for introducing into these systems numerous power supplies that can collect

energy from the environment for an unlimited time. Also kinetic energy source has some advan-

tages over other harvesting technologies. Kinetic motion energy sources are available in most

environments, and due to Microelectromechanical Systems (MEMS) technology, kinetic energy

harvesters can be micro-scaled with great success and used in a wide range of applications.

There are three common conversion mechanisms for kinetic energy harvesting, such as piezo-

electric, electromagnetic and electrostatic. Among other things, piezoelectricity is one of the most

attractive transfer mechanisms during mechanical energy conversion. The advantages of using

piezoelectric materials in mechanical vibration systems include their higher specific power and

ease of implementation. Piezoelectric materials have the ability to generate electrical stress dur-

ing deformation due to vibrations (direct impact), and, on the other hand, they are deformed when

exposed to external stress (reverse impact). For the energy collection mechanism, this is a direct

piezoelectric effect that allows the material to absorb the mechanical energy of vibration from its

main structure or environment and converts it into electrical energy, and thus forms the basis of

the vibration-based piezoelectric energy collection area.

Models using various types of oscillations were considered by many researchers [6–10]. Among

models considered are: a cantilever beam carrying a tip mass [11], tuned auxiliary structure [12],
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rotational motion system [13], stall-induced oscillations of airfoils [14, 15]. In the paper [16] the

energy harvesting from dynamic vibration pendulum absorber was studied; works [17] and [18]

considered devices based on a nonlinear vibration absorber. Dual-mass vibration energy har-

vester with force excitation was investigated in works [19,20]. Such device is able to harvest more

energy than the traditional single degree-of-freedom one, when subjected to harmonic force or

base displacement excitations. The efforts to increase various aspects of efficiency the harvester

have been undertaken in papers [21–24].

In the present report we consider the 2–DoF mechanical system with piezoelectric element

PZE attached under the external harmonic excitation in the vicinity of resonance. We are mainly

interested in the mathematical side of the problem, in particular, the development of an approach

that allows us to obtain analytical expressions to describe the desired parameters of the absorber

and PZE. The paper is organized as following. In Section 2 the problem formulation and some

auxiliary manipulations are given. In Section 3 the tuning methodology for reducing the maximal

responses of the host structure is described. Section 4 deals with optimization of piezoelectric

characteristics in order to maximize the harvested power.

2 FORMULATION OF THE PROBLEM

The primary structure is assumed to be a single degree of freedom system as shown in

Fig. 1. The mass and stiffness of the primary structure are represented by mp and kp respec-

tively, whereas the energy harvesting DVA has an mass, stiffness and damping as ma, ka, and ca,

respectively. The electrical capacitance and resistance are denoted by Cp and Rl, respectively.

The parameter θ characterizing the coupling between the electrical and mechanical parts of the

harvester. The dynamics of the primary mass (mp), the absorber mass (ma), and voltage flow can

be expressed by three coupled ordinary differential equations in the following form

mpẍp + kpxp − ka(xa − xp)− ca(ẋa − ẋp) = F0 exp
iωt,

maẍa + ca(ẋa − ẋp) + ka(xa − xp)− θv = 0, Cpv̇ +
v

Rl
+ ẋa = 0,

(1)
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Fig. 1. Energy harvesting DVA attached to a primary system

where xp and xa are the displacements of the primary mass and absorber, respectively. The volt-

age across the load resistor is denoted by v. The electromechanical coupling and the mechanical

force are modeled as proportional to the voltage across the piezoceramic in second equation.

The third Equation (1) is obtained from the electrical circuit, where the voltage across the load

resistance arises from the mechanical strain through the electromechanical coupling, and the ca-

pacitance of the piezoceramic Cp. The primary structure is assumed to be driven by a harmonic

excitation with amplitude F0.

