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Abstract. In the present manuscript, we introduce the quantum counterpart of the well

known classical navigation problem posed by Zermelo and provide a simple resolution in

terms of a control Hamiltonian with constant maximum variance. This Hamiltonian yields

a time-optimal control of general quantum systems. In developing this theory, we encounter

some relevant conditions on the elapsed time of the journey between initial and final states

and the energy resource provided by the control Hamiltonian. Later, we demonstrate

the feasibility of our results in the context of two and three-level systems and highlight

their applicability as quantum gates. Finally, along with the conclusions, we provide some

comments about the ubiquitous case of the harmonic potential, which is work in progress.

Keywords: quantum control, single qubit, qutrit, quantum gate, time-dependent Schrödinger

equation.

1 Introduction

Quantum technologies are nowadays at the cutting-edge of science. Many advances have

been made to understand controlled quantum dynamics and be aware of its limits. In this

context, special attention has been focused on time-optimal manipulation of quantum states

[1, 2]. Among this kind of problems, there are an important class related to the time-

optimal quantum evolution under the influence of external fields or potentials that cannot be

suppressed. Such problems are really important because in real laboratories one cannot get

rid of certain external influences. From a classical point of view, this problem was first posed

by Zermelo [3, 4]. The classical Zermelo navigation problem aims at finding the time-optimal

control of a ship, that is supposed to act constantly on it, in order to reach its destination in

the least time. Moreover, the ship is undergoing the local action of the sea current and wind,

which are uncontrollable. The quantum counterpart of the Zermelo problem was solved by

Brody and Meier [5] by a geometric means.

In this work, we present a solution to the quantum Zermelo problem that is obtained

by a different procedure. In particular, our derivation does not rely on geometric arguments,
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but on rather simple physical arguments. To this end, in section 2 we firstly reformulate

the Zermelo problem in the quantum realm and devise a simple and concise protocol that

warrants the evolution from some initial state to some final state in the least time. The

resulting time-dependent Schrödinger equation has been implemented numerically by two

different algorithms: the Runge-Kutta method of fourth order and the Crank-Nicolson

method. Secondly, in section 3 we apply the time-optimal control previously developed

to two-level quantum systems. This is, for instance, the case of two-level atoms interacting

with a classical field and of spin 1/2 in a magnetic field. We also explore the possibility

of applying this technique to implement quantum gates that act on qubits in an optimal-

time manner. Sections 4 is devoted to three-level systems or qutrits, that are also useful

in quantum information and, in contrast to qubits, are more robust against decoherence.

Finally, in section 5, we briefly summarize some conclusions gained during this work and

provide a few comments on future directions.

2 Theoretical framework

2.1 Formulation of the quantum Zermelo problem

The quantum analog of the classical Zermelo navigation problem aims at finding the

time-optimal evolution from a initial state |ψ(t = 0)〉 = |ψi〉 to a desired final state

|ψ(t = τ)〉 = |ψf〉 in the least time τ . The problem posed by Zermelo considers a time-

independent background Hamiltonian that cannot be controlled and a time-dependent part

that constitutes the control over the system that we want to optimize; hence, we can write:

Ĥ(t) = Ĥ0 + Ĥc(t) , (1)

where Ĥc(t) is the control Hamiltonian. Throughout this manuscript we use natural units,

where h̄ = 1.

At first glance, the form of Ĥ(t) suggests to work in the interaction picture. Besides,

the fact that in the quantum Zermelo problem we can only manipulate Ĥc(t) reinforces the

necessity to switch to this picture. In this new frame, we define |ψ′(t)〉 = Û †0(t)|ψ(t)〉 with

Û0 = exp(−iĤ0t). These states obey the following Schrödinger equation:

i
d

dt
|ψ′(t)〉 = Ĥ ′c(t)|ψ′(t)〉 , (2)

with Ĥ ′c(t) = Û †0(t)Ĥc(t)Û0(t).
Note that due to the fact that the time evolution operator is unitary, tr(Ĥ ′2c (t)) =

tr(Ĥ2
c (t)). Moreover, the transformed control Hamiltonian evolves in time according to

Ĥ ′c(t) = Ûc(t)Ĥ ′c(0)Û †c (t) = Ûc(t)Ĥc(0)Û †c (t) , (3)

where the time evolution operator is of the form:

Ûc(t) = T exp
(
− i

∫ t

0
Ĥ ′c(t

′)dt′
)
. (4)
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Above, we have introduced the time ordered product, since the Hamiltonian does not need to

commute at different times. Any state vector can thus be written as |ψ(t)〉 = Û0(t)Ûc(t)|ψi〉.
As stated earlier, our concern is to achieve an optimal-time evolution of the state |ψ(t)〉.

