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We study the self-propulsion of a charged colloidal particle that releases ionic species using theory
and experiments. We relax the assumptions of thin Debye length and weak nonequilibrium effects
assumed in classical phoretic models. This leads to a number of unexpected features that cannot be
rationalized considering the classic phoretic framework: an active particle can reverse the direction
of motion by increasing the rate of ions release and can propel even with zero surface charge.
Our theory predicts that there are optimal conditions for self-propulsion and a novel regime in
which the velocity is insensitive to the background electrolyte concentration. The theoretical results
quantitatively captures the salt-dependent velocity measured in our experiments using active colloids
that propel by decomposing urea via a surface enzymatic reaction.

To overcome random thermal fluctuations, microscopic
active objects, such as bacteria [1] and molecular mo-
tors [2], convert chemical energy into motion. Inspired
by nature, there has been an extensive effort in devel-
oping biomimetic synthetic active particles that employ
catalytic chemical reactions to self-propel [3, 4]. Sus-
pensions of these colloid-sized particles have been used
as a model to investigate nonequilibrium active systems
[5–8], ordering and phase transitions [9, 10] and collec-
tive communication [11–13]. Functionalized active col-
loids are also potential candidates for novel cancer ther-
apies [14, 15], cargo transport [16] or other biomedical
applications [17, 18]. In order to control the dynamics of
active particles, be that for technological applications or
to study their collective motion, one has to understand
the mechanism that couples their chemical activity to
motion.

Chemically active particles with a number of differ-
ent propulsion mechanisms have been considered [19–25].
They rely on establishing a gradient of chemical poten-
tial along the surface of the particle, which drives its mo-

tion via phoretic flows [26, 27]. Typically, the gradient of
chemical potential is introduced by an asymmetric chem-
ical activity that sustains gradients of solutes. For active
colloids propelling by the generation of ionic species, the
classic theory of phoresis [26, 28] has been widely applied
[29–35]. However, the theory of phoresis was developed
to study the motion of colloids in weak gradients of elec-
trolytes [28] and thin Debye layers [36]. It seems natu-
ral to ask whether the same framework is applicable to
chemically active particles, which can be driven far from
equilibrium or display a thick Debye layer.

To address this question, we investigate a general
model for a charged active colloid that propels by re-
leasing ionic species. We find that the surface flux of
ions leads to a strong coupling between the solute trans-
port and the charge balance in which the different diffu-
sivity of positive and negative ions plays a fundamental
role. Such coupling results in behaviors that cannot be
explained using the standard phoretic models [26, 28],
which break down for active colloids that release ions at
large rates. To demonstrate the relevance of the model,
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we compare its predictions with our measurements of the
velocity of enzyme-powered colloids that propel by de-
composing urea into ammonia and carbon dioxide.

Consider a system containing a spherical non-
conductive particle of radius R that is homogeneously
charged with charge density qs and is suspended in an
electrolyte solution. We assume that the electrolyte is
a salt with unit valence and number density n∞, which
is dissolved in a solvent with shear viscosity η and den-
sity ρ. The particle is chemically active and releases ions
from a portion of its surface with a surface flux Q, which
we assume axisymmetric. We denote the excess number
density of the cation with c+ and the excess number den-
sity of the anion with c−, with their diffusivity given by
D+ and D−. See Figure 1 for an illustration. The model
is applicable to cases where ions are released by chemi-
cal reactions or by dissolving salt particles, in the limit
of irreversible decomposition of neutral species into ions.
The asymmetric chemical activity of the particle drives

FIG. 1. A non-conductive particle with surface charge density
qs is suspended in an electrolyte solution, of number density
n∞, and releases ions from a portion of its surface with a
surface flux Q. The ions already in solution are displayed in
black, the excess ions in red.

its motion at a velocity V ez, with ez the unit vector along
the z-axis. The ionic species released by the particle drive
the system out of equilibrium introducing an additional
charge density and electric field, whose interaction results
in an asymmetric electrostatic force density that propels
the particle. Here we neglect thermal fluctuations, which
can be relevant in the case of self-propelled nanoparticles
[37–39].

