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Abstract: The masonry tensile strength and shear modulus play a key role in the definition of 

the shear capacity of masonry structures. These properties are often determined experimentally by 

means of the diagonal compression test on square walls, which is regulated by the ASTM E519 

standard. In spite of its wide use, the interpretation of the test is still controversial and no universal 

criterion exists on how to derive the masonry mechanical properties from the wall overall strength. 

Aiming to contribute in the improvement of the test’s reliability and interpretation, this paper presents 

an investigation on the use of the diagonal compression test to characterize the shear properties of 

masonry. First, an experimental campaign on brickwork walls is described. The walls were built in 

laboratory in Flemish bond, a pattern that has been scarcely investigated in the available research 

studies on this type of test. Second, an advanced numerical model is used for the analysis of walls 

subjected to the diagonal compression test. The adopted numerical model, enhanced by a crack-

tracking algorithm to reproduce accurately the tensile damage localization, constitutes a very useful 

and powerful tool to interpret correctly the behaviour during the test. Finite element analysis was 

executed to interpret the walls’ response in the linear and nonlinear ranges with models properly 

calibrated by comparison with the experimental results. As a result, a criterion was determined for the 
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calculation of the tensile strength from the outcomes of the diagonal compression test. A sensitivity 

analysis was carried out with regard to the most influent material properties of the material, the 

geometrical dimensions of the panel, and the loading conditions of the testing setup. The findings of 

this research were finally applied and validated by means of simulations of diagonal compression tests 

from eight experimental campaigns performed by other authors on different masonry typologies.  

Keywords: masonry, hydraulic lime, clay brick, tensile strength, shear modulus, diagonal 

compression test, macromodelling, crack-tracking, crack localization 

Highlights: 

• Diagonal compression tests on double-wythe Flemish bond masonry walls are presented 

• Simulation of the diagonal compression test with an enhanced continuum FE model 

• The diagonal compression test is interpreted in the linear and nonlinear range  

• A coefficient of 0.4 is found adequate to compute the tensile strength of masonry 

• The coefficient shows little sensitivity to panel size and size of loading shoes 

Nomenclature 

A net area of masonry specimen 

b coefficient that accounts for the distribution of stresses within a wall  

c cohesion 

d± tensile and compressive damage indexes 

CV coefficient of variation 

E Young’s modulus 

fb,c compressive strength of bricks 

fb,f flexural tensile strength of bricks 

fb,sp indirect splitting strength of bricks 

fc compressive strength of masonry 

fm,c  compressive strength of mortar 

fm,DPT compressive strength of mortar obtained through double punch tests 

fm,f flexural tensile strength of mortar 

ft tensile strength of masonry 

G elastic shear modulus 

Gfc compressive fracture energy of masonry 

Gft tensile fracture energy of masonry 
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h height of masonry specimen 

P diagonal load  

Pmax maximum diagonal load  

t thickness of masonry specimen 

w width of masonry specimen 

αj coefficient that modifies the quotient P/A to obtain the j stress component, normalized stress 

αI,calc back-calculated coefficient that relates the maximum load to the tensile strength 

γ shear strain 

Δ increase 

δ imposed displacement 

εc compressive strain along compressed diagonal 

εt tensile strain along compressed diagonal  

σ normal stress  

σx normal stress along X axis 

σy normal stress along Y axis 

σI maximum principal stress 

σII minimum principal stress 

σ0 compressive stress due to vertical loading 

τm average shear stress at failure 

τxy shear stress 

Φ internal angle of friction 

ASTM subscript for parameters obtained according to ASTM approach 

Frocht subscript for parameters obtained according to Frocht’s approach  

 

1 Introduction 

Shear walls resist the seismic effects in masonry buildings mostly through in-plane resisting 

modes. When local out-of-plane wall failures are prevented by appropriate connections between 

elements, the resisting mechanism that governs the global behaviour of the structure is the in-plane 

shear capacity of the walls [1,2], which is directly associated with the masonry shear strength.  

The definition of the shear strength of masonry is not univocal [3]. Because of its complex and 

composite behaviour, masonry may experience different failure modes under lateral loading, 

depending on the relative mechanical properties of the constituents, the boundary conditions, the 

geometry, and the level of vertical load acting on the structure. Three mechanisms are usually 

identified as potential failure modes in shear [4]: a) rocking failure involving the overturning of the 
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wall and crushing of the compressed corner, b) shear sliding failure along a horizontal crack in the 

mortar bed-joints, and c) shear diagonal cracking through bed- and head-joints or also through the 

units. Different physical models have been adopted to estimate the shear capacity associated to the 

former mechanisms [3].  

In the case of diagonal cracking, which is a recurrent mode observed after past earthquakes 

[3,5], Turnšek and Čačovič proposed a criterion that predicts the shear capacity of a wall for a given 

level of compressive stresses [6]. The criterion is based on a triple assumption: a) masonry is 

considered a homogeneous and isotropic material, b) failure occurs when the maximum principal 

stresses at the centre of the panel, which can be derived through the Mohr’s circle from the acting shear 

and compressive stresses, exceed a reference value, and c) the reference value is supposed to be 

constant for walls made of the same material and represents a characteristic property of the material. 

Turnšek and Čačovič validated these assumptions experimentally and provided the following Equation 

1 for the shear interaction diagram of a wall (presented herein in the more general form published in 

[7]):  

𝜏𝜏𝑚𝑚 =
𝑓𝑓𝑡𝑡
𝑏𝑏 �

1 +
𝜎𝜎0
𝑓𝑓𝑡𝑡

 (1) 

where τm and σ0 are the average shear stress at failure and the compressive stress in the wall due 

to vertical loading respectively, and b is a coefficient that accounts for the distribution of stresses 

within the panel. ft is the reference limit strength, defined and adopted as the conventional tensile 

strength of masonry [3,4]. Although the initial assumptions are drastic [4,8], this criterion is thoroughly 

diffused [9] as it manages to describe a complex behaviour with a single global parameter. 

Furthermore, the hypothesis of homogeneity is consistent with the continuum homogeneous models 

still in use for the analysis of masonry structures [8,10]. 

 The experimental determination of this tensile strength of masonry would require the 

performance of shear-compression tests in the laboratory and the derivation of ft from the inverse of 
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Equation 1. These tests are however costly in terms of time and equipment as special loading apparatus 

are necessary to impose the proper boundary conditions and loads [11], and the mode of failure is 

difficult to control [5]. An alternative test that induces a state of stresses leading to a diagonal cracking 

failure is the diagonal compression test [1,7,12]. This type of test is considered to be more versatile, 

simpler, and less expensive [13–15]. 

The diagonal compression test consists of loading a masonry assemblage in compression along 

one of the diagonals, thus causing a tension failure with the specimen splitting apart parallel to the 

direction of load [16]. Given its ability to induce a shear diagonal cracking, it has been extensively 

used as a tool for comparing reinforcement products and techniques [5,17–21], as well as to investigate 

the mechanical behaviour of masonry in historical buildings [22–24]. This test is also recommended 

as a characterisation tool by several national and international building codes [25–27]. 

The American standard ASTM E519 [16] is the main reference that provides guidance on the 

features of the masonry specimens required for the test and on the loading conditions and protocols. It 

regulates the calculation of the acting stresses and the shear modulus of masonry as well. Based on the 

hypothesis of an isotropic linearly elastic material, the standard assumes a stress state of pure shear at 

the centre of the panel. Figure 1b represents the corresponding Mohr’s circle, according to the 

coordinate system defined in Figure 1a. Under the hypothesis of pure shear, the maximum principal 

stress, σI, is equal to the shear stress, τxy, and the standard proposes the following Equation 2 for their 

calculation: 

𝜎𝜎𝐼𝐼,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜏𝜏𝑥𝑥𝑥𝑥,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0.707
𝑃𝑃
𝐴𝐴

  (2) 

where P is the diagonal load at a given time and A is the net area of the specimen computed 

with Equation 3:  

𝐴𝐴 = 𝑡𝑡
𝑤𝑤 + ℎ

2
 

(3) 
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where w, h and t are the width, height and thickness of the specimen respectively. Equation 4 

applies for the calculation of the tensile strength assuming that it is equal to the maximum principal 

stress at failure: 

𝑓𝑓𝑡𝑡,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0.707
𝑃𝑃𝑚𝑚𝑚𝑚𝑥𝑥
𝐴𝐴

  (4) 

where Pmax is the diagonal load value at failure. Additionally, there exists a recommendation by 

RILEM, LUMB6 [28], that covers also this test and specifies dimensions of specimens and apparatus. 