In terms of dimensionless parameters the amplitudes of steady state harmonic responses are

Xp = F0
−(2ζα+ 1)µg2 + µκ+ [−µαg3 + [(2ζ + κα)µ+ p2)g]i

∆Re + i∆Im
,

Xa = −F0
µg2 + (αµg3 − βg)i

∆Re + i∆Im
, V = F0

µ
√
βg(−2ζg + κi)

∆Re + i∆Im
,

(2)

where µ = ma/mp is the mass ratio; ωp =
√

kp/mp, ωa =
√
ka/ma − undamped natural frequen-

cies of the primary system and the DVA considered separately; κ = ω2
a/ω

2
p − the tuning factor;

g = ω/ωp − the forcing frequency ratio; ζ = ca/(2maωp) − the damping ratio;
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α = ωpRlCp, β = θ2
Rl

mpωp
,∆Re = −[2ζαµ2 + (2ζα+ 1)µ]g4 + (1κµ2 + [2ζ(α+ β)+

+ β(κ+ 1)]µ)g2 − βκµ, ∆Im = −αµg5 + [(2ζ + ακ)µ2 + [α(κ+ 1) + 2ζ]µ+ β]g3−

− [(κ(α+ β) + 2ζ)µ+ β].

(3)

Thus, from formulas (2), (3) we can write the relative responses of the primary mass and absorber

as follows

|X0|
(X0)st

=

√
[−(2ζα+ 1)µg2 + βκµ]2 + g2[−αµg2 + (2ζ + ακ)µ+ β]2

∆2
Re +∆2

Im

,

|V |
(X0)st

= µg

√
β(4ζ2g2 + κ2)

∆2
Re +∆2

Im

,

(4)

where (X0)st = F0/k0 – static displacement of the primary mass.

3 MINIMIZING THE RESPONSES OF THE PRIMARY MASS

3.1 Preliminary Analysis

Our first goal is to minimize the peaks of the amplitude-frequency curve, that is, the choice

of such parameters of the absorber and piezoelectric element, in which the maximal possible

responses of the host system do not exceed a certain value under condition of proximity of fre-

quencies ω and ω0.

Let us consider a function

f(µ, k, h, γ, α, β) =
a3γ

3 + a2γ
2 + a1γ + a0

b5γ5 + b4γ4 + b3γ3 + b2γ2 + b1γ + b0
, (5)
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a3 = µ2α2, a2 = µ2(α2h2 − 2α2k + 1)− 2µαβ, a1 = µ2(h2 + κ2α2 − 2κ)+

+ 2µ(h+ ακ)β + β2, a0 = µ2κ2, b5 = µ2α2, b4 = µ4α2h2 + 2µ3α2(h2 − κ)+

+ µ2[α2(h2 − 2κ− 2) + 1]− 2µαβ, b3 = µ4(h2 + α2κ2)− 2µ3[h2(α2 − 1 + αβ)−

− α2κ2 + κ(1− α2)] + µ2[h2(1− 2α2 − 2αβ) + α2κ2 + 2κ(2α2 + 2αβ − 1)− 2]+

+ 2µβ(h+ ακ+ 2α) + β2, b2 = µ4κ2 − 2µ3[h2 + κ2(α2 − 1 + αβ)− κ]+

+ µ2[h2(−2 + α2 + 2αβ + β2) + κ2(1− 2α2 − 2αβ)− 2κ(−2 + α2 + αβ) + 1]+

+ 2µβ(2h− ακ+ α− κβ)− 2β2, b1 = −2µ3κ2 + µ2{h2 − κ2[2− (α+ β)2]− 2κ}+

+ 2µβ[h+ κ(α+ β)] + β2, b0 = µ2κ2,

(6)

where h = 4ζ2, γ = g2, f = (|X0|/(X0)st)
2.

Suppose that values for parameters µ, h, κ, α, β are selected. We are interested in the case

when the ordinate values at the peaks of the amplitude curve y = f(γ) coincide. The extremum

points of the function are determined from the condition df/dγ = 0 or P1(γ) = 0, where the

polynomial P1(γ) is of the seventh degree.1

Theoretically, we can exclude the explicit presence of a variable γ by considering the condition

P2(ξ) = 0, where P2(ξ) is the resultant of polynomials P1 and P on γ. P2(xi) is a fifth-order

polynomial on ξ, and the optimal values of the absorber and PZE are determined as the solution

of the problem of the conditional extremum of an implicit function P2(ξ) = 0 with a restriction

DisP2(ξ) = 0, where DisP2 is the discriminant of the polynomial P2. The difficulty lies in the fact

that the analytical expressions are too bulky (more than 106 signs) for computer processing and

subsequent analysis. The direct numerical analysis based on grid search is quite expensive,

because even with a given value of µ, four parameters remain for variation.