In this sense, Anandan and Aharonov [6] showed that the variance of the Hamiltonian is

directly proportional to the speed of the quantum evolution. Then, in order to maximize the

variance

(∆Ĥ ′c(t))
2 = 〈ψ′(t)|Ĥ ′2c (t)|ψ′(t)〉 − (〈ψ′(t)|Ĥ ′c(t)|ψ′(t)〉)

2 , (5)

the second term on the right hand side must vanish for all t. This is accomplished if we

assume that

〈ψ′(t)|d|ψ
′(t)〉
dt

= 0 , (6)

which is also valid for its complex conjugate. Strikingly, it seems reasonably to impose

this condition (the time derivative of the state being orthogonal to the state itself) if we

want to optimize the change of the state over time. We can easily visualize this idea if we

consider the particular case of the Bloch sphere for a qubit: hence, we are claiming that

the vector corresponding to the time variation of the state lies on the tangent space of the

aforementioned sphere. Under this condition, we ensure that the journey to the target state

is minimized. Furthermore, the first term on the right hand side of Eq. (5) is

〈ψ′(t)|Ĥ ′2c (t)|ψ′(t)〉 = 〈ψi|Ĥ2
c (0)|ψi〉 =

d〈ψ′i|
dt

d|ψ′i〉
dt

=

∣∣∣∣∣dψ′idt
∣∣∣∣∣
2

, (7)

where we have used Eq. (3) and |ψ(t)〉 = Û0(t)Ûc(t)|ψi〉. In addition, using Eq. (2) we can

also write:

〈ψ′(t)|Ĥ ′2c (t)|ψ′(t)〉 =

∣∣∣∣∣dψ′(t)dt

∣∣∣∣∣
2

, (8)

where d|ψ′i〉/dt is short for the time-derivative of |ψ′(t)〉 evaluated at t = 0. We end up,

combining both results:∣∣∣∣∣dψ′(t)dt

∣∣∣∣∣
2

=

∣∣∣∣∣dψ′idt
∣∣∣∣∣
2

= k , (9)

with k a constant, whose interpretation will be clarified immediately.

At this point, we can already constrain the control Hamiltonian to be of the form

Ĥ ′c(t) = i
[
d|ψ′(t)〉
dt

〈ψ′(t)| − |ψ′(t)〉d〈ψ
′(t)|
dt

]
, (10)

which is hermitian. Notice that, since the trace is a linear mapping, we find tr(Ĥ ′c(t)) = 0, so

Ĥ ′c(t) is traceless (bearing in mind Eq. (6)). The structure of the transformed Hamiltonian

above, also allows us to calculate the trace of Ĥ ′2c (t) easily:

tr(Ĥ ′2c (t)) = tr
(
d|ψ′(t)〉
dt

d〈ψ′(t)|
dt

)
+
d〈ψ′(t)|
dt

d|ψ′(t)〉
dt

tr
(
|ψ′(t)〉〈ψ′(t)|

)

= 2

∣∣∣∣∣dψ′(t)dt

∣∣∣∣∣
2

= 2k , (11)
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where the last equality follows from Eq. (9). Physically, the value of the constant k is thus

connected with the energy at hand for performing the control.