The suggested expression to calculate the tensile strength is the same as in ASTM E519 [16]. 

In 1931, Frocht found that a square plate made of an elastic isotropic material loaded in diagonal 

compression does not experience a pure shear state of stresses but a complex non-uniform one, where 

the normal components are not null [29]. Frocht drew this conclusion both from analytical derivation 

and by photoelasticity. These findings were confirmed afterwards in several instances by means of 

modern numerical methods [30–32]. Equations 5 to 7 show the expressions to calculate the acting 

stresses following Frocht’s approach. Equation 8 relates the tensile strength of masonry with the 

maximum principal stress at failure: 

𝜎𝜎𝑥𝑥,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑡𝑡 = 𝜎𝜎𝑥𝑥,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑡𝑡 = −0.58
𝑃𝑃
𝐴𝐴

 (5) 

𝜏𝜏𝑥𝑥𝑥𝑥,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑡𝑡 = 1.1
𝑃𝑃
𝐴𝐴

 (6) 

𝜎𝜎𝐼𝐼,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑡𝑡 = 0.52
𝑃𝑃
𝐴𝐴

 (7) 

𝑓𝑓𝑡𝑡,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑡𝑡 = 0.52
𝑃𝑃𝑚𝑚𝑚𝑚𝑥𝑥
𝐴𝐴

 (8) 

where σx and σy are the normal stresses. Figure 1c depicts the corresponding Mohr’s circle. 

More recently, Brignola et al. [31] performed non-linear numerical analysis that accounted for the 

redistribution of stresses after failure and proposed new coefficients for Equation 8.  
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Figure 1 a) Coordinate system in the diagonal compressed wall. b) Mohr’s circle representations of the stresses 
at the centre of the panel according to ASTM’s and c) Frocht’s approaches. 

As illustrated in Figure 1, both approaches, i.e. ASTM’s and Frocht’s, lead to different 

estimations of the tensile strength of masonry, but also of the acting shear stresses and the shear 

strength at zero compressive stress. Several authors have pointed out the controversy around these 

interpretations of the diagonal tests and have questioned the proposed formulae [1,11,13,22,33]. This 



 
 

8 
 

open debate hinders the applicability of the test and makes the comparison between researches 

difficult. Yet, even if the approach of ASTM E519 [16] overestimates the values of tensile strength 

compared to Frocht’s approach, it is still the most spread standard, and Equation 2 is widely used [18–

21,32,34–38].  

The work presented herein provides new insights on the mechanical behaviour of masonry 

panels under diagonal compression, and investigates the use of this test for the determination of 

homogenised properties of masonry, specifically the tensile strength and the shear modulus. 

The paper starts with two preliminary sections that describe the data and tools used to carry out 

the investigation. Section 2 presents an experimental campaign involving diagonal compression tests 

that will be used as calibration results. This campaign has additional relevance as it deals with tests on 

masonry walls made of clay bricks and hydraulic lime mortar arranged in Flemish bond. This masonry 

typology has received little attention until now in the available scientific literature [39], and its 

investigation constitutes a novel contribution of the paper. Section 3 describes the numerical tools used 

for the simulation of the experimental tests. The employed numerical model is based on a standard 

finite element formulation and includes the accurate description of tensile crack localization through a 

crack-tracking algorithm.  

Section 4 constitutes the core of the paper. It includes the calibration of a numerical continuum 

model with the experiments of Section 2, the interpretation of the stress field within a masonry panel 

and the proposal of coefficients for the calculation of both the tensile strength and the shear modulus 

from diagonal tests. It also includes a sensitivity analysis of the proposed coefficients and their 

validation with cases investigated by other authors. Section 5 presents the concluding remarks of the 

research.  

 

2 Experimental programme  
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The experimental programme presented herein had two main objectives: a) to provide 

experimental data to calibrate the numerical models necessary for the interpretation of the diagonal 

test, and b) to characterize a masonry typology recurrent in existing historical buildings. This section 

describes briefly the programme, which was carried out at the Laboratory of Technology of Structures 

and Building Materials of the Technical University of Catalonia (UPC – BarcelonaTech). 

2.1 Materials  

The masonry walls were built with handmade solid clay bricks and a low mechanical 

performance lime mortar, aiming to replicate a historical brickwork. 

Solid clay bricks, moulded and fired manually, were provided by a local company. Bricks had 

average dimensions of 311 (length) × 149 (width) × 45 (height) mm³ and presented rough surfaces 

because of their traditional manufacturing. Table 1 includes the results of characterisation tests. The 

brick compressive strength, fb,c, was estimated according to the standard EN 772-1 [40] on cut pieces 

of 100 × 100 mm². Two different types of test were carried out to approximate the tensile strength of 

the bricks: three-point-bending tests on full bricks according to EN 772-6 [41] to evaluate the flexural 

tensile strength, fb,f, and Brazilian tests on prismatic pieces of 160 × 40 × 40 mm³ to estimate the 

indirect splitting tensile strength, fb,sp.  

A hydraulic lime based commercial mortar was chosen as binding material. This mortar was 

modified with limestone filler additions to reduce its strength, as explained by the authors in a recent 

publication [42]. During the construction of each masonry wall, mortar prisms with dimensions 160 × 

40 × 40 mm³ were prepared from the mason’s batch. Each set of prisms was tested at the same time of 

its companion wall. Table 1 presents the average compressive strength, fm,c, and the average flexural 

tensile strength, fm,f, of mortar determined according to EN 1015-11 [43]. Additionally, after the test 

of each wall, some masonry bed-joints were disassembled with the aim of extracting mortar samples 

to perform double-punch tests (DPT). Specimens with approximated dimensions of 50 × 50 × 15 mm³ 

were tested according to DIN 18555-9 [44] to assess the mortar compressive strength within the joints, 
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fm,DPT. The difference between the compressive strength values estimated from prisms and extracted 

joints can be explained, according to recent researches, by the differences in thickness and curing 

conditions of the specimens, and by the different loading conditions specific of each type of test [45–

48]. 

Masonry specimens made with these two same components were tested in parallel campaigns 

[49] to evaluate the compressive and shear mechanical properties of the masonry composite (see Table 

1). The compressive strength of masonry, fc, was obtained from tests on running bond walls according 

to EN 1052-1 [50]. Two additional tests on stack bond prisms provided estimations of the compressive 

fracture energy, Gfc, calculated as the area below the stress displacement curves through Riemann sums 

[49]. Triplet specimens were tested by following the standard EN 1052-3 [51] to determine the 

cohesion, c, and angle of friction, Φ, of the masonry bed-joints. As recommended by the standard, 

three different compressive load levels were applied, with three triplet specimens for each level.  

Table 1 Mechanical properties of constituent materials (brick and mortar) and of masonry composite 

Brick fb,c [MPa] fb,f [MPa] fb,sp [MPa]  
Average 17.99 2.44 1.44  

Number of specimens 20 10 24  
CV 8.3% 20.0% 13.0%  

Mortar fm,c [MPa] fm,f [MPa] fm,DPT [MPa]  
Average 2.19 0.66 5.11  

Number of specimens 38 76 232  
CV 26.1% 25.4% 23.0%  

Masonry* fc [MPa] Gfc [N/m] c [MPa] Φ [º] 
Average 6.51 9750 0.16 33.71 

Number of specimens 4 2 3x3 3x3 
CV 8.9% 15.2% - - 

* These properties were estimated in previous campaigns not included in this research [49] 
 

2.2 Masonry specimens 

Five double-leaf masonry walls with nominal dimensions 1270 × 1270 × 311 mm³ were built 

in the laboratory. The specimens were labelled URM_#, where # is a digit from 1 to 5. The chosen 

dimensions allowed to satisfy the geometrical requirements established in the standard ASTM E519 

[16] and in the recommendations LUMB6 of RILEM [28], i.e. have a minimum dimension of 1200 
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mm and be a minimum of four units wide, respectively. The walls were built in Flemish bond, as 

shown in Figure 2. This bond pattern is particularly common in historical buildings [24,52] but still 

few experimental results are available in literature for this typology [24,39]. As reported in [5], there 

is a lack of experimental evidence on double-wythe masonry.  