3.2 Mathematical Reformulation of the Task

With the aim to simplify the computational algorithm, we shall use the approach proposed in

the article [26, 27]. Its idea is as follows. Suppose that the parameters µ, κ, h, α, β are set, while

1Note that in the general case the fraction (5) is irreducible, and the roots of the polynomial P1(γ) cannot be written
in explicit form.
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Fig. 2. Geometric representation

we are interested in a configuration in which the function f(γ) takes the same values at the points

of maximum γ1, γ2. Geometrically, this means that the curve y = f(γ) has a common tangent at

the points γ1, γ2 (Fig. 2).

Let the values of parameters µ, h, κ, α, β are determined, and ξ be some fixed number. Then

the equality f = 1/ξ is equivalent to the following polynomial equation

P (γ) , b5γ
5 + b4γ

4 + (b3 − ξa3)γ
3 + (b2 − ξa2)γ

2 + (b1 − ξa1)γ + b0 − ξa0 = 0. (7)

A consequence of the requirement of the equal peaks is the presence of two pairs of multiple (real)

roots in the polynomial P (γ), that is, it can be represented in the form

P (γ) = µ2(α2γ + L)(γ2 −Mγ + κN)2 > 0,M > 0, N > 0, M2 − 4κN > 0, (8)

where L,M,N are some unknown parameters. Then, we conclude from (8) that expression

γ4{α2(h2 − 2κ+ 2M − 2) + 1− 2αβ − L+ 2µα2(h2 − κ) + µ2h2α2}+ γ3{h2(1− 2α2)+

+ 2hβ + α2κ2 + 2κ(2α2 − α2N + αβ − 1) + 2LM − α2M2 + α2(1− ξ) + 4αβ + β2+

+ 2µ[h2(1− α2 − αβ) + κ(α2κ+ α2 + 2αβ − 1] + µ2[h2(1− 2αβ) + α2κ2]} − 4hβγ2+

+ γ2{h2[α2(1− ξ)− 2] + κ2(1− 2α2) + 2κ[−LN + α2(MN + ξ − 1)− 2αβ + 2]− LM2−

(9)
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− ξ + 1 + 2αβ(ξ − 1)− 2β2 − 2µ[h2(1− αβ) + κ2(−1 + α2 + αβ) + κ(−1 + 2αβ + β2)]+

+ µ2[h2(1− 2αβ) + α2k2]}+ γ{(1− ξ)[h2 + 2hβ + α2κ2 + 2κ(αβ − 1) + β2]+

+ κ(2LMN − α2κN2 − 2κ) + 2µκ[κ(−1 + αβ) + β2] + µ2κ2β2}+ κ2(1− f − LN2)

is equal to zero identically on γ, therefore the coefficients on γs(s = 0, 4) should be equal to zero.

From the coefficient on γ4 we express

L = µ2h2α2 − 2µα2(αβ − h2 + κ) + α2(h2 − 2M − 2κ− 2) + 1, (10)

and from the constant term we get the target function in the following form

ξ = 1−N2[µ2h2α2 − 2µα2(αβ − h2 + κ) + α2(h2 − 2M − 2κ− 2) + 1]. (11)

After substituting the expressions for ξ and L we have three other conditions (the coefficients on

γ3, γ2, γ)

ϕ1 =

2∑
j=0

A1jh
j = 0, ϕ2 =

4∑
j=0

A2jh
j = 0, ϕ3 =

4∑
j=0

A3jh
j = 0, (12)

where coefficients Ajs(κ,M,N, α, β) are presented in Appendix A.

