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Abstract

The present thesis explores the capabilities of a dual based Petrov-Galerkin Proper Generalised Decom-
position (PGD) method [3] to solve non self-adjoint parametric partial differential equations (PDE). The
(consistent) Galerkin PGD method is used as reference. The Petrov-Galerkin PGD method is formulated as
a Galerkin PGD making possible a non-intrusive implementation.

Then, different problems are introduced and solved using the Petrov-Galerkin PGD methodology by
separating the domain in space and time. In particular, a transient advection-diffusion problem is solved using
a streamline upwind Petrov-Galerkin (SUPG) stabilisation. We also study a transient advection-diffusion
problem where the Dirichlet/Neumann splitting of the boundary conditions (BC) is time depending.

The traditional fixed-point algorithm to solve the rank-one problem lacks of convergence for certain
conditions. We introduce several alternative approaches to solve this inconvenient.

Finally, we present a few examples of transient parametric PDE solved using the introduced methodology.
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Chapter 1

Introduction

In the industry environment, over the past years, there has been an increasing interest in obtaining solutions of
parametric partial differential equations. The applications of parametric PDEs include design optimisation
and simulation of stochastic processes among others. The major limitation of parametric PDEs is the
exponential increase of the computational cost with respect to the number of parameters.

In this context, different model reduction techniques have been designed. Proper Generalised Decom-
position is widely used to obtain a priori separated approximations of high dimensional PDEs. The PGD
methodology has been successfully applied to many different problems. However, conventional PGD algo-
rithms fail to compute efficient approximations of transient problems, i.e. problems where the time dimension
is treated as an additional parametric dimension. The reason of this phenomenon relies on the fact that in
transient problems, the associated bilinear form is not a valid inner product.

In the present thesis we focus on solving problems in the space-time domain performing a tensor product
separation of the functions of space and time. In particular, we solve the transient advection-diffusion
equation. For that, we use the Petrov-Galerkin PGD method introduced by A. Nouy [3]. However, in the
context of order reduction techniques, the motivation to separate the spatial and temporal dimensions is
not, in general, to solve transient PDEs involving just a space-time domain but parametric transient PDEs
over a high dimensional domain. For this reason, all methodologies presented are formulated to include the
possibility of an arbitrary number of separated dimensions.

1.1 Contributions and outline

The main contributions of this thesis are:

– Implementation of the Petrov-Galerkin PGD algorithm as a Galerkin PGD method using a (relatively)
non-intrusive methodology.

– Implementation of the update procedure as a Galerkin PGD method using a non-intrusive methodology.

– Stabilisation of the separated solution in advection dominated problems.

– Introduction of a method for solving the problem of time depending (or, more generally, parameter
depending) boundary condition (BC) type. That is, in this problem, the part of the boundary where
essential (and natural) BCs are imposed depends on time (or the parameters).

– Stabilisation of oscillations in the time dimension arising in time depending BC type problems.

– Different alternative algorithms to compute the rank-one solution of the PGD algorithm.

We consider a PGD method as non-intrusive if the rank-one problems that appear in the execution of the
algorithm can be solved by a rank-one Galerkin PGD solver without any modification.
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The thesis is organised six chapters (excluding the introduction and conclusions). In chapter 2 the
problem is precisely described, as well as the algorithm used to compute the full order solution for reference
purposes.

Chapters 3 and 4 introduce the formulation of the Galerkin and Petrov-Galerkin PGD methods. It is
also presented how to compute the contribution of previously computed modes and an algorithm to update
the previous modes of some previously defined dimensions. In addition, chapter 4 presents the formulation
of the Petrov-Galerkin method as a Galerkin one by enlarging the space of functions.

In chapter 5 a SUPG stabilisation is described to stabilise the spatial dimension in advection dominated
problems, and the time dimension in problems where Dirichlet BCs are enforced at some points of the
boundary that were initially free.

Chapter 6 states the problem of time/parameter dependent BC type. The corresponding separated form
is also presented.

Finally, in chapter 7 some algorithms for solving the rank-one problem are introduced. These algorithms
improve the convergence properties of the traditional fixed-point method.

In all chapters where different methodologies are introduced, examples are included.
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Chapter 2

Problem statement

In this chapter we state precisely the problem to solve in the foregoing of the thesis. For the sake of generality,
all introduced methods assume an arbitrary number of separated dimensions and arbitrary bilinear and
linear separable forms on the full order space. For this reason, we introduce the abstract formulation of
the problem as well of the methodologies if they make sense. Then, we particularise to the example of the
transient advection-diffusion problem.

2.1 Abstract formulation
Let tVαuαPA be a family of Hilbert spaces over R (define the number of dimensions nD :“ |A| ă 8). Let
define the tensor product space as V :“

Â

αPA Vα. We want to solve the following
Problem 1: Assume Bp¨, ¨q is a continuous bilinear form on V and Lp¨q is a continuous linear functional

on V. In addition assume that both have the following separability properties:

B
´

â

αPA

uα,
â

αPA

vα

¯

“
ÿ

mPMB

ź

αPA

Bmα puα, vαq,

L
´

â

αPA

uα

¯

“
ÿ

mPML

ź

αPA

Lmα puαq.

Where |MB | ă 8 and |ML| ă 8 are the number of modes of the bilinear and linear form, Bmα is a continuous
bilinear form on Vα and Lmα is a continuous linear functional on Vα. Then, find u P V such that

Bpu, vq “ Lpvq @v P V. (2.1)

It is assumed that the problem is well posed, i.e. u exists, is unique and depends continuously on L.
However, for the sake of reducing the computational power needed to solve the problem, we restrict the
study of algorithms providing separated approximations of the solution. That is, we focus on algorithms
providing an approximation of the solution u of the form

u «
M
ÿ

m“1

â

αPA

umα .

Remark 2.1: The tensor product of two Hilbert spaces is symmetric up to a natural isomorphism. For
this reason, we identify the tensor product of different spaces (and of their elements) without regarding the
order in which the operation is performed.

2.2 Advection-diffusion formulation
For the sake of clarity, we present as example the problem of the transient advection-diffusion problem in
conservative form.
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2.2.1 Strong form

Problem 2: Let define the spatial domain as Ω “ p0, 1q ˆ p0, 1q and the time interval as T “ p0, 1q. Then,
find upx, tq P C1

`

T ;C2pΩq
˘

that solves

ut `∇ ¨ pcu´ ν∇uq “ f in Ωˆ T, (2.2)
u “ uD on ΓD ˆ T, ΓD Ď BΩ,

pcu´ ν∇uq ¨ n “ h on ΓN ˆ T, ΓN “ BΩzΓD,

u “ u0 on Ωˆ t0u.

Here and through all the thesis, the advection velocity is chosen to be divergence-free. This means that
the conservative and non-conservative form are identical and can be used indistinguishable except in the
treatment of the Neumann BCs.

2.2.2 Weak form

As usual, we reformulate the problem in weak form; we refer to [2]. Let define the Sobolev space of spatial
functions as

VS “ HD
1 pΩq “

 

v P H1pΩq : v|ΓD “ 0
(

. (2.3)

The space of weak solutions of the PDE is

V “
 

u P L2pT ;VSq : ut P L2pT ;V 1Sq
(

. (2.4)

Let vD be an arbitrary function in L2pT ;H1pΩqq such that pvDqt P L2pT ;H11pΩqq and its trace on ΓN agrees
with the Dirichlet BC, i.e. vDptq|ΓN “ uDptq for almost every (a.e.) t P T . We decompose the solution of
the PDE as u˚ “ u ` vD. Where u is the solution to the problem with homogeneous Dirichlet BC taking
into account the contribution of the function vD. We say that u P V is a weak solution of such a problem if

Bpu, vq “ Lpvq @v P V. (2.5)

Where

Bpu, vq “

ż

ΩˆT

utv ` pc ¨∇uqv dpΩˆ T q ` ν∇u ¨∇v `
ż

Ω

up0qvp0q dΩ,

Lpvq “

ż

ΩˆT

fv dpΩˆ T q `

ż

ΓNˆT

hv dpBΩˆ T q `

ż

Ω

u0vp0q dΩ´BpvD, vq.

Note that the initial condition is imposed in weak form. Using the standard PGD methods, one can
impose the initial condition in strong form. However, as we note in chapter 5, the Petrov-Galerkin defines a
dual problem that can be naturally interpreted as a backward in time advection-diffusion PDE if the initial
condition is imposed weakly.

Before continuing, we say a word on the space V. It consists on functions such that for a.e. t P T they
assign a function in the space of spatial functions, i.e. V Q v “ pt ÞÑ vptq P VSq. Such functions must be
square integrable; that is

ż

T

‖vptq‖2
VS dT ă 8.

To ensure that the term
ş

ΩˆT
utvdpΩˆ T q is bounded, the additional restriction on the time derivative of u

is imposed, i.e. ut P L2pT ;V 1Sq and we identify such term with
ż

T

xutptq, vptqyV 1S ,VSdT.
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Where x¨, ¨yV 1S ,VS denotes the duality evaluation in VS . That is, we consider utptq as a distribution in Ω.
It can be shown that V ãÑ CpT ;L2pΩqq. This ensures that the terms up0q and vp0q are well defined and

B and L are bounded. The regularities of each parameter needed for the weak problem to be well posed are

c P L8pT ;L8pΩqq,
ν P L8pT ;L8pΩqq,
f P L2pT ;V 1Sq,

uD P L2pT ;H1{2pBΩqq,

h P L2pT ;L2pBΩqq,

u0 P L2pΩq.

For the sake of simplicity, in the first chapters we restrict the study to the case of the homogeneous
Dirichlet problem, i.e. ΓD “ BΩ, uD “ 0.

In chapter 6 we study the problem with more complex BC. In particular, we formulate the problem
with both Dirichlet and Neumann non-homogeneous BC. We also study the problem of changing Dirichlet-
Neumann BCs as a function of time. That is, the boundary is still partitioned with a Dirichlet and Neumann
part but this splitting is time dependent. This peculiar problem arises commonly in engineering applications.
A discussion about the well posedness of such a problem is out of the scope of the thesis, so we shall assume
it is well posed.

2.2.3 Space-time separation

The space V has no obvious way to be expressed as the tensor product of a space of functions in space and a
space of functions in time. For this reason we substitute the space V for a complete subspace of itself. This
step does not have any affect on the problem if the parameters are regular enough. To show that, we remit
to a regularity theorem.

Theorem 1: Assume that c and ν are smooth and constant in time; u0 P H2pΩq and is compatible with
the essential BC in the sense that u0 P H0

1pΩq; and f, ft P L2pT ;L2pΩqq. Then, ut P L2pT ;VSq. [2]

With the assumption that ut P L2pT ;VSq the space of weak solutions can be written as H1pT ;VSpΩqq
which is straightforward to express as a tensor product space. What shows the theorem is that, for most
practical applications, we can expect the same convergence properties with the tensor product formulation
as for other classical discretisations techniques.

From now on we shall substitute the function space by

V “ H1pT ;HD
1 pΩqq – H1pT q bHD

1 pΩq “: VT b VS . (2.6)

Remark 2.2: The substitution of V by a complete subspace of itself has no effect on the discretised
problem. That is, at the discretisation step one substitutes V with a finite dimensional subspace that for all
common methods of discretisation is a subspace of the slightly smaller space H1pT q bHD

1 pΩq.

Remark 2.3: For the discrete case, substitute VT and VS for their discretisations, i.e. a finite dimensional
subspace of themselves. Note that discontinuous functions in time discretisations are not allowed; this
means that the problem is be global in time. Most common time discretisations techniques use the fact that
information cannot propagate backwards in time to avoid solving global space-time problems. However, as
we shall see, in the PGD context, one cannot avoid to solve global problems in time (but one has not to
solve global problems in space-time).

Let denote for simplicity the tensor product of to elements ω b λ by ωλ. The separation of the forms

5



reads

Bpωλ, ω˚λ˚q “ BeSpω, ω
˚qBeT pλ, λ

˚q `BdSpω, ω
˚qBdT pλ, λ

˚q `BaSpω, ω
˚qBaT pλ, λ

˚q

`B0
Spω, ω

˚qB0
T pλ, λ

˚q “

ż

Ω

ωω˚ dΩ

ż

T

λtλ
˚dT `

ż

Ω

νS∇ω ¨∇ω˚ dΩ

ż

T

νTλλ
˚ dT

`

ż

Ω

pcS ¨∇ωqω˚ dΩ

ż

T

cTλλ
˚ dT `

ż

Ω

ωω˚ dΩ ¨
`

λp0qλ˚p0q
˘

,

Lpωλq “ LfSpωqL
f
T pλq ` L

0
SpωqL

0
T pλq “

ż

Ω

fSω dΩ

ż

T

fTλ dT `

ż

Ω

u0ω dΩ ¨ λp0q.

Again, λp0q is well defined as H1pT q ãÑ CpT q.
Here we have assumed that all parameters c, ν, f are rank-one tensors, e.g. c “ cS b cT . In case that the

separation of the parameters cannot be performed in one mode, multiple modes must be added to the forms.
In case that the parameters are not separable using a finite number of terms (or the terms required are too
high for computational purposes), they shall be substituted by some approximation using a low number of
modes; we refer to [5].

2.3 Numerical examples: Reference solution

2.3.1 Convegence of PGD methods

To study the convergence of the formulated PGD methods, different numerical examples have been proposed.
To obtain a measure of the error of the PGD schemes, we solve the problem using the standard Galerkin
approach (global in space-time) and use that solution as reference.

The reference solution u is computed as the solution to the full order discretised problem (2.5). That is,
it is computed in the discrete space V without using any separation scheme. As all discretisation methods,
this solution has an error compared to the solution of the non-discrete weak problem. However, this error
is not interesting for us. The PGD methods approximate the solution u of the discretised space and not
the solution of the non-discrete problem. The errors we are interested in are the norms of the differences
between u and the corresponding PGD method. Following the same criterion used by Nouy in his paper, we
use the L2pT ;L2pΩqq norm to measure the error, i.e. ‖e‖2

L2pT ;L2pΩqq
“
ş

T
‖eptq‖2

L2pΩq
dT .

The reference solution is computed in the space VS b VT (where VS and VT are finite-dimensional),
the same one used in the PGD algorithms. This means that there exists a sequence of functions of finite
number of modes such that it converges in the H1pSqbHD

1 pT q norm to the full order solution; and a fortiori
it converges in the L2pΩq b L2pT q. The methods we present, compute an approximation by sequentially
adding rank-one modes to the approximation (and maybe updating some of the dimensions). We expect
that the sequence defined by the sequential addition of modes converges towards the reference solution (but
not necessarily towards the solution of the non-discrete problem).

We know that the PGD methods are consistent in the sense that if the full order solution can be expressed
in a separable way, then the PGD formulation using the full order solution as previous modes returns the
same reference solution, i.e. the full solution is a fixed point of the PGD iterations. What it is unknown is
under which conditions this fixed-point is stable and the PGD algorithm is convergent towards such a fixed-
point. In latter chapters we show some examples of non-convergent solutions. They fail for two reasons:
they diverge (cf. chapter 5) or they converge to a fixed-point that is not the reference solution (cf. chapter
6).

2.3.2 Computation of the full order solution

Now we expose how to compute the solution of the full order problem in the tensor product space. First,
we use the separability properties of the forms and the fact that every dimension α is finite dimensional and
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define the matrix and vector of each mode and dimension as
“

Km
α

‰

i,j
“ Bmα pN

α
j , N

α
i q, α P tS, T u, m P te, d, a, 0u,

“

fmα
‰

i
“ Lmα pN

α
i q, α P tS, T u, m P tf, 0u.

Where pNα
i q denotes a basis for the corresponding space.

The matrix and vector associated to the system are defined as the sum of all the modes of the separated
forms. That is

Kfull “
ÿ

mPMB

`
â

αPA

Km
α

˘

,

ffull “
ÿ

mPMf

`
â

αPA

fmα
˘

.

For computational purposes we define the following isomorphism:

φ : V Ñ RpnDoF q “: Vfull,
â

αPA

Nα
iα ÞÑ e

ψ
`

piαqαPA

˘.

ψ :
ź

αPA

t1, 2, ..., nDoFαu Ñ t1, 2, ..., nDoF u,

`

piαqαPAq ÞÑ
ÿ

αPA

iα ¨
ź

βďα
β‰α

nDoFβ .

Where nDoF “
ś

αPA nDoFα and peiqiPt1,...,nDoF u form a basis on Vfull. Here pNα
iα
qαPA is a tuple of arbitrary

basis elements on every discretised space Vα. Note that we have introduced a total order relation in the set
A of separated dimensions of the domain.

It is straightforward to obtain the representation of the matrix Kfull in Vfull. That is, the map between
the images of φ:

rKφ
fullsi,j “

ÿ

mPMB

ź

αPA

rKm
α spψ´1piqqα,pψ´1pjqqα , i, j P t1, ..., nDoF u.

In order to reduce the bandwidth of Kφ
full the optimal way to define the order relation in A is to order the

elements in reverse order of the maximum bandwidth of all the matrices. That is, if α ď β then

max
mPMB

BandwidthpKm
α q ě max

mPMB

BandwidthpKm
β q.

This implies that usually the space of spatial functions is the least element. The representation of the force
vector is obvious from the definition of the isomorphism.

fφfull “ φpffullq.
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Chapter 3

Galerkin PGD

In this chapter we introduce the formulation of the Galerkin PGD. This method is similar to the classical
PGD algorithms. However, in the PGD context it is usual to treat the parametric dimensions in a non-
consistent way [4]. That is, as the matrices resulting in the discretisation of the parametric dimensions are
mass matrices, they are diagonalised. We are interested in non self-adjoint problems where time plays a role
as a parametric dimension. The discretisation of such operators cannot be diagonalised. For this reason, we
treat all dimensions in a consistent way.

The methods presented in this section are taken from [3]. There, the formulation of the Galerkin method
is presented for the case of space-time separation. It is also introduced a method for updating the time
dimension and both space-time dimensions after the end of each mode. Here we present the generalisation
of the methods to an arbitrary number of dimensions.