Professional bricklayers built the walls on metallic C-profiles. This measure facilitated the later 

handling of the specimens. To avoid any influence of the metallic base during the tests, an interface 

consisting of one Teflon sheet 3 mm thick and one PVC sheet 3 mm thick was placed on top of the C-

profile before laying the first joint of mortar (see Figure 2). Up to 21 brick courses conformed the 

walls, with 15 mm thick mortar joints. This thickness was necessary to accommodate the irregularities 

of the brick surfaces. After the construction, the walls were stored in laboratory conditions during the 

curing of the mortar and were tested after 28 days. 

  

2.3 Setup and testing procedure 

The standard ASTM E519 [16] served as reference for the execution of the tests. However, a 

modification was introduced with respect to the positioning of the walls and they were kept horizontal 

instead of rotated 45 degrees. This measure avoided any damage during the handling of the specimens 

due to their low strength and is rather common in research practice [17,53,54]. Furthermore, this setup 

replicates the same one used for in-situ testing [22,23]. 

Figure 2 displays the entire experimental setup for testing a wall. The specimens were placed 

on top of a metallic bench. Two steel loading-shoes, bolted to two robust beams, were placed at two 

diagonally opposite corners of the specimens. The two beams were connected by two Dywidag bars, 

one at each face of the walls. During the test, two hydraulic jacks pulled the bars, thus creating a 

closed-loop system and introducing the diagonal load into the specimens [53]. The loading depth of 

the steel shoes at the corners was of 140 mm. The ratio of the loaded depth (140 mm) with respect to 

the total width of the wall (1270 mm) is equal to 1/9th. This ratio was chosen as a compromise between 
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the suggestions reported in ASTM E519 [16] and in RILEM LUMB6 [28], which are 1/8th and 1/10th 

respectively. 

The loading protocol involved two stages, following the approach applied by the authors in 

[49]. The first stage aimed to facilitate the measurement of the elastic shear modulus of masonry, and 

consisted of the application of three loading-unloading cycles, from 10 to 50 kN under load control. 

These load levels were set to approximately 5% and 30% of a maximum load that had been estimated 

before the tests. The execution of cycles, as reported in [49] and suggested by specific standards for 

the determination of elastic properties (e.g. [55,56]), minimizes the possible errors due to initial effects 

of backlash and specimen irregularities. Cycles were not performed in the wall URM-2. The second 

stage of the tests investigated the ultimate capacity. The load was applied beyond failure under 

displacement control at a constant rate of approximately 0.5 mm/min. The tests were stopped when 

the reduction of the load attained approximately 50% of the registered peak load. 

Besides the pressure transducer and the encoder necessary to control the hydraulic jacks, the 

walls were mainly instrumented with four linear variable differential transducers (LVDTs). The 

mounted instruments had a displacement range of ± 5 mm and a precision of 5 µm. Two LVDTs were 

placed on each face of the specimens along the diagonals, one aimed to measure the shortening of the 

compressed diagonal and the other aimed to capture the elongation of the diagonal under tension. 

Redundant instrumentation, including wire sensors and additional displacement transducers, was 

mounted to assess the global behaviour of the walls during the tests. Further details on the whole setup 

and testing procedure are available in [21,57], which covers a parallel research on strengthened 

masonry. 
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Figure 2 Setup of the diagonal compression test. 

After the tests, the tensile strengths of each wall were evaluated with Equations 4 and 8 

corresponding to the different approaches of ASTM E519 [16] and Frocht [29]. The shear strains γ 

were calculated with the following Equation 9 [16]: 

𝛾𝛾 = 𝜀𝜀𝐹𝐹 + 𝜀𝜀𝑡𝑡   (9) 
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where εc and εt are the compressive and tensile strains along the compressed and tensioned 

diagonals, obtained as the average of the readings from the LVDTs on both sides of the wall. The shear 

elastic moduli were evaluated as the chord modulus between the 5% and 30% of the actual maximum 

load (Pmax) of the shear stress-strain curves. Equations 10 and 11 present the expressions to calculate 

the shear elastic moduli G for each of the considered approaches, where the shear stresses are evaluated 

with Equations 2 and 6: 

𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
0.707∆𝑃𝑃5−30%𝐴𝐴

∆𝛾𝛾5−30%
 (10) 

𝐺𝐺𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑡𝑡 =
1.1∆𝑃𝑃5−30%𝐴𝐴
∆𝛾𝛾5−30%

 (11) 

where ΔP5-30% and Δγ5-30% stand for the increase of load and strain respectively between the 5% and 

30% of the maximum load.  

2.4 Experimental results 

Figure 3 displays the crack patterns of the five walls after failure. These patterns were 

qualitatively similar and, in all cases, a final diagonal main crack connected both loaded corners. The 

particularity of the Flemish bond used to build the walls reflects in the number of bricks affected by 

the crack. Contrarily to other bond arrangements such as header bond, where cracks follow the mortar 

joints and bricks are broken only rarely [17,58], the length of the bricks used herein hindered the 

formation of a stair-stepped crack and necessarily required the failure of bricks in tension. Figure 3f 

includes a detail of URM_2 that shows cracks involving both bricks and mortar joints. 
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Figure 3 a) to e) Crack patterns at the end of the test for the five specimens. f) Pattern detail of wall URM_2 
with cracks involving both bricks and mortar joints. 

Figure 4 displays two types of curves. Figure 4a depicts the load–displacement curves 

corresponding to the five walls, with the displacement corresponding to the shortening of the 

compressed diagonal measured with the encoder of the jacks. Figure 4b displays the load–strain curves 

of four walls, obtained from the readings of the LVDTs placed along the compressed and tensioned 

diagonals (URM_2 curves are not available due to premature detachment of sensors during the test). 

According to Figure 4a, the five walls presented a relatively brittle behaviour. In all cases, the load 

increased almost linearly with the imposed displacement until a sudden drop of the load occurred. The 

curves obtained with the LVDTs at the central zone of the specimen, presented in Figure 4b, show a 

change in the slope of the loading curves before the maximum load Pmax. This change would indicate 
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the appearance of initial damage and was detected by both the LVDTs and the redundant 

instrumentation at a load level around 80 to 90% of the maximum load. At that moment, superficial 

cracks were not visible to the naked eye. Full cracks connecting the corners appeared at the maximum 

load or immediately after, and continued to develop and open during the loss of bearing capacity of 

the wall. The cracks involved the full thickness and were visible on both faces of the walls. The opening 

of the central diagonal cracks affected clearly the readings of the LVDTs. Only in the case of specimen 

URM_3, cracks started clearly at the centre of the panel and progressed along the diagonal to reach 

the corners. In the rest of specimens, it was difficult to identify the starting point of cracks, as they 

appeared almost simultaneously along the full length. 
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Figure 4 a) Load – displacement curves for the five walls, including the initial loading-unloading cycles, the 
peak load and the loss of capacity after failure.. b) Load – strain curves for four walls, measured with the LVDTs placed 
along the compressed and tensioned diagonals. The initial loading-unloading cycles are not shown. No strain curves are 

given for specimen URM_2 due to detachment of the LVDTs during the test. 

Table 2 presents a summary of the experimental results from diagonal compression tests on the 

five walls. Table 2 indicates the registered values of maximum load Pmax and the calculated values of 

tensile strength ft and shear modulus G according to the two approaches and Equations 4, 8, 10 and 11. 

No values of shear modulus are given for specimen URM_2 due to invalid readings of the LVDTs 

during the test. The need of delving into the interpretation of the diagonal test outcomes is evident in 

the light of the obtained average results. Compared to the standard procedure of the ASTM E519 [16], 
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the estimations of the tensile strength and shear modulus of masonry with Frocht’s approach are 36% 

lower and 56% higher respectively. 