Assuming the value of µ to be known, we obtain the conditional extremum problem for the

function ξ of six variables h, κ, α, β,M,N with three constraints (12). This problem can be solved

in the usual way with the help of Lagrange multipliers. As an alternative, equalities (12) can

be considered as an implicit definition of three functions on three independent arguments, for
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example, M(h, κ, α), N(h, κ, α), β(h, κ, α). Their partial derivatives on arguments h, κ, α can be

expressed from the system

∂ϕj

∂ηs
+

∂ϕj

∂M

∂M

∂ηs
= 0,

∂ϕj

∂ηs
+

∂ϕj

∂N

∂N

∂ηs
= 0,

∂ϕj

∂ηs
+

∂ϕj

∂β

∂β

∂ηs
= 0, η = (h, κ, α), j, s = 1, 2, 3 (13)

and substituted into the equalities

∂f

∂ηj
+

∂f

∂M

∂M

∂ηj
+

∂f

∂N

∂N

∂ηj
+

∂f

∂α

∂α

∂ηj
= 0, j = 1, 2, 3. (14)

System (14) determines the stationary points η0 of the problem.

Remark. Both approaches described above are still very cumbersome from the point of view

of the analytical representation, although less cumbersome than the calculations mentioned in the

previous section. Although the number of variables and additional relations has increased, the

expressions for ϕj are ”observable” (in contrast to P2, DisP2). This method of solution can be

considered as a kind of ”diversification” task , when instead of two extremely bulky expressions,

four ”moderately bulky” ones are considered - from the point of view of analysis, it is easier to

reveal the existing relationships.

3.3 An Asymptotic Analysis

At the moment, we are not sure that the exact solution to the problem can be presented in

explicit form. However, with the goal of applied orientation, we can use the asymptotic approach.

Let us consider the following sums

h = h0 + βh1 + · · · , κ = κ0 + βκ1 + · · · , M = M0 + βM1 + · · · , N = N0 + βN1 + · · · . (15)

9
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where three dots means terms of higher order on β. The main difficulty is finding the zeroth approx-

imation, since the system of equations 12 remains essentially nonlinear. Nevertheless, reducing

the number of variables by one allows us to find additional relationships, which leads to the solution

of the problem.

The expression for ϕ1 is now linear on h2, and ϕ2, ϕ3 are biquadratic ones. It is possible to

express h2 from first equality (12) and substitute into two others, however the resulting expressions

are too large and their direct analysis is difficult. At the same time, the expression

ϕ̃2(h
2) , ϕ2(h

2)− α2ϕ3(h
2) (16)

is also linear with respect to h2. Having written the resultant of polynomials ϕ1(h
2), ϕ̃2(h

2), we

obtain the necessary condition for compatibility of the system (12)

res1 = (α4κN + α2M + 1)2[µ1M
2 − 4M − µ1N

2 + 2µ1κN − µ3
1κ

2 − 2µ1κ(µ1 − 1) + 4] = 0. (17)

Here we denote µ1 = µ+ 1 for convenience sake.

The first multiplier is obviously positive, hence

µ1M
2 − 4M − µ1N

2 + 2µ1κN − µ3
1κ

2 − 2µ1κ(µ1 − 1) + 4 = 0. (18)

As one can see, the obtained connection between M,N, κ and µ1 does not contain the param-

eter α.2 We can present M in the following form

M =
1

µ1
(2±R), R =

√
µ2
1N

2 − 2µ2
1κN + µ4

1κ
2 + 2µµ2

1κ− 4µ. (19)

2This fact also follows from physical considerations, but we are interested in the mathematical confirmation of this
fact.
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Now we write the resultant of the polynomials ϕ1(h
2), ϕ3(h

2) and substitute M in it. The resulting

expression can be represented as polynomial on R:

res2(R) = B4R
4 +B2R

2 +B0 +R(B3R
2 +B1), (20)

where coefficients Bj are presented in Appendix B.