To evaluate the velocity of the active particle, we con-
sider the balance of number density of the excess ionic
species rescaled with n∞. We assume that the species are
dilute and that the system is at steady state. We further
neglect advection as the Peclet number, Pe = V R/D±,
quantifying the importance of advection compared to dif-
fusion is much smaller than one for colloidal particles [40].
Under these assumptions, the dimensionless balance of

number density reads:

∇2c± ±∇ · (c±∇Φ) = 0 , (1)

with the dimensionless electric potential Φ scaled with
the elementary charge e and the thermal energy kBT .
The excess ionic species vanish at infinity and are
produced at the surface with a dimensionless flux
(∇c+ + c+∇Φ) · n = Q∗ f(θ) and (∇c− − c−∇Φ) · n =
β−1Q∗ f(θ), which applies at r = 1. β = D−/D+ de-
notes the ratio of diffusivity and Q∗ = QR/D+n∞ con-
trols the ratio of the characteristic excess number den-
sity to the number density of the ionic species already in
the solution. When the surface flux is small, Q∗ � 1,
the number density of the excess ionic species is much
smaller than n∞ and the system is close to equilibrium.
Conversely, when Q∗ � 1, the number density of the
excess ionic species is much larger than n∞ and the sys-
tem is significantly out of equilibrium. The function f(θ)
determines the distribution of the surface chemical ac-
tivity and can be decomposed in Legendre polynomials
f(θ) =

∑∞
l=0 flPl(cos θ), with fl its multipole moment.

The ionic species already dissolved in the solution
are at equilibrium with respect to the electric potential.
Their distribution is given by the Boltzmann distribu-
tion n∞ exp (±eΦ/kBT ). Therefore, the dimensionless
balance of charge density in the fluid phase satisfies a
modified Poisson-Boltzmann equation:

∇2Φ =
κ2

2
(c− − c+) + κ2 sinh (Φ) , (2)

with κ the inverse of the Debye length, normalized by the

particle radius, κ =
√

2e2n∞R2

kBTε
, with the permittivity of

the fluid ε. We consider zero electric potential at infinity,
and a uniform surface charge density, −∇Φ·n = q∗s , with
q∗s = qsRe/kBTε.

For small Reynolds numbers, Re = ρV R/η � 1,
the velocity of the particle, made dimensionless with
e2ηR/(kBT )2ε, is calculated using the reciprocal theo-
rem, which involves an integral over the fluid volume, Ω,
outside the particle [40–42]:

V = − κ2

12π

∫
Ω

f · (v̂ − ez) dΩ , (3)

with v̂ the velocity field around a sphere translating
with unit velocity along ez and the electrostatic force
density f = [c+ − c− − 2 sinh (Φ)]∇Φ. The propul-
sion velocity is a function of four dimensionless numbers:
V = V (q∗s , Q

∗, κ, β). We investigate next its functional
dependence on the dimensionless numbers using asymp-
totic analysis and numerical simulations.
Particle velocity near equilibrium in the Debye-Hückel

limit. — To investigate the mechanisms leading to self-
propulsion at arbitrary κ, we find solve the governing
equations in the limit of small Q∗ and q∗s using a regular
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perturbation expansion [40]. We consider the case of a
monopolar and dipolar surface flux, fl = 0 for l > 1. We
find that the leading-order velocity is

V = Q∗
2 f0f1(1− β)2

β2
g(κ) +Q∗q∗s

f1(1− β)

β
h(κ) + hot ,

(4)
which is valid for arbitrary values of κ. The positive
functions g(κ) and h(κ) encode the dependence on the
dimensionless Debye length and are reported in the sup-
plementary material [40]. By setting the monopolar term
to zero f0 = 0, Eq. (4) recovers the velocity found by
Brown et al. [43], who considered a dipolar ion release
only. In the case β = 1, the leading-order terms given
by Eq. (4) vanish, and the velocity is proportional to
higher-order terms. The well-known chemiphoretic con-
tribution for equal ionic diffusivity does not appear in Eq.
(4) because it depends non-linearly on the surface charge
density [28]. To assess the validity of the asymptotic the-
ory, we tested Eq. (4) using numerical simulations [40].