3.1 Rank-one approximation

3.1.1 Abstract formulation

The Galerkin rank-one solution is defined as a tuple puαqαPA P
À

αPA Vα that approximates the solution as
u « uR1 “

Â

αPA uα such that

BpuR1, vq “ Lpvq @v P Vtest “
ÿ

iPA

Vtesti . (3.1)

Where

Vtesti “

!

v P V : v “ vi b
â

αPAztiu

uα, vi P Vi
)

.

Using the fact that both forms are linear in v, the nonlinear condition can be enforced as a coupled
system of nD equations. The equation for the i-th dimension is

BpuR1, vq “ Lpvq @v P Vtesti . (3.2)

Different methods for computing the solution puαqαPA are presented in chapter 7. We briefly explain here
the classical fixed-point algorithm. To start, one choses an arbitrary initial guess. Then, pick a dimension i.
Considering all functions of the rest of dimensions as knowns, equation (3.2) becomes a linear equation. The
solution of that linear system is used as the new guess for the function of the i dimension of the rank-one
approximation. Repeating the process for all dimensions i P A the whole rank-one function is updated
concluding one iteration. The iterations are repeated until the fixed point is achieved (up to a prescribed
tolerance).
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3.1.2 Advection-diffusion formulation
The Galerkin rank-one approximation of the transient advection-diffusion problem is to find pω, λq P VS‘VT
such that

Bpωλ, ω˚λ` ωλ˚q “ Lpω˚λ` ωλ˚q @pω˚, λ˚q P VS ‘ VT . (3.3)

Alternatively, we rewrite the non-linear equation as a coupled system of two equations.

Bpωλ, ω˚λq “ Lpω˚λq @ω˚ P VS , (3.4)
Bpωλ, ωλ˚q “ Lpωλ˚q @λ˚ P VT . (3.5)

3.2 Additional modes

3.2.1 Abstract formulation
To obtain a higher accuracy, the solution can be approximated as the sum of different rank-one solutions,
i.e. u « uM “

řM
m“1 u

m
R1. Assume that M modes have been computed and it is desired to add an additional

mode to improve the approximation. This can be stated as problem (3.1) with a modification of the linear
functional L. That is, the contribution to the residual of the previous modes has to be subtracted from the
functional. So the equation to solve is now

BpuM`1
R1 , vq “ Lpvq ´ L̃uM pvq @v P Vtest. (3.6)

We assume that the map uM ÞÑ L̃uM is linear and bounded so the contribution functional can be written
as a bilinear continuous form: L̃uM pvq “ B̃puM , vq. Note that in general B̃ “ B but this is not be the case
in the Petrov-Galerkin scheme, for instance. We may further assume that B̃ is separable. That is

B̃
´

â

αPA

uα,
â

αPA

vα

¯

“
ÿ

mPMB̃

ź

αPA

B̃mα puα, vαq.

3.2.2 Advection-diffusion formulation
For the standard PGD Galerkin formulation, the term involving the previous terms is just the same bilinear
form to subtract the contribution to the residual of the already computed modes. Let uM “

řM
m“1 ω

mλm

represent the previously computed modes. Then the new mode pω, λq is computed as the solution of

Bpωλ, ω˚λ` ωλ˚q “ Lpω˚λ` ωλ˚q ´BpuM , ω
˚λ` ωλ˚q @pω˚, λ˚q P VS ‘ VT . (3.7)

3.3 Update

3.3.1 Abstract formulation
The previous algorithm is not optimal in the sense that modes are computed sequentially in an uncoupled
form. In this section we present a method that permits the coupling in some sense of the different modes.
The procedure is the following:

First, we split the family of Hilbert spaces tVαuαPA in two subfamilies tVβuβPB and tVγuγPG such that
G is nonempty, G Ď A and B “ AzG.

Then, after an additional mode has been computed, we perform an update that consists in recomputing
the functions of all modes in the dimensions γ P G such that they satisfy a multiple Galerkin orthogonality.

Suppose that an approximation uM is given as an approximation to the solution u. By virtue of the
splitting of the dimensions in B and G we can rewrite uM as

uM “

M
ÿ

m“1

â

αPA

umα “
M
ÿ

m“1

â

βPB

umβ b
â

γPG

umγ .

10



Then the problem is: given pumβ qpβ,mqPBˆt1,...,Mu, find pū
m
γ qpγ,mqPGˆt1,...,Mu such that

BpūM , vq “ Lpvq @v P
ÿ

iPG
mPt1,...,Mu

Vtesti,m . (3.8)

Where

ūM “

M
ÿ

m“1

â

βPB

umβ b
â

γPG

ūmγ ,

Vtesti,m “

!

v P V : v “ vmi b
â

βPB

umβ b
â

γPGztiu

ūmγ , v
m
i P Vi

)

.

This nonlinear problem can be reformulated as a coupled system of |G| ¨M linear equations in a similar
way that for the Galerkin method. With this, the equation corresponding to the i-th dimension and the m
mode is: given tunγupγ,nqPpGˆp1,...,Mqqzti,mu, find umi P Vi such that

BpūM , vq “ Lpvq @Vtesti,m . (3.9)

In order to reduce the number of equations of this system an alternative approach is used to obtain a
system of |G| equations. However, the spaces of each of these equations is enlarged by a factor M . To do
so, we shall first define such enlarged spaces:

V̄γ “ pVγqM , γ P G, (3.10)

V̄ “
â

γPG

V̄γ . (3.11)

We also define the projection operator P̄mγ : V̄γ Ñ Vγ as the map returning the m component of an
element in V̄γ .

Defining the adequate separable bilinear form B̄ and linear functional L̄ on V̄ we can reformulate the
problem such that it adopts the form of a Galerkin PGD formulation. The problem consists in finding
pūγqγPG P

À

γPG V̄γ such that

B̄pūG, v̄q “ L̄pv̄q @v̄ P V̄test “
ÿ

iPG

V̄testi . (3.12)

Where

ūG “
â

γPG

ūγ ,

V̄testi “

!

v̄ P V̄ : v̄ “ v̄i b
â

γPGztiu

ūγ , v̄i P V̄i
)

.

Then, the problem is solved by assigning to ūmγ the element P̄mγ ūγ .
The forms that ensure the equivalence of the problem are

B̄
´

â

γPG

ūγ ,
â

γPG

v̄γ

¯

“

M
ÿ

mu,mv“1

ÿ

mBPMB

ź

βPB

σmu,mvβ,mB
¨
ź

γPG

B̄mu,mvγ,mB pūγ , v̄γq, (3.13)

L̄
´

â

γPG

v̄γ

¯

“

M
ÿ

mv“1

ÿ

mLPML

ź

βPB

σmvβ,mL ¨
ź

γPG

L̄mvγ,mLpv̄γq. (3.14)

Where

σmu,mvβ,mB
“ BmBβ pumuβ , umvβ q, (3.15)

σmvβ,mL “ LmLβ pumvβ q, (3.16)

B̄mu,mvγ,mB pūγ , ūγq “ BmBγ pP̄muγ ūγ , P̄
mv
γ v̄γq, (3.17)

L̄mvγ,mLpv̄γq “ LmLγ pP̄mvγ v̄γq. (3.18)

11



Forms B and L have not been defined on the whole space V̄ but only on a subset of it. We complete their
definition using linearity and density arguments, i.e. extending them such that they preserve linearity and
continuity. The problem to solve is to find the rank-one Galerkin approximation ūG where the number of
dimensions has been reduced to |G| although each dimension size has been multiplied by M . Note also that
the number of modes of B and L have been multiplied by M2 and M .

Now we prove that solving problem (3.8) is equivalent to solving (3.12). Equation (3.12) can be stated
as

B̄
´

â

γPG

ūγ ,
ÿ

iPG

v̄i b
â

γPGztiu

ūγ

¯

“ L̄
´

ÿ

iPG

v̄i b
â

γPGztiu

ūγ

¯

@pv̄iqiPG P
à

iPG

V̄i.

Using the definitions of B̄ and L̄ one obtains

M
ÿ

mu,mv“1

ÿ

mBPMB

ź

βPB

BmBβ pumuβ , umvβ q ¨

«

ÿ

iPG

BmBi pūmui , vmvi q ¨
ź

γPGztiu

BmBγ pūmuγ , ūmvγ q

ff

“

M
ÿ

mv“1

ÿ

mLPML

ź

βPB

LmLβ pumvβ q ¨

«

ÿ

iPG

LmLi pvmvi q ¨
ź

γPGztiu

LmLγ pūmuγ q

ff

@ppvmvi qiPGqmvPt1,...,Mu P

´

à

iPG

Vi
¯M

.

Using the separability properties of B and L some terms can be grouped:

M
ÿ

mu,mv“1

B
´

â

βPB

umuβ b
â

γPG

ūmuγ ,
ÿ

iPG

vmvi b
â

βPB

umvβ b
â

γPGztiu

ūmvγ

¯

“

M
ÿ

mv“1

L
´

ÿ

iPG

vmvi b
â

βPB

umvβ b
â

γPGztiu

ūmvγ

¯

@ppvmvi qiPGqmvPt1,...,Mu P

´

à

iPG

Vi
¯M

.

We conclude the proof by noting that this last equation is equivalent to (3.8).
Summarising, to perform the update we define a new system represented as a Galerkin PGD. IfM modes

have been computed, to compute the updated functions pūmγ q, one defines a new separated linear map K̄.
This enlarged separated map is a block matrix M ˆM for each dimension and mode. It has M2 modes
for every mode of the original PGD bilinear form. Every of such modes consists in one matrix for each
dimension to be updated where one of the components of the block matrix (the same for every dimension)
is the original PGD matrix and the rest are 0. Let denote the row and column of that component by i and
j. Every mode is multiplied by a constant that consists in the product over all the dimensions not to be
updated of the quadratic form puiβq

TKmB
β ujβ .

To define the separated vector f̄ the process is similar. It consists of block column vectors with size M
for each dimension and mode. It has M modes for every mode of the original PGD vector. Every mode
consists again in a vector for each dimension where one component (say i) is the original PGD vector and
the rest are 0. Every mode is scaled by puiβq

TfmLβ .
The solution is computed as a Galerkin PGD solution of the system K̄ū “ f̄ . Finally, every function

umγ is updated to the m component of ūγ .
To conclude we note two points concerning two extreme cases. On the one hand, if the update is to

be performed only in one dimension, i.e. |G| “ 1, the resulting system is a PGD system involving only
one dimension. That is, a conventional linear system of equations. On the other hand, if the update is to
be performed in all dimensions, i.e. G “ A, the method can be understood as a kind of a priori Proper
Orthogonal Decomposition (POD). In this case, it makes no sense computing the solution by a sequential
addition of modes as in the update step all functions are discarded and the update of all of them is computed.
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3.3.2 Advection-diffusion formulation

Here we present the formulation of the problem of updating the time functions of the advection-diffusion
problem. We reformulate the problem as a Galerkin one.

Suppose that after each computation of a new mode, we want to recompute all temporal functions of the
solution while keeping the spatial ones. That is, we want to improve the accuracy of the solution enabling
the modes to be coupled between them but without solving any problem involving the spatial dimension as
it is more expensive. We use the following Galerkin formulation: find pλmqmPt1,...,Mu P pVT qM such that

B

˜

M
ÿ

m“1

ωmλm,
M
ÿ

m“1

ωmλm˚

¸

“ L

˜

M
ÿ

m“1

ωmλm˚

¸

@pλm˚qmPt1,...,Mu P pVT qM . (3.19)

As the update is performed only in one dimension the resulting system is not of PGD type but a linear
conventional Galerkin formulation. Here, for simplicity, we shall restrict ourselves to the case where M “ 2
(see section 3.3.1 for the general case). That is, given pω1, ω2q P pVSq2 find pλ1, λ2q P pVT q2 such that

B
`

ω1λ1 ` ω2λ2, ω1λ1˚ ` ω2λ2˚
˘

“ L
`

ω1λ1˚ ` ω2λ2˚q @pλ1˚, λ2˚q P pVT q2.

We expand the forms as follows:

B
`

ω1λ1, ω1λ1˚
˘

`B
`

ω2λ2, ω1λ1˚
˘

`B
`

ω1λ1, ω2λ2˚
˘

`B
`

ω2λ2, ω2λ2˚
˘

“

L
`

ω1λ1˚q ` L
`

ω2λ2˚q @pλ1˚, λ2˚q P pVT q2.

We reformulate the previous equation as a coupled system of two equations:

B
`

ω1λ1, ω1λ1˚
˘

`B
`

ω2λ2, ω1λ1˚
˘

“ L
`

ω1λ1˚
˘

@λ1˚ P VT ,

B
`

ω1λ1, ω2λ2˚
˘

`B
`

ω2λ2, ω2λ2˚
˘

“ L
`

ω2λ2˚
˘

@λ2˚ P VT .

Using the separability properties:
ÿ

mPte,d,a,0u

`

BmS pω
1, ω1qBmT pλ

1, λ1˚q `BmS pω
2, ω1qBmT pλ

2, λ1˚q
˘

“
ÿ

mPtf,0u

LmS pω
1qLmT pλ

1˚q @λ1˚ P VT ,

ÿ

mPte,d,a,0u

`

BmS pω
1, ω2qBmT pλ

1, λ2˚q `BmS pω
2, ω2qBmT pλ

2, λ2˚q
˘

“
ÿ

mPtf,0u

LmS pω
2qLmT pλ

2˚q @λ2˚ P VT .

As ωm are given, one can compute a priori the forms associated to them. That is, σi,jS,m “ BmS pω
j , ωiq, i, j P

t1, 2u,m P te, d, a, 0u and σiS,m “ LmS pωiq i P t1, 2u,m P tf, 0u. This leads to

ÿ

mPte,d,a,0u

`

σ1,1
S,mB

m
T pλ

1, λ1˚q ` σ1,2
S,mB

m
T pλ

2, λ1˚q
˘

“
ÿ

mPtf,0u

σ1
S,mL

m
T pλ

1˚q @λ1˚ P VT ,

ÿ

mPte,d,a,0u

`

σ2,1
S,mB

m
T pλ

1, λ2˚q ` σ2,2
S,mB

m
T pλ

2, λ2˚q
˘

“
ÿ

mPtf,0u

σ2
S,mL

m
T pλ

2˚q @λ2˚ P VT .

To solve this system we first define the enlarged vector of unknowns

λ1 “

nDoFT
ÿ

i“1

NT
i λ

1
i, λ2 “

nDoFT
ÿ

i“1

NT
i λ

2
i, λ̄ “

ˆ

λ1

λ2

˙

.

The projection operators are defined as

P̄ iT : VT ‘ VT Ñ VT , i P t1, 2u

pλ1, λ2q ÞÑ λi.
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To solve it as an enlarged problem, we define the enlarged forms as

B̄pλ̄, λ̄˚q “
ÿ

mPte,d,a,0u
i,jPt1,2u

σS,mi,j B̄i,jT,mpλ̄, λ̄
˚q,

L̄pλ̄˚q “
ÿ

mPtf,0u
iPt1,2u

σS,mi L̄iT,mpλ̄
˚q.

Where

B̄i,jT,mpλ̄, λ̄
˚q “ BmT pP̄

j
T λ̄, P̄

i
T λ̄
˚q,

L̄iT,mpλ̄
˚q “ LmT pP̄

i
T λ̄
˚q.

The associated matrices and vectors are:
“

K̄
i,j
m

‰

ab
“ BmT pP̄

j
T N̄

T
b , P̄

i
T N̄

T
a q, m P te, d, a, 0u, i, j P t1, 2u,

K̄
1,1
m “

ˆ

Km
T 0

0 0

˙

, K̄
1,2
m “

ˆ

0 Km
T

0 0

˙

,

K̄
2,1
m “

ˆ

0 0
Km
T 0

˙

, K̄
2,2
m “

ˆ

0 0
0 Km

T

˙

,

“

L̄
i
m

‰

a
“ LmT pP̄

i
T N̄aq, m P tf, 0u, i P t1, 2u,

L̄
1
m “

ˆ

fmT
0

˙

, L̄
2
m “

ˆ

0
fmT

˙

.

The weights σ of each mode are:

σi,jm “ BmS pω
j , ωiq, m P te, d, a, 0u, i, j P t1, 2u,

σ1,1
m “ pω1qTKm

S ω
1, σ1,2

m “ pω1qTKm
S ω

2,

σ2,1
m “ pω2qTKm

S ω
1, σ2,2

m “ pω2qTKm
S ω

2,

σim “ LmS pω
iq, m P tf, 0u, i, j P t1, 2u,

σ1
m “ pω

1qTfmS , σ2
m “ pω

2qTfmS .
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3.4 Numerical example: First approach and update

In the first chapters we restrict the study of two examples based on the same problem: one of pure advection
type and the other with the presence of diffusion. On later chapters we introduce additional examples.

Such first examples are similar to one presented by Nouy in his paper. The spatial discretisation consists
of a regular mesh of 40ˆ 40 triangular linear elements while the temporal discretisation consists of a regular
mesh of 100 piecewise linear elements. This discretisation corresponds to nDoFS “ 1521 and nDoFT “ 101.

The force term is f “ 0, the velocity field is cpx, y, tq “ πp´y ` 1
2 , x´

1
2 q and the initial condition is

u0px, yq “ exp

˜

´
px´ 2

3 q
2 ` py ´ 1

2 q
2

0.072

¸

.

For the diffusivity constant two different values have been chosen: νA “ 0 for the pure advection problem
and νAD “ 10´3 for the advection-diffusion problem.

Due to the chosen parameters, the solution does not present boundary layers. For this reason, the weak
form of the spatial dimension has not been stabilised. In general, for advection dominated problems, some
spatial stabilisation —e.g. SUPG, GLS, SGS— is needed as in classical advection-diffusion solvers [1].

In contrast, temporal stabilisation is not needed as the PGD methods inherit the stability property of
the continuous Galerkin discretisation of the full problem. For a discussion on the stabilisation of the weak
formulation, see chapter 5.

3.4.1 Reference solution

To obtain the reference solution we have used the procedure explained in section 2.3. The reference solution
of both problems is plotted below.