Getting rid of irrationality (radical R) in equality res2 = 0, we come to the necessary condition

of solvability the system (12) (with β = 0) as σ2
1σ2 = 0, where

σ1 = µ2
1α

8N4
0 + 4µ1α

6N2
0 − 2α4{µ2

1N
2
0 − 4µ2

1κ0N0 − 2[µ4
1κ

2
0 + 2µ2

1κ0(µ1 − 1)− 4µ1 + 3]+

+ 4µ1α
2 + µ2

1, σ2 = N5
0 −N4

0 [−2κ0(µ
2
1 + 1) + 1] + 2µ1κ0N

3
0 [2µ1κ0(µ1 + 2)− 2]+

+ 2µ2
1κ

2
0N

2
0 (−2µ2

1κ0 + µ1 + 2) + µ4
1κ

3
0N0(µ

2
1 − 4) + µ6

1κ
4
0.

(21)

The polynomial σ2 has the fifth order on N0 and the fourth order on κ0, however with substitution

N0 = µ1κ0Ñ we have

κ0 = − µ2
1Ñ

4 − 4µ1Ñ
3 + 2Ñ2(µ1 + 2)− 4Ñ + 1

µ2
1Ñ [µ2

1Ñ
4 − 2Ñ3(µ2

1 + 1) + 2Ñ2(µ1 + 2)− 4Ñ + 1]
. (22)

At this point we we can consider Ñ as an independent parameter (argument) and go back up the

chain κ0(Ñ , µ1) −→ M0(Ñ , µ1) −→ h0(Ñ , µ1) −→ ξ0(Ñ , µ1), and expression to be optimized is

ξ0(Ñ , µ1) = −4(µ1 − 1)2Ñ3[µ2
1Ñ

4 − Ñ3(µ1 + 1)2 + 2Ñ2(µ1 + 2)− 4Ñ + 1]

[µ2
1Ñ

4 − 2Ñ3(µ2
1 + 1) + 2Ñ2(µ1 + 2)− 4Ñ + 1]2

. (23)

It is easy to verify that ∂ξ0/∂µ1 > 0, that is, with an increase in µ, the value of ξ0 increases (and f

decreases), which is logically clear – as the mass of the absorber grows, its efficiency increases.
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Then we can assume that value for µ is given, and only Ñ should be chosen to maximize

the value of ξ0. The equation dξ0/dÑ = 0 has six complex solutions, one negative (not suitable,

because Ñ should be positive) and one positive

Ñ⋆ =

√
3µ1 + 1− 1

µ1
=

√
4 + 3µ− 1

1 + µ
, (24)

which brings the maximum for ξ0

ξ0 =
µ[(8 + 9µ)2(16 + 9µ) + 128(4 + 3µ)3/2]

(64 + 80µ+ 27µ2)2
(25)

After substitution of Ñ⋆ and subsequent simplifications we also have

M0 =
2

3

128 + 184µ+ 69µ2 + (32 + 84µ+ 27µ2)
√
4 + 3µ

(1 + µ)(64 + 80µ+ 27µ2)

κ0 =
8

3

16 + 23µ+ 9µ2 + 2(2 + µ)
√
4 + 3µ

(1 + µ)2(64 + 80µ+ 27µ2)
,

h20 =
2

3

64 + 248µ+ 255µ2 + 81µ3 − 2(16 + 20µ+ 9µ2)
√
4 + 3µ

(64 + 80µ+ 27µ2)(1 + µ)3
.

(26)

To find the next group of coefficients h1, κ1,M1, N1, we equate to zero the coefficients in the ex-

pansions in ϕj . In contrast to the zeroth approximation, the resulting system is linear, so the three

coefficients are expressed in terms of the fourth, for example

κ1 = κ11h1 + κ10, M1 = M11h1 +M10, N1 = N11h1 +N10, (27)

where κ10, · · · , N11 are rational functions of the arguments α, µ (due to cumbersomeness, we do

not give them here).