The second term in the right hand side of Eq. (4)
stems from the interaction of the charge density gener-
ated by the excess ions with the equilibrium electric po-
tential. It represents the standard phoretic contribution
at small surface charge densities and predicts a veloc-
ity whose sign depends on q∗s (1 − β). For thin Debye
layers, κ � 1, this term recovers the velocity predicted
using the framework of Prieve et al. [28]. Conversely,
the first term on the right-hand side of Eq. (4) was over-
looked by previous works [31, 34, 43] and shows that
the particle propels even if not charged q∗s = 0. This
mechanism is fundamentally different from the standard
phoretic mechanisms that rely on the existence of an in-
teraction potential between the solute molecules and the
surface of the particle [26, 28, 44]. Here, the motion of the
particle originates entirely from the surface flux of ions,
which couples transport of species and the balance of
charges. This mechanism is relevant when β 6= 1, which
is usually the case in experiments [45], and highlights the
importance of considering the different ionic diffusivities
in out-of-equilibrium systems. The first term in Eq. (4)
is always positive and leads to motion towards the por-
tion of the surface having the largest flux magnitude.

If the two terms in Eq. (4) have opposite signs, the
direction of motion is determined by the prefactors and
by the functions g(κ) and h(κ). For large Debye lengths,
κ� 1, we find g ∝ κ4 and h ∝ κ2. In this limit, the sec-
ond term in Eq. (4) dominates over the first one and the
direction of motion is determined by Q∗q∗s (β− 1). In the
case κ� 1, we find the asymptotic behavior g(κ) ∝ κ−1

and h(κ) ∝ κ−1, with the two functions having the same
order of magnitude limκ→∞ h(κ)/g(κ) = 2 [40]. It is thus
possible to reverse the direction of motion by changing
the salt concentration, the particle size or the surface
flux, as observed in the experiments of Brown and Poon
[46].

Numerical results for a Janus particle. — In many
practical situations the flux of ionic species and the sur-
face charge can be large and nonlinear effects become
dominant. We investigate the velocity of a particle at
non-vanishing Q∗ and q∗s using finite element simulations
[40]. We assume that half of the surface of the particle
releases ionic species: f(θ) = 1 for θ ≤ π

2 , f(θ) =
0 for θ > π

2 , and Q∗ > 0.

Recent works [30, 33, 34] applied the framework of
ionic phoresis [28], which assumes a thin Debye-layer
κ � 1, to study chemically active particles. It is not
clear to what extent the theory developed for weak ex-
ternal gradients of ionic species can be applied to chem-
ically active particles far from equilibrium. To address
this point, we compare in Figure 2(a) the velocity pre-
dicted by Eqs. (1)-(3) to that predicted using the model
of Prieve et al. [28, 40]. We consider unequal ion diffusiv-
ity β = 2 and a thin Debye length κ2 = 1000, we expect
the model of Prieve et al. [28] to be valid for these pa-
rameters. Instead, Figure 2(a) shows that the standard
ionic phoretic model breaks down for systems driven suf-
ficiently far from equilibrium Q∗ ≈ 1 and, for Q∗ � 1,
it can fail to predict the correct direction of motion. We
further discuss the deviation between the two models in
the supplementary note [40].