Table 2 Experimental results. Maximum load, tensile strength and shear modulus of each specimen 

Specimen Pmax [kN] ft,ASTM [MPa] ft,Frocht [MPa] GASTM [MPa] GFrocht [MPa] 
URM_1 178 0.32 0.24 1536 2389 
URM_2 167 0.30 0.22 - - 
URM_3 117 0.21 0.15 1149 1787 
URM_4 179 0.32 0.23 1571 2444 
URM_5 115 0.21 0.15 883 1375 
Average 151 0.27 0.20 1285 1999 
St. Dev. 32 0.06 0.04 329 512 

CV 21.5% 21.3% 21.3% 25.6% 25.6% 
 

 The coefficients of variation of the experimental results range from 20 to 25%. This relatively 

high variability is common in this type of material and typology of test [1,19,32,59]. According to the 

coefficients of variation presented for bricks and mortar in Table 1, the inherent variability of the 

material constituents can fully explain the scattering found in the diagonal compression tests. In this 

type of tests, cracks are localized in a narrow band of the wall, as shown in Figure 3. Given the 

brittleness of the observed failures, and in agreement with the weakest-link postulate for brittle 

materials [60], it could be expected that the global results were sensitive to the local properties of the 

constituents. Another additional source of variability is given by the Flemish bond and the relevant 

two-brick thickness of the walls, which constitutes a further complexity in the material structure 

compared with the recurrent tests available in the literature on one brick walls with units laid in a 

stretcher pattern. 

As will be seen in section 4.1, this variability is helpful to the aim of this study because the 

results can be grouped in data sets of similar properties, and they can be used for the calibration of the 

numerical model in Section 4. Table 3 identifies the three proposed data sets, one corresponding to the 

average values and the other two corresponding to the higher and lower values.  

Table 3 Experimental data sets for numerical calibration 

Data set Specimens Pmax [kN] ft,ASTM [MPa] ft,Frocht [MPa] GASTM [MPa] GFrocht [MPa] 
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High-set URM 1 & 4 178.5 0.32 0.23 1553 2417 
Average-set URM 1 to 5 151 0.27 0.20 1285 1999 

Low-set URM 3 & 5 116 0.21 0.15 1016 1580 
 

 

3 Numerical tools  

This section 3 provides the details of the numerical model employed in Section 4 to interpret 

the diagonal compression tests. Section 3.1 presents the modelling approach, Section 3.2 provides a 

brief description of the constitutive model used for the materials, and Section 3.3. reports details on 

the simulation process. 

 

3.1 Modelling approach 

Different approaches have been adopted in recent years for the numerical simulation of diagonal 

compression tests. The possibilities span from distinct element models [61] to continuous finite 

element models, the latter covering a variety of cases depending on the level of discretisation detail: 

3D and 2D homogeneous macromodels with a single masonry material [14,61,62], 3D and 2D 

simplified micromodels with no unit-joint interfaces [63,64], micromodels with simplified interfaces 

[65], or detailed micromodels [66], with diverse options of material constitutive laws. 

This research investigates the use of the diagonal compression test to determine homogenised 

mechanical properties of masonry considered as a continuous isotropic material. Consistently, a 

macromodelling approach has been applied to simulate the tests. With this approach, only two 

materials are considered: steel for the loading shoes, and masonry as a homogeneous material for the 

wall. This strategy allows a direct comparison between the experimental outcomes and the material 

input parameters within the same framework. It is also coherent with Section 1 and the initial 

hypothesis of homogeneity and isotropy on which Turnšek and Čačovič based their criterion [6]. 

3.2 Constitutive model 
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The nonlinear behaviour of the masonry material is modelled with a constitutive model based 

on Continuum-Damage Mechanics [67]. For the sake of simplicity, few aspects are highlighted in the 

following. The reader is referred to the most recent developments on the model for further details [68].  

The strain-based continuum damage model uses two scalar damage variables that allow to 

distinguish between tensile (d+) and compressive (𝑑𝑑−) damage. The constitutive law is given in 

Equation 12: 

𝝈𝝈 = (1 − 𝑑𝑑+)𝝈𝝈�+ + (1 − 𝑑𝑑−)𝝈𝝈�− (12) 

where 𝝈𝝈 is the stress tensor, and the effective stress tensor 𝝈𝝈� is split in a tensor related to tension 

stress states 𝝈𝝈�+and in a tensor related to compression stress states 𝝈𝝈�−. 

Two additional scalar variables, τ±, the equivalent stresses, determine the shape of the positive 

and negative damage surfaces, expressed according to Equations 13 and 14: 

𝜏𝜏+ = 𝐻𝐻[𝜎𝜎�𝑚𝑚𝑚𝑚𝑥𝑥]
1

1 − 𝑎𝑎
��3𝐽𝐽2� + 𝑎𝑎𝐼𝐼1� + 𝑏𝑏〈𝜎𝜎�𝑚𝑚𝑚𝑚𝑥𝑥〉�

𝑓𝑓+

𝑓𝑓−
 

(13) 

𝜏𝜏− = 𝐻𝐻[−𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚]
1

1 − 𝑎𝑎
��3𝐽𝐽2� + 𝑎𝑎𝐼𝐼1� + 𝜅𝜅1𝑏𝑏〈𝜎𝜎�𝑚𝑚𝑚𝑚𝑥𝑥〉� 

(14) 

with 

𝑎𝑎 =
(𝑓𝑓𝑏𝑏− 𝑓𝑓−⁄ ) − 1

2(𝑓𝑓𝑏𝑏− 𝑓𝑓−⁄ ) − 1
 

(15) 

𝑏𝑏 = (1 − 𝑎𝑎)
𝑓𝑓−

𝑓𝑓+
− (1 + 𝑎𝑎) 

(16) 

In the above, 𝐼𝐼1̅ is the first invariant of the effective stress tensor and 𝐽𝐽2̅the second invariant of 

the deviatoric effective stress tensor. f + and f - stand for the tensile and compressive strengths 

respectively and fb
- for the biaxial compressive strength. 𝜎𝜎�𝑚𝑚𝑚𝑚𝑥𝑥 and 𝜎𝜎�𝑚𝑚𝑚𝑚𝑚𝑚 denote the maximum and 

minimum principal effective stresses respectively. H[x] is the Heaviside step function and the symbols 

〈∙〉 are the Macaulay brackets (〈𝑥𝑥〉 = 𝑥𝑥, 𝑖𝑖𝑓𝑓 𝑥𝑥 ≥ 0, 〈𝑥𝑥〉 = 0, 𝑖𝑖𝑓𝑓 𝑥𝑥 < 0). 

The failure surfaces described above stand for a tension-compression damage model. Within a 

wall subjected to diagonal compression, the combination of tension and compression leads to a shear 
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stress state. The parameter κ1 introduced in Equation 14 is a constant proposed by Petracca et al. 

[69,70] for an enhanced mechanical description of the shear behaviour of masonry structures, as it 

controls the shape of the failure surface in the shear quadrants. Note that a zero value of κ1 leads to the 

Drucker-Prager criterion, while a unity value yields a criterion equivalent to the one proposed by 

Lubliner et al. [71]. Petracca et al. [69,70] have obtained satisfactory results in simulations of shear 

loading and diagonal cracking when using this model. 

The basis of the model also includes the definition of internal variables for the representation 

of the current damage thresholds, as well as the evolution laws for the damage variables. An 

exponential softening law is adopted in tension, while a parabolic hardening – exponential softening 

curve applies in compression. Six material properties are required to define the model input parameters 

[72]: both tensile, ft, and compressive, fc, strengths, both tensile, Gft, and compressive, Gfc, fracture 

energies, and the elastic properties Young’s modulus, E, and Poisson’s ratio, ν.  

Additionally, the implementation of a local crack-tracking algorithm allows the simulation of 

localized cracks. This feature is especially convenient to the actual localized cracking found in the 

diagonal compression experiments, and provides a more realistic representation of the cracks if 

compared with the common smeared damage approach [73]. This algorithm identifies the elements 

crossed by propagating cracks at each time/load increment, see references [68,73–77] for further 

details and the latest developments on this numerical technique. The use of a nonlinear stress-strain 

relationship for the elements on the crack path, together with a linear elastic response for the ones 

outside, allows the simulation of discrete cracks. The parameters of the crack-tracking algorithm have 

already been calibrated with shear benchmark problems [68,77] and are directly implemented herein.  