In what follows, our purpose is to find a closed form for the Hamiltonian (10) that solves

the quantum Zermelo problem. It turns out that the conditions established by Eqs. (6) and

(11) are satisfied at any time t by the ansatz state:

|ψ′(t)〉 = cos (
√
k/2 t)|ψ′i〉+

√
2/k sin (

√
k/2 t)

d|ψ′i〉
dt

, (12)

with time-derivative given by

d|ψ′(t)〉
dt

= −
√
k/2 sin (

√
k/2 t)|ψ′i〉+ cos (

√
k/2 t)

d|ψ′i〉
dt

. (13)

Notice that |ψ′i〉 = |ψi〉 since Û0(t = 0) = 1. At this point, it is convenient to introduce the

transformed target state:

|ψ′f〉 = Û †0(τ)|ψf〉 = Û †0(τ)Û0(τ)Ûc(τ)|ψi〉 = Ûc(τ)|ψi〉 . (14)

By applying the Gram-Schmidt orthogonalizing process, we construct an orthogonal state to

|ψi〉 from |ψ′f〉

|ϕ′f〉 = (1− |ψi〉〈ψi|)|ψ′f〉 =
sin (

√
k/2 τ)√
k/2

d|ψ′i〉
dt

, (15)

and then, normalizing

|ϕ′f〉N =
|ϕ′f〉∣∣∣ϕ′f ∣∣∣ =

(1− |ψi〉〈ψi|) Û †0(τ)|ψf〉√
1−

∣∣∣〈ψf |Û0(τ)|ψi〉
∣∣∣2 =

√
2/k

d|ψ′i〉
dt

. (16)

It is important to remark that the above expression only includes the initial state, the final

state, the elapsed time of the evolution and the background Hamiltonian. Thus, we can

recast Eqs. (12) and (13) in these terms:

|ψ′(t)〉 = cos (
√
k/2 t)|ψi〉+ sin (

√
k/2 t)|ϕ′f〉N , (17)

d|ψ′(t)〉
dt

= −
√
k/2 sin (

√
k/2 t)|ψi〉+

√
k/2 cos (

√
k/2 t)|ϕ′f〉N . (18)

Finally, in order to obtain the desired Hamiltonian, we substitute these equations into Eq.

(10) and then, with the aid of Eq. (17) evaluated at t = τ , we cast |ϕ′f〉N in terms of |ψ′f〉 to

find

Ĥ ′c(t) = i

√
k/2

sin (
√
k/2 τ)

[|ψ′f〉〈ψi| − |ψi〉〈ψ′f |] = K [|ψ′f〉〈ψi| − |ψi〉〈ψ′f |] , (19)

where we have defined the imaginary constant K. Surprisingly, this expression is time-

independent. Thus, if we use Eqs. (3) and (4) in combination with the fact that Ĥ ′c(t) = Ĥ ′c,

we conclude that Ĥ ′c(t) = Ĥc(0) and Ûc(t) = exp ( − iĤc(0) t). Consequently, the control

Hamiltonian evolves as

Ĥc(t) = Û0(t)Ĥ ′c(t)Û
†
0(t) = Û0(t)Ĥc(0)Û †0(t) , (20)
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and, accordingly, the full Hamiltonian for the quantum Zermelo problem acquires the final

form

Ĥ(t) = Ĥ0 + e−iĤ0tĤc(0) eiĤ0t , (21)

in good agreement with the result in [7]. That is, the time optimization in the quantum

Zermelo approach is fully determined once we have constructed the control Hamiltonian

Ĥc(0). Hence, we have provided a fundamental solution to the quantum version of the

problem stated by Zermelo.

2.2 Conditions over τ and k

So far, we have successfully written down an expression for the control Hamiltonian that is

needed in order to reach a target state in the least time τ . Now, we want to address which

is this value and how it is related to the constant k.

Let us consider the complete orthonormal set of eigenkets of Ĥ0, namely {|j〉, j =

0, 1, 2, . . .}, and write the initial and final states in this basis; then

|ψi〉 =
∑
j

〈j|ψi〉|j〉 =
∑
j

aj|j〉 and |ψf〉 =
∑
j

〈j|ψf〉|j〉 =
∑
j

bj|j〉 . (22)

Evaluating Eq. (17) at time t = τ and applying Û0(τ) from the left we find:

|ψ(τ)〉 =
(

cos (
√
k/2 τ)−

〈ψi|Û †0(τ)|ψf〉 sin (
√
k/2 τ)√

1−
∣∣∣〈ψf |Û0(τ)|ψi〉

∣∣∣2
)
Û0(t)|ψi〉

+
sin (

√
k/2 τ)√

1−
∣∣∣〈ψf |Û0(τ)|ψi〉

∣∣∣2 |ψf〉 , (23)

from which, since |ψ(τ)〉 = |ψf〉, we can extract the following constraints relating k and τ :

cos (
√
k/2 τ) = 〈ψi|Û †0(τ)|ψf〉 and sin (

√
k/2 τ) =

√
1−

∣∣∣〈ψf |Û0(τ)|ψi〉
∣∣∣2 . (24)