In Figures 2(b)-(c) we show that the functional de-
pendence of V on Q∗ can be divided in three regimes.
We find a linear regime at small surface fluxes, Q∗ � 1,
where the standard phoretic mechanisms [26] are domi-
nant and V ∝ Q∗ with a slope that depends on q∗s and κ.
In the case Q∗ � k2, we find a large-flux regime in which
the velocities at different κ collapse onto a mastercurve
and become a function of Q∗κ2 = 2QR3e2/D+kBTε.
This dimensionless group is independent from the back-
ground electrolyte concentration n∞. In this regime,
the propulsion velocity is independent of n∞because the
number density of the excess ionic species is much larger
than n∞. Further, in the limit Q∗κ2 → ∞, the veloc-
ity reaches a plateau that depends weakly on the surface
charge. This is an interesting regime for practical appli-
cations because the propulsion velocity is insensitive to
the background electrolyte concentration and to the sur-
face charge of the particle. Most of the charge density in
the fluid is generated by the excess ionic species and the
surface charge of the particle plays a minor role. At inter-
mediate values of Q∗ the magnitude of the velocity goes
through a maximum, indicating that there is an optimal
value of Q∗, which depends on the system parameters.
Finally, we find that the qualitative conclusions drawn
from the asymptotic theory, Eq. (4), hold beyond the
leading order. This is illustrated in Figure 2(b) where
the velocity for β = 2 appears to change sign at a critical
Q∗, as predicted by Eq. (4) in the case q∗s (1 − β) < 0.
Conversely, in the case q∗s (1− β) > 0 displayed in Figure
2(c), the velocity is always positive as predicted by Eq.
(4).
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FIG. 2. (a) Velocity predicted by our theory compared to the predictions of the standard ionic phoretic model [28, 40] in the
case κ2 = 1000 and β = 2. (b) Velocity computed using simulations for the case β = 2 and q∗s = 1. (c) Dimensionless velocity
computed using simulations for the case β = 2 and q∗s = −1. For Q∗ � κ2 the velocity curves at different κ collapse onto a
mastercurve. In this regime, the velocity is independent from the salt concentration.

Comparison with experiments using enzyme-powered
colloids. — We compare the predictions of the model
with velocity measurements of chemically-active colloidal
particles, R = 1µm. We perform experiments using func-
tionalized particles that propel via the enzymatic decom-
position of urea, CO(NH2)2, into ammonia, NH3, and
carbon dioxide, CO2, catalyzed by urease tethered to
their surface [40, 47]. The products form ions when dis-
solved in water according to the equilibria NH3 +H2O 

NH+

4 + OH− and CO2 + H2O 
 HCO−3 + H+. Recent
works reported a local [48] and global [14] pH increase
when urea is decomposed by the urease-powered colloids.
This suggests that most of the ionic species are intro-
duced by the reaction of NH3 with water. To employ the
theoretical framework developed here, we assume that
the ammonia produced by urease turns instantaneously
and irreversibly into NH+

4 and OH− and that these ex-
cess ionic species drive the motion of the particle. To
test the theoretical predictions, we study the effect of
the background salt concentration on the velocity of the
particles.

The parameters of the model can be measured or es-
timated from the experimental conditions. The ratio of
the diffusion coefficients of NH+

4 and OH− is known and
yields β = 2.7 [49]. The velocity of the colloids is mea-
sured at 200 mM urea in ultrapure water and highly-
diluted phosphate-buffered saline solutions (PBS) with a
maximum dilution ratio of 1 : 250. Since 90% of PBS is
made of the monovalent electrolyte NaCl, we assume that
PBS contains NaCl only. We vary the background elec-
trolyte concentration, n∞, over four orders of magnitude:
from n∞ = 0.1µM, in ultrapure water, to n∞ = 5000µM
in 1 : 250 PBS solutions. Since the concentration of
urea is much larger than the Michaelis-Menten constant,
Km ≈ 1−10mM [50, 51], the enzymes work at their max-
imum rate and the reaction rate is independent of the
local urea concentration. We estimate the surface flux
of ionic species as Q = kcatρur, with the turnover rate
kcat ≈ 104s−1 estimated from previous works measur-
ing ammonia production [52, 53], and the surface density

of enzymes ρur = 1016 m−2 estimated from our previous
work where we used Stochastic optical reconstruction mi-
croscopy (STORM) [54]. The spherical symmetry of the
surface flux is broken by the presence of imperfections of
the particle surface [55] and by an asymmetric enzyme at-
tachment to the silica surface that forms patches [54]. We
assume that these features can be captured by a monopo-
lar and dipolar surface flux f0 = f1 = 1 yielding a flux
distribution f(θ) = 1 + cos (θ). Electrophoretic measure-
ments yield a surface charge density qs = −16µCm−2