Figure 3.1 Reference solution for pure advection

Figure 3.2 Reference solution for advection-diffusion
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3.4.2 Numerical results

Now we present the results for the Galerkin PGD algorithm approximating both reference solutions. In the
figures we plot, in that order, the first ten spatial modes, the first ten temporal modes and the reconstruction
of the solution adding those ten modes.

Galerkin without update

First, we present the results for the plain Galerkin algorithm. That is, without performing any update.

Figure 3.3 Galerkin PGD approximation for the pure advection problem

Figure 3.4 Galerkin PGD approximation for the advection-diffusion problem

It is seen by simple inspection that the approximation of the solution is relatively accurate for the first
instants of time, but then it presents larger errors. It can also be seen the obtained modes are far from being
orthogonal. In fact, most of consecutive modes present similar spatial and temporal solutions (note that any
mode can be multiplied by factor of -1 in both spatial and temporal dimension resulting in an equivalent
normalised mode). This reveals that the solution is not optimal as it is known that the modes of the optimal
decomposition of a second order tensor are orthogonal.
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Galerkin with time update

Now we present the results with the update algorithm in the temporal dimension.

Figure 3.5 Galerkin PGD approximation with update in time for the pure advection problem

Figure 3.6 Galerkin PGD approximation with update in time for the advection-diffusion problem

We see, again, that the modes are not optimal. The error presents the same property than in the standard
Galerkin algorithm: it increases as time advances.
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Galerkin with space-time update

For the sake of completeness, we have computed the solution of the Galerkin PGD problem with space-time
update. However, this method is highly unefficient because the computational power nedeed is very high.

Figure 3.7 Galerkin PGD approximation with update in space and time for the pure advection
problem

Figure 3.8 Galerkin PGD approximation with update in space and time for the advection-diffusion
problem

The solutions obtained with this method are identical, by simple inspection, to the reference solutions.
The modes seem to be orthogonal, as in the optimal decomposition.
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3.4.3 Convergence
Now we present the convergence properties of the different methods to make quantitative assertions about
the previous qualitative statements. For that, it has been computed the approximation of the solution of
both problems using the three methods already presented. For the plain Galerkin, the solution has been
computed up to 640 modes; for the Galerkin with time update, up to 60 modes and for the Galerkin with
space and time update, up to 20 due to the high computational cost of this method. In figure 3.9, the
convergence of the error of each method is shown. All errors are normalised by the norm of the reference
solution such that the plots show the relative error.
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Figure 3.9 Error convergence

Here A stands for advection problem and AD for advection-diffusion problem, G for Galerkin method, u
for time update and uu for space-time update.

The error of the plain Galerkin is monotonically decreasing but the order at which decreases is reduced
as the number of modes increases, this is typical of the Galerkin PGD methods. Note that the error of the
plain Galerkin and Galerkin with time update methods are similar; the update in time does not produce
any significant improvement in the solution. We see, as expected, that the solution of the problem using the
space-time update is much more accurate compared with the previous ones.

One can also note that the approximation to the advection-diffusion problem is more accurate than the
approximation to the pure advection problem. The reason of this is that as the solution diffuses, the solution
can be represented with less modes to the same degree of accuracy.
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We focus now on the observed fact that the error of the solution increases as the time evolve. We show
the evolution of the error ‖eptq‖LpΩq for different methods and number of modes. We show only the solution
for the pure advection problem. For the advection-diffusion problem the results are similar.
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Figure 3.10 Temporal evolution of the error

We see that effectively for the plain Galerkin and time update methods the solution is more accurate at
t “ 0 and it increases roughly exponentially as time advances. One would expect that the time update would
made the error more uniform in time. Surprisingly, it is seen that the opposite occurs. Take for example the
solution with 40 modes. We have just seen that the error in space time for both methods is similar. The
error at the instant t “ 0 is an order of magnitude lower for the time update method compared to the plain
Galerkin while at t “ 1 is of the same order of magnitude. Conversely, for the space-time update method
the error in time is constant.
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In section 3.2 we have shown the procedure of sequential addition of modes to the approximation to reduce
the error. The typical error estimator for the plain PGD algorithm is the norm of the last computed mode.
For the algorithms that use the update procedure, as they recompute all previous modes, we have defined the
error estimator as the minimum norm over all modes. Note that if we use the same error estimator for the
plain method, the stopping criterion is unchanged. Now we show this error estimator for the two problems
and three methods. We also show how precise is such estimator. That is, we show the ratio between the
actual error and the error estimator.
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Figure 3.11 Modal amplitude
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Figure 3.12 Error estimator accuracy

We see that for the plain Galerkin method and the method with time update the error estimator is not
precise. The ratio is of order 103 ´ 104. For the Galerkin with time-update the error is of order 1.
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Chapter 4

Petrov-Galerkin PGD

In this chapter we introduce the formulation of the Petrov-Galerkin PGD method introduced by Nouy. This
method consists in replacing the test functions of the Galerkin PGD problem by some different functions
defined in the same space V in order to try to minimise the error with respect to an a priory defined inner
product. In his paper, the method is introduced as a dual variation problem. We shall interpret the problem
in a different way. This different derivation of the method is not only more intuitive but is also used for
introducing a SUPG stabilisation in chapter 5. In the whole chapter we assume for simplicity that the
solution of the proposed method is unique. In future examples we show that this might not be the case (cf.
chapter 6).

4.1 Motivation and rank one approximation
In the case that the bilinear form B defines an inner product on V, i.e. it is coercive and symmetric, it can
be shown that the solution of the Galerkin rank-one problem is the one that minimises the error respect to
this inner product. That is

uR1 “ arg min
uR1“

Â

αPA uα

Bpu´ uR1, u´ uR1q. (4.1)

If B is non-symmetric this property does not hold anymore and the Galerkin method presents a slow con-
vergence or, in some cases, it does not converge.

To overcome this problem, the Petrov-Galerkin approach tries to minimise the error respect to an a priori
defined inner product. We require the inner product to have the following separability condition:

A

â

αPA

uα,
â

αPA

vα

E

“
ź

αPA

xuα, vαyα.

Where x¨, ¨yα is some valid inner product in Vα. Note that the natural inner product of the tensor product
space V satisfies the previous property.

Now it is defined a dual element ũ such that

Bpv, ũq “ xu, vy @v P V. (4.2)

The previous problem is assumed to be well-posed. We want now to find uR1 such that

uR1 “ arg min
uR1“

Â

αPA uα

1

2
xu´ uR1, u´ uR1y “ arg min

uR1“
Â

αPA uα

1

2
xuR1, uR1y ´ xu, uR1y. (4.3)

Using the definition of the dual problem (4.2) (substituting v by uR1), the last term of the right-hand
side can be replaced and the problem now is

uR1 “ arg min
uR1“

Â

αPA uα

1

2
xuR1, uR1y ´BpuR1, ũq. (4.4)
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Imposing the stationarity of the functional, the equation to solve is

xuR1, vy “ Bpv, ũq @v P Vtest “
!

v P V : v “
ÿ

αPA

vα
â

βPAztαu

uβ , vα P Vα
)

. (4.5)

Here it is assumed that ũ is known so v ÞÑ Bpv, ũq is a continuous linear functional on V.
As the problem implies computing ũ (and so u), we adopt an alternative approach. That is, instead of

computing ũ we compute pũαqαPA P
À

αPA Vα and we approximate ũ « ũR1 “
Â

αPA ũα. To do that, a
similar approach is followed. First, an additional inner product is defined as

xu, vy„ “ xb
˚u, b˚vy “ xbb˚u, vy.

Where b : V Ñ V is the operator associated with B by Riesz representation. Note that this is a valid inner
product as, by the assumption of well posedness, the nullspace of b is t0u.

Now a bi-dual element ˜̃u is defined similarly to ũ:

Bp˜̃u, vq “ xũ, vy„ @v P V. (4.6)

We show that, in fact ˜̃u “ u. For that, let the element l P V be the one associated to L by Riesz representation
(using the x¨, ¨y inner product). By (2.1) and (4.2) we obtain bu “ l and b˚ũ “ u. The bi-dual problem is

Bp˜̃u, vq “ xũ, vy„ “ xbb
˚ũ, vy “ xbu, vy “ xl, vy “ Lpvq @v P V.

And by the assumption of uniqueness of the solution ˜̃u “ u.
Similarly on what we did for the primal variable, now we define the approximation to the dual solution

as the one that minimises the error respect to the additionally defined inner product. That is

ũR1 “ arg min
ũR1“

Â

αPA ũα

1

2
xũ´ ũR1, ũ´ ũR1y„. (4.7)

The stationarity of the functional leads to

xũ´ ũR1, vy„ “ 0 @v P Ṽtest “
!

v P V : v “
ÿ

αPA

vα
â

βPAztαu

ũβ , vα P Vα
)

. (4.8)

On the other hand, expanding the inner product we get

ũR1 “ arg min
ũR1“

Â

αPA ũα

1

2
xũ´ ũR1, ũ´ ũR1y„ “ arg min

ũR1“
Â

αPA ũα

1

2
xũR1, ũR1y„ ´Bp˜̃u, ũR1q.

The stationarity condition is now:

Bpu, vq “ xũR1, vy„ “ xũ, vy„ ´ xũ´ ũR1, vy„ “ Lpvq @v P Ṽtest. (4.9)

Note that the term xũ ´ ũR1, vy„ is null by (4.8). Now we have equations (4.5) and (4.9) that involve the
exact solution. If we substitute the exact solution on this equations by the rank-one approximation, we
obtain the Petrov-Galerkin formulation:

BpuR1, vq “ Lpvq @v P Ṽtest, (4.10)

Bpv, ũR1q “ xuR1, vy @v P Vtest. (4.11)

Where Vtest and Ṽtest are as defined in (4.5) and (4.8).
Remark 4.1: We interpret the previous equations as a Petrov-Galerkin formulation noting that (4.10) is

identical to the standard Galerkin PGD formulation with the exception that in the definition of the space of
test functions the functions uβ are substituted by ũβ . With that interpretation, the function of (4.11) is to
determine which are the dual functions. But note that we have shown that actually equation (4.11) is the
one that minimises the error of the rank-one representation of the primal solution and (4.10) minimises the
error of the dual function.
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4.1.1 Interpretation as a dual variation problem
In his original paper, Nouy introduces equations (4.10) and (4.11) as the stationary conditions of a dual
variation problem. We present it in the original form, that is, restricted to the case of separation of two
dimensions (space and time).

pωλ, ω̃λ̃q “ arg max
ω̃PVS
λ̃PVT

min
ωPVS
λPVT

Lpωλ, ω̃λ̃q “ arg max
ω̃PVS
λ̃PVT

min
ωPVS
λPVT

1

2
xωλ, ωλy ´BpuM ` ωλ, ω̃λ̃q ` Lpω̃λ̃q. (4.12)

Where uM “
řM
m“1 ω

mλm stands for the previously computed modes. For simplicity, we take uM “ 0. See
section 4.3 for the general case. One can check easily that the equations that make the functional stationary
are (4.10) and (4.11).

It is straightforward to see that the functions ω and λ that are obtained by imposing the corresponding
stationarity conditions of L are in fact at a relative minimum. Noting that LÑ8 as ‖ω‖Ñ8 or ‖λ‖Ñ8

it follows that the solution of equation (4.11) is the argument of the minimum of L provided that the solution
is unique. In fact, equations (4.4) and (4.12) are quite similar.

However, we claim that the functions ω̃ and λ̃ that make the functional stationary are not the arguments
of the maximum. First, note that by equation (4.10)

Bpωλ, ω̃λ̃q ´ Lpω̃λ̃q “ 0.

Now pick arbitrary ω̃˚ P VS , λ̃˚ P VT . The function defined as pω̃ ` ω̃˚qpλ̃` λ̃˚q is a rank one function.
If pω̃, λ̃q defines a maximum on L, then

Bpωλ, pω̃ ` ω̃˚qpλ̃` λ̃˚qq ´ Lppω̃ ` ω̃˚qpλ̃` λ̃˚qq ě 0 @ω̃˚ P VS , λ̃˚ P VT .

Expanding the forms we get

Bpωλ, ω̃λ̃q ´ Lpω̃λ̃q `Bpωλ, ω̃˚λ̃q ´ Lpω̃˚λ̃q `Bpωλ, ω̃λ̃˚q ´ Lpω̃λ̃˚q`

Bpωλ, ω̃˚λ̃˚q ´ Lpω̃˚λ̃˚q ě 0 @ω̃˚ P VS , λ̃˚ P VT .

By equation (4.10) the six first terms cancel leading to

Bpωλ, ω̃˚λ̃˚q ´ Lpω̃˚λ̃˚q ě 0 @ω̃˚ P VS , λ̃˚ P VT .

Noting that for fixed ωλ the previous expression defines a linear form, we get that the condition for pω̃, λ̃q
being a maximum is

Bpωλ, ω̃˚λ̃˚q ´ Lpω̃˚λ̃˚q “ 0 @ω̃˚ P VS , λ̃˚ P VT .

The previous equation is equivalent to state that ωλ is a solution of the full order problem. In this
particular case, the functional L is independent of the dual functions and makes no sense to talk about
maximum respect to the dual functions.

With that we have shown that the functions pω̃, λ̃q in general do not define a maximum on L. Instead
of talking about a minimax problem it is more accurate to talk about making the functional L stationary.
This subtile change makes no difference on the method as the stationary conditions are equivalent.
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4.2 Petrov-Galerkin as an enlarged Galerkin problem

In this section, we present a method for obtaining a problem equivalent to the Petrov-Galerkin problem stated
in the previous section with the form of a standard Galerkin PGD problem. With this one can use the same
rank-one solver for the Galerkin and Petrov-Galerkin methods leading to a non-intrusive implementation.
This allows us to treat the non-linear Petrov-Galerkin method as a linear Galerkin one at the cost of doubling
the discretisation space as we shall see.

4.2.1 Abstract formulation

In the Petrov-Galerkin method, what we search for is a pair of vectors puR1, ũR1q. In this section we focus
on how to turn this problem in finding a single vector representing the previous one in a larger space. We
define the following Hilbert space V̂:

puR1, ũR1q P V ‘ V “
`
â

αPA

Vα
˘

‘
`
â

αPA

Vα
˘

ãÑ
â

αPA

`

Vα ‘ Vα
˘

“: V̂.

Where one possible definition of the imbedding is
´

ÿ

mPMu

â

αPA

umα ,
ÿ

mPMũ

â

αPA

ũmα

¯

ÞÑ
ÿ

mPMu

â

αPA

pumα , 0q `
ÿ

mPMũ

â

αPA

p0, ũαq.

We extend the definition of the imbedding using a density argument.
In the Petrov-Galerkin method we solve for two tuples: puαqαPA P

À

αPA Vα and pũαqαPA P
À

αPA Vα.
With this approach we solve for a single tuple pûαqαPA P

À

αPA V2
α. Now we have to redefine the bilinear

form B and functional L such that we obtain an equivalent problem in the enlarged space V̂. That is, we
want to compute ûR1 “

Â

αPA ûα using the Galerkin method with bilinear form B̂ and functional L̂ on
V̂ such that the obtained solution is equivalent to the two solutions of the Petrov-Galerkin problem, i.e.
ûα “ puα, ũαq @α P A, where vectors uα and ũα are the same vectors obtained using the Petrov-Galerkin
method. For that, first we define the projection operators

Pα : Vα ‘ Vα Ñ Vα
puα, ũαq ÞÑ uα,

P : V̂ Ñ V
â

αPA

ûiα ÞÑ
â

αPA

Pαû
i
α,

P̃α : Vα ‘ Vα Ñ Vα
puα, ũαq ÞÑ ũα,

P̃ : V̂ Ñ V
â

αPA

ûiα ÞÑ
â

αPA

P̃αû
i
α.

The definition of P and P̃ is extended to their whole domain using linearity and density arguments,.
The bilinear and linear forms that ensure that the solution is equivalent are defined as

B̂pû, v̂q “ BpPû, P̃ v̂q `BpP v̂, P̃ ûq ´ xPû, P v̂y, (4.13)

L̂pv̂q “ LpP̃ v̂q. (4.14)
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Alternatively, using the projection operators and the separation properties of the forms, the forms can
be defined equivalently on the subset of rank-one elements as

B̂
´

â

αPA

ûα,
â

αPA

v̂α

¯

“
ÿ

mPMB

˜

ź

αPA

B̂m,primalα pûα, v̂αq `
ź

αPA

B̂m,dualα pûα, v̂αq

¸

´

A

â

αPA

Pαûα,
â

αPA

Pαv̂α

E

,

(4.15)

L̂
´

â

αPA

v̂α

¯

“
ÿ

mPML

ź

αPA

L̂mα pv̂αq. (4.16)

Where

B̂m,primalα pûα, v̂αq “ Bmα pPαûα, P̃αv̂αq, (4.17)

B̂m,dualα pûα, v̂αq “ Bmα pPαv̂α, P̃αûαq, (4.18)

L̂mα pv̂αq “ Lmα pP̃αv̂αq. (4.19)

The enlarged problem to solve is of Galerkin PGD type:

B̂pûR1, v̂q “ L̂pv̂q @v̂ P V̂test “
!

v̂ P V̂ : v̂ “
ÿ

αPA

v̂α
â

βPAztαu

ûβ , v̂α P V2
α

)

. (4.20)

Now, we prove that solving a Galerkin problem for the previous forms is equivalent to the Petrov-Galerkin
problem. That is uR1 “ PûR1 and ũR1 “ P̃ ûR1. First, we express the space of test vectors as

V̂test “ Vtest0 ` Ṽtest0 .

Where

Vtest0 “

!

v̂ P V̂ : v̂ “
ÿ

αPA

v̂α
â

βPAztαu

ûβ , v̂α “ pvα, 0q, vα P Vα
)

,

Ṽtest0 “

!

v̂ P V̂ : v̂ “
ÿ

αPA

v̂α
â

βPAztαu

ûβ , v̂α “ p0, ṽαq, ṽα P Vα
)

.