12
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Table 1. Values of ξ1(αi), ξ0 = 0.991

αi ξ1(αi), 10
−3 αi ξ1(αi), 10

−3

0.1 1.53− 0.046h1 3 −5.29− 1.97h1

0.3 −0.4− 0.063h1 8 −2.55− 13.75h1

0.5 −2.24− 0.097h1 12 −1.82− 30.88h1

1 −5.42− 0.26h1 20 −1.2− 85.76h1

Substituting the found expressions in (11), we obtain

ξ = ξ0 + β[h1ξ11(α, µ) + ξ10(α, µ)] + · · · (28)

A numerical analysis shows that, in the assumed range of changes of α, µ the quantity ξ11 is

negative, therefore, the condition ξ1 > 0 requires the positiveness of ξ10. 3 However, this is only

performed for small values of α (see Table 1). Thus, we conclude that the presence of PZE cannot

increase the value of ξ, that is, reduce the maximum amplitude of oscillations of the primary mass.

Also an increase in the value of β which is related to constant θ (remind that θ characterizes the

coupling between the electrical and mechanical parts of the harvester), according to (28), may

lead to increase of the magnitude of responses of the host system. By this reason it is likely to

choose θ no more than of order 10−1. This conclusion is an agreement with results of [7,19].

3.4 Numerical Testing

The numerical experiments with varying the system parameters show a very insignificant effect

of the characteristics of the piezoelectric element on the decrease in the amplitude of oscillations

of the main mass. At the same time, if the parameter β has an order of magnitude greater than

10−2, then the amplitude of the oscillations increases significantly (Fig. 3). Moreover, due to

the continuous dependence of the function ξ on the parameter β, the optimal absorber values

for system (1) will differ very slightly from the degenerate case β = 0, that is, the values of κ, h

3Generally speaking, the value for h1 can be chosen negative, although not too large in module due to limitation
h0 + βh1 > 0. However, such a choice cannot improve the situation.

13
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Fig. 3. The amplitude of the oscillations

determined according to formulas (26).

Thus, we can give the following recommendations for choosing system parameters:

– the parameters of the absorber, when known the mass ratio µ, are taken related to values of

κ0, h0;

– the parameter β should be taken sufficiently small (for example 0.01 with µ = 0.02);

– the value of parameter α practically does not affect the value of ξ (one can take an arbitrary

value in the interval [0.01, 10]).

4 OPTIMIZATION THE HARVESTING POWER

Our second task is to determine the parameters of the piezoelectric element in order to maxi-

mize energy collection. We assume that parameters of the DVA are taken according to foregoing.

Depending on the specified quality criterion, the procedure for determining these parameters may

vary. We will consider the following options.

A) Provided that the frequency of the external action is unknown exactly, but close to the

resonant one (γ ∈ [γ(1), γ(2)]), select the parameters α and β so that the minimum value of the

14
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Fig. 4. The typical view of the surface (29)

objective function

Φ(α, β, γ) =
V 2

Rl
=

µ2β(h2γ + κ2)

b5γ5 + b4γ4 + b3γ3 + b2γ2 + b1γ + b0
(29)

with respect to argument γ turned out to be the greatest possible (with respect to α, β). Mathe-

matically, this task is easy enough. We have a system

∂Φ

∂γ
= 0,

∂Φ

∂α
= 0,

∂Φ

∂β
= 0. (30)

The derivative ∂Φ/∂α is linear on α, and two others are quadratic on β. Their resultant is high

order polynomial on γ, however it has no real roots in vicinity of γ0 = 1. Hence, the lowest values

on γ are taken on the sides of the interval. The relevant values of α, β are calculated accordingly

to numeric values of µ, γ(1), γ(2). The typical view of the surface (29) is presented in Fig.4.

B) As another criterion, we can take the ”neutral” requirement of maximizing the averaged

(with respect to γ) value of the function Φ over the interval [γ(1), γ(2)]. Taking into account that the

expression considered is representable as the sum of tabular integrals, from a technical point of

view, solving this problem does not seem complicated. The corresponding calculations can be

performed analytically (a computational procedure is similar to that used in the previous case) or

15
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Fig. 5. The result of maximizing the averaged value of the function Φ

numerically. Results are presented in Fig.5.