 

3.3 Numerical simulation 

The diagonal compression test has been analysed under plane stress conditions. The simulation 

of the load application has been performed through imposed displacements, (δu, δv, see Figure 5a), 
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with increasing magnitude, in agreement with the testing procedure. Displacements of the same 

magnitude and opposite direction were imposed at both corners of the wall simultaneously. As shown 

in Figure 5a, simplified steel loading shoes have been included to better simulate the load application. 

The actual geometry of the masonry specimens is modelled with average dimensions. 

The discretization of the specimens consists of an unstructured mesh of 2D plane-stress three-

node triangles (see Figure 5b). The reference mesh contains 8573 nodes, with average mesh size, he, 

of 13 mm. Such a refined mesh aimed at a more accurate estimation of the stress levels in the centre 

of the specimen.  

The choice of a suitable reference measurement for the comparison between experimental and 

numerical curves to calibrate the models constituted a crucial point of the study. The use of the overall 

stroke of the jacks, as shown in Figure 4a, compared to the displacement between corner nodes was 

not suitable due to spurious readings associated to initial deformations of the loading devices. The 

compressive strain shown in Figure 4b, computed from the experimental readings of the LVDTs placed 

along the compressed diagonal, was eventually chosen. This magnitude was compared to the numerical 

compressive strain calculated between two nodes of the compressed diagonal. These two nodes acted 

as a “virtual LVDT” placed at an equivalent position of the experimental LVDTs (see Figure 2 and 

Figure 5). However, the value of this compressive strain, immediately before and after the peak load, 

is affected in both the experimental case and numerical cases by the opening of the diagonal crack. 

Given the randomness of the experimental cracking, it was decided, during the calibration process, to 

focus on the comparison of the experimental and numerical initial stiffness and maximum load. This 

comparison allows the evaluation of the tensile strength and the shear modulus of masonry. 
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Figure 5 a) Boundary conditions on the numerical simulation and position of the virtual LVDT for comparison. 
b) Discretized domain used for the macromodelling approach. 

The numerical solution was carried out in an incremental manner. A modified Newton-Raphson 

method (using the secant stiffness matrix) together with a line-search procedure were used to solve the 

corresponding nonlinear equations. To achieve convergence at each step, the maximum value of the 

ratio between the norm of the iterative residual forces and the norm of the total external forces was set 

at 10-2. Calculations were performed with an enhanced version of the finite element software COMET 

[78], while the software GiD [79] was used for the pre- and post-processing of the model. Both 
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software have been developed at the International Centre for Numerical Methods in Engineering 

(CIMNE), in Barcelona.  

  

4 Study on the use of the diagonal compression test to estimate homogenised 

properties of masonry 

This section investigates the possibility of using the experimental outcomes of the diagonal 

compression test to determine two mechanical properties of masonry: tensile strength and shear 

modulus. The basic hypothesis is considering masonry as a homogeneous and isotropic material, in 

correspondence with the assumption of the Turnšek and Čačovič criterion. Thus, the tensile strength 

and shear modulus are considered as global and intrinsic parameters of the material. 

The investigation begins with the calibration of a numerical macromodel with the experimental 

results exposed in Section 2. Once the model is calibrated, the state of stresses within a reference panel 

is interpreted, and a factor is proposed to calculate the tensile strength. A sensitivity analysis evaluates 

the influence on this factor of the input material properties, the panel size and the dimensions of the 

loaded corners. Eight different experimental campaigns available in the scientific literature have been 

used as benchmark problems to validate the findings of this section for different masonry typologies. 

 

4.1 Calibration of the macromodel 

The numerical macromodel has been calibrated to fit the experimental curves of the three data 

sets defined in Table 3. The calibration process followed a splitting approach, as defined by Chisari et 

al. [65]. The first stage involved the calibration of the elastic parameters, Young’s modulus and 

Poisson’s ratio, to adjust the slopes of the curves. The second stage required the calibration of the 

tensile strength and the tensile fracture energy to reach the corresponding maximum load.  

The initial values of the mechanical properties were chosen as follows. The compressive 

strength and compressive fracture energy of masonry were always taken equal to the experimental 
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values provided in Table 1. The experimental shear moduli obtained from both approaches, i.e. 

ASTM’s and Frocht’s in Table 3, were used to determine the Young’s moduli by means of the 

relationship E = 2G(1 + ν). Assuming an isotropic homogeneous material, the former expression is 

valid due the elastic linear behaviour presented by the walls at low load levels. Different values of 

Poisson’s ratio were checked. The experimental values of tensile strength obtained from both 

approaches (Table 3) were assumed as starting point. Two different expressions were used to link the 

tensile fracture energy to the strength of masonry. Equation 17 was proposed by Angelillo et al. [80] 

as an adaptation from Model Code 1990 for concrete structures [81]. Equation 18 is the proposal of 

the Model Code 2010 [82].  

𝐺𝐺𝑓𝑓𝑡𝑡 = 0.04 𝑓𝑓𝑡𝑡0.7   (17) 

𝐺𝐺𝑓𝑓𝑡𝑡 = 73 𝑓𝑓𝐹𝐹0.18  (18) 

Figure 6 shows the results of the calibration with the comparison between the numerical and 

the experimental curves. As explained in Section 3.3, the calibration is focused mainly in the initial 

slope and the maximum attained load. A direct comparison of the post-peak response is hindered by 

the influence of the location and crack opening in the readings of the LVDTs. Figure 7 displays the 

contour of maximum principal strains in the finite element model for one of the cases after failure. The 

resulting numerical crack is perfectly diagonal and mesh-independent, proving the high accuracy of 

the considered computational technique. The adopted numerical approach simulates well the described 

crack patterns obtained experimentally and shown in Figure 3. Table 4 includes the final input 

parameters for the three different data sets and the comparison between the numerical and experimental 

maximum loads. The difference is always lower than 2%. 

Regarding the input data indicated in Table 4, the final values of Young’s moduli, which best 

fitted the experimental slopes, corresponded to those obtained from the values of shear moduli given 

by Frocht’s expression (Equation 6). The input tensile strength was the most relevant parameter 

affecting the appearance of damage and defining the maximum load. In the three data sets, the values 
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obtained by means of ASTM’s and Frocht’s approach (Equations 4 and 8) led to very high values of 

peak load. In the three data sets, in order to attain the sought load levels, it was necessary to reduce the 

input tensile strength to a value close to 0.40 times the experimental load Pexp over the area A. The 

modified expression from Model Code 1990 for the tensile fracture energy (Equation 17) worked well 

also for the three data sets. These satisfactory results were obtained with a constant value of 0.16 for 

the numerical parameter κ1 proposed by Petracca et al. [69,70]. The same value was used in [68,70,83] 

to simulate other shear tests. The calibration process described in this paragraph applied for the three 

different data sets and led to good simulations of the initial slopes of the experimental curves, the 

maximum attained loads, and the failure mechanism. 

 

Table 4 Calibration of the numerical model with experimental results: Input data for the numerical analyses of the three 
data sets, and comparison between experimental and numerical maximum loads. 

 Input data Comparison exp - num 

Data set E 
(MPa) ν (-) ft 

(MPa) 
fc 

(MPa) 
Gft 

(N/m) 
Gfc 

(N/m) κ1 (-) 
Pexp 
(kN) 

Pnum 
(kN) Δexp-num 

High-set 4203 0.15 0.183 6.51 12.17 9750 0.16 178.5 176.3 + 1.2% 
Average-set 3477 0.15 0.155 6.51 10.85 9750 0.16 151 151.8 -0.5% 

Low-set 2748 0.15 0.119 6.51 9.03 9750 0.16 116 117.6 -1.4% 
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Figure 6 Comparison between the load-strain curves of the experimental tests and the numerical analyses. No 
experimental curve is given for specimen URM_2 due to invalid readings of the LVDTs during the test. 

 

 

Figure 7 Contour of the maximum principal strains, εI, after the peak load. 

 

4.2 Interpretation of the diagonal test 

The previous section allowed having a properly calibrated numerical model able to simulate 

satisfactorily the experimental diagonal compression tests. This section seeks to interpret the state of 

stresses within the panel and to derive conclusions on the use of the experimental outcomes to 
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determine mechanical properties of masonry. The average data set defined in Table 3 is used as a 

reference in the following. 