With this decomposition and by the linearity of the forms on v̂, equation (4.20) can be interpreted as a
system of two equations:

B̂pûR1, v̂q “ L̂pv̂q @v̂ P Vtest0 , (4.21)

B̂pûR1, v̂q “ L̂pv̂q @v̂ P Ṽtest0 . (4.22)

Equation (4.21) can be reformulated as a system of nD equations. The equation for the i-th dimension is,
given tûαuαPAztiu, find ûi P Vi ‘ Vi such that

B̂pûR1, v̂q “ L̂pv̂q @v̂ P Vtest0,i “

!

v̂ P V̂ : v̂ “ v̂i
â

αPAztiu

ûα, v̂i “ pvi, 0q, vi P Vi
)

.

Expanding the forms with respect to their definitions one gets:

ÿ

mPMB

´

ź

αPA

B̂m,primalα pûα, v̂αq `
ź

αPA

B̂m,dualα pûα, v̂αq
¯

´
ź

αPA

xPαûα, Pαv̂αyα “

ÿ

mPML

ź

αPA

L̂mα pv̂αq @v̂i P tv P V̂i : v “ pvi, 0q, vi P Viu.

Where v̂α “ ûα @α P Aztiu. Note that P̃iv̂i “ 0, this simplifies the equation as some terms are null:
ÿ

mPMB

ź

αPA

B̂m,dualα pûα, v̂αq “
ź

αPA

xPαûα, Pαv̂αy @v̂i P tv P V̂i : v “ pvi, 0q, vi P Viu.
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Finally, the terms are regrouped using the separability property of the bilinear forms and the inner product.
The system of equations is reformulated as a single equation imposing the multi-orthogonality of the residual:

B
`

P v̂, P̃ ûR1

˘

“ xPûR1, P v̂y @v̂ P Vtest0 .

this equation is equivalent to (4.11).
Now we apply the same steps to equation (4.22). The associated equation for the i-th dimension is

B̂pûR1, v̂q “ L̂pv̂q @v̂ P Ṽtesti “

!

v̂ P V̂ : v̂ “ v̂i
â

αPAztiu

ûα, v̂i “ p0, ṽiq, ṽi P Vi
)

.

Expanding:

ÿ

mPMB

´

ź

αPA

B̂m,primalα pûα, v̂αq `
ź

αPA

B̂m,dualα pûα, v̂αq
¯

´
ź

αPA

xPαûα, Pαv̂αyα “

ÿ

mPML

ź

αPA

L̂mα pv̂αq @v̂i P tv P V̂i : v “ p0, ṽiq, ṽi P Viu.

Noting that Piv̂i “ 0:
ÿ

mPMB

ź

αPA

B̂m,primalα pûα, v̂αq “
ÿ

mPML

ź

αPA

L̂mα pv̂αq @v̂i P tv P V̂i : v “ p0, ṽiq, ṽi P Viu.

This is reformulated as

B
`

PûR1, P̃ v̂
˘

“ LpP̃ v̂q @v̂ P Ṽtest0 ,

which is equivalent to (4.10).

4.2.2 Advection-diffusion formulation
The Petrov-Galerkin approximation of the problem is to find pω, ω̃, λ, λ̃q P V2

S ‘ V2
T such that

Bpωλ, ω̃˚λ̃` ω̃λ̃˚q “ Lpω̃˚λ̃` ω̃λ̃˚q @pω̃˚, λ̃˚q P VS ‘ VT , (4.23)

Bpω˚λ` ωλ˚, ω̃λ̃q “ xωλ, ω˚λ` ωλ˚y @pω˚, λ˚q P VS ‘ VT . (4.24)

Where B and L are the same forms defined for the Galerkin PGD algorithm.
The system can be rewritten as a system of four coupled equations:

Bpωλ, ω̃˚λ̃q “ Lpω̃˚λ̃q @ω̃˚ P VS ,
Bpωλ, ω̃λ̃˚q “ Lpω̃λ̃˚q @λ̃˚ P VT ,
Bpω˚λ, ω̃λ̃q “ xωλ, ω˚λy @ω˚ P VS ,
Bpωλ˚, ω̃λ̃q “ xωλ, ωλ˚y @λ˚ P VT .

To solve the problem as a Galerkin enlarged system, define the enlarged vectors of unknowns as

ω “

nDoFS
ÿ

i“1

NS
i ωi, ω̃ “

nDoFS
ÿ

i“1

NS
i ω̃i, ω̂ “ pω, ω̃q, ω̂ “

2nDoFS
ÿ

i“1

N̂S
i ω̂i P V2

S :“ V̂S ,

λ “

nDoFT
ÿ

i“1

NT
i λi, λ̃ “

nDoFT
ÿ

i“1

NT
i λ̃i, λ̂ “ pλ, λ̃q, λ̂ “

2nDoFT
ÿ

i“1

N̂T
i λ̂i P VTS :“ V̂T .

Note that the tensor product of two elements ω̂ and λ̂ is

ω̂λ̂ “ pω, ω̃q b pλ, λ̃q “

ˆ

ωλ ωλ̃

ω̃λ ω̃λ̃

˙

.
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Where the terms ωλ̃ and ω̃λ are meaningless. That is why we define the embedding V ‘ V ãÑ V̂ as
´

ω b λ, ω̃ b λ̃
¯

ÞÑ pω, 0q b pλ, 0q ` p0, ω̃q b p0, λ̃q.

Again, we extend the definition of the embedding using a linearity and density argument.
Now we define the enlarged bilinear form as

B̂pωλ, ω˚λ˚q “
ÿ

mPte,d,a,0u

B̂m,primalS pω, ω˚qB̂m,primalT pλ, λ˚q ` B̂m,dualS pω, ω˚qB̂m,dualT pλ, λ˚q

´ xω, ω˚ySxλ, λ
˚yT . (4.25)

The matrices associated to the different modes are:
“

K̂
m,primal

α

‰

ij
“ B̂m,primalα pN̂α

j , N̂
α
i q, α P tS, T u,m P te, d, a, 0u,

K̂
m,primal

α “

ˆ

0 0
Km
α 0

˙

, (4.26)

“

K̂
m,dual

α

‰

ij
“ B̂m,dualα pN̂α

j , N̂
α
i q, α P tS, T u,m P te, d, a, 0u,

K̂
m,dual

α “

ˆ

0 pK̂
m

α q
T

0 0

˙

, (4.27)

“

K̂
0

S

‰

ij
“ ´xRSN̂

S
i , RSN̂

S
j yS ,

K̂
0

S “

ˆ

´MS 0
0 0

˙

, (4.28)

“

K̂
0

T

‰

ij
“ xRT N̂

T
i , RT N̂

T
j yT ,

K̂
0

T “

ˆ

MT 0
0 0

˙

. (4.29)

The enlarged linear functional is

L̂pωλq “
ÿ

mPtf,0u

L̂mS pωqL̂
m
T pλq. (4.30)

Their associated vectors are
“

f̂
m

α

‰

i
“ L̂mα pN̂

α
i q, α P tS, T u,m P tf, 0u,

f̂
m

α “

ˆ

0
fmα

˙

. (4.31)

The Petrov-Galerkin problem can be solved using a Galerkin approach with the enlarged forms:

B̂pω̂λ̂, ω̂˚λ̂` ω̂λ̂˚q “ L̂pω̂˚λ̂` ω̂λ̂˚q @pω̂˚, λ̂˚q P V̂S ‘ V̂T . (4.32)

Where ω̂ “ pω, ω̃q and λ̂ “ pλ, λ̃q.

4.3 Additional modes
In this section we discuss the problem of improving the accuracy of the rank-one approximation by sequen-
tially adding rank-one functions to the approximation of the solution. In the case of the Petrov-Galerkin
method, the bilinear form B̄ is not as obvious as in the Galerkin problem. The reason why B̄ ‰ B is because
in the formulation of the rank-one problem, the dual function must not take into account the contribution
of the previously computed dual solutions while, when computing the primal solutions, of course we must
subtract the contribution to the residual of the previously computed modes.
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4.3.1 Abstract formulation
Assume that ûM “

řM
m“1 û

m
R1 is already computed. We need to subtract the contribution of PûM to the

functional L̂. That is achieved by defining

˜̂
B
´

â

αPA

ûα,
â

αPA

v̂α

¯

“
ÿ

mPMB

˜

ź

αPA

B̂m,primalα pûα, v̂αq

¸

“ BpPû, P̃ v̂q. (4.33)

Note that ˜̂
Bpû, v̂q is independent of P̃ û meaning that the previous modes of the dual solution has not effect

on the bilinear form and it is independent of P v̂ meaning that the previous mode contributions do not have
any direct contribution to the dual function ũR1.

With this the problem to solve is

B̂pûR1, v̂q “ L̂pv̂q ´ ˆ̃BpûM , v̂q @v̂ P V̂test. (4.34)

4.3.2 Advection-diffusion formulation
Using the previous definition we get the following bilinear form associated to the contribution of the previous
modes approximation ûM :

˜̂
Bpωλ, ω˚λ˚q “

ÿ

mPte,d,a,0u

B̂m,primalS pω, ω˚qB̂m,primalT pλ, λ˚q. (4.35)

The matrices associated to the previous modes contribution are

˜̂K
m

α “ K̂
m,primal

α , α P tS, T u,m P te, d, a, 0u.

The Galerkin enlarged formulation reads

B̂pω̂λ̂, ω̂˚λ̂` ω̂λ̂˚q “ L̂pω̂˚λ̂` ω̂λ̂˚q ´
˜̂
BpûM , ω̂

˚λ̂` ω̂λ̂˚q @pω̂˚, λ̂˚q P V2
S ‘ V2

T . (4.36)

4.4 Update
In this section we discuss the same method of updating the functions of all modes for some subset of the
separated dimensions as presented in the Galerkin PGD method (section 3.3.1). In fact, as presented by Nouy
in his paper, the method of update in the Petrov-Galerkin is exactly the same than for the Galerkin PGD
formulation. The reason of this is that, as noted in the previous section, the dual functions are completely
decoupled from mode to mode. Therefore it makes no sense to couple the dual functions with the update
method. In the Petrov-Galerkin context, the problem of updating some dimensions after the computation
of each new mode is equivalent to the update problem for the Galerkin method with the difference that
the functions not to update are different as they are computed using the Petrov-Galerkin method. That
is, imagine the solution ûM “

řm
m“1 ûR1 has been computed using the Petrov-Galerkin method. Then the

update only modifies the primal functions of the PGD decomposition of the solution. The input data for
the update is P pûM q and with that, the problem is reduced to a Galerkin PGD update problem.

4.5 Numerical example: Petrov-Galerkin without and with time
update. Comparison with Galerkin

4.5.1 Numerical results
We present the solution of the same examples solved using the Galerkin PGD algorithm and compare the
results. We have computed the solution of the plain Petrov-Galerkin and the one with update in the time
dimension. Note that the method of updating all dimensions produce identical results as the Galerkin
method.
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Petrov-Galerkin without update

First, we present the results for the plain Petrov-Galerkin algorithm. In the figures we plot, in that order,
the first ten spatial and temporal modes of the primal solution, the ten spatial and temporal corresponding
modes of the dual solution and the reconstruction of the solution adding those ten modes.

Figure 4.1 Petrov-Galerkin PGD approximation for the pure advection problem

Figure 4.2 Petrov-Galerkin PGD approximation for the advection-diffusion problem
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If we look at the reconstruction of the solution approximating it by only ten modes we see that there is a
clear improvement in accuracy compared with the Galerkin method. We also see a faster scale reduction in
both spatial and temporal functions revealing that this method is closer to being optimal than the Galerkin
one. From the reconstruction of the solution we see that the error increases as time evolves as in the Galerkin
method.

Petrov-Galerkin with time update

Now we present the results with the update algorithm in the temporal dimension. We do not present the
results of the dual solutions. As they lack of meaning once the solution has been updated, the implementation
used to implement the update algorithm, implies that the information of the dual solution is lost at the update
step.

Figure 4.3 Petrov-Galerkin PGD approximation for the pure advection problem

Figure 4.4 Petrov-Galerkin PGD approximation for the advection-diffusion problem

The results are similar to the plain Petrov-Galerkin and it is hard to extract any conclusion without
additional information.

32



4.5.2 Convergence
Here we present the convergence properties of the methods and we compare them with the Galerkin PGD
method. Using the plain Petrov-Galerkin method we have computed the PGD approximation up to 322
modes for the problem of pure advection and 144 for the problem of advection-diffusion. At that point, the
PGD algorithm estimated that the solution is exact (up to numerical precision). For the Petrov-Galerkin
method with time update we have computed the approximation up to 60 modes due to the increasing
computational power as more modes are added. In the next plot, we show the convergence of the normalised
error of the Petrov-Galerkin methods as well as of the plain Galerkin for comparison purposes.
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Figure 4.5 Error convergence

Here A stands for advection problem and AD for advection-diffusion problem, G for Galerkin method,
PG for Petrov-Galerkin method and u for time update.

The comparison shows a great improvement in the convergence behaviour using the Petrov-Galerkin
method. We see that for the plain Petrov-Galerkin, the order of convergence also degrades as the number of
modes is increased. However, in this problem, the degradation is much lower than in the case of the plain
Galerkin method. We also note that the update in the time dimension improves the accuracy of the method.
Finally, as in the Galerkin method, the introduction of the diffusion term makes the problem to converge
faster.
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Now, we plot the error of the spatial dimension as a function of time for different number of modes.

0.00 0.25 0.50 0.75 1.00

10´8

10´5

10´2

||
ep
tq
||
L

2
p
Ω
q

A-PG
1 mode
10 modes
20 modes
40 modes
80 modes
160 modes
320 modes

0.00 0.25 0.50 0.75 1.00

10´3

10´2

10´1

100

||
ep
tq
||
L

2
p
Ω
q

A-PG (only first 40 modes)

1 mode
10 modes
20 modes
40 modes

0.00 0.25 0.50 0.75 1.00

t

10´4

10´3

10´2

10´1

100

||
ep
tq
||
L

2
p
Ω
q

A-PG-u

1 mode
10 modes
20 modes
40 modes
60 modes

Figure 4.6 Temporal evolution of the error

In the case of Petrov-Galerkin the error increases exponentially with time as in the Galerkin case. How-
ever, we see that once the error is approximated up to a certain level of accuracy, then the error is constant
until some instant of time and then it increases exponentially.

Finally, we see that in the case of Petrov-Galerkin (with and without update), the error estimator has
an accuracy of order 1.
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Figure 4.7 Modal amplitude
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Figure 4.8 Error estimator accuracy
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4.6 Concluding remarks
To conclude, we remark the clear improvement of the PGD method proposed by Nouy compared with the
traditional Galerkin in non-self-adjoint problems. In case that the bilinear form defines an inner product the
solution of both methods are similar. In fact, if one uses the bilinear form as the inner product to minimise
the error, the Petrov-Galerkin and the Galerkin methods are equivalent.

About the update procedure, in the problems we solved we see that updating all temporal functions
improve the solution but the increase of computational cost as more modes are added make this method
inefficient for computing approximations with a high number of modes. In his paper, Nouy used the same
example exposed in this thesis with an advection velocity ten times higher in magnitude. In that case, the
plain methods present a slow convergence and updating the time functions after each step increases notably
the accuracy of the method. We note as future work to study if updating only the last N modes (N being a
relatively small number), we can obtain similar results for the convergence properties without increasing to
much the computational cost.

Finally, we make an important remark about a possible modification to improve the computational
efficiency of the Petrov-Galerkin algorithm. Note that at every fixed-point iteration, when computing the
function of the α dimension, the resulting matrix is a linear combination of the matrices defined in (4.26 -
4.29) for fixed α. This is a 2ˆ 2 matrix with null coefficients at the lower-right entry. This means that the
primal function can be computed by solving

Kαuα “ fα.

Where Kα is a linear combination of Km
α and fα the corresponding force vector. The dual function can be

computed similarly. That is

KT
α ũα “ fα.

Where fα is different from the previous case and the matrix KT
α is the transposed of the used in the

previous problem. This means that if some matrix decomposition is performed to solve the linear system of
the primal problem. The dual problem can be solved without having to recompute the decomposition. This
makes the Petrov-Galerkin PGD almost as computationally cheap as the Galerkin PGD algorithm. However,
this implementation is code intrusive.

This remark was made by Nouy in his paper for the case of a two dimensional PGD. We show that the
result is valid also in the abstract formulation.

Fix a dimension α and consider all functions
 

uβ : β P Aztαu
(

as given. The bilinear form of equation
(4.22) can be written as

B̂
´

ûα b
â

βPAztαu

ûβ , p0, ṽαq b
â

βPAztαu

ûβ

¯

“
ÿ

mPMB

ź

βPAztαu

Bmβ puβ , ũβqB
m
α puα, ṽαq.

Were we have used the fact that Pαp0, ṽαq “ 0.
Conversely, the bilinear form of equation (4.21) can be written as

B̂
´

ûα b
â

βPAztαu

ûβ , pvα, 0q b
â

βPAztαu

ûβ

¯

´
@

uα b
â

βPAztαu

uβ , vα b
â

βPAztαu

uβ
D

“

ÿ

mPMB

ź

βPAztαu

Bmβ puβ , ũβqB
m
α pvα, ũαq ´

@

uα b
â

βPAztαu

uβ , vα b
â

βPAztαu

uβ
D

.

Where we have used the fact that P̃αpvα, 0q “ 0. The term of the inner product can be computed a priori as
the primal solutions are known. Then, noting that the discretisation of Bmα puα, ṽαq is the transpose of the
discretisation of Bmα pvα, ũαq, it follows that the matrices Kα and KT

α are in fact transposes of each other.
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Chapter 5

Stabilisation of the weak form

It is well known that for advection dominated problems, if Dirichlet BCs are prescribed at the outflow, the
FEM solution may present spurious oscillations node to node ??. We use a SUPG strategy to stabilise the
problem in the spatial dimensions. In the context of Petrov-Galerkin PGD, some modifications must be
carried in order to prevent the dual problem to present spurious solutions in the time dimension.

In addition, if the problem presents a temporal dependency on the BC type it can be the case that
boundary nodes that were initially free (natural BCs were enforced there) became prescribed (essential BCs)
this induces spurious oscillations in the time dimension.