For the sake of clarity, let us first calculate the overlap in the above equality as

〈ψf |Û0(τ)|ψi〉 =
∑
j

b∗jaje
−iEjτ = Z(τ) , (25)

where Ej are the eigenvalues of Ĥ0. Generally, this overlap is a complex number and we

denote this value by Z(τ) to emphasize that it depends on the parameter τ . Recall, on the

contrary, that τ and k are both real numbers. Consequently, we find that τ and k are related

in an intricate manner and both must verify simultaneously the following three restrictions:

0 = Im(Z∗(τ)) ,

cos (
√
k/2 τ) = Re(Z∗(τ)) and sin (

√
k/2 τ) =

√
1−Z∗(τ)Z(τ) . (26)

Needless to say that, except for particular cases, these equations have no analytical solution

and a numerical technique is required.
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We finish this section by considering the simple case of orthogonal initial and final states,

i.e. 〈ψf |ψi〉 = 0, for which we obtain the compact result

τ =
π√
2k

, (27)

that brings to light the inverse relationship between the energy at our disposal and the least

time of the evolution.

3 Two-level system

In this section, we apply the time-optimal control to a two-level system, also known as qubits.

This entities are of vital significance in quantum computing, so it is relevant to present the

details meticulously.

First of all, let us assume that we have a two-dimensional Hilbert space and our initial

and final states of interest are |ψi〉 = a0|0〉 + a1|1〉 and |ψf〉 = b0|0〉 + b1|1〉 (remind that |0〉
and |1〉 are eigenstates of the background Hamiltonian Ĥ0). Correspondingly, the background

Hamiltonian can be written as Ĥ0 = E0|0〉〈0| + E1|1〉〈1|. If we plug these states into Eqs.

(19) and (20), the control Hamiltonian can be cast as the two-dimensional matrix:

Ĥc(t) = K
(

a∗0b0e
iω0τ − c.c. (a∗1b0e

iω0τ − b∗1a0e−iω1τ )eiω10t

(a∗0b1e
iω1τ − b∗0a1e−iω0τ )e−iω10t a∗1b1e

iω1τ − c.c.

)
, (28)

where ωi = Ei and ω10 = E1 − E0, and K has been defined in Eq. (19).

In the framework worked out in the previous section, this is the control Hamiltonian that

brings the initial state to the target state and, not surprisingly, it depends on the expansion

coefficients a0,1 and b0,1. Now, it is desirable to give a proper interpretation in terms of

physical quantities.

3.1 Interaction of a two-level atom with an electromagnetic field

The physical situation proposed here is the following: imagine a single atom with two relevant

energy levels interacting with an electromagnetic wave, a laser field, for instance. The

corresponding electric field can be written (in the dipole approximation) ~E = E0 ~ez cos(ωt+φ),

and the corresponding interaction Hamiltonian is

Ĥint = −d̂ · ~E = −q r̂ · ~E = −qẑE0 cos(ωt+ φ) , (29)

with d̂ the dipole moment operator of the atom [8]. We take for granted that the

atom has inversion symmetry, then the energy eigenstates must have definite parity, i.e.

〈0|ẑ|0〉 = 〈1|ẑ|1〉 = 0, and the interaction Hamiltonian can be represented as a matrix with

this appearance

Ĥint =

(
0 V01 cos(ωt+ φ)