4.2.1 Linear range 

First, the focus is placed in the initial stage of the analysis when the wall still behaves linearly, 

i.e. without any damage. For the sake of clarity, it is decided to define a series of coefficients alpha α 

or normalized stresses for the different stress components, according to the applied load P over the 

transversal section A. For a given time-step (i), the coefficients for the different stresses (σx, σy, τxy, σI) 

are defined with Equations 19a to 19d: 

𝛼𝛼𝑥𝑥(𝑖𝑖) = 𝜎𝜎𝑥𝑥(𝑖𝑖)
𝐴𝐴
𝑃𝑃(𝑖𝑖)

 (19a) 

𝛼𝛼𝑥𝑥(𝑖𝑖) = 𝜎𝜎𝑥𝑥(𝑖𝑖)
𝐴𝐴
𝑃𝑃(𝑖𝑖)

 (19b) 

𝛼𝛼𝑥𝑥𝑥𝑥(𝑖𝑖) = 𝜎𝜎𝑥𝑥𝑥𝑥(𝑖𝑖)
𝐴𝐴
𝑃𝑃(𝑖𝑖)

 (19c) 

𝛼𝛼𝐼𝐼(𝑖𝑖) = 𝜎𝜎𝐼𝐼(𝑖𝑖)
𝐴𝐴
𝑃𝑃(𝑖𝑖)

 (19d) 

Figure 8 shows three contour plots that represent the stress state of the wall in the linear range. 

The coefficient α corresponding to each stress component at the centre of the panel is indicated below 

each of the plots. Unlike the hypothesis of pure shear stated in the American standard ASTM E519 

[16], Figure 8a illustrates that the normal stresses along the X-axis (also along Y-axis) are not null. As 

pointed out by Gabor et al. [64], the stress condition of pure shear would require an additional pair of 

tensile forces acting at the opposite free corners. The coefficients found in the research presented herein 

(αx = -0.56, αxy = 1.04, αI = 0.48) are very similar to those found by Brignola et al. [31], and agree with 

the elastic solution proposed by Frocht [29]. The slight differences between the values obtained with 

numerical methods and those found by Frocht may be due to the consideration of Poisson’s ratio and 

the incorporation into the models of the effect of the loading shoes. 
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The confining effect exerted by the loading shoes is evident in the three plots of Figure 8. This 

effect vanishes towards the centre of the panel, where stresses are more uniform. This fact highlights 

the need of following the prescriptions of the standards with regard to the size of the panel and length 

of the loading shoes. Section 4.3 investigates this effect in more detail.  

Figure 8c confirms that the highest values of tensile stress appear at the centre of the panel, and 

are distributed on a finite region, as shown in Figure 9. This figure depicts the distribution of maximum 

principal stresses along the four axes of symmetry of the panel. The central fifth of the wall is subjected 

to tensile stresses very close to the maximum value, associated with an αI of 0.48. This observation 

implies that the real wall of masonry would not fail at the central point of maximum tensile stresses, 

but at the weakest point within this central zone, considering both the high stress level and the local 

material properties at that specific location. As stated in Section 2, the diagonal compression test is 

sensitive to the local properties of the components, and the global scattering in the experimental results 

would reflect the variability within the constituent materials.  
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Figure 8 Contour of stresses in the linear range, expressed in terms of normalized stress α. a) Normal stresses σx 
along X-axis [σy are not shown due to the problem’s symmetry], b) shear stresses τxy, and c) maximum principal stresses 

σI. 

 

Figure 9 Distribution of the maximum principal stresses along the axes of symmetry of the panel. Stresses are 
normalized and expressed in terms of the coefficient αI. The X-axis represents normalized lengths. The centre of the 

panel corresponds to the coordinate 0.5.  

 

4.2.2 Non-linear range 

The second stage of the study deals with the non-linear range, referring to the part of the analysis 

after the appearance of damage in the centre of the wall. Figure 10a shows the numerical evolution of 

stress components at the central element of the panel with increasing load, while Figure 10b depicts 

the counterpart curves in terms of coefficient α or normalized stresses. The horizontal axes of both 

figures are normalized with respect to the maximum load. The constant slope of the linear curves for 

the stresses agrees with the linear behaviour of the walls detected during the tests, and justifies the 

experimental procedure adopted herein to determine the shear modulus as a slope between load levels 

of 5 and 30% of the assumed maximum load. Figure 11 illustrates the tensile crack propagation in the 

panel with increasing load.  

From Figure 10 and Figure 11, it is evident that cracking starts when the maximum principal 

stresses σI at the centre of the panel attain the level of the input tensile strength of the material ft. 

Reaching the level of the tensile strength triggers the apparition of damage at the centre of the panel. 

As shown in Figure 11, this damage develops from the central region to the corners, and eventually 

leads to the collapse of the panel with the formation of a complete diagonal crack. This sequence agrees 
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with the experimental behaviour described in Section 2. The localization of initial damage within the 

central region of the wall is in agreement also with the general experimental observations, as reported 

by different authors [4,9,12].  

According to Figure 10 and Figure 11, the initiation of damage occurs at a level of applied load 

around 80% the maximum attained load. This value is in agreement with the observations in the 

experimental curves reported in Section 2. It also agrees with the results of other researches that also 

applied a macromodelling approach. Basili et al. [14] used a smeared crack model and the computer 

code MIDAS-FEA to simulate diagonal compression tests. In their analyses, the level of damage 

initiation was equal to 78% the maximum attained load. 

 This finding does not comply with the assumption of the standard [16] that establishes a 

correspondence between the initiation of damage at the centre of the panel and the failure of the panel. 

It has been found that the state of stresses of the panel at failure does not correspond to the elastic one, 

and that a redistribution of stresses occurs after the initiation of damage. The most important 

implication of this observation is that, although the failure of the panel depends on the tensile strength 

of the material as it triggers the damage initiation, the subsequent behaviour of the wall is more 

complex and it is not straightforward to identify a direct relationship between the maximum attained 

load Pmax and the tensile strength of the material ft.  

Nevertheless, the experimental outcome provided by a diagonal compression test is the 

maximum attained load. As mentioned in Section 2, it is difficult to precisely define in laboratory the 

exact moment of cracking with common instrumentation. Therefore, in order to allow the use of the 

diagonal compression test to determine mechanical properties of masonry, it is necessary to define a 

possible correlation, even if not univocal, between the maximum load and the tensile strength of the 

material. It is proposed to find the coefficient alpha α that correlates the maximum load with the tensile 

strength. For a given numerical analysis, the coefficient αI,calc is back-calculated with Equation 20, 
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which involves the maximum attained load and the tensile strength used as an input parameter in the 

analysis: 

 𝛼𝛼𝐼𝐼,𝐹𝐹𝑚𝑚𝑐𝑐𝐹𝐹 = 𝑓𝑓𝑡𝑡,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡∗𝐴𝐴
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

  (20) 

In the three cases studied in the calibration section, the coefficient αI,calc is almost constant. It 

takes the values of 0.408, 0.402 and 0.400 for the high, average and low data sets respectively. 

Nevertheless, those values of coefficient αI,calc may only apply to the specific material and walls studied 

in the experimental campaign described in Section 2. The sensitivity of the coefficient αI,calc to different 

parameters is analysed in the following Section 4.3, while its use is validated with experimental 

campaigns carried out by other authors in Section 4.4. 
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Figure 10 a) Evolution of stresses and b) relevant normalized values α in the centre of the panel with increasing 
load. The load is normalized with respect to the maximum load attained during the analysis. 
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Figure 11 Evolution of tensile damage contour for different levels of imposed displacement δ. The tensile 
damage index d+ ranges from 0 (intact material) to 1 (completely damaged material). a) δ = 0.198 mm, P = 0.82Pmax, b) 

δ = 0.216 mm, P = 0.89Pmax, c) δ = 0.230 mm, P = 0.95Pmax, d) δ = 0.244 mm, P = Pmax, e) δ = 0.247 mm, P = 
0.92Pmax 

   

4.3 Sensitivity analysis  

This section investigates the sensitivity of the back-calculated coefficient αI,calc to different 

input parameters and boundary conditions. In each sensitivity analysis, the parameter investigated was 

varied, while the rest of properties and conditions were kept constant at the reference values. The 

average data set defined in the calibration Section 4.1 was taken as reference. 
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4.3.1 Material properties 

Given the features of the problem, the compressive parameters, such as the compressive 

strength and the compressive fracture energy, have little influence in the maximum attained load and 

the coefficient αI,calc. The Poisson’s ratio has a negligible influence as well. The material properties 

involved in the sensitivity analysis were the Young’s modulus, the tensile strength, and the tensile 

fracture energy. The influence of the numerical parameter κ1, which constitutes a special feature of the 

numerical model that controls the shear response, was also investigated. 