In this chapter we present the stabilisation of both phenomena using a SUPG strategy. However, the
methodology can be generalised to any stabilisation method. For simplicity, we consider the formulation of
homogeneous Dirichlet BCs on all the spatial boundary and the time interval as T “ p0, 1q.

Finally, note that the abstract formulation is not present in this chapter as it lacks of meaning. In any
case, the methodology can be extended to the problem of parametric transient advection-diffusion problems.

5.1 Stabilisation of the spatial dimension

The solution of the spatial dimension presents spurious oscillations from node to node if the Péclet number
is larger than 1 and Dirichlet BCs are enforced at the outflow generating a boundary layer. To stabilise the
spatial dimension we use a SUPG formulation:

BSUPGS pu, vq “
ÿ

ePTh

ż

ΩeˆT

`

ut ` c ¨∇u´∇ ¨ pν∇uq
˘

τSpc ¨∇vq dpΩˆ T q, (5.1)

LSUPGS pvq “
ÿ

ePTh

ż

ΩeˆT

fτSpc ¨∇vq dpΩˆ T q. (5.2)

Where

τS “

ˆ

2c

h
`

4ν

h2

˙´1

,

and h stands for the diameter of the element. The summation being over all the elements partitioning the
domain.

Remark 5.1: The forms of the SUPG are integrated in time as we are using a global in time formulation
of the advection-diffusion problem.

The weak (full order) stabilised problem is to find u P V such that

pB `BSUPGS qpu, vq “ pL` LSUPGS qpvq @v P V. (5.3)
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Following the steps of chapter 4, the Petrov-Galerkin formulation is to define the dual problem as

pB `BSUPGS qpv, ũq “ xu, vy @v P V. (5.4)

However, with this approach the dual solution ũ presents spurious oscillations in the temporal dimension.
Alternatively, we define first both primal and dual problems and then stabilise separately each one. The
stabilisation of the primal problem is identical as in the previous case. To stabilise the dual problem, we
first recover the strong form of the problem.

Bpv, ũq “ xu, vy @v P V,
ż

ΩˆT

vtũ` pc ¨∇vqũ` ν∇v ¨∇ũ dpΩˆ T q `
ż

Ω

pũvqp0q dΩ “

ż

ΩˆT

uv dpΩˆ T q.

Applying the Gauss divergence theorem:
ż

ΩˆT

pũvqt dpΩˆ T q “

ż

Ω

pũvqp1q dΩ´

ż

Ω

pũvqp0q dΩ “

ż

ΩˆT

ũtv ` ũvt dpΩˆ T q ñ

ż

ΩˆT

vtũ dpΩˆ T q `

ż

Ω

pũvqp0qdΩ “

ż

ΩˆT

´ũtv dpΩˆ T q `

ż

Ω

pũvqp1qdΩ,

ż

ΩˆT

∇ ¨ pc uvq dpΩˆ T q “
ż

BΩˆT

c ¨ nuv dpBΩˆ T q “

ż

ΩˆT

p∇ ¨ cqvu` pc ¨∇uqv ` pc ¨∇vqu dpΩˆ T q ñ

ż

ΩˆT

pc ¨∇vqu dpΩˆ T q “
ż

ΩˆT

p´c ¨∇uqv dpΩˆ T q.

In the last step we have used the fact that v “ 0 on BΩ and ∇ ¨c “ 0. Substituting in the dual weak problem:
ż

ΩˆT

´ũtv ` p´c ¨∇ũqv ` ν∇v ¨∇ũ dpΩˆ T q `
ż

Ω

pũvqp1q dΩ “

ż

ΩˆT

uv dpΩˆ T q.

Remark 5.2: If the initial condition of the primal problem is imposed in weak sense, like in the present
formulation, the initial condition of the dual problem is imposed identically (note that the initial condition is
imposed at t “ 1 as the problem is backward in time). Conversely, if one imposes the initial condition of the
primal problem in strong sense, the bilinear form of the dual problem has the same term imposing weakly
the initial condition at t “ 1 but as the space V consist of functions such that up0q “ 0, the dual problem
presents also an spurious final condition imposed strongly at t “ 0. This can be interpreted as imposing an
essential BC in the outflow of a pure advection problem (as is discussed in the next section). We guess that
this would result in the presence of spurious oscillations in time as it is the case in the example showed in
chapter 6.

The strong form of the problem is

´ũt ` p´c ¨∇ũq ´∇ ¨ pν∇ũq “ u inΩˆ T, (5.5)
ũ “ 0 on BΩˆ T,
ũ “ 0 onΩˆ t1u.

This problem is a backward in time advection-diffusion transient PDE. To apply a SUPG stabilisation, we
first define a change of the time variable to recover a forward in time PDE.

φ : T Ñ T̃ “ p0, 1q,

t ÞÑ t̃ “ 1´ t.
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With this change of the time variable the PDE is

ũt̃ ` p´c ¨∇ũq ´∇ ¨ p∇νũq “ u inΩˆ T̃ , (5.6)

ũ “ 0 on BΩˆ T̃ ,
ũ “ 0 onΩˆ t0u.

The SUPG stabilisation of this problem is:

B̃SUPGS pũ, vq “
ÿ

ePTh

ż

ΩeˆT̃

`

ũt̃ ` p´c ¨∇ũq ´∇ ¨ pν∇ũq
˘

τSp´c ¨∇vq dpΩˆ T̃ q “

ÿ

ePTh

ż

ΩeˆT

`

ũt ` pc ¨∇ũq `∇ ¨ pν∇ũq
˘

τSpc ¨∇vq dpΩˆ T q,

L̃SUPGS pvq “
ÿ

ePTh

´uτSpc ¨∇vq dpΩˆ T q.

The stabilised dual problem is:

pB̃ ` B̃SUPGS qpũ, vq “ pL̃` L̃SUPGS qpvq @v P V. (5.7)

Where B̃pũ, vq “ Bpv, ũq and L̃pvq “ xu, vy.
Remark 5.3: To implement this SUPG scheme, one shall add to the dual problem the same modes

corresponding to the SUPG matrices of the primal problem without transposing them and changing the sign
of the mode corresponding to the residual of the diffusion (if linear elements are used this mode is null). Note
that if instead of using a SUPG stabilisation one uses a GLS stabilisation (and piecewise linear elements),
the stabilisation matrices are symmetric and it makes no difference on first defining the dual problem and
then stabilise or viceversa.

Remark 5.4: The term L̃SUPGS under the Petrov-Galerkin PGD formulation becomes a coupled term
between the primal and the dual problem.

5.2 Stabilisation of the temporal dimension
In the PGD context, we have used continuous elements to perform the time discretisation (see Remark 2.3).
This is because at the fixed point algorithm of the rank-one problem, one must solve the global problem in the
time dimension. This means that using discontinuous Galerkin or discretisations based on finite differences
does not result in any save of computational power as in classical discretisations, where the time steps are
computed sequentially.

Discretising the time using continuous shape functions makes the problem stable so we do not need
to apply classical time stabilisation schemes. This is because of the global nature of the problem in time
dimension. However, stability is lost if we let the system evolve and then impose some Dirichlet BC on
some part of the domain. In this case, node to node oscillations appear in the temporal dimension in
the time interval before the enforcement of the Dirichlet BC. This phenomenon can be understood in a
simple way by considering the transient advection-diffusion equation as a kind of transport equation in the
temporal dimension. In this section we develop this assertion and propose a stabilisation method to avoid
the oscillations.

First, consider the PDE as an equation in the sense of distributions where the solution is inH1pT ;HD
1 pΩqq „

HD
1 pΩq bH1pT q. That is, u and ut are square integrable functions in time. For a.e. t P T such functions

assign to t an element of HD
1 pΩq.

The problem is to find a family of functions in HD
1 pΩq denoted by tuptq : uptq P HD

1 pΩq, t P T u that fulfil
the following PDE in the sense of distributions.

c ¨∇uptq ´∇ ¨ pν∇uptqq ` Lpuptqq “ f on Ω @t P T.
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Where Lpuptqq “ utptq can be seen as a linear functional on uptq depending on functions of different times.
This term does not affect the stability properties of the PDE. That is, L is similar to a reaction term. In
fact, when solving the rank-one problem, in the spatial dimension, the equation to solve is a steady state
advection-diffusion-reaction equation where the reaction term comes from the function L. At this point, one
can stabilise the discretised form of the PDE using an standard SUPG scheme. The term L has no effect on
the stabilisation more than its contribution to the residual of the equation. That is,

ż

ΩˆT

RpuqτSpc ¨∇vq dpΩˆ T q.

This is the SUPG term added in the previous section.
Now we use the same argument but interchanging the spatial and temporal dimensions to stabilise the

time oscillations. We consider u as a function of HD
1 pΩ;H1pT qq „ HD

1 pΩq bH1pT q. The problem is now to
find a family of functions in H1pT q, tupxq : upxq P H1pT q, x P Ωu. Such that they satisfy

utpxq ` Lpupxqq “ f on T @x P Ω.

Where the linear functional is Lpupxqq “ ´∇ ¨ pν∇upxqq ` c ¨∇upxq. The problem is now a pure advection
problem in the time dimension. The advection velocity is 1 in all the domain. For generality, suppose that
the term ut is replaced by a ¨ ut; a ą 0. With this, the advection velocity is a. Now it is clear why if
one prescribes the value of upxq after some interval of time (i.e. the outflow) oscillations appear. These
oscillations can be stabilised using a SUPG scheme. That is,

ż

ΩˆT

RpuqτT pa ¨ vtq dpΩˆ T q.

Where τT “ h
2a .

Remark 5.5: With this stabilisation technique, we have modified the problem so now is second order in
time. This means that the system evolves in the same manner than a damped harmonic oscillator. However,
it is expected that the effect of the stabilisation parameter is so small than this results in a highly overdamped
oscillator. Note also that the problem has become elliptic, i.e. the future affects the past. This is the case,
for instance, when some Dirichlet values are prescribed in the future. The solution evolves to agree with the
prescribed value. This evolution starts some instant of time before the actual values are prescribed. However,
as the stabilisation is consistent we have ensured that both phenomena are negligible if the discretisation (in
time) is fine enough.

Now we can proceed to stabilise the problem in the same way we did in the previous section. That is, we
stabilise in a separate way the primal and the dual problem. For the primal problem, the stabilisation is:

BSUPGT pu, vq “
ÿ

ePTh

ż

ΩeˆT

put ` c ¨∇u´∇ ¨ pν∇uqqτT vt dpΩˆ T q,

LSUPGT pvq “
ÿ

ePTh

ż

ΩeˆT

fτT vt dpΩˆ T q.

The stabilisation of the dual problem can be deduced applying the same steps that we did in the previous
section. The SUPG terms are:

B̃SUPGT pũ, vq “
ÿ

ePTh

ż

ΩeˆT

pũt ` c ¨∇ũ`∇ ¨ pν∇ũqqτT vt dpΩˆ T q,

L̃SUPGT pvq “
ÿ

ePTh

ż

ΩeˆT

´uτT vt dpΩˆ T q.

The structure of the added stabilising terms is exactly the same that the one obtained in the spatial case.
The stabilised problems in space and time are

pB `BSUPGS `BSUPGT qpu, vq “ pL` LSUPGS ` LSUPGT qpvq @v P V, (5.8)

pB̃ ` B̃SUPGS ` B̃SUPGT qpũ, vq “ pL̃` L̃SUPGS ` L̃SUPGT qpvq @v P V. (5.9)
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One can then substitute the original bilinear and linear form by their stabilised versions in the PGD algo-
rithms.

5.3 Stabilisation of the rank-one problem

Although the stabilisation method defined is satisfactory for the full order problem, we make a point in the
case of the separated form. Let us assume that all parameters of the PDE and the stabilisation parameter τS
are time independent except the advection velocity which is a rank-one function c “ cS b cT . The stabilised
(in space) separated bilinear form of the rank-one problem for the Galerkin PGD formulation is

Bpωbλ, ω˚bλ˚q “

ż

Ω

ωω˚ dΩ

ż

T

λtλ
˚ dT`

ż

Ω

pcS ¨∇ωqω˚ dΩ

ż

T

cTλλ
˚ dT`

ż

Ω

ν∇ω ¨∇ω˚ dΩ

ż

T

λλ˚ dT`

ż

Ω

ωω˚ dΩ ¨ λp0qλ˚p0q `
ÿ

ePTh

ˆ
ż

Ωe

ωτSpcS ¨∇ω˚q dΩ

ż

T

cTλtλ
˚ dT`

ż

Ωe

pcS ¨∇ωqτSpcS ¨∇ω˚q dΩ

ż

T

c2Tλλ
˚ dT `

ż

Ωe

∇ ¨ pν∇ωqτSpcS ¨∇ω˚q dΩ

ż

T

cTλλ
˚ dT

˙

.

The term corresponding to the advection is
ż

Ω

pcS ¨∇ωqω˚ dΩ

ż

T

cTλλ
˚ dT.

The stabilisation term of the SUPG is

ÿ

ePTh

ˆ
ż

Ωe

pcS ¨∇ωqτSpcS ¨∇ω˚q dΩ

ż

T

c2Tλλ
˚ dT

˙

.

Solving the rank-one problem, in principle, one could find a time function λ that is solution of the problem
such that the ratio

ş

T
c2Tλ

2 dT
ş

T
cTλ2 dT

ď ε,

ε being an arbitrary small constant.
This argument shows that although the full order problem is stable, one can find spurious oscillations in

the spatial dimension of the separated approximation due to lack of stabilisation. In case this phenomenon
arises, we expect that, as the full order problem is stable, the modes would have the tendency to compensate
the error induced by previous unstable modes.

An alternative possible solution is to stabilise the full order problem and use the stabilised form only
to compute the contribution of the previous modes. Then, when solving the rank-one problem, at the step
of solving the spatial functions one gets an advection-diffusion problem where every term is weighted by
a factor depending on the time function λ and the term involving the time evolution becomes a reaction
term. Then, one can stabilise this problem and avoid in that way the spatial oscillations. The stabilisation
operators should not be computed every time but only be weighted by the corresponding factor and summed.

Using this method, the solution of the rank-one problem would not be consistent in the sense that the
stabilisation applied to their spatial functions would not be the same as the one applied to the full order
problem. However, the difference of the solution due to such inconsistency is expected to be small. The
computation of the contribution of that mode to the residual would be computed consistently for future
modes so that the errors due to that inconsistency should be continuously corrected. The main drawback of
this method is that it is highly code intrusive.

The question that arises using this method is if the resulting advection-diffusion-reaction steady state
PDE is well posed. For the Galerkin method the answer is positive, even assuming parameters of arbitrary
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rank. For if λ P VT is an arbitrary function, the problem in the spatial dimension is

ż

Ω

ωω˚ dΩ

ż

T

λtλ dT `
ÿ

mPMC

ż

Ω

pcmS ¨∇ωqω˚ dΩ

ż

T

cmT λ
2 dT `

ÿ

mPMν

ż

Ω

νmS ∇ω ¨∇ω˚ dΩ

ż

T

νmT λ
2 dT “

ż

Ω

fSω
˚ dΩ

ż

T

fTλ dT @ω˚VS . (5.10)

Where c “
ř

mPMC
cmS b cmT , ∇ ¨ cmS “ 0, ν “

ř

mPMν
νmS b νmT , ν

m
S , ν

m
T ě 0 and the force term has no

interest for us. This is the weak form of a steady state advection-diffusion-reaction PDE.

c˚ ¨∇ω ´∇ ¨ pν˚∇ωq ` σ˚ω “ f in Ω, (5.11)
ω “ 0 on BΩ.

Where

σ˚ “

ż

T

λtλdT “

ż

T

1

2
pλ2qtdT “

1

2

`

λ2p1q ´ λ2p0q
˘

“
1

2
λ2p1q ě 0,

c˚ “
ÿ

mPMC

cmS

ż

T

cmT λ
2dT, ∇ ¨ c˚ “ 0,

ν˚ “
ÿ

mPMC

νmS

ż

T

νmT λ
2dT ě 0.

As σ˚, ν˚ ě 0, ∇ ¨c˚ “ 0 the problem is well posed and a SUPG scheme can be used to stabilise the problem.
This introduces a nonlinearity with respect to λ but without any increase in the computational cost more
than computing the stabilisation matrix. However, in the Petrov-Galerkin scheme the positiveness of σ˚ and
ν˚ cannot be assured by this argument meaning that the problem may be ill-posed. We note as future work
to investigate the stabilisation of the Petrov-Galerkin PGD scheme.

For the stabilisation in the time dimension, a similar reasoning can be applied by interchanging the role
of the spatial and temporal functions.
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5.4 Numerical example
To illustrate the capabilities of the SUPG stabilisation method, we provide a numerical example. The
problem to solve is the same advection-diffusion PDE than in previous examples

ut `∇ ¨ pcu´ ν∇uq “ 0 in Ωˆ T, (5.12)
u “ 0 on BΩ,
u “ u0 on Ωˆ t0u.

We modify the parameters so that the problem becomes advection dominated and the solution presents a
boundary layer. For that we have chosen c “ pcosp2πtq, 0q “ p1, 0q b cosp2πtq and u0 “

1
16xpx´ 1qypy ´ 1q.

For the discretisation we use a regular mesh of 40 ˆ 40 triangular elements in space and a regular mesh of
100 elements in space. This gives a diameter h “

?
2 40. The Péclet number is then

Pe “
|c|h

2ν
“

1
?

2 80ν

Where the reference magnitude of the velocity has been taken as 1, the maximum over the time interval. In
order that the problem becomes advection dominated the diffusivity must satisfy ν ă p

?
2 80q´1. We chose

the extreme case of ν “ 0. That is, the problem is of pure transport. The Dirichlet BC at the outflow is
spurious but we maintain it in order to see the performance of the SUPG stabilisation.

The procedure is the same than for the previous examples. First we compute the reference solution to be
able to compute the error of the PGD approximation. Then we compute the Petrov-Galerkin operators (cf.
chapter 4). We then add the stabilisation terms. Here we have stabilised only the spatial dimension. See next
chapter for an example with stabilisation in time. Finally, we sequentially constructed the approximation
by solving the corresponding rank-one problems.