[56]. The experiments range from a strongly nonequilib-
rium regime Q∗ ≈ 3000 and thick Debye layer κ ≈ 1 in
ultrapure water, to a near-equilibrium regime Q∗ ≈ 0.5
and a thin Debye layer κ ≈ 150 in 1 : 250 PBS solutions
[57].

The top panel of Figure 3 shows that there is a good
agreement between the velocity measured in the exper-
iments and that predicted by the model for a flux that
is comparable to that expected from our estimate. Re-
markably, at small n∞, the experiments confirm the ex-
istence of plateau where the velocity is independent from
the background salt concentration as predicted by the
simulations, see Figure 2(b)-(c). The plateau is observed
in a regime where Q∗ ≈ 3000 and κ ≈ 1 and therefore
Q∗ � κ2 in which nonequilibrium effects are important.
In the bottom panel of 3 we plot the axial component of
the electrostatic force density, f , around the active col-
loid. According to phoretic models [26], the electrostatic
force density should be confined to a thin layer next to
the particle surface. In fact, Figures 3(a)-(b) show that
far from equilibrium f is spread around the particle. The
break-down of phoretic models is particularly evident in
the case of Figure 3(b) in which κ ≈ 20 and one would
expect f to decay rapidly away from the colloid surface,
which is not the case if Q∗ � 1. As n∞ is increased, the
number density of the background ions becomes com-
parable to the excess ions released by the particle and
the velocity decreases. In this regime, Figure 3(c) shows
that the electrostatic force density is concentrated within
a thin boundary layer as assumed in phoretic models.
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FIG. 3. Top panel: comparison between the magnitude of the
velocity predicted by the simulations and our measurements
in experiments at different background electrolyte concentra-
tion n∞. Error bars represents the standard error of the mean.
Bottom panels (a), (b) and (c): density and contour plots of
the z-component of the dimensionless electrostatic force den-
sity, f , obtained from the simulations. Each plot corresponds
to the case marked with the same letter in the top panel.

Conclusions. — We have shown that the nonequilib-
rium nature of active colloids that release ions can lead
to qualitatively different behaviors compared to standard
phoretic mechanisms. The features we identified are rel-
evant when the diffusion coefficients of the ionic species
are different and cannot be explained using the classic
ionic phoretic approaches, which break down if the par-
ticle is significantly driven out of equilibrium by its chem-
ical activity. The predictions quantitatively explain the
dependence of the velocity of urease-powered colloids on
the background concentration of electrolytes measured in
our experiments, thus confirming that the regimes inves-
tigated here are relevant for experiments in electrolyte
solutions. The effects discovered here shed light on the
mechanisms behind the propulsion of active colloids far
from equilibrium. Exploiting the new phenomena dis-
cussed could open new possibilities for engineering their
cooperative motion and for tuning their interactions with
confining surfaces.
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R. Kapral, Soft Matter (2020).
[40] See supplementary material, which contains Refs. [28, 34,

58–63] .
[41] L. G. Leal, Advanced transport phenomena: fluid me-

chanics and convective transport processes, Vol. 7 (Cam-
bridge University Press, 2007).

[42] H. Masoud and H. A. Stone, J. Fluid Mech. 879 (2019).
[43] A. T. Brown, W. C. Poon, C. Holm, and J. de Graaf,

Soft Matter 13, 1200 (2017).
[44] J. L. Moran and J. D. Posner, Ann. Rev. Fluid Mech.

49, 511 (2017).
[45] D. Velegol, A. Garg, R. Guha, A. Kar, and M. Kumar,

Soft matter 12, 4686 (2016).
[46] A. Brown and W. Poon, Soft matter 10, 4016 (2014).
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