V ∗01 cos(ωt+ φ) 0

)
, (30)

where V01 = −qE0〈0|ẑ|1〉.
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If the initial state is the ground state of the atom |ψi〉 = |0〉 and the goal is to excite it

to the first excited state |1〉. Under this circumstances, the control Hamiltonian in Eq. (28)

reads

Ĥc(t) = K
(

0 −e−iω1τeiω10t

eiω1τe−iω10t 0

)
, (31)

and, rearranging terms and comparing, we can find the expression that follows

Re(V01)√
k/2

cos(ωt+ φ) =
(

cos (ω1
π√
2k

) sin(ω10t)− sin (ω1
π√
2k

) cos(ω10t)
)
, (32)

with the same precise value of τ in Eq. (27). It is well know that the sum of two sinusoidal

waves of the same frequency (right hand side of the above equation) gives another wave

of the same frequency. Thus, our first conclusion is that the Zermelo control Hamiltonian

predicts an electric field of frequency ω = ω10. After some cumbersome manipulation of this

expression, we arrive at the second conclusion, that the modulus of the electric field must be

E0 =

√
k/2

q Re(〈0|ẑ|1〉)
. (33)

To summarize, for the present case, in order to excite the two-level atom in the least

time, the control Hamiltonian conveys that we must apply an electric field of magnitude

given by (33) in resonance with the two-level transition. As expected, the intensity of the

field depends upon the value of k (the energy invested in the control of the system); the

larger it is, the shorter the time to reach the final state of the transition.

For general initial and final states, we expect the raise of diagonal elements on the control

Hamiltonian in Eq. (28) to imply some restrictions on the values of k that yield a physical

control Hamiltonian.

3.2 Spin 1/2 in a magnetic field

Another two-level system of interest is that of a spin 1/2. The spin down state |0〉 and the

spin up state |1〉 form an orthonormal set and we can expand our initial and final states in

this basis (as we did before).

Let us remind the reader that {1, σ1, σ2, σ3}, where σi are the Pauli matrices, spans

the space of 2 × 2 complex matrices M2(C). Thus, we are allowed to write the control

Hamiltonian in (28) at t = 0 as Ĥc(0) = α01+
∑
i αiσi with α0 and αi real constants. After

some manipulation, we arrive at

α0 = 0 , α1 = iK
(

Im(a∗0b1e
iω1τ ) + Im(a∗1b0e

iω0τ )
)

(34)

α2 = −iK
(

Re(a∗0b1e
iω1τ )− Re(a∗1b0e

iω0τ )
)

and α3 = iK Im(a∗0b0e
iω0τ ) . (35)

In deriving the above relations, we have use the constraint in (26). Therefore, the time

evolved control Hamiltonian in this basis is

Ĥc(t) = (α1 cos(ω10t) + α2 sin(ω10t))σ1

+ (α2 cos(ω10t)− α1 sin(ω10t))σ2 + α3σ3 , (36)
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where the last term is time-invariant because [ Û0(t), σ3] = 0.

Expression (36) resembles the Hamiltonian of a spin in a magnetic field, namely

Ĥspin = −γ
2

(B1σ1 +B2σ2 +B3σ3) , (37)

with γ = −gsµB for an electron-like particle. It may also be the spin of an atom. For

instance, the silver atom with electronic configuration [Kr]4d105s1 has an unpaired electron

5s and then the magnetic moment of the silver atom is equal to the magnetic moment of that

electron.

In sum, we have demonstrated that the Zermelo control Hamiltonian ensures that we

can reach any spin state over the Bloch sphere in the minimum time by just tuning the

corresponding magnetic fields in accordance. As a matter of example, imagine our goal is to

perform a transition from a spin down to a spin up configuration in the least time. In this

case (a0 = b1 = 1, a1 = b0 = 0), α1 = iK sin(ω1τ), α2 = −iK cos(ω1τ) and α3 = 0. Thus, the

components of the magnetic field we have to apply are

B1(t) =

√
2k

γ
cos(ω10t+ φ1) and B2(t) =

√
2k

γ
sin(ω10t+ φ2) , (38)

where B3 = 0, and, because of the orthogonality between initial and final states, τ is given by

(27). In other words, the radiation needs to be in resonance, and the amplitude of the field

is proportional to the constant k, which, as expected, is directly related with the intensity of

the radiation fields.

3.3 Implementation of single-qubit quantum gates

Analogous to a classical computer, a quantum computer is buit from a quantum circuit

containing quantum gates. These gates, carry around and manipulate the quantum

information. Since gates must conserve the norm of the states, they must be unitary [9].