Table 5 reports the values of the parameters that were considered in the sensitivity analyses. 

Either three or four variations were studied for each parameter, whose values were chosen as follows. 

The reference value for the Young’s modulus, E = 3477 MPa, represents a ratio of 534 with respect to 

the compressive strength of masonry (Table 1, fc = 6.5 MPa). As indicated by Tomazevic [84], the 

ratio E / fc usually ranges between 200 and 1000 in common masonry. The values of Young’s modulus 

reported in Table 5 correspond to ratios of 200, 400 and 1000. Similarly, the reference value for the 

tensile strength, ft = 0.155 MPa, corresponds to a ratio of 2.5% with respect to the compressive strength. 

Common values for the tensile strength of masonry range from 1 to 10% the compressive strength 

[80]. The values of tensile strength in Table 5 stand for 1%, 4% and 5% of the compressive strength. 

Greater percentages were considered unrealistic in this case. The choice of the values of tensile fracture 

energy relied on different approaches. The reference value, which allowed a good calibration in Section 

4.1, was obtained by means of Equation 17 adapted in [80] from the Model Code 1990 [81]. A higher 

value corresponds to the unmodified expression of Model Code 1990 [81]. The lowest value 

corresponds to a ductility index of 0.029 mm suggested for bricks by Angelillo et al. [80]. Last, the 

parameter κ1 of the constitutive model proposed by Petracca et al. [69,70] was varied within its extreme 

possible values, 0 and 1.  

Table 5 Values of the parameters investigated in the sensitivity analyses. 

Input parameter 
E, Young’s modulus 

(MPa) 
ft, Tensile strength 

(MPa) 
Gft, Tensile fracture 

energy (N/m) 
κ1 (-) 

Reference value 3477 0.155 10.85 0.16 
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Variation 1 1302 0.065 4.73 0 
Variation 2 2604 0.26 18.5 0.1 
Variation 3 6510 0.325 56.2 0.3 
Variation 4 - - - 1 

 

Figure 12 shows the results of the sensitivity analyses in terms of load – strain curves and 

influence on coefficient αI,calc. The effects were qualitatively predictable. Variations in the Young’s 

modulus changed the stiffness of the curves and affected slightly the maximum attained load (Figure 

12a). Variations in the tensile strength of the material were strongly related to the maximum attained 

load while the slope of the curves was maintained (Figure 12b). As could be expected, the influence 

of varying the tensile fracture energy affected mainly the post-peak range (Figure 12c). The diagonal 

crack has completely formed for all the cases for a strain of around 0.02%. The higher value, Gft = 

56.2 N/m, gives a very ductile post-peak response in the stress-strain relationship of the constitutive 

model. This ductile behaviour results in a hardening response of the wall after the diagonal crack 

forms, which was not observed in the experiments. Finally, the variation of the parameter κ1 shows the 

anticipated effect (Figure 12d): higher values correspond to higher shear capacity. It is noted that a 

decrease in the value of κ1 results in an increased “weight” of the compressive surface on the 

constitutive shear response yielding a higher shear strength and dilatancy [69].  

Quantitatively, the impact of the properties variation on the value of coefficient αI,calc was 

limited, taking into account the wide range of variation investigated. In overall, the coefficient αI,calc 

spanned from 0.38 to 0.45, with the exception of the highest value assigned to the tensile strength, and 

remained always below the value associated to the elastic response (0.48). An increase of 87% in the 

reference value of Young’s modulus produced a decrease of only 2.5% in the coefficient αI,calc. An 

increase of around 420% in the reference value of tensile fracture energy involved a decrease of 5% in 

the coefficient αI,calc. The influence of the tensile strength was greater, as an increase of 110% in the 

reference value produced an increase of 16% in the value of the coefficient αI,calc. This is further 

evidence of the intimate relation between this parameter and the result of the diagonal compression 
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test. For high values of tensile strength, the load of initial damage is closer to the maximum attained 

load. Similarly, the parameter κ1 influences the shear strength and results in a variation of αI,calc 

equivalent to that observed for the tensile strength (see Figure 12d).  
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Figure 12 Sensitivity of the model to variations of different parameters, in terms of load – strain curves and 
coefficient αI,calc. a) Variation of input Young’s modulus, E. b) Variation of input tensile strength, ft. c) Variation of input 

tensile fracture energy, Gft. d) Variation of parameter κ1 

 

4.3.2 Size and confinement effect  
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As mentioned in Section 2, the American standard ASTM E519 [16] and the RILEM 

recommendation LUMB6 [28] differ in the prescriptions of panel size and depth of the loading shoe. 

Although the minimum size of 1.2 m prescribed by ASTM E519 [16] is generally respected, a number 

of researches have considered smaller panels, mainly due to economical and practical reasons. In fact, 

the Chilean norm NCh 2123 [85] allows testing wallets with a minimum length of 0.6 m. Similarly, 

the depth of the loading shoe also presents a great variability in practice in spite of the 

recommendations. It is therefore necessary to investigate the effect of the size panel and the loading 

shoe depth on the maximum attained load and the coefficient αI,calc. A series of numerical analyses 

were performed with identical material properties to the average data set defined in the calibration in 

Section 4.1, but varying these two dimensions. 

Figure 13 shows the values of the coefficient αI,calc for the different panel sizes considered: 0.4 

m, 0.6 m, 0.8 m, 1 m, 1.1 m, 1.2 m, the reference panel of 1.27 m, 1.3m, and 1.4 m. The influence of 

the panel size revealed to be negligible and was only significant for very small panels. A constant value 

of 0.4 would apply for panels from 0.6 to 1.4 m. This numerical finding is consistent with the limited 

experimental evidence available in literature. Knox et al. [86] did not find statistically significant 

differences between the strengths attained in walls 0.6 m and 1.2 m wide. In a seminal research, Fattal 

[87] investigated walls 1.2 m, 0.8 m, 0.6 m and 0.4 m wide. Only the smallest walls 0.4 m wide showed 

an evident size effect in the results.  
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Figure 13 Effect of the panel side length on the coefficient αI,calc. Triangle dot indicates the value corresponding to the 
side length recommended in ASTM E519 [16] (1200 mm). 

Figure 14 illustrates the effect of the loading shoes depth on the coefficient αI,calc. With respect 

to the panel side length, the values investigated were 1/12th (0.083), 1/11th (0.091), 1/10th (0.1, as 

recommended by RILEM LUMB6), 1/9th (0.111, the reference panel), 1/8th (0.125, as recommended 

by ASTM E519), 1/7th (0.143), 1/6th (0.167), 1/4th (0.25), and 1/3rd (0.333). From 1/12th to 1/7th, there 

was no apparent influence, and the coefficient αI,calc remained almost constant and equal to 0.4. 

Conversely, the confinement exerted by the larger shoes showed to have a notable influence on the 

results. In the cases of 1/4th and 1/3rd, the failure mode of the wall changed and a compressive strut 

was formed between the two loaded corners, with parallel diagonal cracks connecting the edges of the 

shoes. The latter are extreme cases, but may be found in practice.  
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Figure 14 Effect of the loading cap depth on the coefficient αI,calc. The X-axis indicates the loading cap depth normalized 
with respect to the panel side length. The triangle dot indicates the value corresponding to the ratio recommended in 

ASTM E519 [16] (1/8th). 

The coefficient αI,calc has shown little sensitivity to the size and confinement effects, provided 

that the panel length and the loading shoes depth lay within certain limits. This conclusion may depend 

on the specific dimensions of the blocks and joints conforming the walls, especially on the relative 

dimensions of the blocks with regard to the global geometry of the wall and setup.  