The standard fixed point lacks of convergence in this problem, so we used an alternative method. This
method consists in relaxing the iterations of the rank-one problem and using a technique of vanishing
diffusivity to obtain a sequence of approximations of the problem. Each of those approximations are obtained
as the solution of the problem with the addition of fictitious diffusivity. The first of the solutions is obtained
with a large amount of diffusivity and is used as initial point to compute the second solution (with a lower
amount of fictitious diffusivity). We proceed in that way until reaching a zero diffusivity. In all rank-one
problems with different amount of artificial diffusivity, the iterations are sub-relaxed. In that way the method
converges. See chapter 7 for more details.

We have computed the PGD approximation using the Petrov-Galerkin formulation up to 500 modes.
In figure 5.1 we present the ten first spatial and temporal modes for the primal and dual solution and
the reconstruction of the solution by adding the 500 modes (which is identical to solution of the full order
problem by simple inspection).
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Figure 5.1 Petrov-Galerkin approximation for the stabilised pure advection problem

In the next figure we show the convergence of the PGD approximation.
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Figure 5.2 Error convergence

We see that with the two first modes the error is quickly reduced to approximately 10´1. This is because
the first two modes represent the main part of the solution in rough outlines (as can be seen in figure 5.1).
The first mode is approximately constant in time and represents the central part of the solution, i.e. the
initial paraboloid. The second mode adds a negative term to the left side of the domain and positive to
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the right side at about t “ 0.25 as represents that the paraboloid has moved to the right and the opposite
holds at t “ 0.75, when the paraboloid has moved to the left. The rest of the terms continue improving the
approximation of the solution but as the main threats of the solution are already computed, the convergence
is slower. This explains the sudden drop of the error in the first two modes and then the convergence of the
solution at a more or less constant order.

Finally, we show the modal amplitude of each computed mode and the ratio of the error with the modal
amplitude.
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Figure 5.3 Modal amplitude and error estimator accuracy

As in previous Petrov-Galerkin examples, the modal amplitude stands as a good error estimator. The
ratio of the error and the modal amplitude is roughly constant around 10.

5.4.1 A diverging example
In this subsection we show an example of problem such that the approximation obtained with the Petrov-
Galerkin PGD method is diverging. The interesting phenomenon is that the divergence arises although
every rank-one problem is computed correctly (of course, up to a small numerical tolerance). Such example
is identical to the previous one with the magnitude of the advection velocity scaled by a factor of π. This
is the smallest value of the velocity such that all points of the domain are displaced at some instant of time
outside the domain. The solution at t “ 1 should be up1q “ 0. However, we expect some diffusive effect
arising from the SUPG stabilisation. The solution of the full order problem and the reconstruction of the
PGD solution with different number of modes are plotted in figures 5.4 to 5.7. In figure 5.8 it is plotted the
error and modal amplitude up to 50 modes of the PGD solution.
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Figure 5.4 Full order solution for the diverging example

Figure 5.5 Reconstructed solution of the diverging example with 10 modes
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Figure 5.6 Reconstructed solution of the diverging example with 25 modes

Figure 5.7 Reconstructed solution of the diverging example with 50 modes
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Figure 5.8 Error and modal amplitude for the diverging example

5.5 Concluding remarks
In this chapter we have shown successfully how to stabilise a transient advection-diffusion problem in space
and time using a continuous Galerkin method (the full order problem). We have also shown how to stabilise
the dual problem defined in the Petrov-Galerkin PGD method.

However, we have succeeded only partially in the PGD implementation of the stabilisation, as noted
in section 5.3. The problem is that although, the PGD algorithm converges to the full order solution, the
rank-one problems may not be stabilised correctly. We guess that this is the reason why the convergence
properties of the rank-one problems are soo poor. Although in chapter 7 we explain several algorithms used
successfully to obtain the solution of the rank-one problem, we note as future work to study the alternative
method of stabilising each rank-one iteration individually in the case of the Galerkin PGD algorithm, and
to investigate a possible extension to the Petrov-Galerkin formulation.

Finally, we have shown with the diverging example a case of a diverging PGD algorithm. In the example
showed, one may chose an alternative approach to avoid the divergence. Divide the time interval in smaller
intervals (in this case probably two are enough) and solve sequentially each of those, using as initial condition
the final condition of the previous interval.
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Chapter 6

Temporal/parametric dependence of the
Boundary Conditions type

In the context of the advection-diffusion problem, in engineering applications is very common to prescribe
Dirichlet BCs on the inflow part of the boundary while of Neumann type on the rest of the boundary. As
the flow velocity may vary on time and/or on additional parameters of the PDE, the essential BCs cannot
be prescribed in strong form. That is, one cannot decompose the space of functions as a tensor product
of a spatial functions space that vanish on the Dirichlet Boundary part and spaces representing the time
and/or parameters of the PDEs. Instead, we prescribe the essential BCs in a weak way, in particular, we
use Nitsche’s method. This results in some additional terms in the forms defining the problem.

Bpu, vq “

ż

ΩˆT

utv`p´cu`ν∇uq ¨∇v dpΩˆT q`
ż

BΩˆT

iDpcu´ν∇uq ¨n v` iDpcv´ν∇vq ¨n u dpBΩˆT q`
ż

BΩˆT

iDβuv dpBΩˆ T q `

ż

Ω

puvqp0q dΩ, (6.1)

Lpvq “

ż

ΩˆT

fv dpΩˆ T q `

ż

BΩˆT

iDpcuD ´ ν∇uDq ¨ n v ` iDpcv ´ ν∇vq ¨ n uD dpBΩˆ T q`
ż

BΩˆT

iDβuDv dpBΩˆ T q `

ż

BΩˆT

iNhv dpBΩˆ T q `

ż

Ω

u0vp0q dΩ. (6.2)

Where β is the parameter to enforce the essential BC and iD and iN are the indicator function of Dirichlet
and Neumann BCs, i.e. the image of px, tq P BΩ ˆ T under iD (or iN ) is 1 if at that point Dirichlet (or
Neumann) BCs are enforced, and 0 otherwise. The methodology can be extended to any number of different
BC types with the condition that the set of all indicator functions must form a partition of unity on BΩˆT .
Note that in order to preserve the separability of the forms, the indicator functions must be separable. If
a separated representation is not possible, they can be approximated using a tensor separation strategy.
For the separable approximation of input parameters we refer, again, to [5]. The separation representation
ideally should preserve two properties:

– The approximation should be a partition of unity.

– The representation should be a function with image in t0, 1u.

The first property is easily achieved by defining iN “ 1´ iD. The second one is more difficult to fulfil. We
note as future work to study the effect of the approximation of the indicator functions in the solution of the
full-order problem.

Remark 6.1: In the full order formulation one can avoid the use of the indicator functions by changing
the domain of integration of the terms involving the BC by the set on which the corresponding BC are active.
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The two alternatives are equivalent. When writing the separated formulation, is more convenient to use the
indicator functions.

Remark 6.2: Although we have restricted the methodology to the particular of the advection-diffusion
problem, it is straightforward to extend it to different problems and number of parameters.

6.1 Numerical examples

6.1.1 Example on the unit square

To illustrate the devised formulation, we use a simple advection-diffusion example in the unit square. For
that, we chose a rank-one uniform in space time dependent advection velocity c “ pcospπtq, 0q “ p1, 0q b
cospπtq. With this choice of the velocity, there is no advective flux across the upper and lower boundaries and
Neumann BC are prescribed there. The boundary conditions prescribed on the sides of the square depend
on time. That is, if the advective flow across them corresponds to the one of an inflow Dirichlet BCs are
prescribed, and Neumann otherwise. The strong form of the problem is

ut `∇ ¨ pcu´ ν∇uq “ 0 in Ωˆ T, (6.3)
pcu´ ν∇uq ¨ n “ 0 on Γ0 ˆ T,

u “ uLD on ΓL ˆ p0, 1{2q,

pcu´ ν∇uq ¨ n “ 0 on ΓL ˆ r1{2, 1q,

u “ uRD on ΓR ˆ p1{2, 1q,

pcu´ ν∇uq ¨ n “ 0 on ΓR ˆ p0, 1{2s,

u “ u0 on Ωˆ t0u.

where

Ω “ p0, 1q2,

T “ p0, 1q,

Γ0 “ p0, 1q ˆ t0, 1u,

ΓL “ t0u ˆ p0, 1q,

ΓR “ t1u ˆ p0, 1q and

n stands for the outward normal unit vector. The chose parameters are

c “ pcospπtq, 0q,

ν “ 10´2,

u0 “ x,

uLD “ 2t,

uRD “ 2t´ 1.

The weak formulation of the problem is

Bpu, vq “ Lpvq @v P V, (6.4)
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where

Bpu, vq “

ż

ΩˆT

utv ` p´cu` ν∇uq ¨∇v dpΩˆ T q `
ż

Ω

puvqp0q dΩ`

ÿ

ePTh

ż

ΩeˆT

`

ut `∇ ¨ pcu´ ν∇uq
˘

τSpc ¨∇vqdpΩˆ T q `
ż

ΩeˆT

`

ut `∇ ¨ pcu´ ν∇uq
˘

τT pvtqdpΩˆ T q`

ż

ΓLˆT

iΓL
`

pcu´ν∇uq¨n v`pcv´ν∇vq¨n u
˘

dpBΩˆT q`

ż

ΓRˆT

iΓR
`

pcu´ν∇uq¨n v`pcv´ν∇vq¨n u
˘

dpBΩˆT q`

ż

ΓLˆT

iΓLβuv dpBΩˆ T q `

ż

ΓRˆT

iΓRβuv dpBΩˆ T q, (6.5)

Lpvq “

ż

Ω

u0vp0q dpΩq`

ż

ΓLˆT

iΓLpcv´ ν∇vq ¨n uLD dpBΩˆT q`

ż

ΓRˆT

iΓRpcv´ ν∇vq ¨n uRD dpBΩˆT q`

ż

ΓLˆT

βiΓLu
L
Dv dpBΩˆ T q `

ż

ΓRˆT

βiΓRu
R
Dv dpBΩˆ T q. (6.6)

Note that we have included the terms of the SUPG stabilisation in space and time. The stabilisation parame-
ters τS and τT are defined in chapter 5. The indicator functions are defined as iΓLpx, tq “ χp0,1{2qptq, iΓRpx, tq “
χp1{2,1qptq. Where χS denotes the indicator function of an arbitrary set S. The parameter to impose the
Dirichlet BCs is defined as β “ 104{h where h represents the diameter of each element. Noting that all
parameters appearing in the weak formulation are rank-one functions so the separation of the forms is
straightforward.

The domain is discretised with the same discretisation used in previous examples: a regular triangular
mesh of 40 ˆ 40 and 100 regular elements in time. In figure 6.1, it is plotted the solution of the full order
problem (6.4). In figure 6.2, it is plotted the solution at point p1, 1{2q P ΓR as a function of time. It is noted
that, as stated in Remark 5.5, the Dirichlet BC actually affects the solution some instant of time before
t “ 1{2 where it is enforced.

Figure 6.1 Full order solution of the problem
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Figure 6.2 Solution at the right boundary of the domain as function of time

To solve the rank-one problem, the fixed-point classical algorithm lacks of convergence. For this reason,
we have adopted two different strategies that lead to different results. Both algorithms are described in
detail in chapter 7.

6.1.2 Vanishing diffusivity strategy
The first method used, is the vanishing diffusivity method. It is the same used in solving the examples
of chapter 5. In particular, it also uses the sub-relaxation. The algorithm solved correctly every rank-one
problem.

Figure 6.3 PGD approximation obtained by vanishing diffusion
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Figure 6.4 Error convergence and modal amplitude obtained by vanishing diffusion

As can be seen in figure 6.4, the error of the solution stagnates around 10´1. However, using the sub-
relaxed fixed point algorithm, the solution obtained does not present this behaviour. This phenomenon arises
because, at least for some modes, the solution of the rank-one problem is not unique. If the solution obtained
at each mode is the corresponding to the vanishing diffusivity method, the PGD approximation does not
converge to the full-order solution but to a different fixed-point. However, in some cases, if the sequence of
the values of the artificial diffusivity is to coarse, the rank-one function used as initial point for following
lower artificial diffusivity does not converge to the solution that corresponds to the vanishing diffusivity
scheme. In this case, the error is reduced below the value of stagnation. The solution then stagnates until
the same phenomenon occurs.

This phenomenon occurs by chance and is hard to reproduce deliberately. For this reason, we show in
figure 6.5 the same plot of convergence obtained for a coarser discretisation and different parameters. This
solution was obtained after the debugging step before using the actual parameters. The problem is the same
with a coarser discretisation and non-homogeneous Neumann BC at the outflow of the sides of the boundary.
The convergence properties are essentially the same.

In the figure it is clearly seen that the solution stagnates until mode 53 where the vanishing diffusivity
strategy failed to converge to the corresponding rank-one solution and so the error is decreased suddenly to
stagnate for the following modes. Note that at mode 95 the same phenomenon appears.
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Figure 6.5 Error convergence and modal amplitude obtained by vanishing diffusion (coarser dis-
cretisation)

6.1.3 Sub-relaxation strategy

This method solves the problem of the convergence of the PGD solution towards a different point from
the reference solution. It consists in the standard fixed-point algorithm with a sub-relaxation step after
computing each sectional function. The main drawback of this method is that the stability of the system is
very susceptible to the relaxation parameter. The parameter has been adjusted manually.

The results and convergence are shown in the following plots. In particular, note that the modes obtained
are different than the ones obtained with the vanishing diffusivity strategy. Also note that, although the
error stagnates at some point, it eventually breaks the tendency and then, it continues converging.

Figure 6.6 PGD approximation obtained by fixed point sub-relaxation
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Figure 6.7 Error convergence and modal amplitude obtained by fixed point sub-relaxation

6.1.4 Example on the unit circle

In the last example, one could have divided the time interval as T “ p0, 1{2s Y p1{2, 1q and solved each
interval individually with constant BCs type. In other words, the indicator function iD is a finite (2) rank
function. In some cases this may be not possible. In this example we solve a the problem in the unit circle
where a uniform advection velocity is rotating with constant angular velocity as time evolves. In this case,
the indicator function is not of finite rank. The problem statement is

ut `∇ ¨ pcu´ ν∇uq “ f in Ωˆ T, (6.7)
u “ 0 on ΓD,

pcu´ ν∇uq ¨ n “ 0 on ΓN ,

u “ 0 on Ωˆ t0u,

where

Ω “ tpx, yq P R2 : x2 ` y2 ă 1u,

T “ p0, 1q,

ΓD “ tpx, tq P BΩˆ T : c ¨ n ă 0u,

ΓL “ pBΩˆ T qzΓD, and

n stands for the outward normal unit vector. The chosen parameters are

c “
`

cospπtq, sinpπtq
˘

,

ν “ 10´2,

f “ 1.

With the chosen advection velocity, the explicit boundary splitting is

ΓD “ t
`

px, yq, t
˘

P BΩˆ T : px, yq ¨
`

cospπtq, sinpπtq
˘

ă 0u,

ΓN “ t
`

px, yq, t
˘

P BΩˆ T : px, yq ¨
`

cospπtq, sinpπtq
˘

ě 0u.
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The bilinear and linear forms of the weak problem are

Bpu, vq “

ż

ΩˆT

utv ` p´cu` ν∇uq ¨∇v dpΩˆ T q `
ż

Ω

puvqp0q dΩ`

ż

BΩˆT

iD
`

pcu´ ν∇uq ¨ n v ` pcv ´ ν∇vq ¨ n u
˘

dpBΩˆ T q `

ż

BΩˆT

iDβuv dpBΩˆ T q, (6.8)

Lpvq “

ż

ΩˆT

fv dpΩˆ T q. (6.9)

Note that the terms involving the stabilisation have been omitted for the sake of clarity.
In order to separate the bilinear form as a finite sum of rank-one operators we have to approximate the

non-separable function iD by a finite rank representation, for a complete treatment of the approximation
step we refer to [5]. By interpolating the function in the discrete setting, it is always possible to obtain
a separated representation of the function. As it is a finite dimensional space one can always express the
function as a finite sum of base vectors. That is

ifullD “
ÿ

1ďiSďnDoFS
1ďiTďnDoFT

cpiS ,iT qN
S
iS bN

T
iT , (6.10)

where cpiS ,iT q “ 1 if the node corresponding to piS , iT q is in ΓD and cpiS ,iT q “ 0 otherwise. In general,
this representation has a high number of modes. For computational reasons, an algebraic PGD separation
scheme is used to approximate the full order representation.

In the current example, we have compared the results obtained by using the full order representation
and the separated approximation. In order to reduce the computational power needed for computing the
solution with the full order a coarse time discretisation of 20 elements has been used. With this, the full
order function can be represented with at most 21 modes (in fact, 20 are enough). The results obtained with
the full order representation are plotted in figures 6.8-6.10. We have used the fixed point strategy for the
computation of the solution.

Figure 6.8 Full order solution
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Figure 6.9 PGD approximation for the full order representation of iD
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Figure 6.10 Convergence and modal amplitude for the full order representation of iD

We have also computed the PGD solution using an approximation of iD with only 10 modes (correspond-
ing with a tolerance of 10´1 in the separation tensor algorithm). The results are plotted in figures 6.11 and
6.12
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Figure 6.11 PGD approximation for the separated representation of iD
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Figure 6.12 Convergence and modal amplitude for the separated representation of iD

From the results provided by this example we see that for the full order tensor iD, the PGD solution
seems to converge towards the full order solution and, as expected, if one approximates iD using a lower
number of modes, the error stagnates at a value of the same order of the error of the approximation of iD.
Furthermore, to guarantee stability, the Nitsche’s parameter β needs to be increased from 102 to 104 in the
last example.
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6.2 Concluding Remarks
In this chapter we have shown two examples of problems with boundary conditions such that its type
depends on time (or any parameter in general). We have solved them using a PGD strategy and although
the results are in general satisfactory, we note some points related to some difficulties arising when using
this methodology.