Here, we focus on single-qubit quantum gates, which can be represented by 2 × 2

unitary matrices. The common single-qubit gates are the Hadamard, the Pauli matrices,

the Phase gate and the π/8 gate. It is worth pointing out that any unitary matrix specifies

a valid quantum gate. An arbitrary unitary operator on a single-qubit can be written as

a combination of rotations, together with global phase shifts on the qubit. Hence, for real

numbers α, β, γ and δ, the unitary gate is Û = eiαR̂z(β)R̂y(γ)R̂z(δ), where R̂y,z are the

rotation operators on the Bloch sphere. In matrix form:

Û =

(
ei(α−β/2−δ/2) cos(γ/2) −ei(α−β/2+δ/2) sin(γ/2)

ei(α+β/2−δ/2) sin(γ/2) ei(α+β/2+δ/2) cos(γ/2)

)
. (39)

We claim that the unitary operator in the Zermelo approach Ûz(τ) = Û0(τ)Ûc(τ) will do the

job for any input state in the least time. Finding a method to manipulate qubits rapidly and

efficiently is of great significance in quantum computing and therein lies the relevance of our

protocol. As an example, in subsection 3.2 we showed that we are able to perform unitary

gates on any spin 1/2 system.



Time-optimal control of quantum systems 9

4 Three-level systems

In the above section, we dealt with two-level systems. Now, we focus our attention to three-

level systems, also called qutrits.

Let us consider a background Hamiltonian Ĥ0 = E0|0〉〈0| + E1|1〉〈1| + E2|2〉〈2| written

in the basis of eigenstates. Any ket can be expanded as a coherent superposition of these

eigenkets. The control Hamiltonian (20) can be cast as a three dimensional matrix

Ĥc(t) =

 h00 h01e
iω10t h02e

iω20t

h10e
−iω10t h11 h12e

iω21t

h20e
−iω20t h21e

−iω21t h22

 ; (40)

in obtaining this matrix, we have plugged the initial and final states (written in the eigenbasis

of Ĥ0) into Eq. (19). To avoid unmanageable matrix elements we write them as hij. The

matrix elements depend on the expansion coefficients aj and bj for j = 0, 1, 2 as

hjj = a∗jbje
iωjτ − c.c. for j = 0, 1, 2 (41)

h01 = a∗1b0e
iω0τ − b∗1a0e−iω1τ , h10 = −h∗01 (42)

h02 = a∗2b0e
iω0τ − b∗2a0e−iω2τ , h20 = −h∗02 (43)

h12 = a∗2b1e
iω1τ − b∗2a1e−iω2τ , h12 = −h∗21 . (44)

The control Hamiltonian needs a physical interpretation in order to be realizable

experimentally. The corresponding interpretation of each of the entries in (40) will strongly

depend upon the situation at hand. We found that under certain circumstances it can be

mapped to the Hamiltonian of a three-level atom interacting with two different laser fields

(the probe field and the driving field), or even with the Hamiltonian of a spin 1 system

interacting with magnetic fields. But, above all, let us stress carefully, that in order to fully

characterize and give a meaningful explanation to the control Hamiltonian we need to have

a concrete system at the laboratory, and know its properties properly.

5 Conclusions

We conclude this work with some important remarks and conclusions. The intention of

the present manuscript was to solve the quantum counterpart of the Zermelo problem.

Stunningly, this goal was achieved by imposing a single condition on the control Hamiltonian,

viz., the maximization of its variance. This ensures a time-optimal control of any quantum

system.

This being said, we encountered a main drawback, which was to appropriately give

the control Hamiltonian a physical meaning. Specifically, we found that not every

obtained solution admits a physical structure and thus not all Zermelo Hamiltonians are

attainable experimentally. Nonetheless, we provided physical interpretation to various control

Hamiltonians and, in particular, we proposed our method as an algorithm to design time-

optimal quantum gates.
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We do not have room to include the study of a particle in a harmonic potential. We are

still working out the interpretation, since in this case, the control Hamiltonian is not local

when expressed in the position representation.

Devising good protocols to control quantum systems is at the forefront of scientific

research and we pretend to extend our study in more depth to general N dimensional

systems in order to find out any constraints the control Hamilton must have to be physically

implementable. In addition, it would be interesting to explore whether the field of quantum

computation and optical lattices can benefit from our protocol.
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