 

4.4 Validation  

This section studies the applicability of the former findings to other masonry typologies and 

specimen sizes. Eight experimental campaigns carried out by other authors have been simulated 

[1,5,13,88–90]. These campaigns were selected under three criteria: i) They should provide sufficient 

and relevant information about experimental results, geometry and material properties; ii) They should 

present failures involving diagonal cracking; iii) They should cover a variety of typologies and sizes. 

The numerical simulation included the modelling of the specific geometries of the walls, and the 

selection of proper input material properties, according to the procedures described below. The 

maximum loads predicted numerically were compared to the experimental ones. 
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Table 6 presents the features of the eight selected campaigns. The different combinations of 

materials included clay bricks, concrete blocks, tuff blocks, and rubble masonry, combined with aerial 

lime, hydraulic lime, and cement mortars. The size of the analysed panels ranged from 0.9 to 1.63 m, 

and the thickness from 0.079 to 0.7 m. The input data were selected as follows. The compressive 

strengths fc were directly obtained from the references. The compressive fracture energies were 

calculated by applying the same ratio Gfc / fc used in this research. The Young’s moduli E were derived 

considering isotropic elasticity from the experimental shear moduli G, which were calculated from the 

experimental data by using the coefficient αxy equal to 1.04 that has been found adequate in this 

research to calculate the shear stresses. In the case of the campaign by Rezaie et al.[1], the Young’s 

modulus was directly obtained from compression tests. The values of tensile strength ft were obtained 

from the experimental maximum loads by means of the coefficient αI,calc equal to 0.4 that is proposed 

in this study. Finally, once the tensile strengths were defined, the tensile fracture energies Gft were 

calculated by means of Equation 17.  

Table 6 includes in the last three columns the comparison between the experimental maximum 

loads and the numerically predicted loads. Despite the great variety of the investigated geometries and 

materials, the average error between numerical and experimental results is 5.9%. This close estimation 

of the experimental capacity shows the validity of the proposed values for the coefficients αI,calc=0.4 

and αxy =1.04 to determine the tensile strength and the shear modulus of masonry from the experimental 

outcomes of diagonal compression tests. 

The validation with campaigns carried out by other authors leads to the following remarks. 

First, a value of 0.4 for the coefficient αI used to compute the tensile strength of masonry ft has provided 

good estimations of the maximum experimental loads. This value takes into consideration non-linear 

effects, cracking, and stress redistributions. Even if it only constitutes an approximation to the 

complexity of the real behaviour of masonry, it provides estimations on the safe side with respect to 

the elastic solution (αI = 0.48) and the ASTM E519 proposal (αI = 0.707). Second, the use of a 
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coefficient αxy equal to 1.04 to calculate the shear stresses has led to satisfactory estimations of the 

shear modulus of masonry G. Third, Equation 17 proposed by Angelillo et al. [80] to estimate the 

tensile fracture energy Gft from the tensile strength has provided good results for this type of problem 

and macromodel, in which the shear response is associated with the tensile damage evolution. 

 

Table 6 Results from analyses of available experimental campaigns from literature. Comparison between experimental 
and numerically predicted maximum load. 

Data set Input data Comparison exp - num 

Reference Typology Wall size 
(mm³) 

ft 
(MPa) 

fc 
(MPa) 

Gft 
(N/m) 

Gfc 
(N/m) 

E 
(MPa) 

Pexp 
(kN) 

Pnum 
(kN) Δexp-num 

Babaeidarabad 
et al. [88]  

Clay brick + 
cement 

1145 × 1220 
× 92 0.263 24.0 15.70 36000 1769 70.0 66.6 +4.8% 

Mahmood and 
Ingham [5] 

Clay brick + 
cement lime 

1170 × 1170 
× 225 0.054 5.4 5.18 8100 3141 36.0 40.3 -12.0% 

Milosevic et 
al. [89] 

Rubble stone + 
air lime 

1200 × 1200 
× 700 0.014 7.41 1.98 11115 204 29.0 29.8 -2.6% 

Milosevic et 
al. [89] 

Rubble stone + 
hydraulic lime 

1200 × 1200 
× 700 0.162 8.01 11.2 12015 868 339.0 303.6 +10.4% 

Parisi et al. 
[13] 

Tuff block+ 
pozzolana 

1230 × 1230 
× 310 0.127 3.96 9.43 5940 1100 121.0 112.1 +7.4% 

Rezaie et al. 
[1] 

Rubble stone + 
hydraulic lime 

900 × 900 × 
400 0.060 0.76 5.58 1140 1191 53.0 52.5 +0.88% 

Silva et al. 
[90] 

Concrete block 
+ cement 

1626 × 1626 
× 79 0.399 16.8 21.02 25200 8600 128.0 123.8 +3.4% 

Silva et al. 
[90] 

Clay brick + 
cement 

1219 × 1219 
× 92 0.289 13.2 16.78 19800 2700 81.0 76.5 +5.5% 

 

 

5 Conclusions 

This paper has presented a combined experimental and numerical investigation on the use of 

the diagonal compression test to characterize the tensile strength and the shear modulus of masonry. 

A numerical macromodel has been calibrated with an experimental campaign that involved tests of 5 

brickwork walls built in Flemish bond. The following conclusions can be drawn from the performed 

numerical analyses: 

- In the linear range of the analyses, the numerical solution coincides qualitatively with the 

solution that Frocht derived theoretically for the elastic problem by photoelasticity. The 

numerical study shows that a wall compressed diagonally does not present a pure shear state 
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of stresses. The approach of ASTM E519 has shown to overestimate the maximum principal 

stresses (σI = 0.707*P/A versus σI = 0.48*P/A) and to underestimate the shear stresses (τxy 

= 0.707*P/A versus τxy = 1.04*P/A) at the centre of the panel. 

- Damage initiation is triggered when the maximum principal stresses at the centre of the 

panel reach the masonry tensile strength. Afterwards, a redistribution of stresses takes place 

until the maximum load is attained and the panel fails.  

- A coefficient αI that correlates the maximum attained load and the input tensile strength has 

been back-calculated based on the numerical investigation. The tensile strength is proposed 

to be calculated as the maximum applied load times a coefficient αI equal to 0.4, divided by 

the transverse area of the wall. The use of the coefficient αI accounts for cracking and stress 

redistributions, and allows the practical use of the experimental results to determine the 

tensile strength of masonry. This value would be only applicable for tests that present a 

diagonal failure with a crack that passes by or close to the central section of the wall. 

- The sensitivity of the coefficient αI to the variation of several parameters has been 

investigated numerically. The coefficient αI is sensitive to the variation of the Young’s 

modulus and tensile strength. Its value ranges from 0.38 to 0.45, and always remains below 

the corresponding elastic value of 0.48.  

- The coefficient αI shows little sensitivity to the variation of the panel size and the size of 

the loading shoes, provided that these dimensions are similar to the ones suggested by the 

standards. The coefficient remains almost constant for walls between 0.6 m and 1.4 m wide, 

and for loading shoes depths spanning from 1/6th to 1/12th the length of the panel side. 

- These findings have been validated by considering experimental results from eight 

campaigns carried out by other authors and available in literature. These campaigns covered 

a wide range of dimensions and components properties. The assumptions of a coefficient αI 

equal to 0.4 to compute the tensile strength of masonry from the experimental maximum 
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load, and of a coefficient αxy equal to 1.04 to compute the shear stresses and determine the 

shear modulus, allows the numerical simulations to represent correctly the experimental 

loads.  

- The experimental campaign presented herein involving brickwork walls has shown the 

particularities of the Flemish bond, as the development of the diagonal cracks through both 

mortar joints and bricks. With the coefficients proposed in this paper, the average tensile 

strength of the investigated masonry is estimated equal to 0.15 MPa, while the average shear 

modulus is estimated equal to 1890 MPa. The compressive strengths of the component 

materials are 18 MPa and 2.2 MPa for bricks and mortar respectively.  

- The numerical model adopted in the research, based on an ad-hoc constitutive model for 

masonry and a crack-tracking technique for tensile crack localization, proves to constitute 

a reliable tool for the assessment of masonry homogenized properties by means of 

comparisons with experimental results.  
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