– In case of changing BCs, the well-posedness of the continuous problem is not trivial to state. We have
not discussed it as it is out of the scope of the thesis.

– The Dirichlet part of the BCs are imposed in weak form, this implies that the parameter to impose
the coercivity has to be tuned.

– The rank-one problem lacks of convergence when using the standard fixed-point algorithm and its
solution is not unique. We guess that this phenomenon may be due to a lack of stabilisation as noted
in chapter 5.
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Chapter 7

Algorithms for solving the rank-one
approximation

In section 3.1.1 we defined the solution of the Galerkin rank-one approximation as the tuple uDS “ puαqαPA P
À

αPA Vα (DS stands for Direct Sum) that is solution of the non-linear equation (3.1). In this chapter, we
discuss several methods for solving the non-linear problem. The first one is the traditional fixed-point
problem. However, in some cases it does not converge. For this reason, we introduce a method of relaxation
of the solution as well as several alternative methods. All but the vanishing viscosity method introduced are
code intrusive.

Let us first remark that the convergence of all rank-one modes is not necessary in the PGD context.
That is, if one adds a mode to the separated approximation that is not the solution of the corresponding
rank-one problem, further modes added after those tend to mitigate the error of that erroneous mode. The
problem arises when most of the rank-one problems do not converge and, in average, the error induced by
the erroneous modes cannot be compensated by the converging modes.

We use the alternative formulation of the problem as a coupled system of equations (3.2). We assume
that the rank-one solution exists and depends continuously on L. Note that we do not assume that the
solution of the rank-one problem is unique. However, we may assume that any variation in uDS that induces
a variation in uR1 induces a variation on the residual of the rank-one problem (see section 7.2.1 for the
explicit form of such a residual). This last assumptions implies that the set of solutions consists of isolated
points in the tensor product space; but not in the direct sum space as it is evident from the following remark.

Remark 7.1: The representation of uR1 as the tensor product
Â

αPA uα is not unique. This is because of
the following equivalence relation on the tensor product of two spaces

cpv b wq „ pcvq b w „ v b pcwq.

7.1 Fixed-point
This first algorithm is widely used in the PGD community to solve the rank-one problem. It consists of an
iterative scheme over all dimensions in A. For each dimension one computes the solution of the corresponding
function space considering the solutions of all other dimensions as known. After all dimensions have been
computed, an error indicator is used to determine if the solution has converged.

The equation for the i-th dimension is: given puαqαPAztiu, find ui P Vi such that

BpuR1, vq “ Lpvq @v P Vtesti . (7.1)

Using the separability properties of B and L the equation is rewritten as

ÿ

mPMB

«

ź

αPAztiu

Bmα puα, uαq ¨B
m
i pui, viq

ff

“
ÿ

mPML

«

ź

αPAztiu

Lmα puαq ¨ L
m
i pviq

ff

@vi P Vi. (7.2)
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For the discrete case, suppose that all Vα spaces are finite dimensional:

Vα “ LS
´

 

Nα
i , i P t1, ..., nDoFαu

(

¯

– RnDoFα .

Now, define the matrices Km
α and vectors fmα in terms of the bilinear and linear forms:

“

Km
α

‰

ij
: “ Bmα pN

α
j , N

α
i q, α P A,m PMB ,

“

fmα
‰

i
: “ Lmα pN

α
i q, α P A,m PML.

Equation (7.2) rewritten in matrix form is
˜

ÿ

mPMB

cmKm
i

¸

ui “
ÿ

mPML

ĉmfmi . (7.3)

Where

cm “
ź

αPAztiu

uTαK
m
α uα,

ĉm “
ź

αPAztiu

pfmα q
Tuα.

Remark 7.2: The common implementation of the algorithm implies updating, at every iteration, the
previously computed uα and use it as guess for computing the rest of dimensions in the current iteration.
That is, it uses an scheme similar to the Gauss-Seidel solver instead to the Jacobi one.

Remark 7.3: With the fixed-point approach, at every iteration, |A| systems of equations are solved each
of one of the size of its corresponding space Vα. Also note that the sparsity of the resulting system for each
dimension is, in general, the same as the sparsity of the operator resulting of the sum of all modes for that
dimension, i.e.

ř

mPMB
Bmα .

7.1.1 Additional Modes
To reduce the error of the approximation, several modes can be added to the PGD form. The problem for
computing these new modes are defined in (3.6) where we define an additional contribution to the linear
functional L of the form ´B̃puM , vq. With this modification, equation (7.2) reads

ÿ

mPMB

«

ź

αPAztiu

Bmα puα, uαq ¨B
m
i pui, viq

ff

“
ÿ

mPML

«

ź

αPAztiu

Lmα puαq ¨ L
m
i pviq

ff

´

M
ÿ

mP“1

ÿ

mPMB̃

«

ź

αPA

B̃mα pu
mP
α , vαq

ff

@vi P Vi. (7.4)

For the discrete case, define the matrix K̃
m

α as follows:
“

K̃
m

α

‰

ij
: “ B̃mα pN

α
j , N

α
i q, α P A,m PMB̃ .

The matrix equation now has an additional term:
˜

ÿ

mPMB

cmKm
i

¸

ui “
ÿ

mPML

ĉmfmi ´
M
ÿ

mP“1

˜

ÿ

mPMB̃

c̃m,mpK̃
mP
i

¸

umPi . (7.5)

Where

c̃m,mP “
ź

αPAztiu

uTαK̃
m

α u
mP
α .
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7.1.2 Stopping criteria and normalisation
As noted in Remark 7.1, the solution of the system is not unique. This can lead to the situation where the
approximation of the rank-one solution changes after every iteration without changing its tensor product.
That is, ∥∥∥∥∥â

αPA

uiα ´
â

αPA

ui´1
α

∥∥∥∥∥ “ 0 in
â

αPA

Vα,∥∥puiαqαPA ´ pui´1
α qαPA

∥∥ ‰ 0 in
à

αPA

Vα.

Where puiαqαPA denotes the result of the i-th iteration.
To solve this ambiguity it is a common practice to normalise the solution. That is, to express the solution

as

uR1 “ σ
â

αPA

uα, σ P R`, ‖uα‖α “ 1. (7.6)

Using this representation, the solution is unique up to the sign of uα. When a new iteration pu˚αqαPA is
computed (u˚α are not normalised), to check the convergence one normalises every vector and changes the
sign of u˚α if necessary. That is,

uiα “ ˘
u˚α

‖u˚α‖α
, α P A.

Where the sign is chosen such that it minimises
∥∥uiα ´ ui´1

α

∥∥.
Note that one should check that the number of signs changed is even. Define the modal amplitude as

σi “
ź

αPA

‖u˚α‖ .

The iteration scheme stops if two stopping criteria are fulfilled. First, the relative increment of the ampli-
tude σ between two consecutive iterations must be smaller than a user-defined small tolerance εamplitude ą 0.
Second, the norm in

À

αPA Vα of the difference between two consecutive iterations must be smaller than
εmodal ą 0. That is,

σi ´ σi´1

σi
ă εamplitude,

ÿ

αPA

∥∥uiα ´ ui´1
α

∥∥ ă εmodal.

Note that norm in the last criterion can be substituted by any equivalent norm in
À

αPA Vα.

7.1.3 Relaxation
The fixed-point algorithm does not converge under all conditions. In some cases it is seen to not converge
for all initial guesses of the solution and in others, even providing the exact solution uR1 as initial guess, any
small perturbation grows exponentially. The stability of the fixed-point is seen to depend not only on the
bilinear form B but also on L. In particular, for some problems the algorithm may be stable for some modes
and not for others. To overcome this problem, after computing every new guess the solution is sub-relaxed.
That is, after computing u˚α using (7.5), the new guess is

uiα “ u˚α ` p1´ rqpu
i´1
α ´ u˚αq, r P p0, 1s.

With this procedure the solution is not normalised after every iteration, only for the sake of checking
convergence.

Remark 7.4: The relaxation step can be applied after solving every single dimension or at the end of
every iteration. In the former case, after computing each dimension the solution is relaxed and this new
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guess is used for the further dimensions in the same iteration. For the latter case, for the computation of the
further iterations, the solution is not relaxed. In this case, is after the computation of all dimensions that
the solution is relaxed. This makes a difference because as noted in Remark 7.2 the new value of the solution
is used for the following ones. In the examples used, the best convergence properties has been obtained,
relaxating at the end of every iteration.

With the relaxation algorithm we obtained satisfactory results of the convergence of the fixed point
algorithm. But we note a complex behaviour observed. In most iterative methods that use relaxation,
the algorithm converges for some small enough value of the relaxation parameter r. In this method, the
algorithm converge only if r is between some interval. This interval depends not only on the bilinear form
B but also on the linear functional L. If r is too low the method does not converge as for the case that r is
too large. This makes difficult the tuning of r.

7.2 Newton-Raphson
For the sake of improving the convergence of the fixed-point algorithm, we propose two methods based on the
Newton-Raphson iterative method for the solution of the non-linear Galerkin PGD equation. In particular,
we study the possibility of using the Newton-Raphson method to the system of equations without normalising
and normalising according to section 7.1.2.

7.2.1 Newton-Raphson without normalisation
Again, the problem is to find uDS “ puαqαPA P

À

αPA Vα to represent the rank-one solution uR1 “
Â

αPA uα.
This can be stated as finding the zero of a non-linear operator: the residual. To define the residual, we use
the system of equations (3.2). The i-th equation reads

B
`

uR1, v b
â

αPAztiu

uα
˘

´ L
`

v b
â

αPAztiu

uα
˘

“ 0, @v P Vi.

Where L includes the contributions from the previous modes. Using the Riesz representation theorem we
obtain

@

BpuR1q ´ L, v b
â

αPAztiu

uα
D

“ 0, @v P Vi.

Here we have used the same symbols B and L to denote the Riesz representation of the linear forms.
Using the separability properties of B and L, as well as the separability of the inner product we get

ÿ

mPMB

´

ź

αPAztiu

xBmα uα, uαyα ¨ xB
m
i ui, vyi

¯

´
ÿ

mPML

´

ź

αPAztiu

xLmα , uαyα ¨ xL
m
i , vyi

¯

“ 0, @v P Vi.

Define the residual as

r :
à

αPA

Vα Ñ
à

αPA

Vα,

uDS ÞÑ

˜

ÿ

mPMB

´

ź

iPAztαu

xBmi ui, uiyi ¨B
m
α uα

¯

´
ÿ

mPML

´

ź

iPAztαu

xLmi , uiyi ¨ L
m
α

¯

¸

αPA

. (7.7)

With this definition of the residual, its variation is:

δrpuDSq :
à

αPA

Vα Ñ
à

αPA

Vα,

δuDS “ pδuαqαPA ÞÑ
ÿ

αPA

δrαpδuαq. (7.8)
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where δrα is defined component-wise as:

`

δrαpδuαq
˘

β
“

$

’

’

’

&

’

’

’

%

ř

mPMB

´

ś

iPAztαuxB
m
i ui, uiyi ¨B

m
α δuα

¯

if α “ β,
ř

mPMB

´

ś

iPAztα,βuxB
m
i ui, uiyi ¨ xpB

m
α ` pB

m
α q
˚quα, δuαyα ¨B

m
β uβ

¯

´

´
ř

mPML

´

ś

iPAztα,βuxL
m
i , uiyi ¨ xL

m
α , δuαyα ¨ Li

¯

otherwise.

It is immediate to check that if all Bmα are self-adjoint operators in Vα, then δrα is self-adjoint for all in the
direct sum space α P A and so δrpuDSq.

Now we define a function to iterate the successive guesses of the approximation to uR1 by using the
Newton-Raphson iterative scheme.

ui`1 “ ui ´ δr´1puiqprpuiqq. (7.9)

Remark 7.5: At each iteration only one linear system has to be solved. The size of the system is the sum
of every single dimension. The sparsity of the systems in the diagonal terms, i.e. pδrαpδuαqqβ for α “ β,
conserve the sparsity of

ř

mPMB
Bmα whereas the off diagonal terms are full.

Remark 7.6: If the off-diagonal terms of the variation operator pδrαpδuαqqβ for α ‰ β are substituted by
0 we recover the Jacobi version of the fixed-point algorithm.

There is a problem with this approach. We noted in Remark 7.1 that the solution is not unique. For this
reason, the residual is not an invertible linear function when the guess is the actual solution of the system.
The variation map is a bijection when the guess is not the solution of the system. However, the function
u ÞÑ δrpuq is continuous meaning that the system becomes ill-conditioned when the guess is close to the
solution.

By performing numerical examples it is seen that this method presents a faster convergence than the
fixed-point algorithm in terms of number of iterations. However, when the solution gets close to the solution
of the system (error indicator of order 10´3), at the step of solving the linear system associated to (7.9)
numerical errors amplify in a fatal way obtaining a new guess with error of order 1010.

Stabilisation of Newton-Raphson algorithm

To get over the problem of the singularity of δr when the guess is close to the solution of the system,
an alternative formulation of (7.9) is proposed. From now on suppose that u is a solution of the rank-one
problem. If we knew the nullspace Npδrq and the annihilator of the range RpδrqK, we could solve for the new
guess. The natural way is to restrict the operator as δr :

À

αPA Vα{Npδrq Ñ
À

αPA Vα{RKpδrq. To do that,
one has to define a new basis for both spaces and to compute the restriction of the operator with such basis.
The computational cost is too high so we adopt an alternative approach. In (7.9), replace δr´1puqprpuqq by

´

δrpuq `
N
ÿ

i“1

αikibi

¯´1´

rpuq ´
N
ÿ

i“1

xbi, rpuqy
¯

.

where ki and bi form a basis on Npδrq and RpδrqK (dimNpδrq “ dimRpδrq “ N) and the scalars αi are
chosen in order to preserve the condition number of the operator.

Now, we reason which is the space Npδrq. For that, we note the fact that if rpuq “ 0, then

rpu˚q “ 0 @u˚ “
`

cuβ , c
´1uγ , puαqαPAztβ,γu

˘

, β, γ P A.

That is, multiplying the function of on dimension by an scalar c and the function of another dimension by
c´1 makes no change in the residual (as it induces no change in uR1).

If we take the variation of u˚ with respect to c and evaluate at u, i.e. c “ 1, we obtain

δu˚p1qpδcq “ puβ ,´uγ , p0qαPAztβ,γuq.

With this we conclude that all variations of the previous form do not induce any variation in the residual
(which is null), so they are in the nullspace of δr. Furthermore, by the assumption that if δu induces a
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variation in uR1, then it induces a variation in r, it follows that the nullspace of δr is the linear span of
vectors of the previous form. That is,

Npδrq “ LS
´!

u P
à

αPA

Vα : u “ puβ ,´uγ , p0qαPAztβ,γuq, uβ P Vβ , uγ P Vγ , β, γ P A
)¯

. (7.10)

From the fundamental theorem of linear algebra we know that for the self-adjoint case, Npδrq “ RpδrqK.
For the non-self adjoint case we use another reasoning.

We make the usual assumption that the solution uR1 depends continuously on L. Now, think of the
residual map r as a function of pLmα qαPA,mPML

. We denote this map by rL. In rL we fix u to be one of the
solutions of the system r “ 0. Now we claim that Rpδrq “ RpδrLq.

On the one hand, by the continuity assumption we have Rpδrq Ě RpδrLq. Suppose by contradiction
that exists δL such that δrLpLqpδLq R Rpδrq. Then, we could define a new problem by doing an arbitrarily
small change in L in the direction δL. By definition of rL, the residual of this new problem evaluated in the
solution of the original problem is r˚u “ δprLqpLqpδLq. However, as δprLqpLqpδLq R Rpδrq there is not an
arbitrarily small change in u such that r˚ “ 0 this contradicts the assumption of continuity of the solutions
with respect to L.

On the other hand, we have Rpδrq Ď RpδrLq. To prove that, pick any δu P
À

αPA Vα. Define δL such
that

ÿ

mPML

â

αPA

δLmα “ lim
εÑ0

ε´1
´

B
`
â

αPA

puα ` εδuαq
˘

´B
`
â

αPA

puαqαPA
˘

¯

.

Here B denotes the Riesz representation of the original bilinear form. Using the separability property of B,
we ensure that the representation of δL is possible for a finite number of modes. If |ML| is not large enough
such that the previous representation is possible, add additional modes to L such that they are all 0. With
that we have

lim
εÑ0

´

ε´1
`

rpu` εδuα;L´ εδLq ´ rpu;Lq
˘

¯

“ 0.

Where

r
`

u;L
˘

“ B
´

â

αPA

uα

¯

´
ÿ

mPML

â

αPA

Lmα .

We conclude that δrpuqpδuq ´ δrLpLqpδLq “ 0. That is, for every element in Rpδrq we can chose δL so that
δrLpLqpδLq “ δrpuqpδuq completing the proof.

At this point we know that Rpδrq “ RpδrLq and that for the case where the bilinear forms are self-adjoint,
RpδrqK “ Npδrq. A quick inspection reveals that RpδrLq does not depend on B. With that we conclude
that RpδrqK “ Npδrq also for the non self-adjoint cases.