5 CONCLUSIONS

In this paper, we consider an electro-mechanical system consisting of a primary element and a

dynamic absorber and a piezoelectric element connected to it. The goal is to reduce the vibration

of the primary structure and at the same time collect the energy through the interaction of the

host system and the vibration absorber. An analytical and numerical study of the dynamics of the

system is carried out. It is shown that the piezoelectric element practically does not improve the

effect of the absorber in terms of reducing the oscillations of the main mass. At the same time,

piezoelectric element with improper selected parameters can significantly increase the amplitude

of these oscillations. The problem of collecting vibrational energy is also considered. Relations

are found between the parameters of the piezoelectric element at which the energy collected has

a maximum value.
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APPENDIX A: EXPRESSIONS FOR COEFFICIENTS AJS(κ,M,N, α, β)

A12 = −µ1(2µ1α
2M + µ1α

4N2 + µ1 − 2α2 − 2µαβ), A11 = −2β,

A10 = −3α2M2 + 2M(−α4N2 + 2µ1α
2κ+ 2α2 − 1 + 2αβ) + α2N2(2µ1α

2κ+ 2α2 − 1 + 2αβ)+

+ 2α2κN − µ2
1α

2κ2 + 2κ[µ1− α2(µ1 + 1)− αβ(2µ1 − 1)] + 2− 4αβ − β2,

A24 = −µ2
1α

4N2, A23 = 0, A22 = µ2
1α

2M2 − 2α4MN2 + α2N2[2µ1α
2[κ(µ1 + 1)− µ2

1 + 2α2 − 1+

+ 2αβ(µ2
1 + 1)] + 2µ2

1α
2κN + 2(µ1 + αβ)− µ2β2, A21 = 4β,

A20 = −M2(2µ1α
2κ− 1 + 2α2 + 2αβ) + 2α2MN [N(2α2κ− 1 + 2αβ) + κ] +N2{−4µ1α

4κ2+

+ 2α2κ[µ1 + 1− 2α2 − 2αβ(µ1 + 1)] + 2α2 − 1 + 4αβ(α2 + 1)− 4α2β2} − 2κN(2µ1α
2κ+ 2α2−

− 1 + 2αβ) + µ1κ
2(−µ1 + 2α2 + µαβ)− 2κ(µ1 + 1− 2µ1αβ + µβ2) + 2β2,

A34 = −µ2
1α

2N2, A33 = −2µ2
1α

2βN2,

A32 = −2α2MN(N + µ2
1κ)−N2[(µ2

1α
4κ2 − 2µ1α

2k(µ1 + 1) + 1− 2α2]+

+ 2αβ(µ2
1α

2κ− 1) + µ2
1α

2β2, A31 = 2N2β(−2α2M + 2µ1α
2κ− 1 + 2α2 + 2αβ),

A30 = −4α2κM2N + 2MN{−α2N [α2κ2 + 2κ(1− αβ) + β2] + κ(2µ1α
2κ+ 2α2 − 1 + 2αβ)}+

+N2{2µ1α
4κ3 + 2α2κ2[α2 − 2µ1 + αβ(2µ1 + 1)] + 2κ[1− 2α2 + αβ(2α2 − 3) + α2β2(µ1 + 2)]+

+ β2(2α2 − 1 + 2αβ)}+ κ[κ(2µ1 − 2µαβ − µ2β2 − 2µβ2].

APPENDIX B: EXPRESSIONS FOR COEFFICIENTS BJ

B4 = α6N0(3N0 − 4µ2
1κ0), B3 = 2µ1N

2
0α

8(−N2
0 + µ2

1κ0N0 + µ2
1κ

2
0)+

+ 4κ20N0α
6[N0(−µ2

1κ0(µ1 − 1) + µ1 − 3) + 3µ2
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4(−4N0 + 5µ2
1κ0),
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1κ

2
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10N4
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8N2
0 [N

2
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2
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2
0]+

+ µ1α
6N0[5µ1N

3
0 − 4µ1κ0N

2
0 (µ

2
1 − 1)−N0(11µ

3
1κ

2
0 − 4) + 4µ2

1κ0(µ
3
1κ

2
0+
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