7.2.2 Newton-Raphson with normalisation
An alternative approach to overcome the problem of the non-uniqueness of the solution, is to enforce the
normalisation defined in (7.6). With this approach, the solution in the direct sum space is not unique but
consists of isolated points (assuming that the solution is different from 0). This is due to the possibility of
multiplying by ´1 an even number of functions. The definition of this alternative residual is

r : R‘
à

αPA

Vα Ñ R|A| ‘
à

αPA

Vα,

`

σ, uDS
˘

ÞÑ

˜

`

xuα, uαyα ´ 1
˘

αPA
,

ˆ

σ
´

ÿ

mPMB

`

ź

iPAztαu

xBmi ui, uiyi
˘

Bmα uα

¯

´
ÿ

mPML

`

ź

iPAztαu

xLmi , uiyi
˘

Lα

˙

αPA

¸

. (7.11)
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The variation of such residual is

δr
`

σ, puαqαPA
˘

: R‘
à

αPA

Vα Ñ R|A| ‘
à

αPA

Vα

pδσ, 0q ÞÑ

˜

0,

ˆ

δσ
´

ÿ

mPMB

`

ź

iPAztαu

xBmi ui, uiyi
˘

Bmα uα

¯

˙

αPA

¸

´

0,
`

δuα, p0qiPAztαu
˘

¯

ÞÑ

˜

`

2xuα, δuαyα, p0qiPAztαu
˘

,

ˆ

´

σ
`

ÿ

mPMB

p
ź

iPAztαu

xBmi ui, uiyiqB
m
α δuα

˘

¯

,

´

σ
`

ÿ

mPMB

p
ź

jPAztα,iu

xBmj uj , ujyjq ¨ xpB
m
α `B

m˚

α quα, δuαyα ¨B
m
i ui

˘

´

ÿ

mPML

`

ź

jPAztα,iu

xLmi , uiyi
˘

¨ xLmα , δuαyα ¨ L
m
i

¯

iPAztαu

˙

¸

We extend the definition of the residual operator by a linearity argument. Note that this non-linear system
is over-determined resulting in an over-determined residual operator. To solve the linearised problem (i.e.
to invert the residual), the standard least squares method is not accurate as the resulting matrix is ill-
conditioned due to the imposition of the equations enforcing the normalisation. For that reason, a SVD
strategy has been used. However, the Newton-Raphson method using this over-determined residual lacks
of convergence. We guess that is due to that the constraints imposing the normalisation of the functions.
One possible strategy to overcome the problem of ill-conditioning is to multiply every equation imposing the
normalisation by a scalar cα obtaining an equivalent system with lower condition number.

7.2.3 Vanishing diffusivity

After devising all previous methods, we come up with a simpler idea to ensure the convergence of the rank-one
problem. The method is restricted to problems where one can introduce a diffusivity operator.

First we noted that for most cases, if the initial guess is close enough to the solution, the standard
fixed-point converges. We also noted that for high enough values of the diffusivity parameter, the solution
converged independently of the initial guess. Finally, as the problem is assumed to be well-posed, its solution
must depend continuously on the diffusivity parameter (except maybe at ν “ 0). We may also assume that
the rank-one problem is well posed in the sense that its solution also depends continuously on the diffusivity
parameter. Having noted that points, we can devise a simple method to solve the rank-one problem. The
rank one problem is to find the rank one solution of

BpuR1, v; νq “ Lpvq ´ B̃puM , vq@v P Vtest.

Where we have written explicitly the dependence of the bilinear form with respect to the diffusivity.
The method consists in first solve the problem with a high enough value for the diffusivity ν. Note that

the bilinear form taking into account the contribution of the previous modes is not be modified. Then we
use the obtained solution as initial guess of the same problem with a lower value of ν. We construct in that
way a sequence of decreasing values of ν until reaching the originally prescribed value of ν.

In the example of chapter 5, the diffusivity is set to ν “ 0. We have used as first value ν “ 103. Then,
we reduced the diffusivity exponentially in 16 steps until ν “ 10´5. That is, at each step the diffusivity is
multiplied by p10´8q

1
16 . Finally, from we use the solution with ν “ 10´5 as initial guess for the problem with

ν “ 0. With this, to compute every mode we have to compute 18 auxiliary problems with approximately
the same computational cost. This results in an increase of the computational cost of the PGD algorithm
by a factor of 18. This choice of the sequence of values of ν is not optimised and for most rank-one problems
of the same problem only about 3 steps are necessary if chosen optimally. However, the optimisation of the
computational cost is beyond the scope of this thesis.
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7.2.4 Concluding remarks
We conclude this chapter on algorithms for solving the rank-one problem with some remarks on each of the
devised methods. We present the conclusions obtained solving the examples presented in chapters 5 and 6.
As stated in previous chapters, we guess that the difficulty in solving such examples arises from the lack of
stabilisation of the rank-one problems.

– Fixed point: This is the simplest algorithm and is very competitive in terms of computational
efficiency. However, in the examples of chapters 5 and 6, this method lacks of convergence. The sub-
relaxation of the fixed point produces satisfactory results with the appropriate value of the relaxation
parameter r. In most iterative algorithms where the iterations are relaxed, the iterations converge
provided the relaxation factor is small enough. This is not the case for the mentioned examples.
For the example in which the boundary conditions are time dependent, the appropriate value of r is
approximately in the interval r0.7, 0.8s for most of the modes computed. However, for some particular
modes the relaxation parameter interval has to be reduced to r0.3, 0.5s to obtain convergence. This
tuning of the parameter has been done manually. As future work we note the study of an adaptive
algorithm optimising the relaxation parameter. This is not a trivial task as there is no simple criteria
to determine if the relaxation factor is too high or too low for the non-converging cases.

– Newton-Raphson: This method has the drawback (as all methods computing the solution in a
monolithic way) that, as the solution is not unique, the algorithm leads to singular matrices. The
stabilisation proposed solves that problem. However, the resulting matrix has full sparsity, resulting in
an unaffordable computational cost for most cases. The same happens with the normalisation method
proposed. As the system is overdetermined, the method of least squares uses the matrix ATA that in
general is full. In addition, the problem should be preconditioned. Alternatively one can use a SVD
strategy, but the computational cost is also to high and the iterations do not converge.

– Vanishing diffusivity: This algorithm has proved to converge in all cases for both examples if tuned
correctly. The main drawback of the method is that, if the values of diffusivity used to obtain the
different approximations to the solution are not chosen optimally, to solve each mode of the approxi-
mation of the solution one has to solve several rank-one problems incurring a high computational cost.
The design of an optimal adaptive algorithm is not obvious. In the example of chapter 6 we found
that for some cases particular values of the diffusivity, the fixed point becomes unstable making the
solution diverge however close the initial guess is. The solution to this problem is to skip the unstable
value of the diffusivity. Although this is simple to do if the values of diffusivity are chosen manually it
is not obvious how to program an algorithm able to do that. Finally, we note that the main advantage
of this method is that is not code intrusive. That is, each rank-one problem can be solved using a
conventional Galerkin PGD solver. However, the best results are obtained by combining the vanish-
ing diffusivity with sub-relaxed fixed point algorithm. That is, every rank-one problem arising in the
vanishing diffusivity method is solved using a sub-relaxed fixed point method.

Finally, let us remind that in the PGD methods, it is not required to converge all rank-one problems. For
example, one can chose a fixed relaxation parameter for the fixed point such that most of the rank-one
problems converge and hope that the non-convergent modes do not disturb the convergence properties of
the PGD method.
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Chapter 8

Further examples

In this chapter, we include two further examples based on the transient advection-diffusion problem over
the unit square. What makes the examples different is that they are parametric. That is, we introduce an
additional dimension to enable a parameter dependency of the PDE.

8.1 Parametric diffusion
This problem is identical to the advection-diffusion problem of chapter 3 with the exception that the diffusiv-
ity is a function of the parameter pν . The strong form of the problem is to find uppνq P C1

`

T ;C2pΩq
˘

@pν P
Pν .

utppνq `∇ ¨ pcuppνq ´ νppνq∇uppνqq “ 0 in Ωˆ T, (8.1)
uppνq “ 0 on BΩˆ T,
uppνq “ u0 on Ωˆ t0u.

where the domain of the parametric PDE is defined as

Ω “ p0, 1q2,

T “ p0, 1q,

Pν “ p´5,´2q.

The parameters are defined as

cpx, yq “ π
´

´ y `
1

2
, x´

1

2

¯

,

νppνq “ 10pν ,

u0px, yq “ exp

˜

´
px´ 2

3 q
2 ` py ´ 1

2 q
2

0.072

¸

.

The space of weak solutions is defined as

V “ VΩ b VT b VPν “ H1
0pΩq bH1pT q b L2pPνq. (8.2)

The space V consists of all functions such that for every dimension, the function defined by fixing the
rest of dimensions is in the corresponding sectional space. To make it precise, V consists of all functions
u : Ωˆ T ˆ Pν Ñ R such that

`

Ω Q x ÞÑ upx, t, pνq
˘

P VΩ for a.e. pt, pνq P T ˆ Pν ,
`

T Q t ÞÑ upx, t, pνq
˘

P VT for a.e. px, pνq P Ωˆ Pν ,
`

Pν Q pν ÞÑ upx, t, pνq
˘

P VPν for a.e. px, tq P Ωˆ T.
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The forms defining the weak problem are defined on rank-one elements as

B
`

uΩ b uT b uPν , vΩ b vT b vPν
˘

“

ż

Ω

uΩvΩ dΩ

ż

T

puT qtvT dT

ż

Pν
uPνvPν dPν`

ż

Ω

∇ ¨ pcuΩqvΩ dΩ

ż

T

uT vT dT

ż

Pν
uPνvPν dPν `

ż

Ω

∇uΩ ¨ vΩ dΩ

ż

T

uT vT dT

ż

Pν
νuPνvPν dPν`

ż

Ω

uΩvΩ ¨
`

uT p0qvT p0q
˘

¨

ż

Pν
uPνvPν dPν , (8.3)

L
`

vΩ b vT b vPν q “

ż

Ω

u0vΩ dΩ ¨
`

vT p0q
˘

¨

ż

Pν
vPν dPν . (8.4)

At this point, we use the Petrov-Galerkin PGD algorithm to obtain a separated approximation. The
discretisation used consists of a 40ˆ 40 discretisation of regular triangular elements for the spatial domain
and a uniform mesh of 100 elements for the temporal and parametric dimensions. The reference solution has
not been computed due to the high computational cost required. Instead, the modal amplitude has been
used as the classical error estimator in the PGD algorithms. In figure 8.1 the first 10 modes of the separated
approximation are plotted. From top to bottom, the solution in the spatial, temporal and parametric
dimensions. On the left hand side the primal solutions have been plotted and on the right hand side, the
dual ones.

Figure 8.1 PGD approximation for the parametric diffusion problem

Next, we plot the reconstructed solutions for different values of the parameter pν . In particular for
pν P t´5,´3.5,´2u in decreasing order from top to bottom.
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Figure 8.2 Reconstructed solution for the parametric diffusion problem

Finally, we plot the modal amplitude.
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Figure 8.3 Modal amplitude for the parametric diffusion problem

In this example we have successfully computed the approximation of the parametric transient advection-
diffusion problem.

8.2 Parametric advection
This second example is very similar to the previous one. In this case, the parameter modules the amplitude
of the advection. For the example, we replace the domain Pν by Pc “ p0.1, 1q. The parameters involving
the parametric PDE are modified but they remain rank-one functions:

cpx, y, pcq “ 2πpc

´

´ y `
1

2
, x´

1

2

¯

,

ν “ 10´3,

u0px, yq “ exp

˜

´
px´ 2

3 q
2 ` py ´ 1

2 q
2

0.072

¸

.

Note that the parameter pc represents the revolutions that a particle does over the interval of time.
The solution has been computed using the same discretisation up to 1155 modes. We show the plot of

the first 10 modes of the PGD approximation. The layout is the same than in the previous example.
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Figure 8.4 PGD approximation for the parametric advection problem

Now we show the reconstruction of the solution with all the modes. The chosen values of the parameter
are 0.1, 0.235, 0.496, 0.748, 1.0.

Figure 8.5 Reconstructed solution for the parametric advection problem

The solution is clearly not satisfactory. For the values of the parameter near the extremes of the domain,
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the solution presents large spurious oscillations. If we plot the modal amplitude we see that it presents large
oscillations and does not converge to 0.
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Figure 8.6 Modal amplitude for the parametric diffusion problem

Finally, we recreate the same plot of the reconstructed solution by showing the reconstruction of only
the first 830 modes. This corresponds to the minimum in the modal amplitude.

Figure 8.7 Reconstructed solution of the first 830 modes for the parametric advection problem

In this case, the approximation is qualitatively much more accurate. However, it stills presents noise on
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the solutions where the parameter is near the boundary. To conclude, we must say that the results are clearly
not satisfactory for this last example. We guess that the reason of that is because the solution is difficult
to be represented using a separated approximation. In any case, maybe weighting more the extremes of the
parametric interval would help to mitigate the problem of convergence.
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Chapter 9

Concluding Remarks

The capabilities of the Petrov-Galerkin PGD methodology have been explored. As expected, it supposes a
great improvement compared to the Galerkin PGD in cases of non self-adjoint operators. In particular, it
has been successfully applied to solve the transient advection-diffusion problem.

A relatively non-intrusive algorithm has been introduced to implement the Petrov-Galerkin and the
update methods. In the Petrov-Galerkin case, this implementation results in the doubling of each space of
functions. Alternatively, the method can be implemented such that its computational cost is approximately
equal to the Galerkin PGD method. This makes the method very competitive compared to the Galerkin
method.

Using the Petrov-Galerkin method, the transient advection-diffusion problem has been solved in an
advection dominated problem using a SUPG stabilisation. Also the problem of imposing temporal/parameter
BCs type has been solved using an weak imposition of the essential BCs. Although the convergence properties
of the rank-one problems arising in such problems have poor convergence properties, several alternative
solvers have been proposed and successively implemented.
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Chapter 10

Future Work

In the course of the thesis we have noted several points that are out of the scope of the present thesis. Most
of them focus on the reduction of the computational cost of the methods presented. We list them.

1. The update procedure is relatively cheap computationally speaking if the dimensions to update are
small compared with the rest and the number of modes to update is small. We note as future work
to study if performing the update method only to the last M modes (M being relatively small), the
method improves the convergence properties as well as conserving the low computational cost.

2. We have implemented the update procedure using a non-intrusive strategy. The method used implies
enlarging every space of dimensions to update by a factor M (M being the number of dimensions
to update) and imposing N coupled equations (N being the number of dimensions to update). An
alternative approach is to not enlarge the spaces and impose N ¨M coupled equations. In that way,
each equation has the original size and using the computed modes as intial point the method may
converge faster than the alternative adopted.

3. The rank-one problems arising in the advection dominated problem stabilised using the SUPG method
lack of convergence using standard methods. In chapter 5 we propose an alternative approach that
consists in stabilising every rank-one iteration independently. This is possible to do in the case of the
Galerkin PGD method but it has to be studied if in the Petrov-Galerkin the problems that arise are
well-posed.

4. In chapter 6 the problem of temporal/parametric BCs type is assumed to be well posed. We note as
future work the study of the well posedness of the problem. That is, to study if the weak form defined
has indeed a solution, it is unique and depends continuously on the parameters.

77



78



REFERENCES

[1] Jean Donea and Antonio Huerta. Finite Element Methods for Flow Problems. Wiley, 2003.

[2] L. C. Evans. Partial Differential Equations. American Mathematical Society, 2010.

[3] Anthony Nouy. “A priori model reduction through proper generalized decomposition for solving time-
dependent PDEs”. In: Computer Methods in Applied Mechanics and Engineering 199 (Apr. 2010),
pp. 1603–1626. doi: 10.1016/j.cma.2010.01.009.

[4] Alberto Sibileau et al. “Explicit parametric solutions of lattice structures with proper generalized decom-
position (PGD): Applications to the design of 3D-printed architectured materials”. In: Computational
Mechanics 62 (Jan. 2018). doi: 10.1007/s00466-017-1534-9.

[5] Sergio Zlotnik et al. “Effect of the separated approximation of input data in the accuracy of the resulting
PGD solution”. In: Advanced Modeling and Simulation in Engineering Sciences 2 (Dec. 2015). doi:
10.1186/s40323-015-0052-6.

79

https://doi.org/10.1016/j.cma.2010.01.009
https://doi.org/10.1007/s00466-017-1534-9
https://doi.org/10.1186/s40323-015-0052-6

	1 Introduction
	1.1 Contributions and outline

	2 Problem statement
	2.1 Abstract formulation
	2.2 Advection-diffusion formulation
	2.2.1 Strong form
	2.2.2 Weak form
	2.2.3 Space-time separation

	2.3 Numerical examples: Reference solution
	2.3.1 Convegence of PGD methods
	2.3.2 Computation of the full order solution


	3 Galerkin PGD
	3.1 Rank-one approximation
	3.1.1 Abstract formulation
	3.1.2 Advection-diffusion formulation

	3.2 Additional modes
	3.2.1 Abstract formulation
	3.2.2 Advection-diffusion formulation

	3.3 Update
	3.3.1 Abstract formulation
	3.3.2 Advection-diffusion formulation

	3.4 Numerical example: First approach and update
	3.4.1 Reference solution
	3.4.2 Numerical results
	3.4.3 Convergence


	4 Petrov-Galerkin PGD
	4.1 Motivation and rank one approximation
	4.1.1 Interpretation as a dual variation problem

	4.2 Petrov-Galerkin as an enlarged Galerkin problem
	4.2.1 Abstract formulation
	4.2.2 Advection-diffusion formulation

	4.3 Additional modes
	4.3.1 Abstract formulation
	4.3.2 Advection-diffusion formulation

	4.4 Update
	4.5 Numerical example: Petrov-Galerkin without and with time update. Comparison with Galerkin
	4.5.1 Numerical results
	4.5.2 Convergence

	4.6 Concluding remarks

	5 Stabilisation of the weak form
	5.1 Stabilisation of the spatial dimension
	5.2 Stabilisation of the temporal dimension
	5.3 Stabilisation of the rank-one problem
	5.4 Numerical example
	5.4.1 A diverging example

	5.5 Concluding remarks

	6 Temporal/parametric dependence of the Boundary Conditions type
	6.1 Numerical examples
	6.1.1 Example on the unit square
	6.1.2 Vanishing diffusivity strategy
	6.1.3 Sub-relaxation strategy
	6.1.4 Example on the unit circle

	6.2 Concluding Remarks

	7 Algorithms for solving the rank-one approximation
	7.1 Fixed-point
	7.1.1 Additional Modes
	7.1.2 Stopping criteria and normalisation
	7.1.3 Relaxation

	7.2 Newton-Raphson
	7.2.1 Newton-Raphson without normalisation
	7.2.2 Newton-Raphson with normalisation
	7.2.3 Vanishing diffusivity
	7.2.4 Concluding remarks


	8 Further examples
	8.1 Parametric diffusion
	8.2 Parametric advection

	9 Concluding Remarks
	10 Future Work
	REFERENCES

